
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIERARCHICAL ENTITY-CENTRIC REINFORCEMENT
LEARNING WITH FACTORED SUBGOAL DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a hierarchical entity-centric framework for offline Goal-Conditioned
Reinforcement Learning (GCRL) that combines subgoal decomposition with fac-
tored structure to solve long-horizon tasks in domains with multiple entities.
Achieving long-horizon goals in complex environments remains a core challenge
in Reinforcement Learning (RL). Domains with multiple entities are particularly
difficult due to their combinatorial complexity. GCRL facilitates generalization
across goals and the use of subgoal structure, but struggles with high-dimensional
observations and combinatorial state-spaces, especially under sparse reward. We
employ a two-level hierarchy composed of a value-based GCRL agent and a fac-
tored subgoal-generating conditional diffusion model. The RL agent and sub-
goal generator are trained independently and composed post hoc through selec-
tive subgoal generation based on the value function, making the approach mod-
ular and compatible with existing GCRL algorithms. We introduce new varia-
tions to benchmark tasks that highlight the challenges of entity-centric domains,
and show that our method consistently boosts performance of the underlying RL
agent on image-based long-horizon tasks with sparse rewards, achieving over
150% higher success rates on the hardest task in our suite and generalizing to
increasing horizons and numbers of entities. Rollout videos are provided at:
https://sites.google.com/view/hecrl.

1 INTRODUCTION

Planning to achieve complex, long-horizon goals in unstructured environments is a defining chal-
lenge at the core of Reinforcement Learning (RL) and sequential decision-making research. Goal-
Conditioned RL (GCRL) (Kaelbling, 1993) provides a useful framework for training goal-reaching
agents by facilitating generalization and knowledge transfer between goals and has proven promis-
ing when coupled with deep RL algorithms (Schaul et al., 2015). However, its effectiveness remains
limited when faced with complex goal distributions and high-dimensional observation spaces, espe-
cially under sparse rewards (Park et al., 2025a).

Exploiting the subgoal structure in GCRL (i.e., the fact that intermediate states in a trajectory can
also be treated as goals) has lead to significant progress in handling long-horizon sparse reward
tasks via goal relabeling (Andrychowicz et al., 2017) and hierarchical learning (Levy et al., 2019;
Chane-Sane et al., 2021; Bagaria et al., 2021). Park et al. (2023) proposed a two-level policy hierar-
chy extracted from a single goal-conditioned value function to address compounding approximation
errors when learning with temporal difference objectives. The resulting algorithm, HIQL, offers
a simple instantiation of hierarchy in the offline GCRL setting. However, as the recent OGBench
benchmark (Park et al., 2025a) reveals, offline GCRL methods (including HIQL) continue to strug-
gle with combinatorial state-spaces and image observations.

If we are to make progress towards applying GCRL to real-world problems and in domains such
as robotics, our algorithms must scale to complex goal distributions and rich, high-dimensional ob-
servations such as images. Particularly challenging are scenarios where the environment contains
multiple entities, where the state-space grows combinatorially with the number of entities. Examples
for such domains include robotic object manipulation (Haramati et al., 2024), multi-robot path plan-
ning (Shaoul et al., 2025), autonomous driving (Vinitsky et al., 2018) and video games (Zambaldi
et al., 2019; Delfosse et al., 2024). In this case, the underlying factored structure can be leveraged
and incorporated as inductive bias to significantly simplify learning.

1

https://sites.google.com/view/hecrl

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we seek to combine the benefits of subgoal hierarchy with factored structure to solve
long-horizon tasks in entity-centric domains. A natural subgoal decomposition in some cases cor-
responds to modifying a subset of the entities, but as we show, SOTA methods such as HIQL do
not encourage this kind of sparsity. We propose a hierarchical entity-centric framework for offline
GCRL that scales to image observations without requiring supervision. It leverages unsupervised
object-centric representations and the factored structure in entity-centric environments to produce
entity-factored subgoals, i.e., subgoals with sparse changes to entities compared to the current state.

We employ a two-level hierarchy where the low-level is a value-based GCRL agent and the high-
level is a subgoal-generating conditional diffusion model. We show that the bias induced by entity-
centric diffusion encourages entity-factored subgoals, which simplify the subtask for the RL policy.
Our method is designed to be modular and adaptive: the two levels are only related by the datasets
they are trained on and are combined post-training via a subgoal generation procedure, which in-
volves selective subgoal generation based on the value function. This allows simple integration with
potentially any value-based GCRL algorithm.

We demonstrate agents that can effectively achieve long-horizon goals in combinatorially complex
and high-dimensional observation spaces whilst learning from sparse rewards. We test our approach
using novel variations of existing benchmarks to highlight the above challenges. Our method con-
sistently boosts the performance of flat entity-centric GCRL agents, achieving more than a 150%
success increase on the most difficult task in our suite, and generalizes to increasing horizons and
number of entities.

Figure 1: Scene image-based factored subgoals. Bottom row: environment image observations at
the time of subgoal generation. Positions of latent particles are plotted on the image. Top row: DLP
reconstructions of the generated latent subgoals. Rightmost image: goal image observation. Circles
and arrows: circles on the top row highlight factors (excluding the arm) that are modified by the
subgoals compared to the current observation in the image below them. Arrows leading to circles
on the bottom row highlight the factors that are manipulated by the low-level RL policy, showing
that the subgoals were achieved. Note that subgoal reconstructions only include the foreground of
the scene captured by DLP. See Appendix for descriptions of the task B and the DLP model A.2.

2 BACKGROUND & RELATED WORK

Goal-conditioned Reinforcement Learning: GCRL (Kaelbling, 1993) considers a Markov Deci-
sion ProcessM = (S,A, µ, p, r), where S denotes the state space,A the action space, µ : P (S) the
initial state distribution, p : S × A → P (S) the environment transition dynamics, r : S × G → R
the reward function and G the goal space. The objective is to learn a policy π∗ : S × G → A
that maximizes the expected discounted return Eπ[

∑∞
t=0 γ

trt] for a given goal distribution, γ de-
noting the discount factor. Our work focuses on the offline setting, where the agent learns from a
fixed dataset of suboptimal state-action trajectories. We assume that G = S and a sparse reward
rt(st, g) = 1{s = g} − 1, i.e., 0 when at the goal and −1 otherwise.

Hierarchical Goal-conditioned Reinforcement Learning: Hierarchical RL enables reasoning over
multiple timescales and levels of abstraction by exploiting temporal structure within sequential
data (Klissarov et al., 2025). In the context of GCRL, many algorithms tackle long-horizon goal-
reaching with various instantiations of subgoal hierarchies (Schmidhuber, 1991; Dayan & Hinton,
1992; Kulkarni et al., 2016; Vezhnevets et al., 2017; Nachum et al., 2018; Levy et al., 2019; Chane-
Sane et al., 2021; Bagaria et al., 2021). Closely related to our work is HIQL (Park et al., 2023)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

which extracts a two-level policy hierarchy from a single value function learned from offline data.
In contrast to HIQL, we model the high-level policy using a diffusion model which as we show, is
crucial for producing high-quality subgoals that correspond to valid states. We additionally incorpo-
rate entity-centric structure across the hierarchy to simplify learning in domains with combinatorial
multi-entity state spaces and facilitate factored subgoals.

Diffusion for Sequential Decision-making: Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) learn to generate data by reversing a process that gradually adds noise to clean sam-
ples, training a neural network to perform step by step denoising. The network is optimized by
predicting the noise injected at each step and generates data by gradually denoising a sample from
an initial noise distribution. These have become widely popular for their ability to capture complex
multi-modal data distributions. Work applying diffusion models to decision-making can be coarsely
divided to diffusion policies (Chi et al., 2023; Hansen-Estruch et al., 2023) which model distribu-
tions of actions (or action “chunks”) and diffusion planners (also referred to as diffusers) (Janner
et al., 2022; Ajay et al., 2023; Lu et al., 2025) which model distributions of state or state-action
trajectories. Li et al. (2023); Chen et al. (2024) propose hierarchical diffusers that generate sub-
goal trajectories to condition lower-level diffusers for long-horizon tasks. Compared to the above,
our method employs a high-level diffusion model without guidance to generate a single immediate
subgoal for a GCRL policy and uses its value function for test-time subgoal selection. We adapt
the entity-centric diffuser proposed in Qi et al. (2025), which was designed for goal-conditioned
behavioral cloning, to generate entity-factored subgoals.

Entity-centric Reinforcement Learning: Entity-centric RL considers environments which can be
described as a collection of entities i.e., S = S1⊗S2⊗ ...⊗SN . This factored structure can simplify
learning when incorporated in state representation and agent architecture (Sanchez-Gonzalez et al.,
2018; Zadaianchuk et al., 2022; Sancaktar et al., 2022; Zhou et al., 2022) and facilitate composi-
tional generalization (Lin et al., 2023). Obtaining factored representations of images that closely
approximate the true state of the environment without supervision is not trivial and has been a sub-
ject of previous work. These either learn a representation concurrently with the decision-making
modules (Zambaldi et al., 2019; Watters et al., 2019; Veerapaneni et al., 2020) or pretrain unsuper-
vised object-centric representations (Lin et al., 2020; Locatello et al., 2020; Daniel & Tamar, 2022)
for downstream RL (Zadaianchuk et al., 2021; Yoon et al., 2023; Haramati et al., 2024). We present
a modular hierarchical framework that builds on Haramati et al. (2024) and enables long-horizon
goal-reaching from sparse reward via factored subgoal diffusion.

