
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROVABLE GUARANTEES FOR AUTOMATED CIRCUIT
DISCOVERY IN MECHANISTIC INTERPRETABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated circuit discovery is a central tool in mechanistic interpretability for
identifying the internal components of neural networks responsible for specific
behaviors. While prior methods have made significant progress, they typically
depend on heuristics or approximations and do not offer provable guarantees over
continuous input domains for the resulting circuits. In this work, we leverage recent
advances in neural network verification to propose a suite of automated algorithms
that yield circuits with provable guarantees. We focus on three types of guarantees:
(i) input domain robustness, ensuring the circuit agrees with the model across a
continuous input region; (ii) robust patching, certifying circuit alignment under
continuous patching perturbations; and (3) minimality, formalizing and capturing a
wide array of various notions of succinctness. Interestingly, we uncover a diverse
set of novel theoretical connections among these three families of guarantees, with
critical implications for the convergence of our algorithms. Finally, we conduct
experiments with state-of-the-art verifiers on various vision models, showing that
our algorithms yield circuits with substantially stronger robustness guarantees than
standard circuit discovery methods — establishing a principled foundation for
provable circuit discovery.

1 INTRODUCTION

The rapid rise of neural networks, driven by transformative architectures such as Transformers, has
reshaped both theory and applications. Alongside this revolution, interpretability has become a
central research direction (Zhang et al., 2021; Räuker et al., 2023); and more recently, efforts have
focused on mechanistic interpretability (MI), which aims to reverse-engineer neural networks into
human-understandable components and functional modules (Olah et al., 2020; Olah, 2022; Zhao et al.,
2024). MI offers fine-grained interpretability that serves various purposes, including transparency,
trustworthiness, safety, and other applications (Bereska & Gavves, 2024; Zhou et al., 2024c).

A central open challenge in MI is circuit discovery (Olah et al., 2020), which seeks to identify
subgraphs within neural networks, called circuits, that drive specific model behaviors. Recent works
propose varied approaches (Wang et al., 2023; Conmy et al., 2023; Rajaram et al., 2024), differing by
domain (text vs. vision), patching methods (zero, mean, sampling), and the balance between manual
and automated steps. However, despite substantial progress, most current circuit discovery algorithms
remain heuristic or approximate, without rigorous guarantees of circuit faithfulness, particularly
under continuous perturbation domains (Adolfi et al., 2024; Miller et al., 2024; Méloux et al., 2025).
This limitation is concerning: even small perturbations can break circuit faithfulness, and since circuit
discovery is tied to safety considerations (Bereska & Gavves, 2024), such guarantees are essential.

Our Contributions. To address these concerns, we introduce a novel algorithmic framework that
builds on recent and exciting advances in the emerging field of neural network verification (Wang
et al., 2021; Zhou et al., 2024b; Brix et al., 2024; Kotha et al., 2023; Ferrari et al., 2022), enabling the
derivation of circuits with provable guarantees across continuous domains of interest.

1.1 THEORETICAL CONTRIBUTIONS

• We formalize a set of novel provable guarantees for circuit discovery that hold strictly over
entire continuous domains. These include: (i) input-domain robustness, ensuring circuits

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

remain faithful across continuous input regions; (ii) patching-domain robustness, addressing
criticisms of sampling-based ablation; and (iii) a broad family of minimality guarantees,
extending earlier notions to include quasi-, local-, subset-, and cardinal-minimality.

• We present novel theoretical proofs that reveal strong connections between these three
families of guarantees. At the core is the circuit monotonicity property, which underpins min-
imality guarantees for optimization algorithms and clarifies the conditions under which they
hold. We also establish a crucial duality between circuits and small “blocking” subgraphs,
enabling the efficient discovery of circuits with much stronger minimality guarantees.

1.2 EMPIRICAL CONTRIBUTIONS

• We propose a framework for encoding both input- and patching-robustness guarantees in
neural networks and their circuits, using a technical siamese encoding of the network with
its associated circuit or patching-domain, which enables certifying the desired properties.

• We introduce a set of novel automated algorithms that preserve the invariants of the robust-
ness guarantees and prove that each converges to circuits meeting our various minimality
criteria. These algorithms enable a trade-off between computational cost and the degree of
minimality achieved in the resulting circuits.

• We conduct extensive experiments with α–β-CROWN, the state-of-the-art in neural network
verification, to derive circuits with input, patching, and minimality guarantees. These are
evaluated on standard neural vision models commonly used in the neural network verification
literature. Compared to sampling-based approaches, our framework certifies robustness,
whereas even infinitesimal perturbations break the faithfulness of sampling-based circuits.

Overall, we believe these contributions mark a significant step forward in establishing both theoretical
and empirical foundations for circuit discovery with provable guarantees, paving the way for a wide
range of future research directions.

2 PRELIMINARIES

2.1 NOTATION

Let fG : Rn → Rd denote a neural network, with G := ⟨V,E⟩ representing its computation graph.
The precise structure of G — that is, what each node and edge correspond to (e.g., neurons, attention
heads, positional embeddings, convolution filters) — is determined both by the network’s architecture
and by the level of granularity chosen by the user. A circuit C is defined as a subgraph C ⊆ G,
consisting of components hypothesized to drive the model’s behavior on a task. Each such circuit
naturally induces a function fC : Rn → Rd, obtained by restricting fG to the components in C.

In circuit discovery, the complement C := G \ C is often fixed to constant activations, a practice
known as patching, with variants such as zero-patching or mean-patching. Let fG have L ∈ N
layers with activation spaces Vi for i ∈ [L], and let X ⊆ Rn be an input domain. For x ∈ X ,
denote the activations at layer i as hi(x) ∈ Vi, and the reachable activation space as HG(X) =
{(h1(x), . . . , hL(x)) : x ∈ X} ⊆ V1 × · · · × VL. We write HC(X) for the partial reachable
activation space over C. For a partial activation assignment α ∈ HC(X), we write fC(x | C = α) to
denote inference through fC(x), constructed from the components of C, while fixing the activations
of C to the values in α.

2.2 NEURAL NETWORK VERIFICATION

Consider a generic neural network fG with arbitrary element-wise nonlinear activations. Many tools
exist to formally verify properties of such networks, with adversarial robustness being the most
studied (Brix et al., 2024). Formally, the neural network verification problem can be stated as follows:

Neural Network Verification (Problem Statement):
Input: A neural network model fG, for which y := fG(x), with an input specification ψin(x), and
an unsafe output specification ψout(y).
Output: No, if there exists some x ∈ Rn such that ψin(x) and ψout(y) both hold, and Yes otherwise.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A variety of off-the-shelf neural network verifiers have been developed (Brix et al., 2024). When the
input constraints ψin(x), output constraints ψout(y), and model fG are piecewise-linear (e.g., ReLU
activations), the verification problem can be solved exactly (Katz et al., 2017). In practice, it is often
relaxed for efficiency, and the output is enclosed within bounds that account for approximation errors.

3 PROVABLE GUARANTEES FOR CIRCUIT DISCOVERY

3.1 INPUT DOMAIN GUARANTEES

In this subsection, we introduce the first set of guarantees that our algorithms are designed to satisfy
— specifically, provable robustness against input perturbations. A central challenge when evaluating
a circuit’s faithfulness is that, even if it matches the model at one point or a finite set of points,
small input perturbations can quickly break this agreement. To overcome this limitation, our first
definition considers circuits that are not only faithful to the model on a discrete set of points but are
also provably robust across an entire infinite continuous set of inputs.
Definition 1 (Input-robust circuit). Given a neural network fG and a union of continuous domains
Z ⊆ Rn (e.g., a union of ℓp-balls of radius ϵp around a set of discrete points {xj}kj=1), we say that a
subgraph C ⊆ G is an input-robust circuit with respect to ⟨fG,Z⟩, a fixed patching vector α applied
to the complement set C := G \ C, and a tolerance level δ ∈ R+, if and only if:

∀z ∈ Z :=

k⋃

j=1

Bpϵp(xj). ∥fC(z | C = α)− fG(z))∥p ≤ δ,

s.t. Bpϵp(xj) := {zj ∈ Rn | ∥zj − xj∥p ≤ ϵp}
(1)

z1

z2
f(G⊔C′)(z | C ′ = α)

Concatenated logits

Model G

Circuit C

Input

Figure 1: Illustration of the Siamese encoding
for certifying the guarantee in Def. 1.

Certifying circuit input robustness via verification.
Neural network verification properties are typically
encoded over a single model fG, while the circuit
input robustness property (Def. 1) requires evaluating
both the model graph G and a circuit C ⊆ G. To
address this, we introduce a novel method to certify
the property in Def. 1 using a siamese encoding of
the network fG. Specifically, we duplicate the circuit
C ′ := C and “stack” it with G to form a combined
model G⊔C ′ with a shared input layer. This induces
a function f(G⊔C′) : Rn → R2d. The activations of
the non-circuit components in the duplicate, C ′ :=
G \ C ′, are fixed to a constant α, so for any z ∈ Rn

inference is f(G⊔C′)(z |C ′ = α), enabling direct certification of Def. 1 over the combined model. The
input constraint ψin(x) bounds x within Z , while the output constraint ψout(y) bounds the distance
measure between the logits of C ′ and G. Further details of this encoding appear in Appendix E.

3.2 PATCHING DOMAIN GUARANTEES

A central challenge in circuit discovery lies in deciding how to assign values to the complementary
activations of a circuit — a process known as patching. The goal of patching is to replace these
values to isolate the circuit’s contribution. Prior work has examined several approaches, including
zero-patching, which has been criticized as arbitrary since such values may be out-of-distribution
if unseen during training (Conmy et al., 2023; Wang et al., 2023). Other strategies include mean-
value patching (Wang et al., 2023) and sampling from discrete input distributions (Conmy et al.,
2023). Yet, these methods still rely on evaluating complementary activations over a discrete set of
sampled inputs, which may fail to generalize in continuous domains: even small perturbations in the
patching scheme can undermine a circuit’s faithfulness. By analogy to input-robustness, we introduce
patching-robustness: the requirement that a circuit preserve its faithfulness across an entire provable
range of feasible perturbations to the complementary activations over a continuous input domain.
Definition 2 (Patching-robust circuit). Given a neural network fG, a continuous input domain
Z ⊆ Rn,and a reference set of inputs {xj}kj=1 ⊆ X , we say that C ⊆ G is a patching-robust circuit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

with respect to ⟨fG,Z⟩ and a tolerance level δ ∈ R+, iff for every xj in {xj}kj=1:

∀α ∈ HC(Z). ∥fC(xj | C = α)− fG(xj)∥p ≤ δ (2)

z1

z2

x1

x2

Input

f(G⊔C′)

(
x)
∣∣C ′ = HC(z)

)
Logits

Model G

Circuit C

Figure 2: Illustration of the Siamese encoding
for certifying the guarantee in Def. 2. Gray
neurons denote non-circuit units whose activa-
tions are patched with those of the full model.

Certifying circuit patching robustness via verifi-
cation. Analogous to input robustness, we introduce
here a novel method to certify the property in Def 2,
using a siamese encoding of fG. Concretely, we du-
plicate the circuit C ′ := C and “stack” it with G,
but now G and C ′ have disjoint input domains, yield-
ing f(G⊔C′) : R2n → Rd. We connect C ′ and G
by fixing the activations of C ′ to those attained by
HC(z) when evaluating fG(z). Thus, inference for
(x, z) ∈ R2n is given by f(G⊔C′)(x | C ′ = HC(z)).
We then set input constraints to bound z within Z ,
and output constraints to limit the distance ∥·∥p be-
tween the logits of C ′ and G. Further details appear
in Appendix F. We remark that input robustness and
patching robustness can also be certified simultane-
ously within a single verification query by extending the siamese encoding (see Appendix G).

4 FROM CIRCUITS TO MINIMAL CIRCUITS

A common convention in the literature is that smaller circuits (i.e., lower circuit size) are generally
considered more interpretable than larger ones (Mueller et al.; Adolfi et al., 2024; Chowdhary et al.,
2025; Wang et al., 2023; Bhaskar et al., 2024; Shi et al., 2024; Conmy et al., 2023). This makes
minimality an important additional guarantee (Adolfi et al., 2024; Chowdhary et al., 2025; Shi et al.,
2024; Mueller et al.). While many works have pursued minimal circuits, recent studies highlight that
“minimality” itself can take different forms (Adolfi et al., 2024), ranging from the weak notion of
quasi-minimality to the strong notion of cardinal-minimality. In this work, we extend this spectrum
to four main forms and provide rigorous proofs linking them to different optimization algorithms.

4.1 MINIMALITY GUARANTEES

v1 = x2

v2 = x1

v3 = x1

v4 = x1 ⊕ x2

v5 = x1 ⊕ x2

v6 = x2 ⊕ x2 (= 0)

x1

x2

⊕ y

Figure 3: A toy Boolean circuit.

In this subsection, we introduce four central notions
of minimality. Since minimality must be defined rel-
ative to what qualifies as a “valid” or faithful circuit,
we begin by specifying a general faithfulness pred-
icate, Φ(C,G). Given a circuit C ⊆ G within the
computation graph G of a model fG, Φ(C,G) re-
turns True if C is faithful under some condition of
interest, and False otherwise. Instances of Φ may
include standard sampling-based measures used in
circuit discovery, such as requiring the mean-squared
error or KL-divergence between C and G to remain
below a threshold τ (Conmy et al., 2023). Alterna-
tively, Φ can reflect our provable measures that hold
across continuous domains (Section 3), e.g., defining
Φ(C,G) to require input and/or patching robustness.

Consider, for example, a toy Boolean circuit pre-
sented in Fig. 3 as a running example. For sim-
plicity, we assume that each node in the circuit corresponds to a component of the model.
The network takes inputs (x1, x2) ∈ {0, 1}2, whose outputs are aggregated by XOR, yielding
fG(x1, x2) = v1 ⊕ v2 ⊕ · · · ⊕ v6 = x2, since

fG(x1, x2) := x2 ⊕ x1 ⊕ x1 ⊕ (x1⊕x2)⊕ (x1⊕x2)⊕ (x2⊕x2)
= x2 ⊕ (x1⊕x1)︸ ︷︷ ︸

=0

⊕ [(x1⊕x2)⊕ (x1⊕x2)]︸ ︷︷ ︸
=0

⊕ (x2⊕x2)︸ ︷︷ ︸
=0

= x2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For simplicity, we set the faithfulness predicate to consider the very strong condition of strict equality
between the circuit and the model for every boolean input. In other words, for all x1 and x2 in
{0, 1}2, it holds that Φ(C,G) := fC(x1, x2) = fG(x1, x2) = x2. A more detailed description of
this example appears in Appendix C.2.

We begin with the weakest form of minimality and proceed step by step until we reach the strongest.
The first notion, quasi-minimality, introduced by (Adolfi et al., 2024), defines C as a subset that
includes a “breaking point”: some component that, when removed, breaks the circuit’s faithfulness:

Definition 3 (Quasi-Minimal Circuit). Given G, a quasi-minimal circuit C ⊆ G concerning Φ, is a
circuit for which Φ(C,G) holds (“C is faithful”), and there exists some element (i.e., node/edge) i in
C for which Φ(C \ {i}, G) is false.

