
Published as a conference paper at ICLR 2024

WAXING-AND-WANING: A GENERIC SIMILARITY-
BASED FRAMEWORK FOR EFFICIENT SELF-
SUPERVISED LEARNING

Sheng Li1, Chao Wu3, Ao Li4, Yanzhi Wang3, Xulong Tang1, Geng Yuan2

1University of Pittsburgh 2University of Georgia 3Northeastern University
4University of Arizona
{shl188,xulongtang}@pitt.edu geng.yuan@uga.edu
{cha.wu,yanz.wang}@northeastern.edu aoli1@arizona.edu

ABSTRACT

Deep Neural Networks (DNNs), essential for diverse applications such as visual
recognition and eldercare, often require a large amount of labeled data for train-
ing, making widespread deployment of DNNs a challenging task. Self-supervised
learning (SSL) emerges as a promising approach, which leverages inherent pat-
terns within data through diverse augmentations to train models without explicit
labels. However, while SSL has shown notable advancements in accuracy, its
high computation costs remain a daunting impediment, particularly for resource-
constrained platforms. To address this problem, we introduce SIMWNW, a
similarity-based efficient self-supervised learning framework. By strategically re-
moving less important regions in augmented images and feature maps, SIMWNW
not only reduces computation costs but also eliminates irrelevant features that
might slow down the learning process, thereby accelerating model convergence.
The experimental results show that SIMWNW effectively reduces the amount of
computation costs in self-supervised model training without compromising accu-
racy. Specifically, SIMWNW yields up to 54% and 51% computation savings in
training from scratch and transfer learning tasks, respectively.

1 INTRODUCTION

The conventional supervised learning paradigm that underpins their training process relies heavily
on large amounts of labeled data (Li & Feng, 2019; Li et al., 2019; Hou et al., 2022). To address these
limitations, researchers increasingly turn to Self-Supervised Learning (SSL) as a promising alterna-
tive and have made significant progress over the last few years (Bachman et al., 2019; Chen et al.,
2020a; Zheng et al., 2021; Xu et al., 2022; Cao et al., 2023; Li et al., 2024). SSL intends to learn the
inherent representations that are invariant under different distortions by maximizing the similarity
of representations obtained from training samples using different augmentation methods (Misra &
Maaten, 2020; Reed et al., 2021; Zbontar et al., 2021).

While recent work has come a long way in terms of improving the accuracy of SSL (He et al., 2020;
Ren et al., 2022; Zhu et al., 2023), the exorbitant training cost associated with SSL methods is still
a critical challenge of SSL. For example, SSL designs like BYOL (Grill et al., 2020) demand 23
times the computation costs, attributed to 8.8× more required training iterations and 2.6× higher
computation cost per iteration (Wen & Li, 2021) compared to the supervised learning counterparts.
This will inevitably impede the actual deployment of SSL in real-world applications, especially for
resource-limited platforms such as edge devices.

Although a few recent works have begun to acknowledge the importance of the efficiency of SSL,
this area is still severely neglected by the community. Recent work (Addepalli et al., 2022) intro-
duces a rotation prediction task along with the original training process to improve the convergence
speed of SSL. And Meng et al. (2022) introduces a contrastive dual gating mechanism with extra
conditional paths to learn the dynamic gating policy and reduce the computation FLOPs. The ex-
isting methods often require increased complexity on top of the original SSL paradigm to improve

1



Published as a conference paper at ICLR 2024

efficiency. So, it is natural to raise a question: Is there a more general and effective method that can
significantly improve the training efficiency of SSL?

Considering the training paradigm of the SSL that leverages different data augmentations on two
branches with a siamese encoder model used, it results in a unique property of SSL compared to
the conventional supervised learning methods (Tian et al., 2020; Chen et al., 2020a). That is, the
augmented input images and feature maps on the two branches inherently have a certain degree of
similarity. This is a natural opportunity that could be potentially used for computation saving or
simplifying. However, it is insufficient to lead us directly to a simple solution. It is not clear whether
similar and dissimilar regions of augmented input images and feature maps in the two branches are
equivalently crucial for SSL and whether the similarity remains invariant in low-level features and
high-level features. And how can we effectively utilize the similarity to improve training efficiency?

Motivated by these questions, we make a comprehensive exploration of the impact of similar regions
on SSL accuracy. And we explore two types of methods (i.e., reuse and remove) to exploit the
similarities for computation-saving. We find that eliminating the computation on similar regions
of augmented input images and each layer’s activations can significantly reduce the computation
and speed up SSL. To mitigate the region shrinking problem caused by convolution layers, we
propose a strategy to effectively and efficiently identify and expand high-similarity regions to ensure
a decent overall computation saving. This strategy can be considered a waxing-and-waning process.
Putting it all together, we propose our SIMWNW, a generic and efficient SSL framework that can
significantly reduce training costs and improve the convergence speed of SSL.

Our SIMWNW framework is generic and can be easily applied to different SSL training methods for
training cost-saving. We evaluate our framework in both training from scratch and transfer learning
tasks and validate the effectiveness and generalizability of SIMWNW. Specifically, in training from
scratch tasks, compared to representative SSL works, SIMWNW provides significant computation
savings, peaking at 54% and averaging at 40%, and without sacrificing accuracy. In transfer learning
tasks, SIMWNW shows a notable reduction in computation costs, peaking at 51% and averaging at
48%, without accuracy loss. We also compare SIMWNW to efficient SSL approaches. In both
training from scratch and transfer learning tasks, SIMWNW consistently outperforms SOTA works,
achieving an average computational cost reduction of 18% and 14%, respectively.

2 BACKGROUND AND RELATED WORK

2.1 REPRESENTATIVE SELF-SUPERVISED LEARNING FRAMEWORKS

SimCLR (Chen et al., 2020a) stands out as a pivotal framework in contrastive self-supervised learn-
ing. It operates by maximizing the similarity between representations of differently augmented
versions of the same image and concurrently reducing the similarity with representations of other
images in the batch. These representations, derived from encoders, capture the essential features of
the images. Specifically, for any given image, its representations zi and zj are treated as a positive
pair. The contrastive loss is:

LSimCLR = − log
exp(zi · zj/τ)∑N
k=1 exp(zi · zk/τ)

(1)

Here, τ denotes a temperature parameter that regulates the sharpness of the distribution, zk is the
representation of other images (negative samples), and N is the batch size.

MoCo (Momentum Contrast) (He et al., 2020) extends the idea of contrastive learning by incorporat-
ing a momentum-based encoder and a dynamic dictionary of data samples. This dynamic dictionary
facilitates a rich source of negative samples, enhancing the contrastive task. The loss employed in
MoCo is akin to SimCLR, though enriched by the abundance of negatives from the dictionary. To
stabilize learning and enhance the quality of the dictionary representations, MoCo updates its en-
coder’s parameters using a momentum mechanism. Given two sets of encoder parameters, θold and
θnew, and the momentum coefficient m, the update rule is:

θold ← mθold + (1−m)θnew (2)

BYOL (Bootstrap Your Own Latent) (Grill et al., 2020) and SimSiam (Chen & He, 2021) stand
out for their innovative emphasis on aligning representations from distinct augmentations of a single

2



Published as a conference paper at ICLR 2024

image, eliminating the need for negative samples commonly used in other contrastive learning meth-
ods. Within BYOL and SimSiam, the concepts of online and target branches are crucial. The online
branch processes one augmented view of an image through its neural network encoder, generating
a representation in the feature space. Simultaneously, the target branch processes another distinct
augmented view of the same image. The primary objective is to align the representation from the
online branch to mirror closely that of the target branch. Crucially, back-propagation occurs in the
online branch, updating the network weights. This design ensures the alignment of representations
between the two branches, aiming to maximize their similarity within the feature space.