See App. A for extended background and related work.

3 HIERARCHICAL ENTITY-CENTRIC REINFORCEMENT LEARNING

Our framework, Hierarchical Entity-Centric RL (HECRL), addresses two main aspects that hinder
accurate value learning in multi-entity domains: reward propagation over long horizons 3.2 and
combinatorial state complexity 3.3, both of which increase with the number of entities. We employ
an entity-centric approach (Haramati et al., 2024; Qi et al., 2025) and propose a two-level hierarchy
composed of a value-based GCRL agent and a factored subgoal-generating diffusion model. Our ap-
proach is modular and adaptive, making it compatible with various value-based GCRL algorithms.
Additionally, it can handle image-based domains without access to the underlying factored envi-
ronment state (e.g., robotic manipulation from pixels and video games) using unsupervised object-
centric representations (e.g., DLPv2 (Daniel & Tamar, 2024), which we use in our experiments).

3.1 MOTIVATION: SIDESTEPPING COMPOUNDING VALUE APPROXIMATION ERROR

Leveraging factored structure in learned value functions improves performance in combinatorial
state-spaces, but does not completely mitigate value approximation error. Temporal Difference (TD)
learning (Sutton, 1988) leads to errors which compound over the timestep horizon. This error is
more consequential in long-horizon sparse reward tasks where the reward must propagate through
many steps of discounted TD updates. While the value function can still be useful for approximating
distances between states and goals, it may not be as effective for goal-conditioned policy extraction:
for states far away from a given goal, the approximation error can be larger than the fine difference
in value between states that are one low-level action apart. Park et al. (2023) refer to this as the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

value signal-to-noise ratio, which grows with the distance between states. This ratio defines an
“effective radius” of states whose values provide a clear learning signal for policy extraction, which
we will refer to as the policy competence radius and denote RV

π or R for simplicity of notation.
This quantity is not known a priori. Given an offline RL policy, our method aims to produce an
immediate subgoal that is both reachable by that policy, that is, within RV

π , and leads it closer to
the goal. This process can be repeated until the goal is within the policy’s reach. Two key aspects
of our approach distinguish it from previous methods: (1) Modularity and Test-time Flexibility—
we do not require any modifications to the underlying RL agent. We separately train a subgoal-
generating conditional diffusion model and enforce a value-based reachability constraint at test-
time (see Fig. 2, left, and App. D.1 for further discussion). (2) Factored Subgoal Diffusion—our
entity-centric approach encourages subgoals with sparse modifications to state factors when the data
supports it (see Fig. 2, right, and Sec. 4.5 for empirical results). Subgoals that require modifying few
state factors are generally easier to reach when these factors (or subsets thereof) are independently
controllable, making them favorable for conditioning the low-level policy.

Figure 2: Left: subgoal sampling illustration (Alg. 1 lines 2–4). Robot - agent, Dashed circle
- competence radius, Flag - goal, Red triangle - discarded subgoal, Green circle - filtered sub-
goal, Yellow star - chosen subgoal, Background color gradient - value landscape. Right: factored
subgoal illustration. Factored subgoals make it easy to modify small subsets of entities which sim-
plifies the subtask when factors are independently controllable.

3.2 THE SUBGOAL DIFFUSER

Our method assumes access to a trained value-based entity-centric GCRL agent consisting of a
policy π : S×G → A and value function V : S×G → R as well as the offline dataset it was trained
on. We remind the reader that in our setting G = S but we maintain the G notation for readability.

We train a conditional diffusion-based subgoal generator D : S × G → G on the offline RL dataset
to fit the distribution of states that are at most K timesteps away from a state s given a goal g, where
g is a state sampled uniformly from future timesteps in the same trajectory as s. That is, given
an offline state trajectory of length T : (s0, . . . , sT), we (1) uniformly sample a timestep t from
[0, T − 1] to select a state s = st; (2) uniformly sample a timestep tg from [t + 1, T] to select a
goal state g = stg ; (3) set the training subgoal to g̃ = smin(t+K,tg); (4) train a conditional diffusion
denoiser to model the dataset distribution p (g̃|s, g). This process can be thought of as training a
goal-conditioned behavioral cloning subgoal policy, which we refer to as the Subgoal Diffuser.

We do not assume the dataset contains goal-directed behavior, which has several implications: (1)
p (g̃|s, g) can be highly multi-modal, motivating our diffusion modeling choice. (2) p (g̃|s, g) may
contain diverse states in terms of value-distance from s and g, i.e., V (s, g̃) and V (g̃, g) respectively,
making K hard to set such that the subgoals are guaranteed to be reachable (even if we had access
to R a priori). (3) The subgoal Diffuser fits the behavior data and thus does not capture any notion
of subgoal optimality. We therefore introduce a simple and effective test-time subgoal generation
procedure, which we describe in the following and is summarized in Alg. 1.

We sample N subgoal candidates from the subgoal diffuser and filter them for reachability based on
a value threshold R̂, i.e., keep subgoals g̃ that satisfy V (s, g̃) > R̂. We then select the subgoal that is
closest to the goal, i.e., with the highest value V (g̃, g) (see Fig. 2, left). We rollout the low-level RL
policy π with this subgoal for a fixed Tsg timesteps and then repeat the subgoal generation procedure.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Subgoal Generation Procedure

Input: current timestep t, current state s, current subgoal g′, goal g, subgoal Diffuser D, value
function V , policy competence radius R̂, subgoal samples N , subgoal timesteps Tsg .

Output: subgoal g̃
1: if t% Tsg == 0 then # Sample new subgoal
2: Sample subgoal candidates {g̃i}Ni=1 ∼ D (s, g)

3: Filter reachable subgoals {g̃j}Mj=1← {g̃i | V (s, g̃i) > R̂} # M ≤ N
4: Select subgoal closest to goal g̃ ← argmaxg̃∈{g̃j} V (g̃, g)
5: if V (g̃, g) ≤ V (s, g) then
6: g̃ ← g # If s is closer to the goal g than the generated subgoal g̃, go directly to g
7: end if
8: else # Keep current subgoal
9: g̃ ← g̃

10: end if
11: return g̃

This can be viewed as a form of constrained sample-based planning with receding horizon control or
Model Predictive Control (MPC), in which case our model consists of {D, V } and the optimization
is performed on the state-space S rather than the action-space A. To aid convergence, if the goal is
closer to the current state than the chosen subgoal it is replaced with the goal (lines 5–7 in Alg. 1).
The constraint we impose on the subgoals is appropriate in our setting since−V (s, g) can be viewed
as a discounted (asymmetric) distance metric between states (Wang et al., 2023), and our approach
is compatible with other test-time constraints on states.

3.3 GENERATING ENTITY-FACTORED SUBGOALS

The previous section describes a subgoal generation and selection mechanism which is agnostic to
the structure of the state space. When the state of the environment can be described as a collection of
entities, prior work has demonstrated that factored state representations and set-based policy archi-
tectures (e.g., Transformers (Vaswani et al., 2017)) better handle the combinatorial complexity of the
state-space, yielding improved performance, greater sample efficiency, and facilitates compositional
generalization (Zhou et al., 2022; Haramati et al., 2024). We further exploit this structure to generate
entity-factored subgoals. In addition to the above benefits, entity-level factorization can simplify the
subtask for the low-level policy by facilitating modifications to a subset of the entities. While there
may be explicit ways to constrain the subgoal generation to encourage sparse modifications from
the current state, we observe that this emerges naturally from the data with the appropriate inductive
bias. In our case, it is the bias induced by entity-centric diffusion (Qi et al., 2025): given sets of
state and goal entities s = {sm}Mm=1 and g = {gm}Mm=1, our diffusion model gradually denoises
a set of noisy subgoal entities g̃τ = {g̃τm}Mm=1, where M denotes the set size and τ the diffusion
timestep. Importantly, each entity in s, g and g̃τ is a separate input to the Transformer denoiser (or
other set-based architecture) encoded with its affiliation to either of the sets.

As discussed in the previous section, the distribution p (g̃|s, g) can encompass a number of ways to
reach a given goal, which grows combinatorially with the number of entities. This leads to a wide
and multi-modal distribution over the relevant subgoals. Our choice of diffusion enables capturing
the multiple subgoal modes present in the data, potentially corresponding to modifying states of
different subsets of entities. This in turn allows sampling from distinct modes. By contrast, pro-
ducing a weighted average of those modes is more likely to result in modifications to large portions
of the state (see Sec. 4.5). As our experiments show, coupling entity-centric representations with
Transformer-based diffusion encourages entity-factored subgoals. We attribute this partly to the
Transformer’s ability to selectively copy its input tokens ({sm}Mm=1 and {gm}Mm=1) to the output
({g̃τm}Mm=1) via the attention mechanism (Jelassi et al., 2024). The entity-centric structure addition-
ally allows us to train relatively small diffusion models with as few as 10 denoising steps, which
reduces computational burden for real-time control.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

Experiments are designed to study: (1) our method’s efficacy in handling long-horizon goal-
conditioned tasks involving multiple entities (Sec. 4.3); (2) the impact of our design choices on
performance (Sec. 4.4); (3) the quality of subgoals generated by our method (Sec. 4.5); (4) our
method’s compositional generalization capabilities (Sec. 4.6). We present our evaluation suite in
Sec. 4.1 and describe implementation and baselines in Sec. 4.2. We will release datasets, check-
points and code to reproduce the experiments and results in this paper upon publication.