In our running example C = {v1, . . . , v5} is quasi-minimal: it satisfies v1 ⊕ · · · ⊕ v5 = fG, but
removing some essential node (e.g., v1) breaks this equality. However, we observe that the quasi-
minimality notion of (Adolfi et al., 2024) can be strengthened: instead of requiring a single breaking
point, one can demand that every component serves as one. Following conventions in the optimization
literature, we refer to this stronger notion as local minimality.

Definition 4 (Locally-Minimal Circuit). Given G, a locally-minimal circuit C ⊆ G concerning Φ, is
a circuit for which Φ(C,G) holds, and for any element i in C, Φ(C \ {i}, G) is false.

In our example, C = {v1, v2, v3} is locally minimal, as the predicate holds for {v1, v2, v3}, but
does not hold for {v1, v2}, {v1, v2}, and {v2, v3}. However, while local-minimality is stronger
than quasi-minimality, it still has a limitation. Although removing any single component from the
circuit C breaks it, removing multiple components may still leave C valid, giving a misleading sense
of minimality. For instance, in our locally minimal circuit C = {v1, v2, v3}, observe that while
removing any single component (i.e., v1, v2, or v3) breaks faithfulness, removing the pair {v2, v3}
(i.e., keeping only v1) nonetheless results in a faithful circuit. To address this, we define a stronger
notion: subset-minimality, which requires every subset of components to be a breaking point.

Definition 5 (Subset-Minimal Circuit). Given G, a subset-minimal circuit C ⊆ G concerning Φ, is
a circuit for which Φ(C,G) holds true, and for any subgraph S ⊊ C, Φ(C \ S,G) is false.

In the running example, C = {v2, v4} is a subset-minimal circuit, as v2⊕v4 = x1⊕ (x1⊕x2) = x2,
since every strict subset ({v2}, {v4}) fails to compute fG. We note that even this significantly stronger
notion of subset-minimality does not necessarily yield subsets of the absolute lowest cardinality. To
address this limitation, the final notion introduces the strongest form: a cardinally-minimal circuit,
which corresponds to the global optimum of minimality.

Definition 6 (Cardinally-Minimal Circuit). GivenG, a cardinally-minimal circuit C ⊆ G concerning
Φ is a circuit for which Φ(C,G) is true, and has the lowest cardinality |C| (i.e., there is no circuit
C ′ ⊆ G for which Φ(C ′, G) is true and |C ′| < |C|).

Here, {v1} is cardinally minimal, since v1 = x2 is functionally equivalent to fG and no smaller
faithful circuit exists.

4.2 ALGORITHMS FOR LOCAL AND QUASI MINIMAL CIRCUITS

In this subsection, we present optimization algorithms for discovering circuits with provable guar-
antees. Building on prior circuit discovery frameworks, we show how modifying or validating
optimization objectives changes the resulting guarantees. We also establish theoretical links between
objectives based on continuous robustness guarantees and different notions of minimality. We begin
with a standard greedy algorithm (Algorithm 1):

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Greedy Circuit Discovery Iterative Search

1: Input Model fG, circuit faithfulness predicate Φ
2: C ← G under some given element ordering (e.g., reverse topological sort)
3: for all i ∈ C do
4: if Φ(C \ {i}, G) then
5: C ← C \ {i}
6: end if
7: end for
8: return C

Algorithm 1 is a standard greedy procedure that starts with the full model graph G and iteratively
removes elements as long as the faithfulness property holds. Once no further element can be removed
without breaking the property, it halts. This greedy structure underlies many circuit discovery methods,
enforcing a stop when every single component is critical. This directly guarantees local-minimality:
Proposition 1. Given any model fG, and faithfulness predicate Φ, running Algorithm 1 converges to
a locally-minimal circuit C concerning Φ.

We note that each evaluation of Φ(C \ {i}, G) may be costly, depending on the predicate Φ (e.g.,
certifying input or patching robustness). To mitigate this, one may use a lighter notion of minimality
— the quasi-minimal circuits of (Adolfi et al., 2024) — which require only a logarithmic, rather than
linear, number of invocations. For completeness, we formally present and extend their binary-search
procedure, provided as Algorithm 3 in Appendix C. Algorithm 3 follows a procedure similar to
Algorithm 1, but employs a binary rather than iterative search. As a result, it yields a weaker notion of
minimal circuits, while requiring fewer queries. We can therefore establish the following proposition:
Proposition 2. While Algorithm 3 converges to a quasi-minimal circuit and performs O(log |G|)
evaluations of Φ(C,G) (Adolfi et al., 2024), Algorithm 1 converges to a locally-minimal circuit and
performs O(|G|) evaluations of Φ(C,G).

Finally, we note that both Algorithms 1 and 3 converge only to relatively “weak” forms of minimality.
Even the stronger local-minimality guarantee of Algorithm 1 can fall short: while every single-
element removal C \ {i} breaks faithfulness, removing two elements simultaneously, C \ {i, j}, may
still yield a faithful circuit. This undermines C’s “minimality” and shows that neither algorithm
ensures the stronger notion of subset-minimality.
Proposition 3. There exist infinitely many configurations of fG, and Φ, for which Algorithm 1 and
Algorithm 3 do not converge to a subset-minimal circuit C concerning Φ.

4.3 THE CIRCUIT MONOTONICITY PROPERTY AND ITS IMPACT ON MINIMALITY

To address the issue of algorithms converging to “bad” local minima, we identify a key property of
the faithfulness predicate Φ with crucial implications for stronger minimal subsets — monotonicity:
Definition 7. We say that a circuit faithfulness predicate Φ is monotonic iff for any C ⊆ C ′ ⊆ G it
holds that if Φ(C,G) is true, then Φ(C ′, G) is true.

Intuitively, monotonicity means that once Φ(C,G) holds for a circuit C (i.e., it is “faithful”), it will
keep holding as elements are added. In other words, enlarging the circuit never breaks faithfulness.
This property is essential for Algorithm 1, as it underpins the stronger minimality guarantee:
Proposition 4. If Φ is monotonic, then for any model fG, Algorithm 1 converges to a subset-minimal
circuit C concerning Φ.

The condition of monotonicity. Interestingly, we establish a novel connection between the guarantees
on the input and patching domains outlined in Section 3 and the monotonic behavior of Φ:
Proposition 5. Let Φ(C,G) denote validating whether C is input-robust concerning ⟨fG,Z⟩ (Def. 1),
and simultaneously patching-robust concerning ⟨fG,Z ′⟩ (Def. 2). Then if Z ⊆ Z ′ andHG(Z ′) is
closed under concatantion, Φ is monotonic.

Intuitively, Proposition 5 shows that if the patching domain Z ′ subsumes the input domain Z , and the
activation spaceHG(Z ′) is closed under concatenation, i.e., concatenating any two partial activations

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

remains within HG(Z ′) — then the faithfulness predicate Φ is monotonic. This introduces a new
class of evaluation conditions that are monotonic by construction, yielding stronger minimal circuits.

Proposition 6. If the condition Φ(C,G) is set to validating whether C is input-robust concerning
⟨fG,Z⟩ (Def. 1), and also patching-robust with respect to ⟨fG,Z ′⟩ (Def. 2), then if Z ⊆ Z ′ and
HG(Z ′) is closed under concatantion, Algorithm 1 converges to a subset-minimal circuit.

4.4 FROM SUBSET-MINIMAL CIRCUITS TO CARDINALLY-MINIMAL CIRCUITS

Although the monotonicity of Φ provides a stronger guarantee of subset-minimality, it still does
not ensure convergence to the globally minimal circuit (i.e., a cardinally-minimal circuit). A naive
approach to obtain such circuits is to enumerate all C ⊆ G, verify Φ(C,G), and choose the one with
the lowest cardinality |C|, but this quickly becomes intractable even for modestly sized graphs.

Exploiting circuit blocking-set duality for efficient approximation of cardinally-minimal circuits.
In this subsection, we leverage the idea that neural networks often contain small “circuit blocking-
sets” — subgraphs C ′ ⊆ G whose altered activations break the faithfulness of any circuit C that
excludes them. We prove a duality between circuits (under monotone faithfulness predicates) and
these blocking-sets, enabling a new algorithmic construction that approximates — and sometimes
exactly recovers — cardinally minimal circuits far more efficiently than naive search. Formally, for
fG and Φ, a circuit blocking-set is any C ′ ⊆ G such that Φ(C \ C ′, G) fails for all C ⊆ G, yielding
a duality grounded in a minimum-hitting-set (MHS) relation between circuits and blocking-sets:

Proposition 7. Given some model fG, and a monotonic predicate Φ, the MHS of all circuit blocking-
sets concerning Φ is a cardinally minimal circuit C for which Φ(C,G) is true. Moreover, the MHS of
all circuits C ⊆ G for which Φ(C,G) is true, is a cardinally minimal blocking-set w.r.t Φ.

The definition of MHS, a classic NP-Complete problem is given in Appendix B.7. This duality is
powerful because, despite NP-completeness, MHS can often be solved efficiently in practice with
modern solvers such as MILP or MaxSAT (Ignatiev et al., 2019a). Hence, similar dualities have
already been central to formal reasoning and provable explainability methods (Bacchus & Katsirelos,
2015; Ignatiev et al., 2019b; Bassan & Katz, 2023; Liffiton et al., 2016). With this duality theorem in
hand, we can design an algorithm that often computes (or approximates) cardinally minimal circuits:

Algorithm 2 Cardinally Minimal Circuit Approximation using MHS duality

1: Input model fG, faithfulness predicate Φ, tmax ∈ [|G|]
2: BlockingSets← ∅
3: for t← 1 to tmax do
4: Ct ← {S ⊆ G,∀U ⊆ BlockingSets : |S| = t, U ̸⊆ S}
5: for all S ∈ Ct do ▷ parallelization
6: if ¬Φ(G \ S,G) then
7: BlockingSets← BlockingSets ∪ S
8: end if
9: end for

10: C ← MHS(BlockingSets)
11: if Φ(C,G) then return C
12: end if
13: end for

Algorithm 2 leverages Proposition 7 by iterating over blocking-sets in parallel and computing each
set’s MHS to obtain a circuit C. This establishes a lower bound on the cardinally minimal circuit and,
through successive refinements, converges to the minimal one. While the number of blocking-set
subsets may be excessive in the worst case, in practice their size is often tractable (see Section 5)
yielding a low tmax and enabling more efficient — or closely approximate — computation of cardinally
minimal circuits. This is formalized in the following claim:

Proposition 8. Given a model fG, and a monotonic predicate Φ, Algorithm 2 computes a subset C
whose size is a lower bound to the cardinally minimal circuit for which Φ(C,G) is true. For a large
enough tmax value, the algorithm converges exactly to the cardinally minimal circuit.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL EVALUATION

Experimental setup. We evaluate our method on standard benchmarks from the neural network
verification literature (Brix et al., 2024; 2023): (i) MNIST, (ii) CIFAR-10, (iii) GTSRB, and (iv) Tax-
iNet (a real-world dataset used in verification-based input-explainability studies (Wu et al., 2023a;
Bassan et al., 2025)) . For neural network verification, we use the state-of-the-art α, β-CROWN
verifier (Bak et al., 2021; Müller et al., 2022a; Brix et al., 2024); for MHS we use RC2 (Ignatiev
et al., 2019a). For consistency, we evaluate our results on model architectures from prior verification
studies, particularly the neural network verification competition (VNN-COMP) (Brix et al., 2024);
full architectural details appear in Appendix D. To balance circuit discovery difficulty and human
interpretability, we chose the circuit granularity level to be neurons for MNIST and convolutional
filters for CIFAR-10, GTSRB, and TaxiNet. Both provable and sampling-based variants use the
standard logit-difference metric (Conmy et al., 2023). Further details are in Appendices E, F and G.

5.1 CIRCUIT DISCOVERY WITH INPUT-ROBUSTNESS GUARANTEES

We begin by evaluating the continuous input robustness guarantees of our method. We compare
two variants of Algorithm 1: (i) a standard sampling-based approach, where faithfulness is assessed
by applying the logit-difference predicate with tolerance δ on sampled inputs, and (ii) a provable
approach, which, via the siamese encoding of Section 3.1, certifies that the logit difference always
remains below δ throughout the continuous input domain. For both methods, we report circuit size
and robustness over the continuous input neighborhood across 100 batches (one circuit per batch).
We set the input neighborhood using ϵp values aligned with VNN-COMP (Brix et al., 2024) (with
variations in Appendix E) and adopt zero-patching in both settings. Results (Table 1) show that the
provable method is slower, due to solving certification queries, yet achieves 100% robustness with
comparable circuit sizes, whereas the sampling-based baseline attains substantially lower robustness.
An illustrative example appears in Figure 4.

Table 1: Circuit results from Algorithm 1, where Φ is defined either by bounding logit differences
under input sampling or by verifying the bound using the siamese encoding.

Dataset Sampling-based Circuit Discovery Provably Input-Robust Circuit Discovery

Time (s) Size (|C|) Robustness (%) Time (s) Size (|C|) Robustness (%)

CIFAR-10 0.23 ±0.52 16.47 ±9.08 46.5 ±5.0 2970.85 ±874.23 19.18 ±10.16 100.0 ±0.0
MNIST 0.31 ±0.89 12.56 ±2.30 19.2 ±4.0 611.93 ±97.14 15.84 ±2.33 100.0 ±0.0
GTSRB 0.11 ±0.33 28.91 ±4.69 27.6 ±4.0 991.08 ±162.91 29.59 ±4.45 100.0 ±0.0
TaxiNet 0.01 ±0.00 5.77 ±0.80 9.5 ±3.0 180.00 ±40.39 6.82 ±0.46 100.0 ±0.0

5.2 CIRCUIT DISCOVERY WITH PATCHING-ROBUSTNESS GUARANTEES

Table 2: Circuit results from Algorithm 1, where Φ is defined either by bounding logit differences
under zero patching, mean patching, or by verifying the bound using the siamese encoding.