2.2 EFFICIENT SELF-SUPERVISED LEARNING.

The recent work (Addepalli et al., 2022) argues that a key reason for the slow convergence of self-
supervised learning is attributed to the presence of noise in the training objective, and proposes to
add the rotation prediction as a noise-free auxiliary training objective to accelerate the convergence
speed. Another work (Koçyiğit et al., 2023) increases the training efficiency of self-supervised
training by accelerating model convergence through a novel learning rate schedule and an input
image resolution schedule. It also proposes a new augmentation method to enhance the quality
of augmented images to further accelerate model convergence. Compared to these methods, our
SIMWNW focus on exploring and exploiting the similarity inside of input images and intermediate
feature maps to save computation costs. Our SIMWNW is compatible with these methods as well.

3 MOTIVATION AND EXPLORATION

In SSL, the siamese encoder models are usually used in the two branches, and each branch processes
an augmented input derived from the same source image. So, an inherent similarity exists between
the augmented images processed in the two branches. Based on this unique property of SSL, we
have an assumption that regions with high similarity between the images in the two branches might
have limited contribution to the self-supervised model training. If this is true, we have the potential
to reduce computation costs. In this section, we first investigate the importance of regions with
varying degrees of similarity in the two augmented images from the same source image. Following
this, we explore two strategies — reuse and remove — to reduce computation in regions perceived to
be less important. We further illustrate the advantages and drawbacks associated with each method.

3.1 IMPORTANCE OF DIFFERENT REGIONS ON AUGMENTED IMAGES

To verify our assumption, we conduct a preliminary study focusing on the importance of similar
versus dissimilar regions in augmented images during training. Using the SimSiam framework as
our baseline (Figure 1a), each image is transformed into two distinct views (i.e., augmented images),
serving as inputs of two branches in the SimSiam framework. In our study, we preprocess the two
augmented images before sending them to be processed by the model. We first divide the augmented
image of the online branch into blocks of the same size. Each block undergoes a block-matching
process (exhaustive search) to locate its most similar counterpart in the paired augmented image of
the target branch. Here, the similarity between blocks is quantified using the PSNR (peak signal-
to-noise ratio) (Hore & Ziou, 2010). An example of block matching is shown in Figure 1b. For the

Encoder

View 1

Image

View 2

Encoder

Similaritygrad

Predictor

Online 
Branch

Target 
Branch

(a) (b)

Augmented image 
in Online Branch

Augmented image 
in Target Branch

Block Matching

Figure 1: (a) SSL framework. (b) Examples of block matching, reuse, and remove.

3



Published as a conference paper at ICLR 2024

50.87
38.86

44.81 46.22 41.29
48.97 50.92

0

20

40

60

A
cc

ur
ac

y 
(%

)

(a) Removed a portion of the similar/dissimilar block
pairs within the two augmented images. The notation
(x%) represents that x% of the most similar/dissimilar
block pairs are retained, implying that (1−x)% of the
block pairs have been removed.

42.23 45.09 43.17

0

20

40

60

A
cc

ur
ac

y 
(%

) 50.87 50.8349.0646. 38

(b) Reuse the computation results of a portion of the
similar/dissimilar blocks in the online branch by using
the convolution results of their corresponding blocks
in the target branch. The (x%) indicates that x% of
the most similar/dissimilar blocks are not “reused”.

Figure 2: Preliminary study. The encoder is ResNet50, which is pre-trained on the ImageNet dataset.
Then the ResNet50 is trained for 100 epochs using Stanford Cars dataset. The accuracy results are
obtained by the linear evaluation method.

image block marked with yellow boxes in the online branch, the most similar image block found in
the target branch is also marked with yellow boxes.

Once the search process is done, we create many block pairs in the augmented images of two
branches. We search for the most similar counterpart in the target branch for each image block
in the online branch, trying to find the corresponding block pair that is semantically related. We
then sort the block pairs by their similarity (their similarity is already calculated during the search
process) and remove either the most similar or dissimilar pairs. In this case, if we remove block
pairs with high similarity, we can evaluate the effect of dissimilar regions on training. Conversely,
by removing block pairs with low similarity, we can assess the impact of similar regions on training.
The modified augmented images then continue through the standard SimSiam processing pipeline.

In this experiment, we use ResNet50 (He et al., 2016) as the encoder and use Stanford Cars
dataset (Krause et al., 2013) as an example. The augmented images are resized to dimensions of
224x224, and we opt for a block size of 30x30, drawing from recommendations in image block
matching studies (Wei & Wu, 2013; Shin et al., 2008). We will discuss the impact of block size later
in Section 5.2. Figure 2a presents the experimental results. Notably, when retaining an equivalent
percentage of block pairs, prioritizing the retention of dissimilar ones yields better accuracy. The
reason behind this is that the dissimilar regions provide difficulty for learning, compelling the model
to learn meaningful representations (Tian et al., 2020). In addition, when the appropriate number of
block pairs are retained (i.e., dissimilar blocks (75%) in Figure 2a), there is no accuracy drop. These
results highlight the importance of the dissimilar regions in augmented images for self-supervised
learning, affirming our assumption and motivating us to reduce computation on similar regions.

3.2 REUSE VS. REMOVE

By leveraging the similarity in SSL, there are two possible ways that we can use to reduce the
computation: reuse and remove (depicted in Figure 1b). For the reuse method, we can replace some
blocks on the online branch with corresponding similar blocks on the target branch. In this way,
we can directly reuse the computation results (i.e., the corresponding blocks on the output feature
map of convolutional layers) from the target branch as an approximation of the online branch result,
avoiding computing the convolution output of the similar blocks on two branches separately. For the
remove method, we directly eliminate specific regions of images, causing the convolution operation
to skip these regions.

To compare the effects of reuse and remove, we conduct an experiment following the setup described
in Section 3.1 and applied the reuse operation. The results are presented in Figure 2b. Comparing
Figures 2a and 2b, we observe that at a high reuse/remove ratio (i.e., retain 25% blocks), the reuse
operation delivers higher accuracy as it keeps more semantic information. However, with a moderate
level of block retention (50% and 75%), both operations yield comparable accuracies. Notably, when
the majority of blocks (i.e., 75% dissimilar blocks) are retained, either the remove or reuse method
will not degrade accuracy.