Figure 3: Environment suite. PPP-Cube: Pick, Place and Push cubes to goal positions.
Stack-Cube: Pick-and-place cube stacking. Scene: Manipulate objects (drawer, window, button
and cube) to goal configurations. Push-Tetris: Push blocks to goal positions and orientations.

4.1 ENVIRONMENTS, TASKS AND DATASETS

Our experimental results focus on multi-object manipulation using a suite of environments, tasks
and datasets which we adapt from previous benchmarks to highlight challenges in perception and
handling combinatorial state-spaces. The environments are visualized in Fig. 3. The majority of our
suite builds on the OGBench (Park et al., 2025a) manipulation environments, specifically Cube and
Scene environments. These contain a UR5e robot arm and involve table-top object manipulation.
We increase image resolution, add multi-view perception and remove simplifying visual components
such as arm transparency and end-effector coloring.

Tasks: (1) PPP-Cube: based on the OGBench Cube environment, the agent is required to ma-
nipulate cubes between randomly initialized state and goal positions. Distinct colors are assigned
to each cube at random out of a fixed set at the beginning of each episode. The accompanying
dataset contains diverse agent-object interactions including Pick-Place and Push operations. Image
observations include two views, front and side. To isolate algorithmic aspects from any particular
object-centric image representation, we support state-based entity-centric observations that emu-
late a “perfect” factored representation. (2) Stack-Cube: identical to PPP-Cube except the
dataset contains only Pick-and-Place operations with a high probability of stacking and the agent
is only evaluated on stacking. (3) Scene: We adopt the OGBench Visual Scene environment as
is with modifications to some test tasks to avoid ambiguity in goal specification that arises due to
our more realistic visual setup (see App. B). The environment is observed from a single view. (4)
Push-Tetris: we adapt the Push-T environment introduced in Chi et al. (2023) to multi-object
manipulation of Tetris-like blocks. Distinct block types are sampled at random at the beginning of
each episode. Each block type has a distinct color which is fixed across episodes. The agent is
required to push the blocks to goal configurations including position and orientation. A dataset is
collected using a random policy restricted to a fixed radius around an object, sampled at fixed time
intervals, resulting in highly suboptimal behavior. See App. B for extended environment details.

Environment Characterization: We consider PPP-Cube and Stack-Cube the most challeng-
ing in our suite1, requiring learning long-horizon 3D manipulation in a combinatorial state-space
from realistic image observations. Scene presents similar challenges in terms of perception and
includes more object types (and corresponding manipulation capabilities) but has much fewer effec-
tive state configurations, making it significantly less combinatorially complex. Push-Tetris is

1see App. B.1 for a literature review highlighting that non-trivial performance on these environments with
more than 2 objects has not been attained prior to this work within the data regime we consider.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

more visually simple and limited to a 2D plane but requires fine-grained control of variable objects
in a combinatorially complex state-space.

Evaluation: Training datasets contain 3 objects (excluding Scene) and up to 3M state transitions.
We train agents with a fixed amount of gradient updates and report mean and standard deviation of
the final checkpoint across 4 seeds for all of our experiments and metrics. Best results up to a stan-
dard deviation are highlighted in bold. In contrast to OGBench, we do not terminate upon reaching
the goal at test-time such that the agent cannot just stumble upon the goal but must reach and stably
maintain it. This is critical in tasks such as Stack-Cube where the cubes should remain stacked
and Scene where the effective number of goal configurations allows non-trivial performance by a
policy that simply explores those configurations without relying on the goal specification.

4.2 IMPLEMENTATION AND BASELINES

Baselines were carefully chosen to contrast the different aspects and design choices of our method
(see App. Table 8) while ensuring fair comparison. The RL agents we consider are based on goal-
conditioned variants of IQL (Kostrikov et al., 2022).
EC-SGIQL (Ours): we implement our method on top of an ECRL (Haramati et al., 2024) agent
trained with IQL. For the Subgoal Diffuser we adapt EC-Diffuser (Qi et al., 2025) to generate sub-
goals conditioned on entity-centric states and goals. We refer to this instantiation of our method as
Entity-Centric SubGoal IQL (EC-SGIQL).
EC-IQL: corresponds to an ECRL (Haramati et al., 2024) agent adapted to the offline setting by
integrating the Entity Interaction Transformer (EIT) architecture with IQL. This baseline represents
an entity-centric non-hierarchical method, which is equivalent to ours without subgoal generation.
EC-Diffuser (Qi et al., 2025): an entity-centric diffusion-based behavioral cloning method.
HIQL: an agent based on HIQL (Park et al., 2023).
IQL: an agent based on IQL (Kostrikov et al., 2022).
All entity-centric methods (EC- prefix) are trained from entity-centric state observations (see App. B
for details) or latent image-based representations extracted using a pretrained DLPv2 (Daniel &
Tamar, 2024) (see App. A.2 for an overview of DLP). Standard agents are trained from a single-
vector state observation or latent image-based representations extracted using a pretrained VQ-
VAE (Van Den Oord et al., 2017). Image representations were pretrained on the offline RL datasets,
one for each task (see App. D.6 for reconstruction visualizations). We provide extended implemen-
tation details in App. C.

4.3 LONG-HORIZON MANIPULATION

Table 1 summarizes performance of all methods on our environment suite. We report the state-goal
pixel coverage (i.e., overlap) averaged over objects for Push-Tetris and success rates otherwise.
Our method significantly outperforms all baselines with two exceptions in which it performs on par.
Notably, EC-SGIQL uses the same low-level policy and value function as EC-IQL yet consistently
improves its performance. On PPP-Cube from images, the most challenging task in our suite, it
achieves more than a 150% increase in success rate. EC-IQL is the second most performant method,
highlighting the significance of structure in these domains. Figures 1, 4 and 5 visualize rollouts of
our method following the subgoals generated by the Diffuser in the image-based environments. See
App. D.2 for further discussion and performance results and our website for rollout videos.

Table 1: Long-horizon manipulation performance. All values are success rates except for
Push-Tetris for which we report state-goal pixel coverage. See Sec. 4.2 for baseline details.

Environments EC-SGIQL EC-IQL EC-Diffuser HIQL IQL
PPP-Cube (State) 82.5 ± 3.1 51.5 ± 4.4 44.8 ± 6.7 48.3 ± 7.3 34.3 ± 4.9

PPP-Cube (Image) 64.3 ± 4.9 25.0 ± 5.7 0.3 ± 0.5 0.0 ± 0.0 0.0 ± 0.0

Stack-Cube (State) 43.5 ± 1.9 29.0 ± 2.9 43.8 ± 9.2 0.0 ± 0.0 19.3 ± 3.0

Scene (Image) 61.5 ± 5.9 53.0 ± 5.5 3.3 ± 2.5 8.3 ± 1.3 17.5 ± 2.7

Push-Tetris (Image) 61.4 ± 3.3 31.6 ± 1.3 7.9 ± 0.5 5.2 ± 0.8 3.4 ± 0.8

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDY

Table 2 presents results ablating the following aspects of our subgoal generation procedure: (1)
use of the value function for subgoal selection (Random Sample), (2) use of the value function for
subgoal filtering (line 3 in Alg.1) (Max Value) and (3) the use of diffusion by training a deterministic
Transformer-based subgoal generator with an Advantage-Weighted Regression (AWR, (Peng et al.,
2019)) objective as in HIQL. AWR with entity-centric latent image representations requires special
care as the latent entities lack ordering. We adjust the standard regression loss to a loss based on the
Chamfer distance (see App. C for details).

Table 2: Subgoal generation ablation performance. Ours: EC-SGIQL. Max Value: Ours w.o.
filtering subgoal candidates. Random Sample: randomly samples a subgoal from the Diffuser. AWR:
replaces the Diffuser with a deterministic Transformer trained with AWR. For Push-Tetris we
report pixel coverage (top) and the sum of pixel Chamfer distances across the episode (bottom). For
the rest we report success rate (top) and negative returns (bottom) which correspond to the average
number of timesteps taken to either complete the task or terminate due to evaluation timestep limit.