Dataset Zero Patching Mean Patching Provably Patching-Robust Patching

Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%)

CIFAR-10 0.1 ± 0.3 65.1 ±3.0 46.4 ±6.0 0.0 ±0.0 64.1 ±3.6 33.3 ±5.7 5408.5 ±1091.0 65.6 ±1.6 100.0
MNIST 0.1 ±0.3 20.0 ±1.5 58.0 ±5.3 0.0 ±0.0 19.2 ±1.8 55.7 ±5.3 714.9 ±207.1 17.0 ±2.3 100.0
GTSRB 0.3 ±0.9 32.6 ±4.2 38.0 ±4.4 0.0 ±0.0 33.4 ±4.2 40.5 ±4.5 2907.2 ±721.7 34.3 ±4.1 100.0
TaxiNet 0.0 ±0.1 5.8 ±0.8 57.1 ±5.0 0.0 ±0.1 5.4 ±0.7 63.3 ±4.9 175.7 ±52.7 5.4 ±0.6 100.0

To assess patching robustness, we study three variants of Algorithm 1 enforcing a bounded logit
difference under different patching schemes: (i) zero-patching, (ii) mean-patching, and (iii) a certified
variant that, using a siamese encoding (Section 3.2), verifies the bound uniformly over a continuous
patching domain. Circuits found with zero or mean patching are then evaluated under the same
continuous-domain criterion as the certified setting. Results appear in Table 2. Circuits found
under standard patching (zero/mean) are sensitive to changes in the patching domain and yield low
robustness, whereas the verified method certifies this property and achieves 100% robustness. Despite

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

f0f1f2
f3
f4
f5
f6f7

f9
f10
f11
f12
f14

f0f1f2
f3
f4
f5f6
f7

f11
f12
f13
f14
f15

Conv1

f9
f8

f13

f10
f8

f15

Block 1

Conv2 f0f1f2
f3
f4
f5
f6
f7
f8
f9f10
f11
f12
f13
f14f15

f0f1f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13f14
f15

Conv1 Conv2

Deer

Conv1

f3
f4
f5
f6
f7

f1
f0

FC

Block 2

+
f2

+

f0f1f2
f3
f4
f5
f6f7

f9
f10
f11
f12
f14

f0f1f2
f3
f4
f5f6
f7

f11
f12
f14
f15

Conv1

f13

f9
f8

f13
f10

f8

f15

Conv2 f0f1f2
f3
f4
f5
f6
f7
f8
f9f10
f11
f12
f13
f14f15

f0f1f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13f14
f15

Conv1 Conv2
Provably-

 robust

Bird

Conv1

f3
f4
f5
f6
f7

f1
f0

+
f2

+

Sam pling-
based

Block 1 Block 2

FC

+ =

+ =

Figure 4: Examples of ResNet circuits at the filter level on CIFAR-10. Filters are numbered within
each layer, with non-circuit filters in gray and residual connections shown as dashed lines. We
compare circuits from the sampling-based discovery and the provably robust variant, highlighting
components unique to the provable circuit in green.

the higher computational cost (due to the reliance on verification), the provable method delivers much
stronger robustness at comparable circuit sizes.

5.3 EXPLORING DIFFERENT MINIMALITY GUARANTEES OF CIRCUIT DISCOVERY

We experiment with the minimality guarantees from Sec. 4 and their connection to the robustness and
patching guarantees of Sec. 3. For the Φ predicate, we certify both input- and patching robustness
using a double-siamese encoding (Sec. 3.2), with environments Z ⊆ Z ′, and run Alg. 1, 2, 3. Alg. 2
is run with tmax = 3, restricting the contrastive blocking-set enumeration to sets of size at most
three. Our experiments show that MHS size consistently lower-bounds circuit size, with no circuit
falling below its MHS. In some runs, the iterative Alg. 1 circuits meet the bound exactly, and some
MHS circuits are certified as faithful (i.e., satisfying both input and patching robustness), as shown in
Fig. 5a.

2 4 6 8 10
MHS Size

0

5

10

15

20

25

30

C
ir

cu
it

Si
ze

Binary Search (Quasi-Min.)
Iterative Search
Faithful MHS Circuit
MHS equality line (y=x)

(a) Circuit size against MHS size

0 60 120 180 240 300 360 420 480 540 600
Elapsed Time (seconds)

0

5

10

15

20

25

30

35

C
ir

cu
it

Si
ze

MHS
Iterative Search
Binary Search (Quasi)

(b) Circuit size over time

Figure 5: (a) Circuit size vs. MHS of blocking sets size, with the dashed equality line y=x as the
lower bound. (b) Convergence of circuit size over the first 10 minutes; shaded region shows deviation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

We also note the efficiency–circuit size trade-off in Figure 5b: the quasi-minimal (Alg. 3) procedure
terminates fastest but plateaus at larger sizes with weaker minimality; the iterative search (Alg. 1)
achieves smaller sizes (stronger minimality) at higher runtime; and the MHS (Alg. 2) loop is slowest
yet progressively approaches a cardinally minimal (optimal) circuit size.

6 RELATED WORK

Circuit discovery. Our work joins recent efforts on circuit discovery in MI (Olah et al., 2020; Elhage
et al., 2021; Dunefsky et al., 2024), particularly those advancing automated algorithms (Conmy et al.,
2023; Hsu et al., 2024). Other relevant avenues include metrics for circuit faithfulness (Marks et al.,
2024; Hanna et al., 2024), differing patching strategies (Jafari et al., 2025; Syed et al., 2024; Haklay
et al., 2025; Miller et al., 2024; Zhang & Nanda, 2024), minimality criteria (Chowdhary et al., 2025;
Wang et al., 2023), and applications (Yao et al., 2024; Sharkey et al., 2025).

Theoretical investigations of MI. Several recent directions have examined other theoretical aspects
of MI, often linked to circuit discovery. These include framing MI within a broader causal abstraction
framework (Geiger et al., 2025; 2024), connecting it to distributed alignment search (DAS) (Wu
et al., 2023b; Sun et al., 2025); analyzing learned circuit logic through abstract interpretation from
program analysis (Palumbo et al., 2025), proof theory (Miller et al., 2024; Wu et al., 2025), statistical
identification (Méloux et al., 2025), and complexity theory (Adolfi et al., 2024).

Neural network verification and formal explainability. Our certification of robustness guarantees
(input and patching) builds on the rapid progress of neural network verification (Brix et al., 2024;
Wang et al., 2021; Zhou et al., 2024a; Chiu et al., 2025; Müller et al., 2021; Singh et al., 2019). These
advances have also been applied to certifying provable guarantees for input-based explainability
notions (Wu et al., 2023a; Bassan et al., 2025; Izza et al., 2024; Audemard et al., 2022; La Malfa
et al., 2021) (often termed formal explainable AI (Marques-Silva & Ignatiev, 2022)). Verification
has also been applied to activation-pattern specifications (NAPs) (Geng et al., 2023), which encode
active/inactive neuron states and induce input regions beyond local perturbation balls. Recent
work (Geng et al., 2024) further aims to learn minimal NAPs by removing redundant neuron states
while preserving correctness. Our work is the first to employ neural network verification based
strategies for circuit discovery in mechanistic interpretability.

7 LIMITATIONS AND FUTURE WORK

A limitation of our framework, shared by all methods offering robustness guarantees over continuous
domains, is its reliance on neural network verification queries. While current verification techniques
remain limited for state-of-the-art models, they are advancing rapidly in scalability (Brix et al.,
2024; Wang et al., 2021; Zhou et al., 2024a). Our framework provides a novel integration of such
tools to mechanistic interpretability, enabling circuit discovery with provable guarantees. Hence, as
verification methods continue to scale, so will the reach of our approach, as our extensive experiments
are grounded in α-β-CROWN, the current leading verifier, and evaluated on standard benchmarks
from the annual NN verification competition. Moreover, our novel theoretical results, covering
guarantees over input domains, patching domains, and minimality, lay strong groundwork for future
research on provable circuit discovery, including probabilistic and statistical forms of guarantees.

8 CONCLUSION

We introduce a framework for discovering circuits with provable guarantees, covering both (i) con-
tinuous input-domain robustness, (ii) continuous patching-domain robustness, and (iii) multiple
forms of minimality. Central to our approach is the notion of circuit monotonicity, which reveals
deep theoretical connections between input, patching, and minimality guarantees, and underpins the
convergence of circuit discovery algorithms. Our experiments, which leverage recent advancements
in neural network verification, confirm that our framework delivers substantially stronger guarantees
than standard sampling-based approaches commonly used in circuit discovery. By bridging circuit
discovery with neural network verification, this work takes a novel step toward designing safer, more
reliable circuits, and lays new theoretical and algorithmic foundations for future research in provable
circuit discovery.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Federico Adolfi, Martina G Vilas, and Todd Wareham. The Computational Complexity of Circuit
Discovery for Inner Interpretability. In The Thirteenth International Conference on Learning
Representations (ICLR), 2024.

Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, and Pierre
Marquis. Trading Complexity for Sparsity in Random Forest Explanations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pp. 5461–5469, 2022.

Fahiem Bacchus and George Katsirelos. Using Minimal Correction Sets to More Efficiently Compute
Minimal Unsatisfiable Sets. In International Conference on Computer Aided Verification, pp.
70–86. Springer, 2015.

Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint arXiv:2109.00498,
2021.

Shahaf Bassan and Guy Katz. Towards formal xai: formally approximate minimal explanations of
neural networks. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pp. 187–207. Springer, 2023.

Shahaf Bassan, Yizhak Yisrael Elboher, Tobias Ladner, Matthias Althoff, and Guy Katz. Ex-
plaining, fast and slow: Abstraction and refinement of provable explanations. arXiv preprint
arXiv:2506.08505, 2025.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review. arXiv
preprint arXiv:2404.14082, 2024.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits
with edge pruning. Advances in Neural Information Processing Systems, 37:18506–18534, 2024.

Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T Johnson, and Changliu Liu. First three
years of the international verification of neural networks competition (vnn-comp). International
Journal on Software Tools for Technology Transfer, 25(3):329–339, 2023.

Christopher Brix, Stanley Bak, Taylor T Johnson, and Haoze Wu. The fifth international verifi-
cation of neural networks competition (vnn-comp 2024): Summary and results. arXiv preprint
arXiv:2412.19985, 2024.

Hong-Ming Chiu, Hao Chen, Huan Zhang, and Richard Y Zhang. SDP-CROWN: Efficient Bound
Propagation for Neural Network Verification with Tightness of Semidefinite Programming. In
Forty-second International Conference on Machine Learning (ICML), 2025.

Pratim Chowdhary, Peter Chin, and Deepernab Chakrabarty. k-mshc: Unmasking minimally sufficient
head circuits in large language models with experiments on syntactic classification tasks, 2025.
URL https://arxiv.org/abs/2505.12268.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
circuits. Advances in Neural Information Processing Systems, 37:24375–24410, 2024.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Interna-
tional symposium on automated technology for verification and analysis, pp. 269–286. Springer,
2017.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12, 2021.

11

https://arxiv.org/abs/2505.12268

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In International Conference on Learning
Representations (ICLR), 2022.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin
Vechev. Ai2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation.
In 2018 IEEE symposium on security and privacy (SP), pp. 3–18. IEEE, 2018.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Finding
alignments between interpretable causal variables and distributed neural representations. In Causal
Learning and Reasoning, pp. 160–187. PMLR, 2024.

Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang,
Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, et al. Causal abstraction: A
theoretical foundation for mechanistic interpretability. Journal of Machine Learning Research, 26
(83):1–64, 2025.

Chuqin Geng, Nham Le, Xiaojie Xu, Zhaoyue Wang, Arie Gurfinkel, and Xujie Si. Towards reliable
neural specifications. In International Conference on Machine Learning, pp. 11196–11212. PMLR,
2023.

Chuqin Geng, Zhaoyue Wang, Haolin Ye, and Xujie Si. Learning minimal neural specifications.
arXiv preprint arXiv:2404.04662, 2024.

Tal Haklay, Hadas Orgad, David Bau, Aaron Mueller, and Yonatan Belinkov. Position-aware
automatic circuit discovery. arXiv preprint arXiv:2502.04577, 2025.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have Faith in Faithfulness: Going Beyond
Circuit Overlap When Finding Model Mechanisms. In First Conference on Language Modeling
(COLM), 2024.

Aliyah R Hsu, Georgia Zhou, Yeshwanth Cherapanamjeri, Yaxuan Huang, Anobel Odisho, Peter R
Carroll, and Bin Yu. Efficient Automated Circuit Discovery in Transformers using Contextual
Decomposition. In The Thirteenth International Conference on Learning Representations (ICLR),
2024.

Alexey Ignatiev, António Morgado, and Joao Marques-Silva. RC2: An Efficient MaxSAT Solver.
Journal on Satisfiability, Boolean Modelling and Computation, 11(1):53–64, 2019a.

Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On Relating Explanations and Adversar-
ial Examples. Advances in neural information processing systems, 32, 2019b.

Yacine Izza, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-
Silva. Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation.
In 21st International Conference on Principles of Knowledge Representation and Reasoning, KR
2024, pp. 475–486, 2024.

Farnoush Rezaei Jafari, Oliver Eberle, Ashkan Khakzar, and Neel Nanda. RelP: Faithful and Efficient
Circuit Discovery via Relevance Patching. arXiv preprint arXiv:2508.21258, 2025.

Kyle D Julian, Ritchie Lee, and Mykel J Kochenderfer. Validation of image-based neural network
controllers through adaptive stress testing. In 2020 IEEE 23rd international conference on
intelligent transportation systems (ITSC), pp. 1–7. IEEE, 2020.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I
30, pp. 97–117. Springer, 2017.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The marabou framework for
verification and analysis of deep neural networks. In International conference on computer aided
verification, pp. 443–452. Springer, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Suhas Kotha, Christopher Brix, J Zico Kolter, Krishnamurthy Dvijotham, and Huan Zhang. Provably
Bounding Neural Network Preimages. Advances in Neural Information Processing Systems
(Neurips), 36:80270–80290, 2023.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf.

Emanuele La Malfa, Agnieszka Zbrzezny, Rhiannon Michelmore, Nicola Paoletti, and Marta
Kwiatkowska. On Guaranteed Optimal Robust Explanations for NLP Models. In Proc. Int.
Joint Conf. on Artificial Intelligence (IJCAI), pp. 2658–2665, 2021.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Mark H Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. Fast, flexible mus
enumeration. Constraints, 21(2):223–250, 2016.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. In The
Thirteenth International Conference on Learning Representations (ICLR), 2024.

Joao Marques-Silva and Alexey Ignatiev. Delivering Trustworthy AI through Formal XAI. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 12342–12350, 2022.

Maxime Méloux, Silviu Maniu, François Portet, and Maxime Peyrard. Everything, everywhere, all at
once: Is mechanistic interpretability identifiable? arXiv preprint arXiv:2502.20914, 2025.

Joseph Miller, Bilal Chughtai, and William Saunders. Transformer circuit evaluation metrics are not
robust. In First Conference on Language Modeling, 2024.

Aaron Mueller, Atticus Geiger, Sarah Wiegreffe, Dana Arad, Iván Arcuschin, Adam Belfki, Yik Siu
Chan, Jaden Fried Fiotto-Kaufman, Tal Haklay, Michael Hanna, et al. Mib: A mechanistic
interpretability benchmark. In Forty-second International Conference on Machine Learning.

Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, and Martin Vechev. Scaling
Polyhedral Neural Network Verification on GPUs. Proceedings of Machine Learning and Systems,
3:733–746, 2021.

Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. The third
international verification of neural networks competition (vnn-comp 2022): Summary and results.
arXiv preprint arXiv:2212.10376, 2022a.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Prima: general and precise neural network certification via scalable convex hull approximations.
Proceedings of the ACM on Programming Languages, 6(POPL):1–33, 2022b.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations (ICLR), 2023.

Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable bases. Trans-
former Circuits blog, June 2022. URL https://www.transformer-circuits.pub/
2022/mech-interp-essay. Informal essay.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Nils Palumbo, Ravi Mangal, Zifan Wang, Saranya Vijayakumar, Corina S. Pasareanu, and Somesh
Jha. Validating mechanistic interpretations: An axiomatic approach. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
qBtomgvLwn.