4



Published as a conference paper at ICLR 2024

a
b c

a'

b'c'

Remove similar 
block pairs 

①

Augmented Images

Identify similarities 

②

Output Feature Maps of 
the Nth Model Layer

④
Input Feature Maps of 

the (N+1)th Model Layer

(a) Identifying Similarities on Augmented Images Model 
processing③

(b) Identifying Similarities on Feature Maps

⑤

Dissimilar Region (Pixels) Similar Region (Pixels)

⑥

Figure 3: Overview of SIMWNW framework. The similar image blocks are marked with yellow
boxes and matched with lettered notations. The removed regions (i.e., pixels) are shown as white
boxes. In steps ④ and ⑤, the region with color surrounding the white boxes is the region where
we check for similarity. The region inside the dashed boxes after step ⑥ represents the previously
removed pixels prior to step ④. The white region outside the dashed boxes denotes newly identified
and removed similar regions from the feature map.

Yet, when it comes to computation savings, reuse operation falls far behind remove due to three rea-
sons: i) Reuse operation benefits only one branch. The corresponding augmented images in the other
branch still undergo the regular model processing, essentially meaning that computation savings are
halved. ii) The benefits of the reuse operation don’t translate well during back-propagation. This is
because SSL frameworks like MoCo, BYOL, and SimSiam perform back-propagation exclusively
in one branch. This singular branch back-propagation renders computation reuse non-viable. iii)
Furthermore, frameworks like MoCo and BYOL use models with identical architectures but varying
parameters across the two branches, eliminating the possibility of computation reuse even during
forward propagation. In contrast, the remove operation fully eliminates the convolution computa-
tion in the removed region. In a nutshell, when appropriately strategized, the remove operation is
more promising for computational efficiency.

4 FRAMEWORK DESIGN

In this section, we propose a generic similarity-based efficient self-supervised learning framework
SIMWNW to reduce the computation cost. As shown in Figure 3, we first launch a block-matching
process to identify (①) similar blocks on the two augmented images and remove (②) them for
computation-saving. However, one challenge is that the removed region in the augmented images
tends to progressively diminish and eventually vanish layer by layer due to the inherent properties of
convolution. The consequence is that the potential for computation savings gradually decreases as
the image is processed deeper into the network layers. To address this, SIMWNW not only removes
similar block pairs from the input augmented images but also identifies and removes similar regions
in the intermediate feature maps (i.e., activation), which are steps ④ to ⑥ in Figure 3.

4.1 IDENTIFYING SIMILARITIES ON AUGMENTED IMAGES

The first step in SIMWNW is to identify the similarities in the two augmented images from the
same original image. We divide one of the two augmented images into blocks, and for each block,
we search for a similar block in the other paired augmented image. The similarity between image
blocks is quantified using the well-established lightweight PSNR metric, which is calculated as:

Similarity = 10 · log10
(

MAX2
I

MSE

)
(3)

where MAXI is the maximum possible pixel value of the image, and MSE is the Mean Squared
Error between the two compared images. In Section 3, we apply an unoptimized exhaustive search
method, which traverses the entire image using the same block size. However, the exhaustive search
is not desirable for training acceleration due to the computation overhead introduced. Moreover,

5



Published as a conference paper at ICLR 2024

such a search could possibly overlook the image’s semantic information, leading to the removal of
two blocks that appear similar but carry different semantic meanings. As shown in Figure 4, blocks
c and c′ look similar due to the lighting conditions, but they semantically diverge. Removing such
blocks could potentially hurt the image’s semantic information, decreasing model performance.

To circumvent this, our strategy involves searching regions in the paired augmented image that share
semantic links. Instead of scanning the entire image, our focus narrows down to a specific region
surrounding a block’s counterpart in the paired augmented image. This approach is based on the
belief that semantically related blocks in two augmented images are highly possible to come from
the same region of the original image. This approach not only reduces computation overhead but also
ensures searching semantically related blocks, safeguarding the image’s overall semantic essence.

a a'

c

c'

b
b'd
d'

Figure 4: An example of using exhaustive
search to match similar blocks. The similar
image blocks are marked with yellow and
red boxes and matched with lettered nota-
tions. Note the regions within the two dot-
ted green boxes are not similar.

Pinpointing the semantically related corresponding re-
gions necessitates tracking pixel position shifts dur-
ing augmentations such as random crops or horizontal
flips. It’s worth noting that our search is not confined
strictly to the direct counterpart block. We search for
an expanded region (empirically set to four times the
block size). This expansion ensures a balance of com-
putational efficiency and precision. Furthermore, our
search is not a full sweep of this expanded region. We
apply the diamond search algorithm (Zhu & Ma, 2000)
for efficient block-matching.

Given the widespread use of random crop augmenta-
tion in SSL, there will be instances where one image’s
blocks lack a direct match within its counterpart aug-
mented images. Here, by default, we scan the nearest region in the paired image, even if the exact
counterpart is cropped out. At first blush, this might seem at odds with our semantically aware strat-
egy. Yet, in our practice, this method proves adept at discarding voluminous, semantically sparse
backgrounds. Take, for instance, the blocks a and a′ or b and b′ in Figure 4. Even though they aren’t
direct matches, removing them doesn’t detract from the image’s semantic information. Conversely,
regions brimming with vital details, like intricate objects, remain largely untouched by this method
due to their inherent dissimilarity. A case in point is the relationship between blocks d and d′ in
Figure 4. Despite block d′ being closest to where the counterpart block of d would be located, they
will not be considered similar.

4.2 IDENTIFYING SIMILARITIES ON FEATURE MAPS

4.2.1 CHALLENGES: SHRINKING REMOVED REGION SIZE

Convolution Kernel Normal Pixel
Removed Pixel “Eroded” Pixel

Before Convolution:
Removed Region (5x5)

After Convolution:
Removed Region (3x3)

Figure 5: An example to show how the
removed region shrinks after convolution
operation. The kernel size here is 3x3 and
the stride is 1.

Identifying and removing similar regions in augmented
images offers a pathway to saving computation costs.
Yet, this strategy has its limitations: the size of the re-
moved region typically shrinks and eventually disap-
pears as the images proceed through network layers.
As a result, the computation saving is progressively
reduced as the images proceed deeper layer by layer.
This is due to the intrinsic behavior of convolution op-
erations. If a convolution kernel traverses across both
removed and normal regions in the augmented images
and feature maps, the convolution operations can not
be skipped. The convolution operations can be skipped
only when the kernel is entirely within the removed re-
gion. For a clearer picture, consider a scenario depicted
in Figure 5. After undergoing a convolution with a 3x3
kernel, the removed region shrinks from 5x5 to 3x3, ef-
fectively “waning” its outermost pixel boundary. This waning phenomenon becomes inevitable
when the kernel size is larger than 1x1, which is often the case with CNNs that often use 3x3 or
larger kernels. Some networks do not even contain 1x1 kernels, making this issue more pronounced.

6



Published as a conference paper at ICLR 2024

This directs our attention to strategizing ways to sustain the size of the removed region. Under-
standing that various layers in a neural network cater to extracting features at differing levels is key:
the front layers are responsible for low-level feature extraction (e.g., detecting edges), whereas the
deeper layers extract high-level features (Yosinski et al., 2014; Zeiler & Fergus, 2014; Chen et al.,
2023). This layered hierarchy suggests that as images move deeper in the model layers, the emer-
gence of similar regions on the feature maps may become more evident as similarities in high-level
features on the feature maps gradually emerge.

