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ABSTRACT

Automated circuit discovery is a central tool in mechanistic interpretability for
identifying the internal components of neural networks responsible for specific
behaviors. While prior methods have made significant progress, they typically
depend on heuristics or approximations and do not offer provable guarantees over
continuous input domains for the resulting circuits. In this work, we leverage recent
advances in neural network verification to propose a suite of automated algorithms
that yield circuits with provable guarantees. We focus on three types of guarantees:
(i) input domain robustness, ensuring the circuit agrees with the model across a
continuous input region; (ii) robust patching, certifying circuit alignment under
continuous patching perturbations; and (3) minimality, formalizing and capturing a
wide array of various notions of succinctness. Interestingly, we uncover a diverse
set of novel theoretical connections among these three families of guarantees, with
critical implications for the convergence of our algorithms. Finally, we conduct
experiments with state-of-the-art verifiers on various vision models, showing that
our algorithms yield circuits with substantially stronger robustness guarantees than
standard circuit discovery methods — establishing a principled foundation for
provable circuit discovery.

1 INTRODUCTION

The rapid rise of neural networks, driven by transformative architectures such as Transformers, has
reshaped both theory and applications. Alongside this revolution, interpretability has become a
central research direction (Zhang et al., 2021; Räuker et al., 2023); and more recently, efforts have
focused on mechanistic interpretability (MI), which aims to reverse-engineer neural networks into
human-understandable components and functional modules (Olah et al., 2020; Olah, 2022; Zhao et al.,
2024). MI offers fine-grained interpretability that serves various purposes, including transparency,
trustworthiness, safety, and other applications (Bereska & Gavves, 2024; Zhou et al., 2024c).

A central open challenge in MI is circuit discovery (Olah et al., 2020), which seeks to identify
subgraphs within neural networks, called circuits, that drive specific model behaviors. Recent works
propose varied approaches (Wang et al., 2023; Conmy et al., 2023; Rajaram et al., 2024), differing by
domain (text vs. vision), patching methods (zero, mean, sampling), and the balance between manual
and automated steps. However, despite substantial progress, most current circuit discovery algorithms
remain heuristic or approximate, without rigorous guarantees of circuit faithfulness, particularly
under continuous perturbation domains (Adolfi et al., 2024; Miller et al., 2024; Méloux et al., 2025).
This limitation is concerning: even small perturbations can break circuit faithfulness, and since circuit
discovery is tied to safety considerations (Bereska & Gavves, 2024), such guarantees are essential.

Our Contributions. To address these concerns, we introduce a novel algorithmic framework that
builds on recent and exciting advances in the emerging field of neural network verification (Wang
et al., 2021; Zhou et al., 2024b; Brix et al., 2024; Kotha et al., 2023; Ferrari et al., 2022), enabling the
derivation of circuits with provable guarantees across continuous domains of interest.

1.1 THEORETICAL CONTRIBUTIONS

• We formalize a set of novel provable guarantees for circuit discovery that hold strictly over
entire continuous domains. These include: (i) input-domain robustness, ensuring circuits
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remain faithful across continuous input regions; (ii) patching-domain robustness, addressing
criticisms of sampling-based ablation; and (iii) a broad family of minimality guarantees,
extending earlier notions to include quasi-, local-, subset-, and cardinal-minimality.

• We present novel theoretical proofs that reveal strong connections between these three
families of guarantees. At the core is the circuit monotonicity property, which underpins min-
imality guarantees for optimization algorithms and clarifies the conditions under which they
hold. We also establish a crucial duality between circuits and small “blocking” subgraphs,
enabling the efficient discovery of circuits with much stronger minimality guarantees.

1.2 EMPIRICAL CONTRIBUTIONS

• We propose a framework for encoding both input- and patching-robustness guarantees in
neural networks and their circuits, using a technical siamese encoding of the network with
its associated circuit or patching-domain, which enables certifying the desired properties.

• We introduce a set of novel automated algorithms that preserve the invariants of the robust-
ness guarantees and prove that each converges to circuits meeting our various minimality
criteria. These algorithms enable a trade-off between computational cost and the degree of
minimality achieved in the resulting circuits.

• We conduct extensive experiments with α–β-CROWN, the state-of-the-art in neural network
verification, to derive circuits with input, patching, and minimality guarantees. These are
evaluated on standard neural vision models commonly used in the neural network verification
literature. Compared to sampling-based approaches, our framework certifies robustness,
whereas even infinitesimal perturbations break the faithfulness of sampling-based circuits.

Overall, we believe these contributions mark a significant step forward in establishing both theoretical
and empirical foundations for circuit discovery with provable guarantees, paving the way for a wide
range of future research directions.

2 PRELIMINARIES

2.1 NOTATION

Let fG : Rn → Rd denote a neural network, with G := ⟨V,E⟩ representing its computation graph.
The precise structure of G — that is, what each node and edge correspond to (e.g., neurons, attention
heads, positional embeddings, convolution filters) — is determined both by the network’s architecture
and by the level of granularity chosen by the user. A circuit C is defined as a subgraph C ⊆ G,
consisting of components hypothesized to drive the model’s behavior on a task. Each such circuit
naturally induces a function fC : Rn → Rd, obtained by restricting fG to the components in C.

In circuit discovery, the complement C := G \ C is often fixed to constant activations, a practice
known as patching, with variants such as zero-patching or mean-patching. Let fG have L ∈ N
layers with activation spaces Vi for i ∈ [L], and let X ⊆ Rn be an input domain. For x ∈ X ,
denote the activations at layer i as hi(x) ∈ Vi, and the reachable activation space as HG(X ) =
{(h1(x), . . . , hL(x)) : x ∈ X} ⊆ V1 × · · · × VL. We write HC(X ) for the partial reachable
activation space over C. For a partial activation assignment α ∈ HC(X ), we write fC(x | C = α) to
denote inference through fC(x), constructed from the components of C, while fixing the activations
of C to the values in α.