Environments Ours Max Value Random Sample AWR

PPP-Cube (State)
82.5 ± 3.1 76.3 ± 1.0 73.0 ± 7.4 67.8 ± 5.7

422 ± 60 464 ± 35 759 ± 23 773 ± 46

PPP-Cube (Image)
64.3 ± 4.9 46.3 ± 2.1 57.3 ± 8.7 55.5 ± 3.4

587 ± 18 709 ± 7 750 ± 42 735 ± 37

Stack-Cube (State)
43.5 ± 1.9 35.5 ± 7.5 28.8 ± 5.5 9.0 ± 4.2

706 ± 3 771 ± 54 904 ± 21 985 ± 6

Scene (Image)
61.5 ± 5.9 61.0 ± 6.7 41.0 ± 6.2 44.5 ± 6.0

597 ± 26 589 ± 43 843 ± 5 719 ± 45

Push-Tetris (Image)
61.4 ± 3.3 59.5 ± 3.4 58.6 ± 4.5 56.1 ± 5.6
510 ± 12 505 ± 32 622 ± 30 606 ± 40

Our method consistently achieves the best results, both in terms of success rate and timestep ef-
ficiency. The Max Value variant performs on par on some of the tasks, indicating that the policy
competence radius may be larger than the radius of the generated subgoals in these cases. Another
trend we observe is that the Random Sample and AWR variants require more timesteps to reach goals
when the success rates are comparable. This is expected when selecting random samples from the
Diffuser which do not always make direct progress to the goal. The AWR variant achieves the lowest
performance overall which we attribute to the quality of the subgoals. Fitting a (latent) observation-
generating model with weighted regression results in weighted averages of observations, which do
not generally correspond to a valid state. We study this further in the following section.

4.5 MEASURING SUBGOAL QUALITY

We hypothesize that our approach performs well compared to baselines and ablations in part because
it encourages generating simpler subgoals with sparse changes to factors compared to the current
state when the data and domain support it. We measure this sparsity in the state-based Cube envi-
ronments and report the average number of modified entities in Table 3. Training the subgoal policy
with AWR results in changes to all 3 cubes most of the time, while our Subgoal Diffuser modifies
close to 1 cube on average. We attribute this to the diffusion model’s ability to produce samples from
distinct subgoal modes compared to the deterministic policy which produces a weighted average of
those modes, as well as to the factored structure of the Subgoal Diffuser.

Since measuring the subgoal sparsity in the image-based environments is not straightforward, we
provide qualitative observations obtained by reconstructing the latent subgoal particles with the
DLP decoder for the Subgoal Diffuser in Fig. 1 (and Fig. 4, 5, App.) and for the AWR variant
in Fig. 6, 7 and 8 (App.). The Diffuser subgoals are often a composition of the input state and
goal images and involve sparse changes from the state. The generated subgoals are not perfect and
occasionally include the same entity twice. When this occurs, the entities are more often than not an
exact copy from each of the inputs, i.e., one from the state and one from the goal. This supports our

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Number of modified entities excluding the agent in the generated subgoal compared
to the input state. EC-Diffusion: Our subgoal Diffuser, EC-AWR: a Transformer trained with AWR
on entity-centric states, AWR: an MLP trained with AWR on single-vector states. An entity is con-
sidered modified if its position changed more than a threshold distance. The environments contain 3
cubes and the robotic arm. Values are averaged over 400 randomly sampled initial states and goals.

Environments EC-Diffusion (Ours) EC-AWR AWR

PPP-Cube (State) 1.36 ± 0.01 2.96 ± 0.01 2.98 ± 0.00

Stack-Cube (State) 1.04 ± 0.01 2.82 ± 0.02 2.98 ± 0.01

hypothesis that the Transformer selectively copies its input entities to the output. We attribute these
type of errors to the nature of the DLP representation and the diffusion objective, which might be
remedied with larger diffusion Transformers. The AWR subgoals often contain multiple duplicates
of entities representing different futures in a single subgoal, which provides the low-level RL policy
with ambiguous goals. See App. D.5 for further discussion.

4.6 GENERALIZATION

Incorporating entity-factored structure relaxes the combinatorial complexity of the state space by
facilitating compositional generalization (Lin et al., 2023). Learning requires less coverage of the
state space as long as there is sufficient coverage of the individual factors. Entity-level state gener-
alization (e.g., to novel compositions of object position and color) is measured by sample efficiency.
Indeed, we observe that entity-centric methods reach peak performance with much fewer gradient
updates compared to the unstructured ones (when the latter achieve non-trivial performance). Com-
positionality with respect to the global state of the system can be tested by varying the number of
state and/or goal entities. We test our method’s generalization capabilities in these cases and re-
port the performance in Table 13 (App.). Our method showcases non-trivial generalization which
degrades with increasing number of objects. We surpass the performance of the flat entity-centric
agent, showing that the subgoals maintain a level of quality sufficient to guide the RL policy. These
results hint to our method’s scaling potential to increasing numbers of entities via curriculum or
offline-to-online finetuning, which is left for future work.

5 CONCLUSION

We present Hierarchical Entity-Centric Reinforcement Learning (HECRL), an offline GCRL frame-
work that integrates subgoal hierarchy with factored structure to solve long-horizon tasks in entity-
centric domains and scales to image observations. We design our method to be simple, flexible
and modular, making it compatible with various value-based GCRL algorithms and test-time sub-
goal constraints. We empirically demonstrate that our factored Subgoal Diffuser coupled with our
simple value-based selection procedure produces high-quality subgoals to guide a low-level entity-
centric RL agent, consistently boosting its performance. We study what aspects contribute to the
performance of our method and find that the bias induced by entity-centric diffusion encourages
subgoals with sparse modifications from the current state compared to commonly used weighted
regression objectives. Finally, we display non-trivial zero-shot generalization performance with in-
creasing number of entities (and consequently longer horizons), hinting to potential in scaling to
environments with more entities.

Limitations and Future Work: our method assumes that the value function provides a sufficient
signal for the low-level policy to have a non-negligible competence radius as well as for guiding
the subgoal generator, which held in our challenging domains but may limit its applicability in
others. That said, the modularity of our framework facilitates improvements on top of advances
in flat value-based GCRL algorithms. The Subgoal Diffuser is trained with subgoals up to a fixed
K steps away from the current state. While our method is more robust to this hyperparameter
due to our test-time subgoal filtering mechanism, future work can explore ways to automatically
infer K from data. Finally, applying our method to domains with image observations relies on
a good factored state estimator. We show that this is possible in our simulated domains without
requiring supervision. The potential of scaling our approach to real-world in-the-wild scenarios thus
goes hand in hand with advancements in unsupervised object-centric representation learning (Seitzer
et al., 2023; Zadaianchuk et al., 2023; Daniel & Tamar, 2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our work advances methods for offline Goal-
Conditioned Reinforcement Learning (GCRL). The experiments in this paper were conducted in
simulated environments, with no involvement of human subjects or privacy concerns, and we do not
foresee any ethical or societal risks from this work.

REPRODUCIBILITY STATEMENT

We are committed to facilitate full reproducibility of our work. We have included extensive im-
plementation and evaluation details throughout the paper and in the Appendix. We will release the
code, checkpoints and datasets to reproduce all of the results in our experiments upon publication.

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=sP1fo2K9DFG.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Akhil Bagaria, Jason K Senthil, and George Konidaris. Skill discovery for exploration and planning
using deep skill graphs. In International conference on machine learning, pp. 521–531. PMLR,
2021.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International conference on machine learning, pp. 1430–1440.
PMLR, 2021.

Michael Chang, Alyssa Li Dayan, Franziska Meier, Thomas L. Griffiths, Sergey Levine, and Amy
Zhang. Hierarchical abstraction for combinatorial generalization in object rearrangement. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=fGG6vHp3W9W.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=kXHEBK9uAY.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of
Robotics: Science and Systems (RSS), 2023.

Tal Daniel and Aviv Tamar. Unsupervised image representation learning with deep latent particles.
In International Conference on Machine Learning, pp. 4644–4665. PMLR, 2022.

Tal Daniel and Aviv Tamar. DDLP: Unsupervised object-centric video prediction with deep dynamic
latent particles. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=Wqn8zirthg.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kerst-
ing. OCAtari: Object-centric atari 2600 reinforcement learning environments. In Rein-
forcement Learning Conference, 2024. URL https://openreview.net/forum?id=
24OiW9d5k8.

10

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=fGG6vHp3W9W
https://openreview.net/forum?id=fGG6vHp3W9W
https://openreview.net/forum?id=kXHEBK9uAY
https://openreview.net/forum?id=Wqn8zirthg
https://openreview.net/forum?id=24OiW9d5k8
https://openreview.net/forum?id=24OiW9d5k8

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, and Bart Dhoedt. Focus: object-centric world
models for robotic manipulation. Frontiers in Neurorobotics, 19:1585386, 2025.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Dan Haramati, Tal Daniel, and Aviv Tamar. Entity-centric reinforcement learning for object manip-
ulation from pixels. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=uDxeSZ1wdI.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. In International Conference on Machine
Learning, pp. 21502–21521. PMLR, 2024.

Jindong Jiang*, Sepehr Janghorbani*, Gerard De Melo, and Sungjin Ahn. Scalor: Generative world
models with scalable object representations. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=SJxrKgStDH.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pp. 1094–8, 1993.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Martin Klissarov, Akhil Bagaria, Ziyan Luo, George Konidaris, Doina Precup, and Marlos C
Machado. Discovering temporal structure: An overview of hierarchical reinforcement learning.
arXiv preprint arXiv:2506.14045, 2025.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In International Conference on Learning Representations, 2019.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. In The
Exploration in AI Today Workshop at ICML 2025, 2025.

Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical multi-object manip-
ulation using relational reinforcement learning. In 2020 ieee international conference on robotics
and automation (icra), pp. 4051–4058. IEEE, 2020.

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
making. In International Conference on Machine Learning, pp. 20035–20064. PMLR, 2023.