13

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://openreview.net/forum?id=qBtomgvLwn
https://openreview.net/forum?id=qBtomgvLwn

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Achyuta Rajaram, Neil Chowdhury, Antonio Torralba, Jacob Andreas, and Sarah Schwettmann.
Automatic discovery of visual circuits. arXiv preprint arXiv:2404.14349, 2024.

Tilman Räuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward transparent ai: A
survey on interpreting the inner structures of deep neural networks. In 2023 ieee conference on
secure and trustworthy machine learning (satml), pp. 464–483. IEEE, 2023.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems in
mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

Claudia Shi, Nicolas Beltran Velez, Achille Nazaret, Carolina Zheng, Adrià Garriga-Alonso, Andrew
Jesson, Maggie Makar, and David Blei. Hypothesis testing the circuit hypothesis in llms. Advances
in Neural Information Processing Systems, 37:94539–94567, 2024.

Zhouxing Shi, Qirui Jin, Zico Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Neural network
verification with branch-and-bound for general nonlinearities. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pp. 315–335. Springer, 2025.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An Abstract Domain for
Certifying Neural Networks. Proceedings of the ACM on Programming Languages, 3(POPL):
1–30, 2019.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: A multi-class classification competition. In The 2011 International Joint
Conference on Neural Networks, pp. 1453–1460, 2011. doi: 10.1109/IJCNN.2011.6033395.

Jiuding Sun, Jing Huang, Sidharth Baskaran, Karel D’Oosterlinck, Christopher Potts, Michael
Sklar, and Atticus Geiger. HyperDAS: Towards Automating Mechanistic Interpretability with
Hypernetworks. In The Thirteenth International Conference on Learning Representations, 2025.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery. In Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural
Networks for NLP, pp. 407–416, 2024.

Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In International Conference on Learning Representations (ICLR), 2017.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for neural network robustness
verification. Advances in neural information processing systems, 34:29909–29921, 2021.

Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, et al. Marabou 2.0: a versatile formal analyzer
of neural networks. In International Conference on Computer Aided Verification, pp. 249–264.
Springer, 2024.

Min Wu, Haoze Wu, and Clark Barrett. Verix: towards verified explainability of deep neural networks.
Advances in neural information processing systems, 36:22247–22268, 2023a.

Wilson Wu, Louis Jaburi, Jason Gross, et al. Towards a unified and verified understanding of group-
operation networks. In The Thirteenth International Conference on Learning Representations,
2025.

14

https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. Interpretability
at Scale: Identifying Causal Mechanisms in Alpaca. Advances in neural information processing
systems, 36:78205–78226, 2023b.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun Chen.
Knowledge Circuits in Pretrained Transformers. Advances in Neural Information Processing
Systems (NeurIPS), 37:118571–118602, 2024.

Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=Hf17y6u9BC.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient Neural Net-
work Robustness Certification with General Activation Functions. Advances in Neural Information
Processing Systems (NeurIPS), 31, 2018.

Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability.
IEEE Transactions on Emerging Topics in Computational Intelligence, 5(5):726–742, 2021.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang,
Dawei Yin, and Mengnan Du. Explainability for large language models: A survey. ACM
Transactions on Intelligent Systems and Technology, 15(2):1–38, 2024.

Duo Zhou, Christopher Brix, Grani A Hanasusanto, and Huan Zhang. Scalable neural network
verification with branch-and-bound inferred cutting planes. Advances in Neural Information
Processing Systems, 37:29324–29353, 2024a.

Duo Zhou, Christopher Brix, Grani A Hanasusanto, and Huan Zhang. Scalable Neural Network Veri-
fication with Branch-and-bound Inferred Cutting Planes. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems (Neurips), 2024b.

Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei Huang, Kun Wang, Yang Liu,
Junfeng Fang, and Yongbin Li. On the role of attention heads in large language model safety. arXiv
preprint arXiv:2410.13708, 2024c.

15

https://openreview.net/forum?id=Hf17y6u9BC

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix
The appendix collects proofs, model specifications, and supplementary experimental results that
support the main paper.

Appendix A contains additional background on neural network verification, circuit discovery, and
patching.
Appendix B contains the complete proofs of all propositions.
Appendix C provides the pseudocode for the greedy quasi-minimality algorithm, together with a
more detailed explanation of the toy example illustrating the minimality notion.
Appendix D provides specifications of the datasets and architectures used.
Appendix E provides additional details on the input-robustness experiment’s methodology, verifica-
tion setup, and evaluation.
Appendix F provides additional details on the patching-robustness experiment’s methodology,
verification setup, and evaluation.
Appendix G provides details on the minimality evaluation experiment’s methodology, verification
setup, and evaluation.
Appendix H provides the LLM usage discolsure.

A ADDITIONAL BACKGROUND ON NEURAL NETWORK VERIFICATION AND
CIRCUIT DISCOVERY

Neural Network Verification. Neural network verification provides formal guarantees about
the behavior of a neural network fG over a continuous input region. Classic SMT/MILP-based
approaches (Katz et al., 2017; Wu et al., 2024; Katz et al., 2019; Tjeng et al., 2017; Ehlers, 2017)
encode ReLU networks and specifications as logical or mixed-integer constraints and offer exact
guarantees, but scale only to small–medium models. Abstract-interpretation methods (Singh et al.,
2019; Gehr et al., 2018; Ferrari et al., 2022; Müller et al., 2022b) propagate over-approximations
layer by layer, giving fast but incomplete robustness certificates. A major advance came from linear-
relaxation–based bound propagation, notably CROWN (Zhang et al., 2018) and follow-ups (Wang
et al., 2021; Chiu et al., 2025; Zhou et al., 2024b; Shi et al., 2025), which compute tight dual-based
linear bounds and serve either as scalable incomplete verifiers or as strong relaxations inside exact
search. Modern branch-and-bound (BaB) frameworks leverage these relaxations to achieve complete
verification at scale, with α-β-CROWN and related variants now dominating VNN-COMP (Brix
et al., 2024) and handling million-parameter models. Recent progress includes tighter relaxations
(e.g., SDP hybrids (Chiu et al., 2025)), cutting planes (Zhou et al., 2024b), and support for non-ReLU
nonlinearities (Shi et al., 2025). Verification today routinely certifies robustness for moderately large
CNNs and ResNets, though major challenges remain for transformers, complex architectures, and
richer temporal or relational specifications.

Circuit discovery and patching. An important step in circuit discovery is patching, which seeks to
isolate the computational role of a hypothesized circuit by intervening on the activations outside it. In
a typical setup, the model is run on a base input, and activations at selected non-circuit nodes are
replaced — either with fixed baseline values (e.g., zero or mean activation) or with activations taken
from a counterfactual input. If the model’s output remains unchanged, the circuit is understood to
be sufficient for the behavior; if it changes, this reveals a dependency on the patched components.
Numerous patching protocols have been proposed, including activation replacement, path patching,
and attention/head interventions (Jafari et al., 2025; Syed et al., 2024; Haklay et al., 2025; Miller
et al., 2024; Zhang & Nanda, 2024; Nanda et al., 2023), all aiming to identify model components
whose behavior is necessary or sufficient for a target computation. To the best of our knowledge,
our method is the first to provably certify the stability of circuits under families of such patching
interventions.

B PROOFS OF MAIN RESULTS

This appendix presents the proofs of the main propositions stated in the main paper.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.1 PROOF OF PROPOSITION 1

Proposition 1. Given any model fG, and faithfulness predicate Φ, running Algorithm 1 converges to
a locally-minimal circuit C concerning Φ.

Proof. We need to establish two points: (i) The final circuit C returned by Algorithm 1 is faithful,
i.e., Φ(C,G) holds. (ii) No component i ∈ C can be removed without breaking faithfulness; in other
words, for every i in C, Φ(C \ {i}, G) is false.

In the first part of the proof, the algorithm starts with C ← G. Since the full model graph G is faithful
to itself, Φ(G,G) holds. At each step, the algorithm checks Φ(C \ {i}, G) for the current component
i and updates C ← C \ {i} only if this predicate remains true. Hence, the invariant is preserved
throughout, and the final circuit C still satisfies Φ(C,G).

For the second part of the proof, note that the algorithm processes each component i ∈ G exactly
once. If for some remaining i ∈ C the predicate Φ(C \ {i}, G) were true, then i would have been
removed when it was considered. Therefore, the fact that i remains in C means that Φ(C \ {i}, G) is
false, establishing that C is locally minimal with respect to Φ. This completes the proof.

B.2 PROOF OF PROPOSITION 2

Proposition 2. While Algorithm 3 converges to a quasi-minimal circuit and performs O(log |G|)
evaluations of Φ(C,G) (Adolfi et al., 2024), Algorithm 1 converges to a locally-minimal circuit and
performs O(|G|) evaluations of Φ(C,G).

Proof. For the local minimality part of the proof, observe that Algorithm 1 processes each component
ofG individually. By Proposition 1, it converges to a locally minimal circuit. Since it tests Φ upon the
removal of every one of the |G| components, the procedure carries out O(|G|) predicate evaluations
in total.

The quasi-minimality algorithm 3 and its runtime were established in Adolfi et al. (2024). For
completeness, we restate the argument regarding the number of evaluations: the algorithm halves
the candidate index range at each step, requiring at most ⌈log |G|⌉ predicate evaluations before
termination. Thus, its complexity is O(log |G|).

B.3 PROOF OF PROPOSITION 3

Proposition 3. There exist infinitely-many number of configurations of fG, and Φ, for which Algo-
rithm 1 and Algorithm 3 do not converge to a subset-minimal circuit C concerning Φ.

Proof. Consider a small nonlinear counterexample network fG : R→ R, with underlying structure
G and node set VG := {v1, v2, v3, v4}. The network is defined over a one-dimensional input x, with
three hidden nodes v1, v2, v3 and an output node v4.

Consider a one–dimensional input x, three hidden units v1, v2, v3, and an output neuron v4:

v1(x) := ReLU(x), v2(x) := ReLU(x), v3(x) := x, v4(u, v, w) := u− v +w (3)

Therefore, the following holds:

fG(x) := v4
(
v1(x), v2(x), v3(x)

)
= v1(x)− v2(x) + v3(x) = x for all x ∈ [−1, 1] (4)

For any subset C ⊆ {v1, v2, v3}, define fC by applying zero–patching to all hidden units outside C.
We take the faithfulness predicate to be strong equality, i.e., corresponding to δ = 0 and ϵp given by
the ℓ∞ norm over the domain [0, 1]. In particular:

Φ(C,G) ⇐⇒ ∀x ∈ [0, 1], fC(x) = fG(x) (5)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Iterative (Algorithm 1). No single removal preserves Φ. Removing any one hidden unit breaks
equality:

fG\{v1}(x) = −ReLU(x) + x ̸= x for x > 0,

fG\{v2}(x) = ReLU(x) + x ̸= x for x > 0,

fG\{v3}(x) = ReLU(x)− ReLU(x) = 0 ̸= x for x ̸= 0.

(6)

Hence, Algorithm 1 halts at C = G (locally minimal). Yet a strict subset is faithful: removing the
pair {v1, v2} yields fG\{v1,v2}(x) = v3(x) = x, so Φ(G \ {v1, v2}, G) holds. Therefore, G is not
subset–minimal.

Quasi (Algorithm 3). With a valid order (v1, v3, v2), Algorithm 3 first tests the prefix removal
{v1, v3}, leaving fG(x) = −ReLU(x) ̸= x, then tests {v1}, leaving fG(x) = −ReLU(x) + x ̸= x;
it never considers the pair {v1, v2} and so returns C = G, which is not subset–minimal by the
previous paragraph.

Since this holds for every m ∈ N, we obtain infinitely many configurations where both algorithms
fail to return a subset–minimal circuit.

Infinite family. For any m ≥ 1, add pairs (pi, qi) with pi(x) = qi(x) = ReLU(x) and set

gv(x) = v3(x) +

m∑

i=1

(
pi(x)− qi(x)

)
.

Then fG(x) = x on [0, 1], any single removal (of v3, some pj , or some qj) breaks equality, but
removing a whole pair {pj , qj} preserves it. Greedy and (with order p1, . . . , pm, v3, q1, . . . , qm)
QMSC both return G. Thus there are infinitely many such configurations.

B.4 PROOF OF PROPOSITION 4

Proposition 4. If Φ is monotonic, then for any model fG, Algorithm 1 converges to a subset-minimal
circuit C concerning Φ.

Proof. By definition, establishing subset-minimality of the circuit C requires showing: (i) that C is
faithful, i.e., Φ(C,G) holds, and (ii) that no proper subgraph C ′ ⊆ C also satisfies Φ(C ′, G).

For the first part of the proof, in a similar fashion to the faithfulness preservation argument of the
predicate Φ that was mentioned in the proof of Proposition 1, we describe the following logic chain:
the algorithm starts from C0 := G and iterates over the components in G in some given ordering (e.g.
reverse topological order). This “maintains” at each step a circuit Ct, for which at the first initial
step, by definition Φ(G,G) holds true (the full model is faithful to itself). At every iteration t, the
algorithm updates Ct+1 := Ct \ {t} only when G,Ct \ {c}) is true. Hence, the invariant Φ(G,Ct)
is preserved throughout, and particularly, at the termination of the loop invariant, we have that for the
final returned circuit C, then Φ(C,G) still holds.

For the second part of the proof, assume towards contradiction that there exists some C ′ ⊊ C for
which it holds that Φ(C ′, G) is true. Now, pick any c⋆ ∈ C \ C ′. Let Ct be the circuit at iteration t
where this iteration marks the step over which the algorithm has evaluated whether to add c⋆ to the
circuit. Because c⋆ is present in the final returned circuit C, then by induction it was not removed at
any step t when considered, and hence it must hold that Φ(Ct \ {c⋆}, G) is false. On the other hand,
we have the following inclusions:

C ′ ⊆ C \ {c⋆} ⊆ Ct \ {c⋆}. (7)

And so by the very definition of the monotonicity of C with respect to Φ, we obtain that:

Φ(C ′, G) =⇒ Φ(Ct \ {c⋆}, G) (8)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This contradicts the fact that we have derived that Φ(Ct \ {c⋆}, G) must be false from the algorithm’s
progression. Hence, we have obtained that for any subset C ′ ⊊ C it holds that Φ(C ′, G) is false, and
hence C is subset-minimal with respect to Φ.

B.5 PROOF OF PROPOSITION 5

Proposition 5. Let Φ(C,G) denote validating whether C is input-robust concerning ⟨fG,Z⟩ (Def. 1),
and simultaneously patching-robust concerning ⟨fG,Z ′⟩ (Def. 2). Then if Z ⊆ Z ′, andHG(Z ′) is
closed under concatantion, Φ is monotonic.