4.2.2 EXPANDING THE SIZE OF REMOVED REGION

Building on this insight, we propose to identify and remove similar regions in the feature maps of
various model layers. Specifically, before the convolution operation on the feature maps, we would
scrutinize the surrounding regions around the removed regions within a pair of feature maps. We
advocate for a concentric circle approach to identify similarities. That is, we begin by evaluating
the similarity of the immediate circle of pixels around the removed region (step ④ in Figure 3). If
the immediate circles of pixels in two paired feature maps are similar, we proceed to the next pair
of outer circles (step ⑤ in Figure 3). This iterative examination continues until the similarity for a
certain circle pair falls below the similarity threshold. In contrast to block-matching in augmented
images, identifying similarities in feature maps is a direct one-to-one similarity check without a
searching process. For a visual illustration, see the feature maps after step ⑥ in Figure 3. The white
regions outside the dashed box in the feature maps represent regions newly identified as similar and
consequently removed.

The reason we focus on regions surrounding the removed region arises from the presumption that
neighboring regions might exhibit higher similarities. For instance, referring to the upper-left convo-
lution kernel in Figure 5, although its computation is not skipped and its output is an “eroded” pixel,
it is crucial to recognize that the source of this eroded pixel contains a portion of the removed (sim-
ilar) region. Moreover, given that changes in images are usually relatively flat (Huang et al., 2000),
it is reasonable to assume the regions around the removed regions are more likely to be similar.

To further refine this process, we advocate for a channel-wise approach to determine similarities
within the feature map, followed by a tailored removal procedure for each channel based on its
distinct similarity results. Given that feature maps can have a plethora of channels (sometimes
even in the hundreds), and the spatial distribution of similar regions can vary significantly among
channels, a holistic approach encompassing all channels would not be efficient.

5 EVALUATION

We evaluate the proposed SIMWNW framework in both training from scratch and transfer learning
tasks. In the training from scratch task, we use three representative datasets CIFAR-10, CIFAR-
100 (Krizhevsky & Hinton, 2009), and ImageNet (Deng et al., 2009). In the transfer learning task,
the encoder is pre-trained on the ImageNet dataset and then trained on three datasets Stanford Cars,
FGVC Aircraft (Maji et al., 2013), and Caltech-UCSD Birds (CUB) (Wah et al., 2011). The batch
size in all the experiments is set to 256. For all datasets except CIFAR, we employ ResNet50 as
the encoder. For the CIFAR dataset, we use ResNet18 as the encoder. We apply SIMWNW in two
representative SSL frameworks for evaluation: SimSiam and SimCLR.

In our experiments, the similarity threshold is set to 20 to consider two image blocks are similar. We
select this threshold based on the common practice in wireless image transmission, where a PSNR
value of 20 between a compressed image and its original version is generally deemed to be of accept-
able similarity for many applications (Muralikrishna et al., 2013; Minallah et al., 2021). However,
this similarity threshold can be modified to adapt to the unique needs of specific applications. The
overhead introduced by similarity calculation is included in the results and we present a detailed
analysis of overhead in Appendix C. When we do the block-matching for augmented images, we
use a block size of 30x30 for 224x224 images and scale down to a 5x5 block size for 32x32 images.
When the images cannot be evenly divided, we accommodate overlapping blocks at the edges. We
follow the linear evaluation protocol (Goyal et al., 2019) in our experiments, where the pre-trained
model remains static, and only the appended linear classification layer undergoes fine-tuning. All
the results in this paper are the average of 3 runs using different random seeds.

7



Published as a conference paper at ICLR 2024

Table 1: Results of training from scratch experiments. The encoder for ImageNet is ResNet50 and
the encoder for CIFAR is ResNet18. The model is trained for 800 epochs.

Method
ImageNet CIFAR-10 CIFAR-100

Acc. Training
FLOPs

Training
Time Acc. Training

FLOPs
Training

Time Acc. Training
FLOPs

Training
Time

SimCLR 66.39 100% 100% 90.16 100% 100% 57.34 100% 100%
SimCLR + Back Razor 66.30 85% – 89.82 64% – 57.60 69% –

SimCLR (same FLOPs as Ours) 64.76 80% – 86.07 48% – 50.46 52% –
SimCLR + SIMWNW (Ours) 66.25 80% 89% 90.10 48% 68% 57.69 52% 73%

SimSiam 71.12 100% 100% 90.80 100% 100% 57.21 100% 100%
SimSiam + Back Razor 71.04 84% – 91.05 61% – 57.87 70% –

SimSiam (same FLOPs as Ours) 69.10 81% – 87.28 46% – 52.18 53% –
SimSiam + SIMWNW (Ours) 71.28 81% 90% 91.17 46% 65% 57.94 53% 71%

Table 2: Results of transfer learning experiments. The encoder is ResNet50, which is pre-trained
on ImageNet and then trained on the three datasets for 100 epochs using self-supervised learning
methods. After that, we apply linear evaluation protocol to get the accuracy results.

Method
Stanford Cars FGCV Aircraft CUB-200

Acc. Training
FLOPs

Training
Time Acc. Training

FLOPs
Training

Time Acc. Training
FLOPs

Training
Time

SimCLR 46.12 100% 100% 48.43 100% 100% 35.78 100% 100%
SimCLR + Back Razor 46.10 62% – 48.19 60% – 36.27 59% –

SimCLR (same FLOPs as Ours) 43.03 53% – 46.74 51% – 33.07 55% –
SimCLR + SIMWNW (Ours) 46.38 53% 79% 48.26 51% 75% 36.15 55% 84%

SimSiam 50.87 100% 100% 51.82 100% 100% 38.40 100% 100%
SimSiam + Back Razor 50.83 65% – 51.68 61% – 38.07 57% –

SimSiam (same FLOPs as Ours) 46.22 50% – 48.17 55% – 36.80 49% –
SimSiam + SIMWNW (Ours) 50.95 50% 78% 51.76 55% 73% 38.22 49% 74%

5.1 MAIN RESULTS

Training from scratch. Table 1 shows the accuracy and training FLOPs of training from scratch
experiments. We apply our proposed SIMWNW framework to two SSL frameworks SimCLR and
SimSiam for evaluation. We compare our framework with a recognized activation gradient pruning
approach Back Razor (Jiang et al., 2022), which prunes the activation gradient with lower mag-
nitudes to reduce computation costs. In our experiments, we modulate the pruning ratio of Back
Razor to ensure a similar accuracy to SIMWNW. As shown in the table, compared to the SimCLR
and SimSiam baselines, SIMWNW provides impressive training FLOPs savings, peaking at 54%
and averaging at 40%. Importantly, this computational advantage does not come at the expense of
accuracy. In comparison with Back Razor, SIMWNW reduces training FLOPs by up to 25%, with
an average savings of 18%.

Transfer learning. In addition to the training from scratch tasks, we further evaluate the perfor-
mance of SIMWNW on transfer learning tasks. The experimental results are shown in Table 2. As
one can observe, compared to SimCLR and SimSiam baselines, SIMWNW showcases a commend-
able reduction in computation costs without compromising accuracy, peaking at 51% and averaging
at 48%. When compared to Back Razor, SIMWNW manages to reduce computation costs by up to
23%, with an average saving of 14%.