Baihan Lin, Djallel Bouneffouf, and Irina Rish. A survey on compositional generalization in appli-
cations. arXiv preprint arXiv:2302.01067, 2023.

11

https://openreview.net/forum?id=uDxeSZ1wdI
http://jmlr.org/papers/v23/21-1342.html
https://openreview.net/forum?id=SJxrKgStDH
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
attention and decomposition. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=rkl03ySYDH.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. Advances in neural information processing systems, 33:11525–11538, 2020.

Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner
for decision making? In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=7BQkXXM8Fy.

Davide Mambelli, Frederik Träuble, Stefan Bauer, Bernhard Schölkopf, and Francesco Locatello.
Compositional multi-object reinforcement learning with linear relation networks. arXiv preprint
arXiv:2201.13388, 2022.

Malte Mosbach, Jan Niklas Ewertz, Angel Villar-Corrales, and Sven Behnke. Sold: Slot object-
centric latent dynamics models for relational manipulation learning from pixels. arXiv preprint
arXiv:2410.08822, 2024.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Systems,
36:34866–34891, 2023.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. In International Conference on Learning Representations (ICLR),
2025a.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable. arXiv preprint arXiv:2506.04168, 2025b.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Carl Qi, Dan Haramati, Tal Daniel, Aviv Tamar, and Amy Zhang. EC-diffuser: Multi-object
manipulation via entity-centric behavior generation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
o3pJU5QCtv.

Cansu Sancaktar, Sebastian Blaes, and Georg Martius. Curious exploration via structured world
models yields zero-shot object manipulation. Advances in Neural Information Processing Sys-
tems, 35:24170–24183, 2022.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International conference on machine learning, pp. 4470–4479. PMLR, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Jürgen Schmidhuber. Learning to generate sub-goals for action sequences. In Artificial neural
networks, pp. 967–972, 1991.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann
Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and Francesco Lo-
catello. Bridging the gap to real-world object-centric learning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=b9tUk-f_aG.

12

https://openreview.net/forum?id=rkl03ySYDH
https://openreview.net/forum?id=7BQkXXM8Fy
https://openreview.net/forum?id=o3pJU5QCtv
https://openreview.net/forum?id=o3pJU5QCtv
https://openreview.net/forum?id=b9tUk-f_aG
https://openreview.net/forum?id=b9tUk-f_aG

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yorai Shaoul, Itamar Mishani, Shivam Vats, Jiaoyang Li, and Maxim Likhachev. Multi-robot mo-
tion planning with diffusion models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=AUCYptvAf3.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Rishi Veerapaneni, John D Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Jiajun Wu,
Joshua Tenenbaum, and Sergey Levine. Entity abstraction in visual model-based reinforcement
learning. In Conference on Robot Learning, pp. 1439–1456. PMLR, 2020.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheterpal, Kathy Jang, Cathy Wu,
Fangyu Wu, Richard Liaw, Eric Liang, and Alexandre M Bayen. Benchmarks for reinforce-
ment learning in mixed-autonomy traffic. In Conference on robot learning, pp. 399–409. PMLR,
2018.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
ment learning via quasimetric learning. In International Conference on Machine Learning, pp.
36411–36430. PMLR, 2023.

Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P Burgess, and Alexander Lerchner.
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven
exploration. arXiv preprint arXiv:1905.09275, 2019.

Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training object-
centric representations for reinforcement learning. In International Conference on Machine
Learning (ICML) 2023, pp. 1–28, 2023.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised visual reinforcement
learning with object-centric representations. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=xppLmXCbOw1.

Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning with
independently controllable subgoals. In Conference on Robot Learning, pp. 384–394. PMLR,
2022.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Object-centric learning for real-world
videos by predicting temporal feature similarities. Advances in Neural Information Processing
Systems, 36:61514–61545, 2023.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep re-
inforcement learning with relational inductive biases. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HkxaFoC9KQ.

13

https://openreview.net/forum?id=AUCYptvAf3
https://openreview.net/forum?id=xppLmXCbOw1
https://openreview.net/forum?id=HkxaFoC9KQ

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Weipu Zhang, Adam Jelley, Trevor McInroe, and Amos Storkey. Objects matter: object-centric
world models improve reinforcement learning in visually complex environments. arXiv preprint
arXiv:2501.16443, 2025.

Linfeng Zhao, Lingzhi Kong, Robin Walters, and Lawson LS Wong. Toward compositional gener-
alization in object-oriented world modeling. In International Conference on Machine Learning,
pp. 26841–26864. PMLR, 2022.

Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. Policy architectures for com-
positional generalization in control. In Deep Reinforcement Learning Workshop NeurIPS 2022,
2022.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
visual features enable zero-shot planning. In Forty-second International Conference on Machine
Learning, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely to polish writing in some parts of the paper.

A EXTENDED BACKGROUND & RELATED WORK

A.1 OBJECT-CENTRIC REPRESENTATIONS FOR SEQUENTIAL DECISION-MAKING

Many previous studies have dealt with the question of how to leverage the factored structure in
environments with multiple entities for sequential decision-making. Some assume access to the
underlying factored state of the system and develop set-based architectures to process them in a
sample-efficient and generalizing manner both in model-free (Li et al., 2020; Mambelli et al., 2022;
Zadaianchuk et al., 2022; Zhou et al., 2022) and model-based (Sanchez-Gonzalez et al., 2018; San-
caktar et al., 2022) settings. In order to scale these methods to image observations, some methods
take an end-to-end learning approach by learning an object-centric representation concurrently with
the decision-making modules (Zambaldi et al., 2019; Watters et al., 2019; Veerapaneni et al., 2020;
Ferraro et al., 2025). Others leverage unsupervised Object-Centric Representations (OCRs) includ-
ing patch-based (Jiang* et al., 2020), slot-based (Locatello et al., 2020) and particle-based (Daniel
& Tamar, 2022) models. These are commonly pretrained and kept frozen for downstream training of
the decision-making components. These have been applied in both model-free (Zadaianchuk et al.,
2021; Yoon et al., 2023; Haramati et al., 2024), model-based (Zhao et al., 2022; Chang et al., 2023;
Mosbach et al., 2024; Zhang et al., 2025) and imitation learning (Qi et al., 2025) approaches.

A.2 DEEP LATENT PARTICLES

This section provides an overview of the Deep Latent Particles (DLP, Daniel & Tamar (2022; 2024))
model which we employ as the unsupervised object-centric image representation in our experiments.
DLP is a Variational Auto-Encoder (VAE, Kingma & Welling (2013)) with a structured latent space
consisting of a set of latent vectors referred to as particles. Particles encode local regions in the
image that ideally correspond to salient factors such as objects or parts of objects. Each particle
representation is comprised of the following attributes: pixel-space 2D position zp ∈ R2, scale of
the box bounding the region it represents zs ∈ R2, “depth” attribute used to model occlusion be-
tween particles zd ∈ R, transparency zt ∈ R and visual latent features that encode the appearance
of the particle region zv ∈ Rn, n denoting the per-particle visual latent dimension hyperparameter.
A separate particle is allocated to encode the background of the image. The number of particles M
is a hyperparameter—which has been chosen in previous work as well as this one—to upper-bound
the number of entities of interest in the image. It is worth noting that DLP is entirely unsupervised
and it is not guaranteed that each particle represent an object in the image nor that an object will
be represented by a single particle. Allocating a large number of particles increases the likelihood
that all entities of interest are captured by the representation with the price of increased dimen-
sionality and computational complexity both for DLP training and downstream decision-making.
See Figures 9, 10 and 11 for DLP decompositions of images from the environments we use in our
experiments.

B ENVIRONMENTS, TASKS AND DATASETS

We provide detailed descriptions of the environments, tasks and datasets we use in this work for
transparency and reproducibility purposes. We highlight the differences from the environments they
are based on for the reader’s convenience. We introduce novel variations of tasks from the OGBench
benchmark (Park et al., 2025a) implemented with the MuJoco (Todorov et al., 2012) simulator and a
novel variant of the Push-T environment introduced in Chi et al. (2023). OGBench implementations
are based on the official code found in: https://github.com/seohongpark/ogbench).
We base our implementation of PushT on a variant introduced in Zhou et al. (2025) using the
paper’s official code found in: https://github.com/gaoyuezhou/dino_wm. We hope
that these new variants, which highlight challenges less studied in popular benchmarks such as

15

https://github.com/seohongpark/ogbench
https://github.com/gaoyuezhou/dino_wm

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

combinatorial state-spaces and compositional generalization, will facilitate further research in the
field of entity-centric decision-making and beyond. Datasets and code including environment im-
plementations and data collection scripts will be released upon publication. See our website for
video demonstrations of the data collection policies: https://sites.google.com/view/
hecrl/data-collection.