Proof. We begin by formally stating the condition of an activation space being closed under concate-
nation:
Definition 1. We say that an activation space HG(Z) of some model fG and domain Z ⊆ Rn

is closed under concatination iff for any two partial activations α, α′, where α ∈ HC(Z) is an
activation over the circuit C ⊆ G, and α′ ∈ HC′(Z) is an activation over the circuit C ′ ⊆ G, then
it holds that α ∪ α′ ∈ HC∪C′(Z).

Now, let there be some C ⊆ C ′ ⊆ G, for which C ′ := C ⊔ {c′1, . . . , c′t}. We assume that the
predicate Φ is defined as validating whether some circuit C is input-robust concerning ⟨fG,Z⟩, and
also patching-robust with respect to ⟨fG,Z ′⟩. In other words, this implies that Φ(C,G) holds if and
only if:

∀z ∈ Z :=

k⋃

j=1

Bpϵp(xj), ∀α ∈ HC(Z ′) :
∥∥ fC(z | C = α)− fG(z)

∥∥
p
≤ δ (9)

We note that the following notation is equivalent to the following:

max
z∈Z,α∈HC(Z′)

∥∥ fC(z | C = α)− fG(z)
∥∥
p
≤ δ ⇐⇒

max
z∈Z,z′∈Z′

∥∥ fC(z | C = HC(z
′))− fG(z)

∥∥
p
≤ δ

(10)

where we use the notationHC(z
′) to denote the specific activation over C when computing fG(z′)

for some z′ ∈ Rn.

Since our goal is to prove that Φ is monotonic, it suffices to show that C ′ also satisfies the above
conditions. An equivalent formulation is to verify the condition for any C ′ := C ⊔ {c′i}, i.e., for
supersets that differ from C by a single element rather than an arbitrary subset. This is valid because
adding subsets inductively, one element at a time, is equivalent to adding the entire subset at once.
We therefore proceed under this formulation and assume, for contradiction, that the conditions fail to
hold for C ′. In other words, we assume the following:

∃z ∈ Z, ∃α ∈ HC′(Z ′) :
∥∥ fC′(z | C ′ = α)− fG(z)

∥∥
p
> δ ⇐⇒

max
z∈Z,α∈H

C′ (Z′)

∥∥ fC′(z | C ′ = α)− fG(z)
∥∥
p
> δ ⇐⇒

max
z∈Z,z′∈Z′

∥∥ fC′(z | C ′ = HC′(z′))− fG(z)
∥∥
p
> δ

(11)

This is also equivalent to stating that:

max
z∈Z,z′∈Z′

∥∥∥ fC⊔{c′i}(z | C ⊔ {c′i} = HC⊔{c′i}
(z′))− fG(z)

∥∥∥
p
> δ (12)

Let us denote by S ⊆ R the set of all values that are feasible to obtain by fC(z | C = HC(z
′)) and

by S ⊆ R all values that are feasible by fC(z | C ′ = HC′(z′)). More precisely:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

S := {fC(z |C = HC(z
′)) : z ∈ Z, z′ ∈ Z ′}, ∧ S′ := {fC′(z |C ′ = HC′(z′)) : z ∈ Z, z′ ∈ Z ′}

(13)

For finalizing the proof of the proposition, we will make use of the following Lemma:
Lemma 1. Given the predefined fG, the circuits C ⊆ C ′ ⊆ G, and the aforementioned notations of
S and S′, then it holds that S′ ⊆ S.

Proof. We first note that by definition:

S′ := {fC′(z | C ′ = HC′(z′)) : z ∈ Z, z′ ∈ Z ′} =
{fC⊔{c′i}(z | C ⊔ {c′i} = HC⊔{c′i}

(z′)) : z ∈ Z, z′ ∈ Z ′} (14)

We also note that for any z ∈ Rn it holds, by definition, that:

fC(z | C = HC(z
′)) = f∅(z | C = HC(z

′), C = HC(z)) (15)

The notation f∅(z | C = HC(z
′), C = HC(z)) simply means that we fix the activations of C to

HC(z) and those of C toHC(z
′). From the same manipulation of notation, we can get that:

fC⊔{c′i}(z | C ⊔ {c′i} = HC⊔{c′i}
(z′)) =

f∅(z | C ⊔ {c′i} = HC⊔{c′i}
(z′), C ⊔ {i} = HC⊔{c′i}(z)) =

f∅(z | C ⊔ {c′i} = HC⊔{c′i}
(z′), C = HC(z), {c′i} = Hc′i

(z)) =

f∅(z | C \ {c′i} = HC\{c′i}(z
′), C = HC(z), {c′i} = Hc′i

(z))

(16)

To prove that S′ ⊆ S, let us take some z0, z′0 ∈ Z . We will now prove that for any such choice of
z0, z′0 then the following holds:

fC′(z0 | C ′ = HC′(z′0)) ⊆ S (17)

Since z′0 ∈ Z ′, z0 ∈ Z ⊆ Z ′, and HG(Z ′) is closed under concatination, then by definition it
holds that fixing the activations of C \ {c′i} to HC\{c′i}(z

′
0) ∈ HC\{c′i}(Z

′) and those of {c′i} to
H{c′i}(z0) ∈ H{c′i}(Z ′) yields an activation α ∈ HC\{c′i}∪{c′i}(Z

′) = HC(Z ′).

Hence, we arrive at:

fC′(z0 | C ′ = HC′(z′0)) =

fC⊔{c′i}(z0 | C ⊔ {c′i} = HC⊔{c′i}
(z′0)) =

f∅(z0 | C \ {c′i} = HC\{c′i}(z
′
0), C = HC(z0), {c′i} = Hc′i

(z0)) =

f∅(z0 | C = α,C = HC(z0))

(18)

Since we have shown that α ∈ HC(Z ′) and sinceHC(z0) ∈ HC(Z) then we have that:

fC′(z0 | C ′ = HC′(z′0)) =
f∅(z0 | C = α,C = HC(z0)) ∈

{fC(z | C = HC(z
′)) : z ∈ Z, z′ ∈ Z ′} = S

(19)

This establishes that S′ ⊆ S, and hence concludes the proof of the lemma.

Now to finalize the proof of the proposition, we recall that we have shown that the following holds
(and can now rewrite this expression given our new definition of S):

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

max
z∈Z,z′∈Z′

∥∥ fC(z | C = HC(z
′))− fG(z)

∥∥
p
≤ δ ⇐⇒

max
z∈Z,y∈S

∥ y − fG(z) ∥p ≤ δ
(20)

We have also assumed towards contradiction that the following holds, and we can similarly further
rewrite this term given our new definition of S′:

max
z∈Z,z′∈Z′

∥∥ fC′(z | C ′ = HC′(z′))− fG(z)
∥∥
p
> δ ⇐⇒

max
z∈Z,y∈S′

∥ y − fG(z) ∥p > δ
(21)

However, since we have proven in Lemma 1 that S′ ⊆ S then we know that:

max
z∈Z,y∈S

∥ y − fG(z) ∥p ≥ max
z∈Z,y∈S′

∥ y − fG(z) ∥p (22)

which stands in contradiction to euqations 20 and 21, hence implying the monotonicity of Φ, and
concluding the proof of the proposition.

B.6 PROOF OF PROPOSITION 6

Proposition 6. If the condition Φ(C,G) is set to validating whether C is input-robust concerning
⟨fG,Z⟩ (Def. 1), and also patching-robust with respect to ⟨fG,Z ′⟩ (Def. 2), then if Z ⊆ Z ′ and
HG(Z ′) is closed under concatantion, Algorithm 1 converges to a subset-minimal circuit.

Proof. The claim follows directly from Propositions 4 and 5. SinceZ ⊆ Z ′, Proposition 5 implies that
Φ(C,G) is monotonic. By Proposition 4, it follows that Algorithm 1 converges to a subset-minimal
circuit C with respect to Φ.

B.7 PROOF OF PROPOSITION 7

Proposition 7. Given some model fG, and a monotonic predicate Φ, the MHS of all circuit blocking-
sets concerning Φ is a cardinally minimal circuit C for which Φ(C,G) is true. Moreover, the MHS of
all circuits C ⊆ G for which Φ(C,G) is true, is a cardinally minimal blocking-set w.r.t Φ.

Proof. Prior to the proof of Proposition 7, which establishes the connection between Minimum Hitting
Sets (MHS) and cardinal minimality, we first recall the definition of MHS:
Definition 2 (Minimum Hitting Set (MHS)). Given a collection S of sets over a universe U , a hitting
set H ⊆ U for S is a set such that

∀S ∈ S, H ∩ S ̸= ∅.
A hitting set H is called minimal if no subset of H is a hitting set, and minimum if it has the smallest
possible cardinality among all hitting sets.

We now move to prove that the MHS of blocking-sets is a cardinally minimal faithful circuit. Let C
be a minimum hitting set (MHS) of the set of blocking-sets B. Assume towards contradiction that
¬Φ(C,G). Set B⋆ := G \C. Then Φ(G \B⋆, G) = Φ(C,G) is false, so B⋆ ∈ B. Yet by definition
C ∩B⋆ = ∅, contradicting that C hits every set in B. Hence Φ(C,G) holds.

We now move forward to prove minimality. Assume there exists C ′ ⊆ G with Φ(C ′, G) and
|C ′| < |C|. We claim C ′ is also a hitting set of B, contradicting the minimality of C as an MHS.
Indeed, if some B ∈ B satisfied C ′ ∩B = ∅, then C ′ ⊆ G \B, and by monotonicity of Φ we would
have Φ(G \B,G), contradicting B ∈ B. Hence C ′ hits all of B, contradicting that C is an MHS.

For the second part of the proof, let C := {C ⊆ G : Φ(C,G) } and let B be a minimum hitting set
of C. Assume towards contradiction that it is not, namely Φ(G \B,G) holds. Then C⋆ := G \B is

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

a faithful circuit, implying C⋆ ∈ C. Yet by definition C⋆ ∩B = ∅, contradicting that B hits every set
in C.

Finally, assume towards contradiction that there exists a blocking-set B′ with |B′| ≤ |B|. Let C ∈ C.
If C ∩ B′ = ∅, then C ⊆ G \ B′, and by monotonicity of Φ, we obtain that Φ(G \ B′, G) holds,
contradicting B′ being a blocking-set. Hence, C ∩ B′ ̸= ∅, so B′ is a hitting set of C. But since
|B′| ≤ |B|, this contradicts the minimality of B as an MHS. Therefore, B is cardinally minimal
among blocking-sets.

B.8 PROOF OF PROPOSITION 8

Proposition 8. Given a model fG, and a monotonic predicate Φ, Algorithm 2 computes a subset C
whose size is a lower bound to the cardinally minimal circuit for which Φ(C,G) is true. For a large
enough tmax value, the algorithm converges exactly to the cardinally minimal circuit.

Proof. We begin with the proof for the part on the lower bound to cardinally minimal circuit size. Let
C be the output of Algorithm 2 for some tmax. By definition, C is the MHS of the set of blocking-sets
accumulated by the algorithm, denoted Btmax .

Assume towards contradiction that |C| is not a lower bound for the size of a cardinally minimal
circuit. This would imply the existence of a faithful circuit C ′ with Φ(C ′, G) and |C ′| ≤ |C|. From
the minimality of C as a hitting set, it follows that C ′ is not a hitting set. Hence, there exists some
B ∈ Btmax such that C ′ ∩ B = ∅. This implies C ′ ⊆ G \ B, and by monotonicity of Φ we obtain
Φ(G \B,G), contradicting B being a blocking-set.

We now continue to the second part of the proof regarding the convergence to cardinally minimal for
large enough tmax. For tmax = |G|, the algorithm iterates over all possible blocking-sets. Hence, the
resulting output C is the MHS of all circuit blocking-sets, and by Proposition 7 we conclude that C
is a cardinally minimal circuit.

C MINIMALITY GUARANTEES: ALGORITHMS AND ILLUSTRATIONS

C.1 GREEDY CIRCUIT DISCOVERY BINARY SEARCH FOR QUASI-MINIMAL CIRCUITS

We formalize the binary search procedure introduced in (Adolfi et al., 2024) in Algorithm 3.

Algorithm 3 Greedy Circuit Discovery Binary Search

1: Input: Model fG, circuit faithfulness predicate Φ with Φ(G,G) ∧ ¬Φ(∅, G)
2: C ← G, low← 0, high← |G|
3: while high− low > 1 do
4: mid← ⌊(low + high)/2⌋
5: Cmid ← G \G[1 : mid]
6: if Φ(Cmid, G) then
7: low← mid; C ← Cmid
8: else
9: high← mid

10: end if
11: end while
12: return C

C.2 TOY EXAMPLE: MINIMALITY NOTIONS

To illustrate the distinctions between the four minimality notions introduced in Definitions 3,4,5,6
(Section 4), we construct a simple Boolean toy network.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

For simplicity, we illustrate the different minimality notions using a Boolean circuit with XOR gates.
While this abstraction makes the example easier to follow, it is without loss of generality, since
Boolean gates can be equivalently expressed with ReLU activations.

(Specifically, the XOR gate satisfies

x1 ⊕ x2 = ReLU(x1 − x2) + ReLU(x2 − x1),
as for x1, x2 ∈ {0, 1} both terms vanish when x1 = x2, and exactly one equals 1 when x1 ̸= x2).

We emphasize that this encoding is not part of the computation graph, which can be defined indepen-
dently. Accordingly, our toy boolean circuit (Fig. 6) can be viewed as a small feed-forward ReLU
network. Despite its small size, this network cleanly separates the notions of cardinal, subset, local,
and quasi-minimal circuits.

v1 = x2

v2 = x1

v3 = x1

v4 = x1 ⊕ x2

v5 = x1 ⊕ x2

v6 = x2 ⊕ x2 (= 0)

x1

x2

⊕ y

Figure 6: Boolean toy network with XOR aggregation: y = v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5. With v1 = x2,
v2 = v3 = x1, v4 = v5 = x1⊕x2, and v6 = x2⊕x2 = 0 the full model computes fG(x1, x2) = x2.

Explanation. For clarity and simplicity, we define a Boolean network G which takes inputs in
(x1, x2) ∈ {0, 1}2. The network G is composed of six components, whose vertex set is denoted
VG = {v1, v2, v3, v4, v5, v6}, aggregated by XOR (Fig. 6):

y = v1⊕v2⊕v3⊕v4⊕v5⊕v6, with v1 = x2, v2 = v3 = x1, v4 = v5 = x1⊕x2, v6 = x2⊕x2

The full network computes fG(x1, x2) = x2, since

fG(x1, x2) = x2 ⊕ x1 ⊕ x1 ⊕ (x1⊕x2)⊕ (x1⊕x2)⊕ (x2⊕x2)
= x2 ⊕ (x1⊕x1)︸ ︷︷ ︸

=0

⊕ [(x1⊕x2)⊕ (x1⊕x2)]︸ ︷︷ ︸
=0

⊕ (x2⊕x2)︸ ︷︷ ︸
=0

= x2.

We pick the faithfulness predicate to be

Φ(C,G) := fC(x1, x2) = fG(x1, x2) = x2 ∀(x1, x2),
i.e., C is faithful if it computes the same output as G on all inputs.

This single construction cleanly separates the four minimality notions:

For each circuit C, we verify that it satisfies fC(x1, x2) = x2 and state why it meets (or fails) the
corresponding minimality condition.