With the savings in training FLOPs, SIMWNW is able to reduce the training time by 24% on aver-
age. We also present the accuracy results when SimCLR and SimSiam baselines consume the same
training FLOPs with our proposed SIMWNW in Tables 1 and 2, and we can see that SIMWNW con-
sistently provides significantly higher accuracy (3.5% on average) compared to them. The com-
mendable performance of SIMWNW can be attributed to its astute focus on the intrinsic features
of augmented images. By eliminating regions of less significance, it not only reduces computation
costs but also removes unnecessary noise or irrelevant features that might mislead or slow down the
learning process (Wang et al., 2022; Singh et al., 2016). Therefore, it allows the model to learn fea-
ture extraction capabilities faster. In other words, the model can converge in fewer epochs, offering
further computation savings.

8



Published as a conference paper at ICLR 2024

70

80

90

100

0 1.3 2.5 3.8

A
cc

ur
ac

y 
(%

)

Training Hours

SimCLR SimCLR+SimWnW

70

80

90

100

0 1.2 2.4 3.6

A
cc

ur
ac

y 
(%

)

Training Hours

SimSiam SimSiam+SimWnW

(a) (b)

Saving Saving

Figure 6: The convergence of ResNet18 on CIFAR-10
dataset of training from scratch experiments.

Figure 6 depicts an example of model con-
vergence of training from scratch experi-
ment on the CIFAR-10 dataset. It’s evident
that applying our SIMWNW framework
effectively accelerates the convergence, re-
quiring more than 30% fewer epochs than
the SimCLR and SimSiam baselines. The
breakdown of computation savings, de-
rived from i) skipping convolution compu-
tation for removed regions, and ii) accel-
erating model convergence, are detailed in Appendix D. We also present a detailed discussion on
how the computation savings translate into training time reduction in Appendix E. On the other
hand, Back Razor keeps dense activation during forward propagation, which means it could miss
opportunities for computation saving.

We also conduct other experiments to evaluate SIMWNW, including comparison and compatibility
to some efficient self-supervised learning frameworks (Appendices A.1, A.2, and A.3), experiments
on vision transformers (Appendix A.4), and transferability experiments (Appendix A.5).

20

40

60

80

100

-1.0

2.0

5.0

8.0

11.0

5 10 15 20 25 30

Tr
ai

ni
ng

 C
os

t (
%

)

A
cc

ur
ac

y 
D

ro
p 

(%
)

Similarity Threshold

Accuracy Drop Training Cost

40

60

80

100

-1.0

1.0

3.0

5.0

10 20 30 40 50

Tr
ai

ni
ng

 C
os

t (
%

)

A
cc

ur
ac

y 
D

ro
p 

(%
)

Block Size

Accuracy Drop Training Cost

(a) (b)

Figure 7: (a) Effect of different similarity thresholds. (b) Effect of different block sizes. All the
results are obtained from the transfer learning experiment on the Stanford Cars dataset.

5.2 SENSITIVITY STUDY

We investigate the effect of similarity thresholds. Figure 7a shows accuracy drop and training FLOPs
(compared to SimCLR and SimSiam baselines) when the similarity threshold varies. As expected,
higher thresholds indicate fewer similar block pairs being removed, thus leading to a lower accuracy
drop but a higher training computation cost. When the similarity threshold reaches a sufficiently
high value (e.g., 20), the accuracy essentially remains stable. However, for applications that are not
particularly sensitive to accuracy, opting for an aggressive threshold can save more computation.

We also study the impact of the block size when we conduct block-matching on augmented images.
As shown in Figure 7b, a larger block size results in a lower accuracy drop but higher training
costs. The reason behind this is that a larger block captures more features and details. As the two
augmented images have different transformations applied, the aggregated difference over a larger
block will be more pronounced than in a smaller block. Therefore, a larger block size indicates fewer
blocks are considered similar. It is worth noting that the optimal block size is tied to the dimension
of input images. Users have the flexibility to tailor the block size to suit specific applications. Some
other block-matching details and analyses are presented in Appendix B.

6 CONCLUSION

In this work, we propose SIMWNW, a similarity-based efficient self-supervised learning frame-
work. By removing the less important similar regions in augmented input images and feature maps,
SIMWNW manages to skip unnecessary computations. Moreover, removing the less important re-
gions can also remove irrelevant features that might slow down the learning process. Therefore,
SIMWNW is also able to improve the model convergence speed, which can further reduce the com-
putation costs. Our extensive experiments demonstrate that SIMWNW can achieve significant train-
ing computation cost savings without compromising accuracy.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their constructive feedback and sug-
gestions. This work is supported in part by NSF grants #2011146, #2154973, #2312157, #2312158,
and #2052528.

REFERENCES

Sravanti Addepalli, Kaushal Bhogale, Priyam Dey, and R Venkatesh Babu. Towards efficient and
effective self-supervised learning of visual representations. In European Conference on Computer
Vision, pp. 523–538. Springer, 2022.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. Advances in neural information processing systems, 32, 2019.

Yun-Hao Cao and Jianxin Wu. Rethinking self-supervised learning: Small is beautiful. arXiv
preprint arXiv:2103.13559, 2021.

Yun-Hao Cao, Peiqin Sun, and Shuchang Zhou. Three guidelines you should know for universally
slimmable self-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15742–15751, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020a.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Yixiong Chen, Alan Yuille, and Zongwei Zhou. Which layer is learning faster? a systematic ex-
ploration of layer-wise convergence rate for deep neural networks. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=wlMDF1jQF86.

Yuanzheng Ci, Chen Lin, Lei Bai, and Wanli Ouyang. Fast-moco: Boost momentum-based con-
trastive learning with combinatorial patches. In European Conference on Computer Vision, pp.
290–306. Springer, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and benchmarking self-
supervised visual representation learning. In Proceedings of the ieee/cvf International Conference
on computer vision, pp. 6391–6400, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

https://openreview.net/forum?id=wlMDF1jQF86
https://openreview.net/forum?id=wlMDF1jQF86


Published as a conference paper at ICLR 2024

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pp. 2366–2369. IEEE, 2010.

Mingzheng Hou, Ziliang Feng, Haobo Wang, Zhiwei Shen, and Sheng Li. An adaptive regression
based single-image super-resolution. Multimedia Tools and Applications, 81(20):28231–28248,
2022.

Jinggang Huang, Ann B Lee, and David Mumford. Statistics of range images. In Proceedings
IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662),
volume 1, pp. 324–331. IEEE, 2000.

Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny Zhou, and Zhangyang Wang. Back
razor: Memory-efficient transfer learning by self-sparsified backpropagation. Advances in Neural
Information Processing Systems, 35:29248–29261, 2022.

Mustafa Taha Koçyiğit, Timothy M Hospedales, and Hakan Bilen. Accelerating self-supervised
learning via efficient training strategies. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 5654–5664, 2023.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Sheng Li and Hanxin Feng. Eeg signal classification method based on feature priority analysis and
cnn. In 2019 international conference on communications, information system and computer
engineering (CISCE), pp. 403–406. IEEE, 2019.