PPP-Cube
Environment: based on the OGBench Cube environment, the agent is required to manipulate cubes
between randomly initialized state and goal positions in a 3D space. Distinct colors are assigned to
each cube at random out of a fixed set of 6 colors at the beginning of each episode. The modified
multi-color setup effectively increases the size of the state-space and allows testing generalization
to increasing number of objects, and consequently longer horizons, without requiring generalization
to new colors. Image observations include two views, front and side. To isolate algorithmic as-
pects from any particular object-centric image representation, we support state-based entity-centric
observations that emulate a “perfect” factored representation. Specifically, each entity’s (i.e., robot
gripper and cubes) state is represented by its 3D position and yaw angle. The robot arm’s state
includes gripper opening and the cube state is padded with 0 to match the robot’s state dimension.
Each entity’s state is concatenated to a 1-hot identifier ei ∈ {0, 1}7. e0 represents the agent and
the rest represent the different colored cubes. Pixel observations are multi-view RGB images of
dimension 128 × 128. Action space dimensionality is 5 and includes deltas in gripper 3D position,
yaw and opening. A goal is considered reached when all cubes are within a threshold distance from
the specified position.
Dataset: the dataset contains diverse agent-object interactions including Pick, Place and Push oper-
ations collected with a noisy scripted policy. The policy randomly selects a cube to either: (1) pick
and place in a random location or (2) push from a random face. The dataset contains 3 cubes and a
total of 3M transitions, 7500 episodes each with 400 transitions.
Evaluation: Maximum evaluation episode length for 3 cubes is 1000 timesteps. We evaluate each
agent with a checkpoint trained for 2.5M gradient steps on 100 randomly sampled initial state and
goal configurations.
Differences from Original: (1) Pixel observations are multi-view RGB images of dimension
128 × 128 compared to OGBench which are single-view RGB images of dimension 64 × 64. (2)
OGBench modifies the visual properties of the robot arm to be semi-transparent highlight the end-
effector with purple color, which we remove in our version. (3) State observations are minimal
compared to OGbench and do not contain robot joint positions and velocities, gripper contact and
object quaternions. (4) Each cube in our environments can be in 1 of 6 colors (without repetition per
instantiation) regardless of the number of cubes where in OGBench these are fixed and depend on
the number of cubes in the environment. (5) The dataset collection policy in our setting is different,
the major difference being the push operation. (6) Episode length in our dataset is 400 compared to
1000 in OGBench.

Stack-Cube
Environment: see PPP-Cube.
Dataset: the dataset contains Pick-and-Place operations with a high probability of stacking collected
by a noisy scripted policy. The scripted policy includes a recovery mechanism in cases it is in the
processes of stacking a block and moves any of the lower blocks in the stack, which involves placing
those blocks back in their position before attempting to stack the original one on top of them. This
makes the dataset much more goal-directed. We found this to be crucial for learning robust RL
policies that can achieve non-trivial performance on 3-cube stacking (especially in our evaluation
setup that does not terminate upon reaching the goal). To the best of our knowledge, since the release
of the OGBench benchmark, no method has achieved non-trivial performance on 3-cube stacking
with the OGBench dataset. Our dataset contains 3 cubes and a total of 3M transitions, 3000 episodes
each with 1000 transitions.
Evaluation: Maximum evaluation episode length for 3 cubes is 1000 timesteps. We evaluate each
agent with a checkpoint trained for 3M gradient steps on 200 randomly sampled initial state and
goal configurations.
Differences from Original: see (1)–(4) in PPP-Cube. (5) The dataset collection policy in our
setting is different as described above.

Scene
Environment: We adopt the OGBench Visual Scene environment that involves manipulation of var-

16

https://sites.google.com/view/hecrl/data-collection
https://sites.google.com/view/hecrl/data-collection

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

ious object types (button, cube, drawer, window) in a 3D space. We make modifications to some test
tasks to avoid ambiguity in goal specification that arises due to our more realistic visual setup where
the robot arm is not transparent. Specifically, we modify tasks 4 and 5 in which goals involve images
with the cube inside a closed drawer. In these cases, the agent cannot infer the desired location of
the cube since it may be occluded. The goal is instead to place the cube in the drawer when it is
opened and locked. Pixel observations are single-view RGB images of dimension 128×128. Action
space dimensionality is 5 and includes deltas in gripper 3D position, yaw and opening. A goal is
considered reached when all objects are within a threshold distance from the specified position. In
Table 4 we detail what each task involves, denoting subtask sequential dependencies with → and
non-sequential subtasks with |.
Dataset: Data collection policy is identical to that of OGBench. A noisy scripted policy performs
subtasks in random order based on their applicability at the given state (e.g., putting the cube in the
drawer will only be selected if the drawer is open). The dataset contains a total of 1M transitions,
1000 episodes each with 1000 transitions.
Evaluation: Maximum evaluation episode length is 1000 timesteps. We evaluate each agent with a
checkpoint trained for 1.5M gradient steps on 50 randomly perturbed initial state and goal configu-
rations per task.
Differences from Original: see (1)–(2) in PPP-Cube. (3) We slightly modify task 4 and 5 for
reasons described above.

Push-Tetris
Environment: we adapt the Push-T environment introduced in Chi et al. (2023) to multi-object
manipulation of Tetris-like blocks. Distinct block types are sampled at random at the beginning
of each episode. Each block type has a distinct color which is fixed across episodes. The agent
is required to push the blocks to goal configurations including position and orientation in a 2D
space. Pixel observations are single-view RGB images of dimension 128 × 128. Action space
dimensionality is 2 and includes deltas in agent 2D position. A goal is considered reached when
all objects reach over 85% state-goal pixel coverage. Obtaining this coverage requires very fine
manipulation capabilities. We see that in practice the agent is able to learn from the sparse reward
but achieves low success rates at test-time although end states are visually similar to the goal. We
therefore report coverage as the main metric rather than success rate since it is more informative.
Maximum evaluation episode length for 3 objects is 1000 timesteps.
Dataset: A dataset is collected using a random policy restricted to a fixed radius around an object,
sampled at fixed time intervals, resulting in highly suboptimal behavior.
Evaluation: Maximum evaluation episode length for 3 objects is 1000 timesteps. We evaluate each
agent with a checkpoint trained for 1M gradient steps on 100 randomly sampled initial state and
goal configurations.
Differences from Original: (1) The original T-block is replaced with 7 different tetris-like blocks.
(2) Our dataset contains semi-random interaction with objects in contrast to the original dataset
that contains expert demonstrations. (3) The goal is specified by a separate image in our setting
compared to a shaded region in the same image as the state observation in the original task.

Table 4: Detailed Scene task descriptions. We denote subtask sequential dependencies with→
and non-sequential subtasks with |.

Task Subtasks Total Subtasks Longest Dependency
1 open-drawer | open-window 2 1
2 unlock-drawer→ close-drawer→ lock-drawer | unlock-window→ close-window→ lock-window 6 3
3 open-drawer | unlock-window→ close-window | move-cube-to-side 4 2
4 open-drawer→ lock-drawer & place-cube-in-drawer 3 2
5 unlock-drawer→ open-drawer→ lock-drawer & place-cube-in-drawer | unlock-window→ open-window→ lock-window 7 3

B.1 ENVIRONMENT DEGREE OF DIFFICULTY

We highlight the complexity of the domains we consider in this work and the efficacy of our method
in solving them by comparing to concurrent work that requires orders of magnitude more data
on similar or more simple variants of the OGBench (Park et al., 2025a) Cube domains. Li et al.
(2025) require 100M transitions in a 4-cube environment to learn in a single-task RL (i.e., not
goal-conditioned) setting while learning from states and semi-sparse rewards (rewarding per-object
success) and allowing additional online interaction. We exhibit non-trivial zero-shot generalization
performance in manipulating 4 cubes in a fully offline goal-conditioned sparse-reward setting while

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

learning from only 3M transitions containing 3 cubes, both from states and images. Park et al.
(2025b) show that unstructured RL methods, including hierarchical ones, require up to 1B transi-
tions in a similar setting to obtain non-trivial performance with more than 2 objects. To the best of
our knowledge, based on a review of all papers that have cited the OGBench benchmark at the time
of writing this paper, there are no other methods that have attained non-trivial performance on the
Cube domain with more than 2 objects thus far.

C METHOD IMPLEMENTATION DETAILS

In this section we provide extensive implementation details for our method, baselines and image rep-
resentations used in our experiments. Table 8 compares methods with respect to various algorithmic
aspects.

We implement all RL methods in pytorch based on official implementations and LeanRL: https:
//github.com/meta-pytorch/LeanRL, a more efficient version of CleanRL (Huang et al.,
2022). The RL agents (i.e., all of the methods excluding EC-Diffuser) are based on goal-conditioned
variants of IQL (Kostrikov et al., 2022). Low-level policies are extracted from IQL Q-functions with
DDPG+BC (Fujimoto & Gu, 2021). Value function training goals are sampled uniformly from future
states in the same trajectory with 0.8 probability and otherwise taken as the next state. Low-level
policy training goals are sampled uniformly from future states in the same trajectory (except for in
HIQL). We report shared hyperparameters in Table 5 and environment-method-specific DDPG+BC
policy extraction coefficient α in Table 6.

Table 5: Shared hyperparameters.

Hyperparameter Value

Batch size 512
Learning rate 0.0003
Gradient clip norm 20
Discount factor γ 0.99
Target smoothing coefficient τ 0.005
IQL/HIQL expectile 0.9
AWR temperature β 3.0
Subgoal Diffuser diffusion steps 10
Subgoal K 50
EIT attention dimension 64
EIT attention heads 8
EIT hidden dimension 256
MLP layers 4
MLP hidden dimension 512

Table 6: DDPG+BC policy extraction coefficient α.