• Cardinal-minimal: Ccard = {v1}. It computes fCcard
= v1 = x2 = fG. No circuit with

fewer components can be faithful.
• Subset-minimal: Csub = {v2, v4}. The computation is

v2 ⊕ v4 = x1 ⊕ (x1 ⊕ x2) = x2.

Removing any component breaks correctness: {v2} = x1 ̸= x2 and {v4} = x1 ⊕ x2 ̸= x2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Local-minimal: Cloc = {v1, v2, v3}. It computes

v1 ⊕ v2 ⊕ v3 = x2 ⊕ x1 ⊕ x1 = x2.

Removing any single component breaks correctness: {v1, v2} = x2 ⊕ x1 ̸= x2, {v1, v3} =
x2 ⊕ x1 ̸= x2, {v2, v3} = x1 ⊕ x1 = 0 ̸= x2. However, removing two components may
still leave a correct singleton (e.g. {v1}), so it is not subset-minimal.

• Quasi-minimal: Cquasi = {v1, v2, v3, v4, v5}. It computes

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 = x2.

The circuit contains a single essential component (v1), while the remaining ones can be
removed in various combinations without changing the output (e.g., v2 ⊕ v3 = 0 and
v4 ⊕ v5 = 0). Hence it is faithful but not minimal under any stricter notion.

D BENCHMARKS, MODELS AND ARCHITECTURAL SPECIFICATIONS

We evaluate our methods on four standard benchmarks in neural network verification: three classifi-
cation benchmarks (CIFAR-10 (Krizhevsky & Hinton, 2009), GTSRB (Stallkamp et al., 2011), and
MNIST (Lecun et al., 1998)) and one regression benchmark, TaxiNet (Julian et al., 2020).

For each benchmark, we perform circuit discovery at the natural level of granularity for the model:
convolutional filters (or channels) in CNNs and neurons in the fully connected network. The number
of components at each granularity is summarized in Table 3.

Table 3: Granularity and number of components considered for circuit discovery across the benchmark
models.

Dataset Model Examined Granularity # Components

MNIST FC Neurons 31
GTSRB CNN Filters 48
CIFAR-10 ResNet Filters 72
TaxiNet CNN Filters 8

Data Selection. For the input and patching robustness experiments (Appendices E, F), we con-
structed at least 100 batches per benchmark, sampled from the test set using only correctly predicted
inputs (or low-error inputs in the regression case). In classification tasks, each batch contained k = 3
samples from a single class, evenly distributed across classes. In the regression task, batches of
k = 3 were drawn from inputs with absolute error below 0.2, excluding large deviations relative to
the model’s performance. Specifically, we sampled 100 batches for CIFAR-10 and MNIST (10 per
class), 129 batches for GTSRB (3 per class across 43 classes), and 100 batches for the regression
benchmark TaxiNet.

For the minimality guarantees experiment (Subsection 5.3, Appendix G), we used 50 singleton
batches (k = 1), obtained by selecting one sample from each MNIST batch above, thereby preserving
the even class distribution.

D.1 CIFAR-10

For the CIFAR-10 benchmark Krizhevsky & Hinton (2009), we use the ResNet2b model, originating
from the VNN-COMP neural network verification competition (Bak et al., 2021). This residual
network consists of an initial convolutional layer, two residual blocks, and a dense classification head
producing 10 output classes. In total, it comprises 72 filters (also referred to as channels).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Layer / Block Output Dim. Details

Input 32× 32× 3 CIFAR-10 image
Conv1 16× 16× 8 3× 3, stride 2

Residual Block 1
Conv1 8× 8× 16 3× 3, stride 2
ReLU 8× 8× 16 non-linearity
Conv2 8× 8× 16 3× 3, stride 1
Skip connection 8× 8× 16 identity/projection
Output 8× 8× 16 addition + ReLU

Residual Block 2
Conv1 8× 8× 16 3× 3, stride 1
ReLU 8× 8× 16 non-linearity
Conv2 8× 8× 16 3× 3, stride 1
Skip connection 8× 8× 16 identity
Output 8× 8× 16 addition + ReLU

Flatten 1× 2048 –
Linear1 2048 → 100 ReLU
Linear2 100 → 10 Output logits

Table 4: Full architecture of the ResNet2b model used in Bak et al. (2021) for the CIFAR-10
benchmark

D.2 GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) Stallkamp et al. (2011) is a large-scale
image classification dataset containing more than 50,000 images of traffic signs across 43 classes,
captured under varying lighting and weather conditions.

We adopt the GTSRB-CNN model used in recent explainability studies (Bassan et al., 2025). This
architecture is a convolutional network with two convolutional layers using ReLU activations and
average pooling, followed by two fully connected layers. It outputs logits over 43 traffic sign classes.

In total, the GTSRB-CNN comprises 48 filters across its two convolutional layers (16 + 32).

Layer Output Dim. Details

Input 32× 32× 3 GTSRB image
Conv1 32× 32× 16 3× 3, padding 1, ReLU
AvgPool1 16× 16× 16 2× 2
Conv2 16× 16× 32 3× 3, padding 1, ReLU
AvgPool2 8× 8× 32 2× 2
Flatten 1× 2048 –
FC1 2048 → 128 ReLU
FC2 128 → 43 Output logits

Table 5: Architecture of the GTSRB-CNN model used in (Bassan et al., 2025).

D.3 MNIST

We use a simple, classic fully connected feedforward network for MNIST classification, which we
trained given the simplicity of the task. The model achieves 95.20% accuracy on the test set. It
consists of two hidden layers with ReLU activations of sizes 13 and 11, followed by a linear output
layer, comprising 31 non-input neurons in total and 10,479 trainable parameters.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Layer Dimensions Activation

Input 28× 28 = 784 –
Fully Connected (fc1) 784 → 13 ReLU
Fully Connected (fc2) 13 → 11 ReLU
Fully Connected (fc3) 11 → 10 –

Table 6: Architecture of the fully connected MNIST network. The model has 31 hidden neurons in
total, which we treat as the granularity for circuit discovery.

D.4 TAXINET

The TaxiNet dataset (Julian et al., 2020) was developed by NASA for vision-based aircraft taxiing, and
consists of synthetic runway images paired with continuous control targets. Unlike the classification
benchmarks, TaxiNet is a regression task: the model predicts real-valued outputs corresponding to
flight control variables.

For our experiments, we adopt the TaxiNet CNN regression model introduced in the VeriX frame-
work (Wu et al., 2023a) and subsequently used in other explainability studies (Bassan et al., 2025).
This convolutional network, comprising 8 filters, achieves a mean squared error (MSE) of 0.848244,
and a root mean squared error (RMSE) of 0.921.

Layer Output Dim. Details

Input 27× 54× 1 TaxiNet image
Conv1 27× 54× 4 3× 3, padding 1, ReLU
Conv2 27× 54× 4 3× 3, padding 1, ReLU
Flatten 1× 5832 –
FC1 5832 → 20 ReLU
FC2 20 → 10 ReLU
FC3 10 → 1 Regression output

Table 7: Architecture of the CNN regression model used for TaxiNet, following the VeriX frame-
work (Wu et al., 2023a).

EXPERIMENTAL DETAILS

E INPUT ROBUSTNESS CERTIFICATION

In this experiment, we evaluate the robustness of discovered circuits over a continuous input neighbor-
hood Bpϵ (x), as established in Section 3.1. We compare two variants of the iterative circuit discovery
procedure in Algorithm 1, which differ in their elimination criterion:

1. Sampling-based Circuit Discovery: directly evaluates the metric on the input batch at each
step.

2. Provably Input-Robust Circuit Discovery: certifies that the metric holds across the entire
input neighborhood (Def. 1).

The procedure traverses network components sequentially, deciding at each step whether to retain or
remove a component. As noted in Conmy et al. (2023), the traversal order influences the resulting
circuit. Following their approach, we proceed from later fully-connected or convolutional layers
toward earlier ones, ordering neurons or filters within each layer lexicographically. For consistency,
we fix the patching scheme for all non-circuit components to zero-patching.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.1 METHODOLOGY

E.1.1 SIAMESE NETWORK FOR VERIFICATION

To integrate circuit discovery with formal verification, we construct a Siamese Network, which pairs
the full model with a candidate circuit, and outputs the concatenation of the two networks’ logits.

This Siamese formulation provides the interface for the neural network verification used in two
settings:

• Provably Input-Robust Circuit Discovery: certify at each elimination step that the candi-
date circuit satisfies the metric across the continuous input neighborhood, ensuring robust-
ness is preserved.

• Evaluation: verify after discovery (via either sampling- or provable-based methods) that
the resulting circuit is robust over the same neighborhood.

Output Metric. For consistency, all of our experiments employ the same output metric for both the
sampling-based and provably input-robust discovery methods. We measure the difference in logits,
requiring this difference to remain within a tolerance δ.

In classification tasks over an input z, we focus on the logit of the gold-class, indexed by k, and
require that the predictions of the circuit C and the full model G differ by at most δ:

|fG(z)[k]− fC(z)[k]| ≤ δ,

where the absolute value denotes the ℓp-norm on the one-dimensional vector corresponding to the k-th
entry. In the sampling-based method, it is evaluated on the sampled batch, whereas in the provable
(siamese) setting, this criterion is certified over the concatenated logits of the siamese encoding. For
instance, in a 10-class classification task, the verification constraint on the siamese network’s output
is:

| logits[:10][k]− logits[10:][k] | ≤ δ.
where the first 10 entries correspond to the logits of the full model G and the second to those of the
circuit C.

In regression settings (e.g., TaxiNet), the same principle applies to the full output (a scalar-valued
prediction), measuring the absolute difference between the model and the circuit. In both cases, this
metric directly instantiates the norm metric used in the robustness definitions (Definitions 1, 2).

Input Neighborhoods. In our setup, the neighborhood B∞ϵp (x) is defined in the input space with
respect to the L∞ norm. For fully connected models (e.g., MNIST), inputs are flattened into vectors
and the perturbation ball is defined over this representation. For convolutional models (e.g., CIFAR-10,
GTSRB, TaxiNet), inputs are multi-channel tensors, and the neighborhood is applied independently
to each channel and spatial location.

E.1.2 VERIFICATION AND EXPERIMENTAL SETUP (INPUT ROBUSTNESS)

Since sound-and-complete verification of piecewise linear activation networks against linear properties
is NP-hard Katz et al. (2017), Some queries may not complete within the allotted time; in such cases,
the outcome is reported as unknown. In practice, with the α, β-CROWN verifier, we limit each query
to 45 seconds of Branch-and-bound time.

For fairness, we report robustness statistics only on batches where the robustness check of the
sampling-based method was determined (robust or non-robust, excluding timeouts) In the main paper
results, the rate of timed-out instances was 1% on MNIST, 1.6% on GTSRB, 1% on CIFAR-10, and
5% on TaxiNet. Comparable rates were observed in the neighborhood size variations E.2.1 studies
(on average, 0.5% for MNIST, 3% for CIFAR-10, and 2.7% for TaxiNet), and in the tolerance level
variations δ E.2.2 (on average 8.6% for TaxiNet, 3.6% for MNIST).

Experiments on MNIST, GTSRB, and CIFAR-10 were conducted on a unified hardware setup with a
48 GB NVIDIA L40S GPU paired with a 2-core, 16 GB CPU. For the TaxiNet model, we used only a
2-core, 36 GB CPU machine.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.2 ROBUSTNESS EVALUATION AND PARAMETER VARIATIONS

We evaluate the robustness of circuits discovered by both methods over the neighborhood B∞ϵp (x),
using formal verification via the Siamese Network as described above. The parameter ϵp controls
the neighborhood size: if too small, the resulting circuits are trivial; if too large, the perturbations
become unrealistic and off-distribution. We choose ϵp values within ranges commonly used in prior
verification work or empirically selected to balance circuit size and robustness. In addition, we vary
both parameters, ϵp and δ, to analyze their effect.

E.2.1 VARIATION OF INPUT NEIGHBORHOOD SIZE ϵp

We fix the tolerance δ and vary the input neighborhood size ϵp. For CIFAR-10 and MNIST, we use
δ = 2.0; for GTSRB, δ = 5.0. For the TaxiNet regression model, we set δ = 0.92 (the model’s root
mean squared error, RMSE), reflecting its typical prediction scale (larger deviations would let the
circuit drift more than the full model from the ground truth). Results are reported in Table 8. Rows
highlighted in gray correspond to the results selected in the main paper.

Dataset ϵp Sampling-based Circuit Discovery Provably Input-Robust Circuit Discovery

Time (s) Size (|C|) Robustness (%) Time (s) Size (|C|) Robustness (%)

MNIST (δ=2.0)
0.005 0.015 ±0.003 12.57 ±2.29 46.0 ±5.0 677.36 ±183.65 14.51 ±2.41 100.0 ±0.0
0.009 0.016 ±0.013 12.56 ±2.30 25.3 ±4.4 663.60 ±181.13 15.76 ±2.25 100.0 ±0.0
0.010 0.309 ±0.889 12.56 ±2.30 19.2 ±4.0 611.93 ±97.14 15.84 ±2.33 100.0 ±0.0
0.050 0.027 ±0.065 12.57 ±2.29 0.0 ±0.0 1700.05 ±562.36 28.75 ±6.67 100.0 ±0.0

TaxiNet (δ=0.92)
0.001 0.040 ±0.146 5.76 ±0.77 62.2 ±4.9 201.81 ±34.16 6.07 ±0.71 100.0 ±0.0
0.005 0.010 ±0.002 5.77 ±0.80 9.5 ±3.0 180.00 ±40.39 6.82 ±0.46 100.0 ±0.0
0.010 0.010 ±0.002 5.78 ±0.79 2.0 ±1.4 271.03 ±54.23 7.91 ±0.32 100.0 ±0.0

CIFAR-10 (δ=2.0)
0.007 0.035 ±0.001 16.70 ±9.48 73.7 ±4.4 2104.13 ±118.95 17.96 ±9.90 100.0 ±0.0
0.012 0.116 ±0.367 16.91 ±9.12 58.1 ±5.1 2226.34 ±103.71 18.88 ±9.21 100.0 ±0.0
0.015 0.228 ±0.517 16.47 ±9.08 46.5 ±5.0 2970.85 ±874.23 19.18 ±10.16 100.0 ±0.0

GTSRB (δ=5.0)
0.001 0.111 ±0.329 28.91 ±4.69 27.6 ±4.0 991.08 ±162.91 29.59 ±4.45 100.0 ±0.0

Table 8: Effect of varying the input neighborhood size ϵp under a fixed tolerance δ. Reported values
are means with standard deviations. For robustness (a binary variable), we report the standard error
(SE). Bold values indicate robustness percentages. Rows highlighted in gray correspond to the results
selected in the main paper.

E.2.2 VARIATION OF TOLERANCE LEVEL δ

We vary the tolerance δ while fixing the input neighborhood size ϵp to the dataset-specific values used
in the main paper (MNIST: ϵp=0.01, TaxiNet: ϵp=0.005). Results are reported in Table 9. Rows
corresponding to the main paper results are highlighted in gray.