Sheng Li, Zanhan Ding, and Honglv Chen. A neural network-based teaching style analysis model.
In 2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics
(IHMSC), volume 2, pp. 154–157. IEEE, 2019.

Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi Wang, and Xulong Tang. Smartfrz: An
efficient training framework using attention-based layer freezing. In The Eleventh International
Conference on Learning Representations, 2022.

Sheng Li, Geng Yuan, Yawen Wu, Yue Dai, Chao Wu, Alex K Jones, Jingtong Hu, Yanzhi Wang,
and Xulong Tang. Edgeol: Efficient in-situ online learning on edge devices. arXiv preprint
arXiv:2401.16694, 2024.

Haoyu Ma, Chengming Zhang, Xiaolong Ma, Geng Yuan, Wenkai Zhang, Shiwei Liu, Tianlong
Chen, Dingwen Tao, Yanzhi Wang, Zhangyang Wang, et al. Hrbp: Hardware-friendly regrouping
towards block-based pruning for sparse cnn training. In Conference on Parsimony and Learning,
pp. 282–301. PMLR, 2024.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Jian Meng, Li Yang, Jinwoo Shin, Deliang Fan, and Jae-sun Seo. Contrastive dual gating: Learn-
ing sparse features with contrastive learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12257–12265, 2022.

Nasru Minallah, Khadem Ullah, Jaroslav Frnda, Laiq Hasan, and Jan Nedoma. On the performance
of video resolution, motion and dynamism in transmission using near-capacity transceiver for
wireless communication. Entropy, 23(5):562, 2021.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6707–6717, 2020.

11



Published as a conference paper at ICLR 2024

SN Muralikrishna, Meghana Ajith, and KB Ajitha Shenoy. Msb based new hybrid image compres-
sion technique for wireless transmission. In Advances in Computing and Information Technology:
Proceedings of the Second International Conference on Advances in Computing and Information
Technology (ACITY) July 13-15, 2012, Chennai, India-Volume 2, pp. 749–756. Springer, 2013.

Colorado J Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer. Selfaugment:
Automatic augmentation policies for self-supervised learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 2674–2683, 2021.

Sucheng Ren, Huiyu Wang, Zhengqi Gao, Shengfeng He, Alan Yuille, Yuyin Zhou, and Cihang
Xie. A simple data mixing prior for improving self-supervised learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 14595–14604, 2022.

Dong-Hak Shin, Byung-Gook Lee, and Joon-Jae Lee. Occlusion removal method of partially oc-
cluded 3d object using sub-image block matching in computational integral imaging. Optics
Express, 16(21):16294–16304, 2008.

Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. A review of supervised machine learning
algorithms. In 2016 3rd international conference on computing for sustainable global develop-
ment (INDIACom), pp. 1310–1315. Ieee, 2016.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in neural information processing sys-
tems, 33:6827–6839, 2020.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Peng Wang, Bing Xue, Jing Liang, and Mengjie Zhang. Differential evolution-based feature selec-
tion: A niching-based multiobjective approach. IEEE Transactions on Evolutionary Computation,
27(2):296–310, 2022.

Yangjie Wei and ChengDong Wu. Modeling of nano piezoelectric actuator based on block matching
algorithm with optimal block size. Science China Technological Sciences, 56:2649–2657, 2013.

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122.
PMLR, 2021.

Haohang Xu, Xiaopeng Zhang, Hao Li, Lingxi Xie, Wenrui Dai, Hongkai Xiong, and Qi Tian.
Seed the views: Hierarchical semantic alignment for contrastive representation learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(3):3753–3767, 2022.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34:20838–20850,
2021.

Geng Yuan, Yanyu Li, Sheng Li, Zhenglun Kong, Sergey Tulyakov, Xulong Tang, Yanzhi Wang,
and Jian Ren. Layer freezing & data sieving: Missing pieces of a generic framework for sparse
training. Advances in Neural Information Processing Systems, 35:19061–19074, 2022.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pp. 12310–
12320. PMLR, 2021.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

12



Published as a conference paper at ICLR 2024

Mingkai Zheng, Shan You, Fei Wang, Chen Qian, Changshui Zhang, Xiaogang Wang, and Chang
Xu. Ressl: Relational self-supervised learning with weak augmentation. Advances in Neural
Information Processing Systems, 34:2543–2555, 2021.

Shan Zhu and Kai-Kuang Ma. A new diamond search algorithm for fast block-matching motion
estimation. IEEE transactions on Image Processing, 9(2):287–290, 2000.

Wentao Zhu, Jingya Liu, and Yufang Huang. Hnssl: Hard negative-based self-supervised learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4777–4786, 2023.

13



Published as a conference paper at ICLR 2024

APPENDIX

A EXTENDED EXPERIMENTAL RESULTS

A.1 COMPARISON WITH SOTA EFFICIENT SELF-SUPERVISED LEARNING METHODS

In this section, we compare our SIMWNW with two state-of-the-art efficient self-supervised learn-
ing methods (Addepalli et al., 2022; Koçyiğit et al., 2023). Addepalli et al. (2022) identifies the
noise present in the training objective as a primary factor contributing to the slow convergence in
self-supervised learning. To mitigate this, they introduce rotation prediction as an additional, noise-
free training objective, aimed at expediting the model convergence. On the other hand, Koçyiğit
et al. (2023) proposes a strategy to accelerate model convergence through a combination of an in-
novative learning rate schedule and an input image resolution schedule. They also introduce a new
image augmentation technique, designed to improve the quality of augmented images, thereby fur-
ther accelerating the convergence of the model. For these two SOTA methods, we modulate their
training epochs to ensure a similar accuracy to SIMWNW for a fair comparison. The experimental
result is shown in Table 3. We can observe that SIMWNW consistently provides higher training
time reduction with similar model accuracy. The reason behind this is that some computation re-
duction operations applied by these two methods cannot effectively translate into time reduction.
For example, using low-resolution images to reduce the training computation might degrade model
performance, resulting in the need for more training epochs.

Table 3: Comparison with SOTA efficient SSL methods.

Method ImageNet CIFAR-10
Accuracy Training Time Accuracy Training Time

SimCLR 66.39 100% 90.16 100%
SimCLR + (Addepalli et al., 2022) 66.21 91% 90.04 80%
SimCLR + (Koçyiğit et al., 2023) 66.30 96% 90.12 78%

SimCLR + SIMWNW (Ours) 66.25 89% 90.10 68%
SimSiam 71.12 100% 90.80 100%

SimSiam + (Addepalli et al., 2022) 71.20 94% 91.19 75%
SimSiam + (Koçyiğit et al., 2023) 71.19 95% 91.11 81%

SimSiam + SIMWNW (Ours) 71.28 90% 91.17 65%

A.2 COMPATIBILITY OF SIMWNW

In this section, we further evaluate the compatibility of SIMWNW with two recent efficient self-
supervised learning frameworks Fast-MoCo (Ci et al., 2022) and S3L (Cao & Wu, 2021). These two
works are complementary to SIMWNW. Specifically, Fast-MoCo accelerates the training process by
adding more positive pairs to regulate the training process, thereby accelerating convergence. S3L
accelerates the training process by using smaller-resolution images and a partial backbone network.
On the other hand, SIMWNW accelerates the SSL in a different dimension, which removes less
important image blocks during training.