Environment EC-SGIQL (Ours) Ours w. AWR EC-IQL HIQL IQL

PPP-Cube (State) 0.1 0.1 0.1 0.1 0.1
PPP-Cube (Image) 0.2 0.2 0.2 0.3 0.2
Stack-Cube (State) 0.05 0.05 0.05 0.2 0.05
Scene (Image) 0.3 0.3 0.3 0.4 0.2
Push-Tetris (Image) 0.1 0.1 0.1 0.1 0.1

EC-SGIQL (Ours): we implement our method on top of an ECRL (Haramati et al., 2024) agent
trained with IQL (see following EC-IQL for details). For the Subgoal Diffuser we adapt EC-
Diffuser (Qi et al., 2025) to generate subgoals conditioned on entity-centric states and goals. Specif-
ically, we remove action inputs entirely and condition on initial state and goal entities as clean
inputs which are not denoised. We use learned additive embeddings to encode each individual en-
tity’s affiliation to either of the 3 sets (i.e., state, goal or noisy subgoal) and one of 2 views in

18

https://github.com/meta-pytorch/LeanRL
https://github.com/meta-pytorch/LeanRL

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the multi-view setting. The Diffuser architecture is an 8-layer Transformer which is conditioned
on the diffusion timestep via adaptive layer normalization (AdaLN). Environment-specific Diffuser
test-time hyperparameters are detailed in Table 7. For our implementation we adapt code from the
official EC-Diffuser repository: https://github.com/carl-qi/EC-Diffuser.

Table 7: Subgoal Diffuser test-time hyperparameters.

Environment Diffusion Samples N Subgoal Steps Tsg Competence Radius R̂

PPP-Cube (State) 256 25 −30
PPP-Cube (Image) 256 25 −30
Stack-Cube (State) 256 25 −30
Scene (Image) 64 50 −25
Push-Tetris (Image) 64 25 −20

EC-SGIQL with AWR: This method is an ablation of our method and is thus identical to it ex-
cept for the Subgoal policy which is a Transformer based on the Entity Interaction Transformer
(EIT) (Haramati et al., 2024) which replaces the final aggregation attention with another self atten-
tion block. It is trained with an AWR objective using the IQL value function. Since the output and
target are unordered entities when learning from DLP particles, we use the Chamfer distance as the
loss instead of the standard MSE.

EC-IQL: corresponds to an ECRL (Haramati et al., 2024) agent adapted to the offline setting by
integrating the Entity Interaction Transformer (EIT) architecture with IQL. We slightly modify the
EIT architecture for the Q-function by replacing the action entity conditioning with AdaLN condi-
tioning. We base our implementation on the official ECRL repository: https://github.com/
DanHrmti/ECRL.

HIQL: this baseline corresponds to an agent based on HIQL (Park et al., 2023). We adapt the official
implementation to make it similar to the other methods for a fair comparison while keeping the core
attributes unchanged. Specifically, we train it with an underlying IQL agent and extract the low-level
policy with DDPG+BC. Contrary to the other IQL-based methods in this work, as in the original
HIQL, we train the low-level policy on the subgoal distribution rather than the goal distribution.
The high-level policy is trained with AWR using the IQL value function. At test-time, the subgoal
is kept for the same duration as the Diffuser subgoals (see Table 7). All agent components are 4-
layer MLPs with a hidden dimension of 512. We base our implementation on the official OGBench
implementation at: https://github.com/seohongpark/ogbench.

IQL: this baseline corresponds to a goal-conditioned agent based on IQL (Kostrikov et al., 2022).
All agent components are 4-layer MLPs with a hidden dimension of 512. We base our implemen-
tation on the official OGBench implementation at: https://github.com/seohongpark/
ogbench.

EC-Diffuser (Qi et al., 2025): is an entity-centric diffusion-based behavioral cloning method. It
employs a Transformer-based architecture that takes as input the current state and a goal state and
predicts future states and actions via diffusion. For control, it predicts future states and actions
jointly, and executes the first denoised action in an MPC fashion. For all of our tasks, we use a pre-
diction horizon of 5 and 10 diffusion steps. We use the reported value for all other hyperparameters.
We use the official implementation from: https://github.com/carl-qi/EC-Diffuser.

Table 8: Comparison of algorithmic aspects across different methods.

Attribute EC-SGIQL (Ours) Ours w. AWR EC-IQL EC-Diffuser HIQL IQL

RL ✓ ✓ ✓ ✗ ✓ ✓
Entity-centric ✓ ✓ ✓ ✓ ✗ ✗
Hierarchical ✓ ✓ ✗ ✗ ✓ ✗
Obs. Diffusion ✓ ✗ ✗ ✓ ✗ ✗

19

https://github.com/carl-qi/EC-Diffuser
https://github.com/DanHrmti/ECRL
https://github.com/DanHrmti/ECRL
https://github.com/seohongpark/ogbench
https://github.com/seohongpark/ogbench
https://github.com/seohongpark/ogbench
https://github.com/carl-qi/EC-Diffuser

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Image Representations: We provide hyperparameters for DLPv2 (Daniel & Tamar, 2024) and
VQ-VAE (Van Den Oord et al., 2017) models in Tables 9 and 10 respectively. We use the imple-
mentations provided in: https://github.com/DanHrmti/ECRL.

Table 9: DLP hyperparameters.

Environment Prior Particles Posterior Particles Visual Feature Dim BG Particle Dim

PPP-Cube (Image) 32 (per view) 20 (per view) 8 1
Scene (Image) 32 24 8 1
Push-Tetris (Image) 32 20 8 1

Table 10: VQ-VAE hyperparameters.

Hyperparameter Value

Embedding dimension 16
Dictionary size 2048
Flattened latent dimension 1024

D ADDITIONAL RESULTS AND DISCUSSION

D.1 THE BENEFITS OF DECOUPLING TRAINING GOAL DISTRIBUTIONS ACROSS THE
HIERARCHY

In our goal-conditioned setting, the value function can be viewed as a discounted (asymmetric) dis-
tance metric between states (Wang et al., 2023). The compounding error and discount factor define
an “effective radius” of values that provide a clear learning signal for policy extraction, which we
refer to as the policy competence radius, R (see Sec. 3.1). This quantity is not known apriori because
we do not have access to the true value approximation error, and it is not clear if it can be recovered
or effectively approximated in practice without evaluating an extracted policy. Previous hierarchical
methods spanning offline RL (Park et al., 2023) and diffusion planning (Li et al., 2023; Chen et al.,
2024) fix a single hyperparameter K defining the training distributions for both levels of the hier-
archy: the low-level policy is trained on state-goal pairs that are at most K timesteps apart while
the high-level policy is trained to produce these K-step states as subgoals. Selecting K represents a
tradeoff between complexity and sample efficiency: small K simplifies the policy goal distribution
but makes less use of the offline data by limiting the state-goal pairs the policies are trained on, po-
tentially hindering generalization. Selecting K thus requires simultaneously balancing this tradeoff
across all levels of the hierarchy.
We opt for an alternative approach: train the low-level policy on the full goal distribution, i.e., the
same distribution the value function is trained on. This choice decouples the training goal depen-
dency between the hierarchies and allows us to implicitly select K for the low-level policy by tuning
a hyperparameter R̂ as a test-time constraint (details in Sec. 3.2), which is preferable to tuning K
since it does not require re-training. K can then be chosen more flexibly for the subgoal generator
to upper-bound the low-level policy’s competence R while balancing the complexity tradeoff.

D.2 LONG-HORIZON OBJECT MANIPULATION

Intermediate success (e.g., the number of subtasks achieved) is reported in Table 11 and detailed
results on Scene tasks in Table 12. EC-IQL performs on par with our method on most tasks in
Scene and is the second leading method in terms of performance overall. We believe this is due to
the entity-centric structure which helps learn accurate, internally factored value functions. Scene
is the least combinatorially complex which may explain why the hierarchy provides less benefit: the
factored value function provides a good learning signal in this domain. EC-Diffuser performs on par
with our method on Stack-Cube. We believe this is mostly due to the nature of the dataset which
is more goal-directed compared to the others, and the fact that it does not rely on a value function
and thus does not suffer from the same long-horizon challenges as the RL methods. HIQL and

20

https://github.com/DanHrmti/ECRL

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

IQL do not scale well to image-based tasks with multiple objects when learning from single-vector
representations, which is consistent with previous findings in the object-centric decision-making
literature as well as the results on the OGBench benchmark (Park et al., 2025a). HIQL even under-
performs IQL in some cases, which we believe is due to the fact that training the subgoal policy with
AWR often results in low quality subgoals (see Sec. 4.4 and D.5).

Table 11: Long-horizon manipulation performance. All values are success fractions except for
Push-Tetris for which we report state-goal pixel Chamfer distance.