Dataset δ Sampling-based Circuit Discovery Provably Input-Robust Circuit Discovery

Time (s) Size (|C|) Robustness (%) Time (s) Size (|C|) Robustness (%)

MNIST (ϵp=0.01)
0.50 0.083 ± 0.329 19.72 ± 1.50 15.6 ± 3.8 460.14 ± 36.59 22.02 ± 2.52 100.0 ± 0.0
2.00 0.309 ± 0.889 12.56 ± 2.29 19.2 ± 4.0 611.93 ± 97.14 15.84 ± 2.33 100.0 ± 0.0
3.00 0.013 ± 0.001 9.44 ± 1.92 34.0 ± 4.7 577.41 ± 35.84 12.27 ± 2.52 100.0 ± 0.0

TaxiNet (ϵp=0.005)
0.50 0.038 ± 0.115 6.84 ± 0.86 32.1 ± 5.2 93.08 ± 22.75 7.75 ± 0.46 100.0 ± 0.0
0.70 0.008 ± 0.001 6.15 ± 0.81 14.8 ± 3.8 114.51 ± 23.95 7.31 ± 0.53 100.0 ± 0.0
0.92 0.010 ± 0.002 5.77 ± 0.80 9.5 ± 3.0 180.00 ± 40.39 6.82 ± 0.46 100.0 ± 0.0
1.00 0.009 ± 0.002 5.57 ± 0.82 9.5 ± 3.0 142.62 ± 24.77 6.66 ± 0.52 100.0 ± 0.0
1.20 0.009 ± 0.001 5.43 ± 0.96 6.1 ± 2.4 155.03 ± 26.34 6.32 ± 0.59 100.0 ± 0.0

Table 9: Variation on tolerance level δ, with input neighborhood size ϵ fixed to the dataset-specific
values used in the main experiments. Reported values are means with standard deviations. For
robustness (a binary variable), we report the standard error (SE). Rows highlighted in gray correspond
to the results selected in the main paper.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.2.3 EVALUATION UNDER ALTERNATIVE OUTPUT METRICS

To further assess the generality of our framework, we repeat the robustness evaluation using alternative
output metrics beyond the default logit-difference criterion. Specifically, we consider two additional
formulations:

• Consistent winner class: Given some target class t ∈ [d], enforces that the winner class remains
consistent over a specified region. This metric directly targets preservation of the predicted class
across the input domain and is widely used in robustness verification studies. The criterion then
enforces that:

∀z ∈ Z, argmax
j

(fG(z))(j) = argmax
j

(fC(x | C = α)(z))(j) = t.

To allow greater flexibility, we relax the requirement by permitting the predicted class to remain
consistent under any change that stays within a tolerance δ ∈ R+ above the runner-up class. When
δ = 0, this reduces back to the original definition. To make this threshold more meanignful and
interpretable, we set δ as a configurable fraction α ∈ (0, 1] of the model’s original winner–runner
gap on the unperturbed input. In our experiments, for simplicity, we enforce the consistency
condition only between the winner and runner-up classes.

• Abs-Max: Bounds the maximum absolute deviation across all output dimensions by a specified
threshold. This criterion does not guarantee class invariance but constrains the overall output drift.
Formally, we require:

∀z ∈ Z, ∥fG(z)− fC(x | C = α)∥∞ ≤ δ,
ensuring that no individual logit differs by more than δ.

We evaluate both metrics, using the same discovery configurations and ϵp as in the main input-
robustness experiments. For the logits-difference metric, we used the same δ as in our main experiment
(Table 1). In the winner-runner setting, we set α = 0.5 (preserving half the original margin), and
for the abs-max criterion we used δ = 4.0. Results are reported in Table 10, which compares the
sampling-based and provable discovery methods under each metric.

Dataset Metric Sampling-based Circuit Discovery Provably Input-Robust Circuit Discovery

Time (s) Size (|C|) Robustness (%) Time (s) Size (|C|) Robustness (%)

MNIST Logit-diff 0.31 ±0.89 12.56 ±2.30 19.2 ±4.0 611.93 ±97.14 15.84 ±2.33 100.0 ±0.0
Winner–Runner 0.13 ± 0.60 5.18 ± 1.05 73.0 ±4.4 638.57 ± 20.94 12.04 ± 5.79 100.0 ±0.0
Abs-Max 0.014 ± 0.012 25.55 ± 2.90 6.0 ±2.4 362.61 ± 55.73 28.11 ± 2.37 100.0 ±0.0

Table 10: Comparison of circuit discovery methods under alternative output metrics. Reported values
are means with standard deviations. For robustness (a binary variable), we report the standard error
(SE). All methods use the same configurations as in the main experiments.

Across all metrics, the same overall trend is observed: the provable method consistently approaches
100% robustness while maintaining circuit sizes comparable to those of the sampling-based baseline,
which attains substantially lower robustness. This consistency across different metrics suggests that
the robustness of the provable approach is not tied to a particular output metric, but reflects a stable
characteristic of the method.

E.2.4 COVERAGE ANALYSIS OF PROVABLY-ROBUST VS. SAMPLING-BASED CIRCUITS

To better understand the relationship between the circuits identified by our provably-robust procedure
and those produced by the sampling-based method, we conduct an explicit coverage analysis over
several robustness radii ϵ ∈ {0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05} on the MNIST benchmark.
All other settings, including tolerance and metric definitions, follow those used in the main experiment
(as discussed in section E.1). We conduct these experiments on a 2-core CPU machine with 16 GB of
RAM.

For each perturbation radius ϵp, we examine the provably input-robust circuit Cp derived for that ra-
dius and the sampling-based circuitCs, each obtained over 100 different inputs (as in our experimental
setup), resulting in 100 circuit pairs for every ϵp.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

For these two circuits, we compute: (i) the size of the intersection, |Cp ∩ Cs|, (ii) the components
unique to the provable circuit (provable-only), |Cp \ Cs|, and (iii) the components unique to the
sampling-based circuit (sampling-only), |Cs \ Cp|.
We average these quantities over the 100 circuit pairs and report their means and standard deviations.
To summarize the overall similarity/discrepancy between Cp and Cs across ϵp, we additionally
compute standard set-similarity measures: Intersection over Union (IoU), Dice coefficient, and two
asymmetric coverage metrics (provable-over-sampling and sampling-over-provable). These aggregate
trends are visualized in Fig. 7. To further highlight the non-overlapping components, Table 11 reports
their counts and their percentages relative to the full network size.

Because the sampling-based method does not enforce a robustness condition, its circuit size remains
constant across ϵp, while the provable-based circuits naturally expand as ϵp increases in order to
guarantee certified robustness. We indeed view that as the required robustness grows, the provably-
robust circuits include additional components essential for certification.

0.01 0.02 0.03 0.04 0.05
0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty
 /

di
sc

re
pa

nc
y

IoU = |Cp Cs|
|Cp| + |Cs| |Cp Cs|

Dice = 2|Cp Cs|
|Cp| + |Cs|

|Cp Cs|
|Cs| (Provable over sampling)

|Cp Cs|
|Cp| (Sampling over provable)

Symmetric difference ratio = |Cp Cs|
|Cp Cs|

Figure 7: Comparison of similarity and coverage metrics between provably-robust and sampling-based
circuits. We report symmetric measures (IoU, Dice), a symmetric difference ratio, and asymmetric
coverage ratios (provable over sampling, sampling over provable) to illustrate both overlap and
directional differences.

As shown in Fig. 7, the provably robust circuits consistently recover the vast majority of units
identified by the sampling-based method across all ϵp values, with especially high agreement for
small perturbation radii (e.g., IoU and Dice ≈ 0.9 at ϵp = 0.005). As ϵp increases, the overlap
between the two circuits gradually decreases (IoU drops toward 0.5), indicating that the sampling-
based circuits capture a smaller fraction of the provable-based ones under larger perturbations.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Dataset ϵp |Cp \ Cs| % of full net |Cs \ Cp| % of full net

MNIST

0.005 2.64 7.76% 0.70 2.06%
0.007 3.32 9.76% 0.74 2.18%
0.010 4.10 12.06% 0.81 2.38%
0.020 6.24 18.35% 0.58 1.71%
0.030 7.73 22.74% 0.39 1.15%
0.040 10.94 32.18% 0.24 0.71%
0.050 16.11 47.38% 0.13 0.38%

Table 11: Set differences between the provably-robust circuit Cp and the sampling-based circuit Cs.
For each ϵp, we report (i) the number of units appearing only in the provably-robust circuit |Cp \ Cs|,
(ii) the number appearing only in the sampling-based circuit |Cs \ Cp|, and (iii) the corresponding
percentages relative to the full network size for that dataset.

This reflects the fact that the provably-robust circuits expand to satisfy stronger robustness require-
ments. This trend is also evident in Table 11: the difference Cp \ Cs grows steadily with ϵp, while
Cs \ Cp remains small across all settings, and decreases further for larger perturbation radii - indicat-
ing that the sampling-based method contributes few components that are not required by the provable,
certified solution.

E.2.5 RUNTIME TRADE-OFF ACROSS INPUT NEIGHBORHOOD SIZES

We aim to further analyze the runtime trade-off of the provably-robust method. For each input-
robustness radius ϵp, we run the method to obtain a corresponding provably robust circuit and report
the mean circuit-size-over-time curves (with standard deviation shown as shaded regions) across these
circuits for different input neighborhoods induced by increasing ϵp. We perform this analysis on the
MNIST benchmark, using the same perturbation radii and experimental settings as in the coverage
analysis in Appendix E.2.4.

0 500 1000 1500 2000 2500
Time (sec)

15

20

25

30

35

C
ir

cu
it

Si
ze

Provably-robust Circuit Size Over Time (Mean ± Std)

=0.005
=0.007
=0.01
=0.02
=0.03
=0.04
=0.05

Figure 8: Provable-robust circuit size over time on MNIST for different neighborhood radii ϵp.
Shaded regions denote the standard deviation.

In all cases, the curves start at the full network size at time 0 and then decrease monotonically as
components are pruned, until the procedure terminates. Across the smaller and closely spaced ϵp
values, the curves exhibit a very similar trajectory: an initial almost-linear decrease during the first
∼ 300 seconds, followed by a stabilization phase around ∼ 500 seconds. The standard deviation

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

bands for these curves are also comparable. As expected, larger neighborhoods lead to larger final
circuit sizes.

For substantially larger neighborhoods (e.g., ϵp = 0.03-0.05), the behavior changes: the decrease
is slower, stabilization occurs later, and the variability (standard deviation) is considerably higher.
Moreover, for these larger and more widely spaced ϵp values, we observe a clear increase in overall
runtime (as indicated by where the curves terminate), reflecting the added complexity of discovering
robust certified circuits under broader perturbation regions.

E.2.6 QUALITATIVE OBSERVATIONS OF THE DISCOVERED CIRCUITS

While our method is centered on formal guarantees, and our evaluation therefore focuses on robustness
and minimality, we also include a brief exploratory look at the circuits discovered by our provably
robust procedure and by the sampling-based baseline. This examination is qualitative in nature and is
intended only to provide an informal visual sense of how the two circuits behave.

For this analysis, we consider several channel-level GTSRB circuits produced in the input-robustness
experiments. Recall that for each batch (composed of samples from the same class) we executed
both our provably robust discovery (under a given ϵ = 0.001 neighborhood) and the sampling-based
discovery, producing two circuits. In the examples below, we select pairs of circuits with comparable
sizes, where the sampling-based circuit is empirically non-robust while the provably robust circuit is
certified robust. We then analyze their behavior on a representative clean input from the batch and on
its corresponding adversarial example (an ϵ = 0.001-bounded adversarial perturbation).

To obtain a coarse semantic signal, we apply Grad-CAM (Selvaraju et al., 2017) to the last convolu-
tional layer of (i) the full model, (ii) the provably robust circuit, and (iii) the sampling-based circuit.
Grad-CAM produces a class-specific importance map by weighting spatial activations according to
the globally averaged gradients of the target class logit. Formally, for class c,

α
(c)
k :=

1

HW

∑

i,j

∂yc
∂Ak

ij

, CAMc(i, j) := ReLU

(∑

k

α
(c)
k Ak

ij

)
.

Here, yc denotes the logit of the target class c (the true label in our case), Ak is the k-th activation
map (i.e., the output of filter k) of spatial size H ×W , and α(c)

k is the Grad-CAM weight obtained
by spatially averaging the gradients ∂yc/∂Ak

ij . Multiplying these weights by the corresponding
activation maps and summing over channels, as in CAMc, highlights the spatial regions that the
model relies on most for predicting class c.

We use this mechanism to compare the behavior of the discovered circuits with that of the full model.
Following common practice in vision models, we apply Grad-CAM to the last convolutional layer
of the GTSRB networks. For visualization, we compute, normalize, and upsample the resulting
Grad-CAM maps. Figure 9 illustrates these maps for an illustrative GTSRB sample depicting a
roundabout sign.

While the sampling-based circuit is larger than the provably robust one (35 convolutional channels
compared to 26), the latter exhibits a closer match to the full model in the final convolutional layer.
As shown in Fig. 9b, the heatmaps of the full model on this sample align well with those of the
provably robust circuit, whereas the sampling-based circuit shows a less aligned activation pattern,
with some loss of emphasis on regions in the sign interior.

In addition, despite the very small perturbation radius (which makes the clean and perturbed images
visually almost indistinguishable; Fig. 9a), Fig. 9b shows that the sampling-based circuit shifts its
attention between the two inputs, while the provably robust circuit exhibits essentially no variation.
This may suggest that the provably robust circuit better maintains its focus under perturbations.

These observations, though not central to our evaluation, provide an additional qualitative lens on
how the discovered circuits operate.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

(a) Original input, and a perturbed input in the GTSRB
dataset.

(b) GradCAM computations at the last convolutional layer

Figure 9: Grad-CAM heatmaps comparison for a GTSRB input and its adversarial counterpart, shown
at the last convolutional layer across three models (the full model, the provably robust circuit, and the
sampling-based circuit).

E.2.7 ADDITIONAL QUALITATIVE INTERPRETATION OF COMPONENT-LEVEL BEHAVIOR

Another possible direction for qualitative analysis is to assign semantic interpretations to inner
components and subgraphs. This may include examining their behaviour and inferring the causal
pathways in which they participate.

In the example shown in Figure 4, we consider a CIFAR-10 bird sample together with its adversarial
perturbation (also displayed in Figure 10), and compare the two circuit variants extracted from the
ResNet model: the sampling-based circuit and the provably robust one. As illustrated, several filter-
level components are preserved in the provably robust circuit, enabling it to satisfy the robustness
criterion under perturbations.

To analyze the additional components, we focus on the first convolutional layer, as shown in Figure 4.
While later-layer interactions could also be insightful, for simplicity and clarity, we restrict our
attention to the first-layer filters applied to the perturbed bird image. As the figure illustrates, this
layer contains three filters shared by both circuits and one additional filter present only in the
provably-robust circuit.