We integrate our proposed method SIMWNW into these two frameworks. We follow the setting
in their paper and use the MoCo v2 framework (Chen et al., 2020b) as the baseline for S3L and
MoCo v3 as the baseline for Fast-MoCo. Specifically, Fast-MoCo divides the input image in the
online branch into four patches and then combines their four output embeddings to form six new
embeddings, each of which involves two patches. In this case, the number of positive pairs is
six times as normal training. Thus, it can get more supervision signals in each iteration and thus
achieves promising performance with fewer iterations. For S3L, we follow their original setting for
the ImageNet experiment in their paper, which uses 52x52 input images to train the model for 800
epochs and then uses 224x224 input images to train the model for 200 epochs. As shown in Table
4, applying SIMWNW to the Fast-MoCo and S3L can further reduce the training cost by 23% and
30% without accuracy loss, respectively, demonstrating the compatibility of SIMWNW.

14



Published as a conference paper at ICLR 2024

Table 4: Compatibility of SIMWNWwith SOTA efficient SSL framework. The encoder is ResNet50
and the dataset is ImageNet.

Method Accuracy Training Time

MoCo v2 71.12 100%
S3L (MoCo v2 based) 69.96 65%

S3L + SIMWNW 70.06 46%

MoCo v3 72.28 100%
Fast-MoCo (MoCo v3 based) 72.46 30%

Fast-MoCo + SIMWNW 72.30 23%

A.3 COMPARISON WITH A SPARSE SELF-SUPERVISED LEARNING APPROACH

There are also some other popular efficient learning methods such as layer freezing (Yuan et al.,
2022; Li et al., 2022) and sparse training (Yuan et al., 2021; Ma et al., 2024). For a comprehensive
evaluation, we compare our proposed SIMWNW framework with a sparse training approach tailored
for self-supervised learning: Contrastive Dual Gating (CDG) (Meng et al., 2022). CDG exploits spa-
tial redundancy by using a spatial gating function and skips those less important pixels in the feature
maps. To ensure a fair comparison, we modulate the prune ratio of CDG to achieve an accuracy
that is comparable to our SIMWNW framework. Table 5 shows the experimental results. Under
similar accuracy, SIMWNW outperforms CDG by saving 12% computation costs, demonstrating
the superiority of our proposed SIMWNW framework.

Table 5: Comparison with sparse training method CDG (Meng et al., 2022). Accuracies are obtained
by linear evaluation. The encoder is ResNet18 with 800 training epochs.

Method
CIFAR-10 CIFAR-100

Accuracy Training FLOPs Accuracy Training FLOPs

SimCLR 90.16 100% 57.34 100%
SimCLR + CDG 90.01 56% 57.50 58%

SimCLR + SIMWNW 90.10 48% 57.69 52%

A.4 EXPERIMENTS ON VISION TRANSFORMERS

In this section, we apply the proposed method SIMWNW to vision transformers. There is no re-
moved region shrinking problem in vision transformers, which indeed makes it easier to apply
SIMWNW to ViT. We also do not need to consider the block size since ViT naturally divides the
image into many tokens, typically in the size of 16x16. Therefore, removing similar blocks can be
directly achieved by removing similar input tokens, resulting in a reduced input sequence length. We
use a well-recognized self-supervised vision transformer learning framework DINO (Caron et al.,
2021) as our baseline. As shown in Table 6, SIMWNW significantly reduces the training cost by
38% without accuracy loss compared to the DINO baseline. We also compare our approach to an ef-
ficient vision transformer training framework EViT. For a fair comparison, we apply EViT to DINO
and let it consume the same FLOPs as our approach. As shown in Table 6, SIMWNW achieves
0.82% higher accuracy than EViT with the same training computation.

Table 6: Evaluation on Vision Transformers. The encoder is DeiT-S and the dataset is ImageNet.

Method Accuracy Training FLOPs Training Time

DINO 58.95 100% 100%
DINO + EViT 58.01 57% 72%

DINO + SIMWNW 58.83 57% 72%

15



Published as a conference paper at ICLR 2024

A.5 TRANSFERABILITY

For a more comprehensive comparison, we conduct an experiment that directly fine-tunes the pre-
trained ResNet50 model on the downstream task without self-supervised learning on them. In this
experiment, SIMWNW is applied to SimCLR and SimSiam baselines during the self-supervised
pre-training on ImageNet. Then we directly train the classifier of the pre-trained ResNet50 using
three downstream datasets. As shown in Table 7, applying SIMWNW during the pre-training stage
will not hurt the accuracy when directly transferring the pre-trained model to downstream datasets.

Table 7: Accuracy results of transferability experiment.

Method Stanford Cars FGCV Aircraft CUB-200

SimCLR 38.49 40.46 30.10
SimCLR + SIMWNW (Ours) 39.90 41.28 30.19

SimSiam 39.78 38.37 32.89
SimSiam + SIMWNW (Ours) 40.46 38.92 33.66

B BLOCK MATCHING DETAILS

Search region. During the block-matching process, for each block, when searching for the
most similar block in the paired augmented image, the search region narrows down to a
specific region surrounding the block’s counterpart. The reason why we search for a spe-
cific region is to handle the effects of image scaling and aspect ratio changes. When we
perform data augmentation, RandomResizedCrop is a commonly used method, specifically
transforms.RandomResizedCrop(224, scale = (s1, s2), ratio = (r1, r2)). This method oper-
ates as follows. Initially, it randomly selects a scale ratio between s1 and s2, and the image is scaled
up or down according to the randomly picked ratio. Additionally, it will randomly pick an aspect
ratio between r1 and r2, and the aspect ratio of the image is accordingly modified. After the scaling
and aspect ratio adjustment, the image is then cropped and resized, in this case, 224x224 pixels.

When we apply the augmentation to the original image twice to get two augmented images for
two branches, the randomly picked scale ratio and aspect ratio are likely to be different for the two
augmented images. Therefore, the corresponding regions in the two augmented images, which come
from the same region in the original image, can be different in size and shape. Therefore, it is hard to
directly pair the exact matches and we need to search for a neighborhood region of the counterpart
block. In practice, the image scaling ratio is generally not more than twice, so the length and width
of the search region are set to twice the length and width of the block size to ensure that the most
similar blocks are included. For example, the search region is 60x60 for a 30x30 block. We also
perform a sensitivity study on the search region size and the results in Table 8 show that SIMWNW is
robust to different sizes of the search region.

Block removal ratio. Table 9 presents the block removal ratio with the default similarity threshold
20 in our experiments. In practice, the block removal ratio varies across datasets. This is because
different datasets have different image complexity and different resolutions, so the number of similar
blocks that can be found under the same threshold varies.

Table 8: Accuracy when using different search region sizes. The block size is 30x30 and the results
are obtained from transfer learning experiments on the Stanford Cars dataset. The base framework
is SimSiam.

Size of Search Region 45x45 60x60 75x75

Accuracy 50.72 50.95 50.98

C OVERHEAD ANALYSIS

The computational overhead in our framework primarily arises from the calculation of PSNR, which
is employed for similarity checks between a pair of images and feature maps. However, the silver lin-

16



Published as a conference paper at ICLR 2024

Table 9: Image block removal ratio.