Environments EC-SGIQL EC-IQL EC-Diffuser HIQL IQL
PPP-Cube (State) 88.0 ± 1.4 60.8 ± 4.5 66.5 ± 7.0 62.8 ± 6.5 46.5 ± 7.0

PPP-Cube (Image) 82.3 ± 2.2 60.8 ± 1.5 9.5 ± 1.3 0.0 ± 0.0 0.0 ± 0.0

Stack-Cube (State) 58.8 ± 1.7 43.0 ± 4.6 55.3 ± 6.9 6.0 ± 0.8 38.5 ± 1.0

Scene (Image) 90.0 ± 2.2 84.0 ± 2.7 51.5 ± 0.6 65.3 ± 1.7 77.3 ± 0.5

Push-Tetris (Image) 19.0 ± 3.5 54.7 ± 4.9 84.2 ± 3.6 94.1 ± 0.9 98.8 ± 1.8

Table 12: Detailed success rates for Scene tasks.

Task EC-SGIQL EC-IQL EC-Diffuser HIQL IQL
1 85.0 ± 6.0 83.5 ± 4.4 14.0 ± 14.3 20.0 ± 5.2 27.0 ± 4.8

2 83.5 ± 1.9 89.0 ± 2.0 6.0 ± 3.3 15.0 ± 4.8 30.5 ± 16.7

3 52.0 ± 7.1 16.5 ± 13.4 0.0 ± 0.0 7.0 ± 2.6 15.0 ± 4.8

4 43.0 ± 10.5 39.0 ± 15.9 0.5 ± 1.0 0.5 ± 1.0 6.0 ± 1.6

5 44.0 ± 17.2 37.0 ± 7.8 0.0 ± 0.0 0.0 ± 0.0 10.0 ± 7.1

D.3 GENERALIZATION

Compositional generalization results of the entity-centric methods we compare in this work are
presented in Table 13. Maximum evaluation episode length in the generalization experiments with
4, 5, 6 and 7 objects is 1200, 1500, 2000 and 2000 respectively. We additionally increase the number
of inference particles—a feature supported by DLP—to 24, 28, 30 and 30 respectively.

D.4 FACTORED SUBGOAL VISUALIZATION

We present summarized rollouts of our method containing timesteps in which subgoals were gener-
ated and demonstrating how the agent achieves them on its way to the goal in Figures 1, 4 and 5.

D.5 AWR SUBGOAL VISUALIZATION

We provide visualizations of subgoals generated by a deterministic entity-centric Transformer
trained with AWR on DLP representations in Figures 6, 7 and 8. We observe that across all en-
vironments, subgoals often contain duplications of entities, providing ambiguous subgoals for the
low-level GCRL policy. This duplication can be explained by the redundancy in the DLP represen-
tation and the AWR objective. As discussed in Sec. 4.5, weighted regression fits a weighted average
of future observations, which in our “play” datasets, contain many possible futures given an initial
state and a goal. DLP represents a scene with many particles, which due to its unsupervised nature,
may represent the same object with multiple particles (see App. A.2). This allows each particle to
capture a different future subgoal for the same object in a single subgoal, which is what we observe
in these figures. The subgoal averaging phenomenon is not purely an artifact of the redundancy in
the DLP representation given that it occurs in the state-based environments as well (see Sec. 4.5, Ta-
ble 3). These results highlight the multi-modality in the data and help explain the lower performance
of baselines and ablations using AWR to train the subgoal generator. This phenomenon rarely hap-
pens with our Subgoal Diffuser (and is much less severe when it does), which captures the multiple
modes in the data and enables separately sampling from them at test-time. We believe that larger
diffusion Transformers may help mitigate this phenomenon entirely.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Zero-shot compositional generalization. All values are success rates except for
Push-Tetris variants for which we report state-goal pixel coverage. * signifies the training
variant in each segment, which was used to evaluate zero-shot capabilities on the other variants.

Variants EC-SGIQL EC-IQL EC-Diffuser
2-Cubes-Stack (State) 69.8 ± 7.0 45.8 ± 12.3 87.8 ± 5.4
3-Cubes-Stack* (State) 43.5 ± 1.9 29.0 ± 2.9 43.8 ± 9.2
4-Cubes-Stack-2 (State) 28.8 ± 3.9 17.3 ± 2.5 1.5 ± 1.3

PPP-1-Cube (State) 97.0 ± 1.8 92.3 ± 8.9 85.0 ± 9.2

PPP-2-Cubes (State) 94.0 ± 3.4 75.0 ± 3.8 76.5 ± 7.6

PPP-3-Cubes* (State) 82.5 ± 3.1 51.5 ± 4.4 44.8 ± 6.7

PPP-4-Cubes (State) 65.3 ± 3.5 31.8 ± 4.0 42.8 ± 11.4

PPP-5-Cubes (State) 49.0 ± 8.5 19.3 ± 5.9 23.8 ± 6.7

PPP-6-Cubes (State) 25.7 ± 1.5 10.5 ± 6.1 8.8 ± 3.5

PPP-1-Cube (Image) 94.5 ± 2.9 91.5 ± 1.3 3.8 ± 1.3

PPP-2-Cubes (Image) 77.0 ± 3.6 47.8 ± 6.2 0.0 ± 0.0

PPP-3-Cubes* (Image) 64.3 ± 6.0 25.0 ± 5.7 0.3 ± 0.5

PPP-4-Cubes (Image) 38.3 ± 5.7 11.5 ± 4.7 0.0 ± 0.0

PPP-5-Cubes (Image) 19.3 ± 6.2 4.0 ± 2.0 0.0 ± 0.0

PPP-6-Cubes (Image) 9.5 ± 1.3 1.5 ± 1.3 0.0 ± 0.0

Push-Tetris-1-Object (Image) 8.0 ± 1.5 6.6 ± 2.6 5.0 ± 1.8

Push-Tetris-2-Objects (Image) 61.4 ± 5.7 40.8 ± 4.2 6.3 ± 0.4

Push-Tetris-3-Objects* (Image) 61.4 ± 3.3 31.6 ± 1.3 7.9 ± 0.5

Push-Tetris-4-Objects (Image) 52.4 ± 3.5 20.7 ± 1.7 6.4 ± 1.1

Push-Tetris-5-Objects (Image) 41.8 ± 6.0 14.4 ± 2.3 4.6 ± 0.6

Push-Tetris-6-Objects (Image) 32.0 ± 1.8 11.5 ± 2.2 4.6 ± 1.2

Push-Tetris-7-Objects (Image) 21.1 ± 2.2 10.0 ± 1.5 4.7 ± 0.8

D.6 PRETRAINED IMAGE REPRESENTATION RECONSTRUCTION

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 4: PPP-Cube image-based factored subgoals. Bottom row: environment image observa-
tions at the time of subgoal generation. Positions of latent particles are plotted on the image. Top
row: DLP reconstructions of the generated latent subgoals. Rightmost image: goal image obser-
vation. Circles and arrows: circles on the top row highlight factors (excluding the arm) that are
modified by the subgoals compared to the current observation in the image below them. Arrows
leading to circles on the bottom row highlight the factors that are manipulated by the low-level RL
policy, showing that the subgoals were achieved.

Figure 5: Push-Tetris image-based factored subgoals. Bottom row: environment image ob-
servations at the time of subgoal generation. Positions of latent particles are plotted on the image.
Top row: DLP reconstructions of the generated latent subgoals. Rightmost image: goal image ob-
servation. Circles and arrows: circles on the top row highlight factors (excluding the arm) that are
modified by the subgoals compared to the current observation in the image below them. Arrows
leading to circles on the bottom row highlight the factors that are manipulated by the low-level RL
policy, showing that the subgoals were achieved.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 6: PPP-Cube AWR subgoals. Subgoals (middle) are reconstructed with the DLP de-
coder and were generated conditioned on DLP representations of the state (bottom) and goal (top).
Columns are not sequential, i.e., each column represents unrelated subgoals.

Figure 7: Scene AWR subgoals. Subgoals (middle) are reconstructed with the DLP decoder and
were generated conditioned on DLP representations of the state (bottom) and goal (top). Columns
are not sequential, i.e., each column represents unrelated subgoals.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: Push-Tetris AWR subgoals. Subgoals (middle) are reconstructed with the DLP
decoder and were generated conditioned on DLP representations of the state (bottom) and goal
(top). Columns are not sequential, i.e., each column represents unrelated subgoals.

Figure 9: PPP-Cube DLP decomposition.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 10: Scene DLP decomposition.

Figure 11: Push-Tetris DLP decomposition.

Figure 12: PPP-Cube VQ-VAE reconstruction.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: Scene VQ-VAE reconstruction.

Figure 14: Push-Tetris VQ-VAE reconstruction.

27

	Introduction
	Background & Related work
	Hierarchical Entity-centric Reinforcement Learning
	Motivation: Sidestepping Compounding Value Approximation Error
	The Subgoal Diffuser
	Generating Entity-factored Subgoals

	Experiments
	Environments, Tasks and Datasets
	Implementation and Baselines
	Long-horizon Manipulation
	Ablation Study
	Measuring Subgoal Quality
	Generalization

	Conclusion
	Extended Background & Related Work
	Object-centric Representations for Sequential Decision-making
	Deep Latent Particles

	Environments, Tasks and Datasets
	Environment Degree of Difficulty

	Method Implementation Details
	Additional Results and Discussion
	The Benefits of Decoupling Training Goal Distributions Across the Hierarchy
	Long-horizon Object Manipulation
	Generalization
	Factored Subgoal Visualization
	AWR Subgoal Visualization
	Pretrained Image Representation Reconstruction