We next examine the clean and adversarial images and their corresponding normalized difference
heatmap, presented in Figure 10 within the main paper. Although the perturbation at ϵ = 0.015
is visually almost indistinguishable from the clean input, visualizing their difference reveals that
substantial portions of the perturbation concentrate in the lower part of the image, beneath the bird’s
contour.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 10: Clean input x, its perturbed version z ∈ Bp
ϵp(x) with ϵp = 0.015, and the corresponding

difference heatmap.

(a) Shared filters across both circuits (b) Filter retained only
in the provably-robust
circuit

Figure 11: (a) Activation maps of the shared first-layer filters present in both the provably robust and
sampling-based circuits. (b) Activation map of the additional first-layer filter included only in the
provably robust circuit. Blue indicates negative activations; red indicates positive activations. White
denotes neutral or near-zero values.

To gain further insight, we inspect the activation maps of these filters on the perturbed input (Fig-
ure 11). We examine the three filters shared by both circuits as well as the additional filter unique to
the provably robust circuit. For each filter, we extract the signed activations (since this layer does not
apply a ReLU), normalize them, and upsample them for visibility. The resulting sign-normalized
maps display negative activations in blue and positive activations in red.

Across the three shared filters, we observe in Figure 11a that, although they react to and capture
aspects of the bird’s contour, all of them assign negative values to the lower region where the noise
is concentrated. Filter 0 outputs strongly negative values in this area, while filters 2 and 7 produce
values between negative and neutral, passing only a weak signal over that region.

In contrast, the additional filter included appears only in the provably-robust circuit (Figure 11b)
produces strong positive activations precisely over the lower, noise-affected region. It is the only
filter in this layer to do so. This suggests that its inclusion, together with the other filters, may help
enrich and stabilize the signal over the perturbed region of the input, potentially contributing to the
circuit’s certified robustness under this perturbation. Such an illustrative view suggests a possible
connection between the retained components and the circuit’s robustness.

F PATCHING ROBUSTNESS CERTIFICATION

In this experiment, we evaluate the robustness of discovered circuits when non-circuit components
are patched with feasible activations drawn from a continuous input range, rather than fixed constants,
as defined in Section 3.2. Operationally, for any circuit C, we test whether perturbing non-circuit
components within the range of activations induced by inputs z ∈ B∞ϵp (x) can cause a violation of
some metric ∥·∥p with tolerance δ. If no such violation exists, we declare C to be patching-robust 2.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

We compare three patching schemes within the iterative discovery framework (Algorithm 1):

1. Zero patching: sets all non-circuit components to zero.

2. Mean patching: replaces non-circuit components with their empirical means, estimated
from 100 randomly selected training samples.

3. Provably robust patching: verifies robustness across the full range of feasible activations
induced by a continuous input domain (Def. 2).

F.1 METHODOLOGY

F.1.1 PATCHING SIAMESE NETWORK FOR VERIFICATION

As an interface for verifying patching robustness, we employ a Patching Siamese network with two
branches: (i) a full-network patching branch, used to capture non-circuit activations for patching; and
(ii) a circuit branch restricted to C, where every non-circuit component is replaced by the activation
of its counterpart in the patching branch. This replacement is implemented through dedicated wiring
that copies the required activations from the first branch to the second.

We examine activations induced by inputs from a neighborhood around x: Z = B∞ϵp (x). As outlined
in Section 3.2, the siamese network is fed a concatenated input (x, z) (along the feature axis for
MNIST and the channel axis for CNNs). Here, x is routed to the circuit branch and z to the patching
branch. The verification domain is applied only to z, while x is held fixed. This setup simulates the
circuit running on x, with its non-circuit activations replaced by those induced from z ∈ Z . We note
that, for numerical stability on the verifier’s side, the circuit-branch input is enclosed in a negligible
10−5 L∞ ball.

For the output criterion, the resulting circuit logits are verified against the logits of the full model,
fG(x) (precomputed independently of the Siamese construction) under the logit-difference metric
with tolerance δ. This guarantees that the patching-robustness property (Def. 2) holds.

Input Neighborhoods. As in Section E.1.2, we define the neighborhood Z = B∞ϵp (x) using the
ℓ∞ norm.

F.2 ROBUSTNESS EVALUATION AND PARAMETER VARIATIONS

After discovery (using zero, mean, or provably robust patching), we verify the resulting circuits with
the Patching Siamese Network over the same B∞ϵp (x), reporting circuit size, runtime, and patching
robustness. Since typical ϵp values in the literature target input perturbations, we use larger values
for the patching domain to reflect the broader variability of internal activations while avoiding off-
distribution regimes. We report results below for varying (ϵp, δ) to assess their effects on robustness
and size.

F.2.1 VERIFICATION AND EXPERIMENTAL SETUP (PATCHING ROBUSTNESS)

We use the same hardware configuration as in the input-robustness study E.1.2. We set a Branch-
and-bound timeout of 45 seconds for MNIST, GTSRB, and TaxiNet as in the input experiment. For
CIFAR-10, iterative discovery queries in the provably robust method are limited to 45 seconds, while
discovered circuit-robustness evaluations are allowed up to 120 seconds. Queries that do not complete
within these limits are reported as unknown.

As in the input robustness experiment E, for fairness, we exclude cases where the robustness check
for zero or mean patching timed out from the reported robustness statistics. In our main results, the
timeout rates were 12% for MNIST, 2% for TaxiNet, 6.2% for GTSRB, and 31% for CIFAR-10,
while in the variations over ϵp (F.2.2) they averaged 0.5% for TaxiNet and 8.8% for MNIST. Over
the δ variation (F.2.3), the average timeout rate was 1.5% on TaxiNet and 14% on MNIST.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F.2.2 VARIATION OF PATCHING NEIGHBORHOOD SIZE ϵp

We fix the tolerance level δ and vary the patching neighborhood size ϵp. For CIFAR-10 we use δ=0.1,
for MNIST δ=0.5, for TaxiNet δ=0.92, and for GTSRB δ=2.0. Table 12 extends the main results
with additional ϵp variations on the MNIST and TaxiNet benchmarks.

Dataset ϵp Zero Patching Mean Patching Provably Patching-Robust Patching

Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%)

MNIST (δ=0.5)
0.005 0.054 ± 0.182 19.87 ± 1.55 87.0 ±3.4 0.013 ± 0.001 19.19 ± 1.87 93.0 ±2.6 671.08 ±36.86 11.32 ± 2.56 100.0 ±0.0
0.009 0.013 ±0.000 19.92 ±1.51 65.9 ±5.0 0.013 ±0.001 19.13 ± 1.88 64.8 ±5.0 583.59 ±44.99 16.75 ± 2.26 100.0 ±0.0
0.010 0.060 ±0.322 19.96 ±1.50 58.0 ±5.3 0.016 ±0.003 19.16 ±1.84 55.7 ±5.3 714.87 ±207.08 17.03 ±2.30 100.0 ±0.0
0.050 0.015 ±0.005 19.76 ±1.50 1.2 ±1.2 0.015 ±0.003 19.09 ±1.81 1.2 ±1.2 598.41 ±156.96 23.20 ±1.17 100.0 ±0.0

TaxiNet (δ=0.92)
0.005 0.061 ±0.183 5.78 ±0.79 93.0 ±2.6 0.022 ±0.061 5.38 ±0.65 100.0 ±0.0 220.67 ±57.23 4.60 ±0.74 100.0 ±0.0
0.008 0.026 ±0.097 5.78 ±0.79 62.0 ±4.9 0.008 ±0.001 5.38 ±0.65 77.0 ±4.2 168.99 ±44.83 5.26 ±0.54 100.0 ±0.0
0.010 0.024 ±0.059 5.78 ±0.78 57.1 ±5.0 0.025 ±0.068 5.39 ±0.65 63.3 ±4.9 175.73 ±52.71 5.41 ±0.59 100.0 ±0.0
0.030 0.009 ±0.002 5.78 ±0.79 27.0 ±4.4 0.008 ±0.001 5.38 ±0.65 40.0 ±4.9 95.31 ±15.54 6.04 ±0.20 100.0 ±0.0
0.050 0.024 ±0.058 5.77 ±0.78 0.0 ±0.0 0.012 ±0.032 5.37 ±0.65 0.0 ±0.0 89.37 ±17.58 7.07 ±0.26 100.0 ±0.0

CIFAR-10 (δ=0.1)
0.030 0.109 ± 0.321 65.07 ± 3.00 46.4 ± 6.0 0.046 ± 0.003 64.07 ± 3.60 33.3 ± 5.7 5408.51 ± 1091.05 65.55 ± 1.64 100.0 ± 0.0

GTSRB (δ=2.0)
0.005 0.284 ± 0.951 32.65 ± 4.24 38.0 ± 4.4 0.041 ± 0.009 33.40 ± 4.16 40.5 ± 4.5 2907.17 ± 721.67 34.34 ± 4.07 100.0 ± 0.0

Table 12: Variations on patching neighborhood size ϵp with fixed tolerance δ. Reported values are
means with standard deviations (formatted as {mean ± std}). For robustness (a binary outcome), we
report the mean robustness with its standard error (SE), and display robustness values in bold. Rows
highlighted in gray correspond to the results selected in the main paper.

F.2.3 VARIATION OF TOLERANCE TOLERANCE δ

We fix ϵp and examine various tolerance values. As in the main paper results, we use ϵp=0.01 for
MNIST and Taxinet and vary the tolerance δ. Results are reported in Table 13

Dataset δ Zero Patching Mean Patching Provably Robust Patching

Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%)

MNIST (ϵp=0.01)
0.25 0.142 ± 0.476 21.36 ± 1.87 48.6 ± 5.9 0.013 ± 0.000 21.22 ± 1.74 52.8 ± 5.9 523.67 ± 41.31 19.42 ± 2.01 100.0 ± 0.0
0.50 0.060 ± 0.322 19.96 ± 1.50 58.0 ± 5.3 0.016 ± 0.003 19.16 ± 1.84 55.7 ± 5.3 714.87 ± 207.08 17.03 ± 2.30 100.0 ± 0.0
1.00 0.013 ± 0.000 16.88 ± 1.85 61.2 ± 4.9 0.013 ± 0.001 16.11 ± 1.93 66.3 ± 4.8 690.42 ± 44.38 11.37 ± 2.64 100.0 ± 0.0

TaxiNet (ϵp=0.01)
0.50 0.011 ± 0.003 6.86 ± 0.78 74.0 ± 4.4 0.010 ± 0.001 5.83 ± 0.40 80.0 ± 4.0 157.67 ± 33.68 6.00 ± 0.00 100.0 ± 0.0
0.80 0.080 ± 0.210 6.04 ± 0.77 57.1 ± 5.0 0.010 ± 0.001 5.49 ± 0.54 61.2 ± 4.9 204.38 ± 40.04 5.68 ± 0.55 100.0 ± 0.0
0.92 0.024 ±0.059 5.78 ±0.78 57.1 ±5.0 0.025 ±0.068 5.39 ±0.65 63.3 ±4.9 175.73 ±52.71 5.41 ±0.59 100.0 ±0.0
1.20 0.011 ± 0.001 5.44 ± 0.96 46.9 ± 5.0 0.010 ± 0.003 5.20 ± 0.79 58.2 ± 5.0 246.14 ± 50.82 5.15 ± 0.51 100.0 ± 0.0

Table 13: Variation of tolerance level δ with fixed patching neighborhood size ϵp = 0.01. Reported
values are means with standard deviations (formatted as mean ± std). For robustness (a binary
outcome), we report the mean robustness with its standard error (SE), and display robustness means
in bold. Rows highlighted in gray correspond to the results selected in the main paper.

G EXPLORING CIRCUIT MINIMALITY GUARANTEES

In this experiment, we examine circuits that must simultaneously satisfy both input-robustness (Def. 1)
and patching-robustness (Def. 2), as introduced in Section 3.2. Specifically, we define Φ to require
that circuits remain robust within the input neighborhood Z = B∞ϵin(x), when non-circuit components
are patched with values drawn from the patching neighborhood Z ′ = B∞ϵp (x).
Thus, two domains are involved: one for inputs and one for obtaining activations used in patching.
Here, ϵin and ϵp denote the radii of the respective L∞-balls. In our setup, we use ϵin = 0.01,
ϵp = 0.012, and δ = 2.0.

G.1 VERIFYING SIMULTANEOUS INPUT- AND PATCHING-ROBUSTNESS WITH TRIPLED
SIAMESE

We certify simultaneous input- and patching-robustness using a tripled Siamese network with three
branches, each evaluated on its designated domain: (i) a full-network patching branch, which

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

processes inputs z′ ∈ B∞ϵp (x) to capture activations for use as patching values; (ii) the full network,
which processes inputs z ∈ B∞ϵin(x) to provide reference logits fG(z); and (iii) the circuit branch,
also evaluated on z ∈ B∞ϵin(x) but restricted to C, where non-circuit components are masked and
instead receive transplanted activations from the patching branch.

This special wiring enables the direct transfer of non-circuit activations, allowing the verifier to
certify that the circuit logits fC(z) remain faithful to fG(z) across the input neighborhood B∞ϵin(x)
under patching values induced by B∞ϵp (x), thereby establishing the simultaneous input- and patching-
robustness property.

We evaluate three discovery strategies under this setting, all applied with the combined robustness
predicate Φ defined above:

1. Iterative discovery: Algorithm 1.
2. Quasi-minimal search: Algorithm 3.
3. Blocking-sets MHS method: Algorithm 2, leveraging circuit blocking set duality to

approximate cardinally minimal circuits.

G.2 BLOCKING-SETS MHS METHOD: ANALYSIS AND EXPERIMENTAL DETAILS

Experimental setup. We conduct experiments on the MNIST network (34 hidden neurons). Since
contrastive subsets are enumerated in increasing order of size, the number of verification queries
grows combinatorially. Even when restricted to subset sizes t ∈ {1, 2, 3}, each batch requires
thousands of verification calls. To keep computations tractable, we evaluate singletons (k = 1 per
batch) and enforce a 30-second timeout per query. In one rare case, the procedure produced an empty
circuit (size 0), as Φ held vacuously under a particular choice of environments and metric, eliminating
all components. This case was excluded from the reported results.

Parallelism. Unlike iterative discovery, where elimination steps are sequentially dependent, the
verification of contrastive subsets is independent. This independence allows full parallelization: we
distribute verification queries across 14 workers, with runtime scaling nearly linearly with the number
of workers.

Properties. Under monotonic Φ, the MHS method yields either (i) a lower bound on the size of any
cardinally minimal circuit, or (ii) when the hitting set itself satisfies Φ, a certified cardinally minimal
circuit. Although more computationally expensive than iterative discovery, MHS provides strictly
stronger guarantees: if the hitting set is valid, the result is provably cardinally minimal; otherwise, its
size gives a tight lower bound that exposes whether iterative discovery reached cardinal minimality
and quantifies any gap.

H DISCLOSURE: USAGE OF LLMS

An LLM was used solely as a writing assistant to correct grammar, fix typos, and enhance clarity.
It played no role in generating research ideas, designing the study, analyzing data, or interpreting
results; all of these tasks were carried out exclusively by the authors.

37