Dataset ImageNet CIFAR-10 CIFAR-100 Stanford Cars FGCV Aircraft CUB-200

Removal Ratio 20% 30% 30% 33% 31% 35%

ing is that PSNR computation is relatively lightweight and hence does not introduce a large amount
of computation overhead. The formula for PSNR is derived from the Mean Squared Error (MSE)
between the two images:

MSE =
1

MN

M−1∑
i=0

N−1∑
j=0

[I(i, j)−K(i, j)]2 (4)

where I and K represents two images (blocks). Using the MSE, the PSNR is calculated as PSNR =
10 · log10

(
MAX2

I/MSE
)
, where MAXI is the maximum possible pixel value of the image.

Considering calculating PSNR for two 30 × 30 image blocks, the calculation requires 30 × 30 =
900 subtractions to determine differences, 900 multiplications to square these differences, and 899
additions to sum the squared differences. While the PSNR computation does encompass additional
operations, such as logarithmic operation, their quantity is minimal and they hold negligible numer-
ical impact on computation cost. Overall, the computation amounts to approximately 2,700 FLOPs.

Although the cost for calculating PSNR once is small, we also apply further methods to reduce the
overhead by reducing the number of PSNR calculations. For block-matching in the paired aug-
mented images, each block’s search space is limited to the semantically related, constrained region
in its counterpart image, leading to a substantial reduction in the search space. Within this limited
space, the efficient search method diamond search is invoked, enhancing efficiency. Note, when
checking the similarity between paired feature maps, the process is a direct one-to-one match with-
out a searching process (the detail of identifying similarities in feature maps is in Section 4.2).

In contrast, performing convolution on two 30× 30 images with a 3× 3 filter, leading to an output
space of 28x28 (due to boundary effects), has a much higher computation cost. Each pixel in the
image necessitates 9C multiplications and 8C additions, where C represents the number of output
channels. For the entire 30x30 block, the required FLOPs are given by:

FLOPs = 28× 28× (9C + 8C) (5)
Suppose the number of output channels C = 64, the convolution operation demands 852,992 FLOPs
for a single image. Consequently, for the paired augmented image (blocks) in two branches, the
computation reaches 1.7 MFLOPs.

To summarize, a convolution operation on the image blocks requires computational resources that
are several orders of magnitude higher than what’s required for PSNR calculation on the image
blocks. Moreover, our design limits the search space of each block, thereby ensuring that the PSNR
is not calculated too many times. As a result, the overhead introduced is minimal when compared
to the gains in computation savings. In our experiments, the computation overhead of PSNR is less
than 1% and the overhead is already included in the reported results.

D COMPUTATION SVAINGS BREAKDOWN

In this section, we break down the computation savings achieved by SIMWNW framework. Through
strategically removing regions of less importance from augmented images and feature maps,
SIMWNW achieves computational efficiency in two ways: i) skipping convolution computation
for the removed regions, and ii) improving the model convergence speed. Table 10 and Table 11
present the breakdown of computation savings in training from scratch and transfer learning tasks,
respectively.

E ANALYSIS ON FLOPS REDUCTION

The FLOPs reduction of our SIMWNW mainly comes from two aspects. For the first aspect, our
SIMWNW can improve the model convergency speed, indicating a fewer number of training itera-

17



Published as a conference paper at ICLR 2024

Table 10: Breakdown of Computation Savings in training from scratch experiments. “Skipped
Convolution” represents the savings achieved by skipping convolution computation for the removed
region. “Epochs Reduction” indicates the savings in training epochs derived from improved model
convergence speed.

Method
ImageNet CIFAR-10 CIFAR-100

Overall
Savings

Skipped
Convolution

Epochs
Reduction

Overall
Savings

Skipped
Convolution

Epochs
Reduction

Overall
Savings

Skipped
Convolution

Epochs
Reduction

SimCLR + SIMWNW 20% 12% 11% 52% 29% 32% 48% 29% 27%
SimSiam + SIMWNW 19% 12% 10% 54% 30% 35% 47% 26% 29%

Table 11: Breakdown of Computation Savings in transfer learning experiments. “Skipped Convolu-
tion” represents the savings achieved by skipping convolution computation for the removed region.
“Epochs Reduction” indicates the savings in training epochs derived from improved model conver-
gence speed.

Method
Stanford Cars FGCV Aircraft CUB-200

Overall
Savings

Skipped
Convolution

Epochs
Reduction

Overall
Savings

Skipped
Convolution

Epochs
Reduction

Overall
Savings

Skipped
Convolution

Epochs
Reduction

SimCLR + SIMWNW 47% 33% 21% 49% 32% 25% 45% 35% 17%
SimSiam + SIMWNW 50% 36% 22% 45% 25% 27% 51% 34% 26%

tions/epochs required to achieve a target accuracy. This can directly lead to FLOPs reduction and
training time savings without any dedicated sparse computation support. Specifically, SIMWNW re-
moves the less important regions, resulting in removing irrelevant features that slow down the learn-
ing process, thereby improving model convergence speed.

The second aspect of FLOPs reduction is achieved by removing similar blocks. For the ViT-based
models, removing similar blocks can be directly achieved by removing similar input tokens, resulting
in a reduced input sequence length. This can also directly achieve acceleration, while does not
require any dedicated sparse computation support.

For the case of using CNN models, SIMWNW indeed requires some support for sparse computa-
tion. This is a similar problem faced by the designs in other fields, such as sparse training or weight
pruning. This usually can be solved in different ways. For general-purpose devices such as GPUs
or mobile devices, SIMWNW can be supported by using sparse computation libraries and compiler
optimizations. For FPGA platforms, the convolution kernels need to be divided into tiles and com-
puted separately. So, the tiling size used in FPGAs can be aligned with the block size used in the
SIMWNW. In this way, we can easily skip the computation clock cycle for the corresponding block,
leading to direct time-saving. It is worth mentioning that, in our SIMWNW, we remove the entire
similar blocks during the computation, which creates a coarse-grained sparsity. Compared to the
unstructured or irregular sparsity which is usually used in sparse training or weight pruning works,
the coarse-grained sparsity created in our SIMWNW is much more friendly for sparse computation
acceleration on both general-purpose devices and FPGA platforms.

18


	Introduction
	Background and Related Work
	Representative Self-supervised Learning Frameworks
	Efficient Self-supervised Learning.

	Motivation and Exploration
	Importance of Different Regions on Augmented Images
	Reuse vs. Remove

	Framework Design
	Identifying Similarities on Augmented Images
	Identifying Similarities on Feature Maps
	Challenges: Shrinking Removed Region Size
	Expanding the Size of Removed Region


	Evaluation
	Main Results
	Sensitivity Study

	Conclusion
	Extended Experimental Results
	Comparison with SOTA Efficient Self-Supervised Learning Methods
	Compatibility of SimWnW
	Comparison with a Sparse Self-supervised Learning Approach
	Experiments on Vision Transformers
	Transferability

	Block Matching Details
	Overhead Analysis
	Computation Svaings Breakdown
	Analysis on FLOPs Reduction