2.2 NEURAL NETWORK VERIFICATION

Consider a generic neural network fG with arbitrary element-wise nonlinear activations. Many tools
exist to formally verify properties of such networks, with adversarial robustness being the most
studied (Brix et al., 2024). Formally, the neural network verification problem can be stated as follows:

Neural Network Verification (Problem Statement):
Input: A neural network model fG, for which y := fG(x), with an input specification ψin(x), and
an unsafe output specification ψout(y).
Output: No, if there exists some x ∈ Rn such that ψin(x) and ψout(y) both hold, and Yes otherwise.
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A variety of off-the-shelf neural network verifiers have been developed (Brix et al., 2024). When the
input constraints ψin(x), output constraints ψout(y), and model fG are piecewise-linear (e.g., ReLU
activations), the verification problem can be solved exactly (Katz et al., 2017). In practice, it is often
relaxed for efficiency, and the output is enclosed within bounds that account for approximation errors.

3 PROVABLE GUARANTEES FOR CIRCUIT DISCOVERY

3.1 INPUT DOMAIN GUARANTEES

In this subsection, we introduce the first set of guarantees that our algorithms are designed to satisfy
— specifically, provable robustness against input perturbations. A central challenge when evaluating
a circuit’s faithfulness is that, even if it matches the model at one point or a finite set of points,
small input perturbations can quickly break this agreement. To overcome this limitation, our first
definition considers circuits that are not only faithful to the model on a discrete set of points but are
also provably robust across an entire infinite continuous set of inputs.
Definition 1 (Input-robust circuit). Given a neural network fG and a union of continuous domains
Z ⊆ Rn (e.g., a union of ℓp-balls of radius ϵp around a set of discrete points {xj}kj=1), we say that a
subgraph C ⊆ G is an input-robust circuit with respect to ⟨fG,Z⟩, a fixed patching vector α applied
to the complement set C := G \ C, and a tolerance level δ ∈ R+, if and only if:

∀z ∈ Z :=

k⋃

j=1

Bpϵp(xj). ∥fC(z | C = α)− fG(z))∥p ≤ δ,

s.t. Bpϵp(xj) := {zj ∈ Rn | ∥zj − xj∥p ≤ ϵp}
(1)

z1

z2
f(G⊔C′)(z | C ′ = α)

Concatenated logits

Model G

Circuit C

Input

Figure 1: Illustration of the Siamese encoding
for certifying the guarantee in Def. 1.

Certifying circuit input robustness via verification.
Neural network verification properties are typically
encoded over a single model fG, while the circuit
input robustness property (Def. 1) requires evaluating
both the model graph G and a circuit C ⊆ G. To
address this, we introduce a novel method to certify
the property in Def. 1 using a siamese encoding of
the network fG. Specifically, we duplicate the circuit
C ′ := C and “stack” it with G to form a combined
model G⊔C ′ with a shared input layer. This induces
a function f(G⊔C′) : Rn → R2d. The activations of
the non-circuit components in the duplicate, C ′ :=
G \ C ′, are fixed to a constant α, so for any z ∈ Rn

inference is f(G⊔C′)(z |C ′ = α), enabling direct certification of Def. 1 over the combined model. The
input constraint ψin(x) bounds x within Z , while the output constraint ψout(y) bounds the distance
measure between the logits of C ′ and G. Further details of this encoding appear in Appendix E.

3.2 PATCHING DOMAIN GUARANTEES

A central challenge in circuit discovery lies in deciding how to assign values to the complementary
activations of a circuit — a process known as patching. The goal of patching is to replace these
values to isolate the circuit’s contribution. Prior work has examined several approaches, including
zero-patching, which has been criticized as arbitrary since such values may be out-of-distribution
if unseen during training (Conmy et al., 2023; Wang et al., 2023). Other strategies include mean-
value patching (Wang et al., 2023) and sampling from discrete input distributions (Conmy et al.,
2023). Yet, these methods still rely on evaluating complementary activations over a discrete set of
sampled inputs, which may fail to generalize in continuous domains: even small perturbations in the
patching scheme can undermine a circuit’s faithfulness. By analogy to input-robustness, we introduce
patching-robustness: the requirement that a circuit preserve its faithfulness across an entire provable
range of feasible perturbations to the complementary activations over a continuous input domain.
Definition 2 (Patching-robust circuit). Given a neural network fG, a continuous input domain
Z ⊆ Rn,and a reference set of inputs {xj}kj=1 ⊆ X , we say that C ⊆ G is a patching-robust circuit
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with respect to ⟨fG,Z⟩ and a tolerance level δ ∈ R+, iff for every xj in {xj}kj=1:

∀α ∈ HC(Z). ∥fC(xj | C = α)− fG(xj)∥p ≤ δ (2)

z1

z2

x1

x2

Input

f(G⊔C′)

(
x)
∣∣C ′ = HC(z)

)
Logits

Model G

Circuit C

Figure 2: Illustration of the Siamese encoding
for certifying the guarantee in Def. 2. Gray
neurons denote non-circuit units whose activa-
tions are patched with those of the full model.

Certifying circuit patching robustness via verifi-
cation. Analogous to input robustness, we introduce
here a novel method to certify the property in Def 2,
using a siamese encoding of fG. Concretely, we du-
plicate the circuit C ′ := C and “stack” it with G,
but now G and C ′ have disjoint input domains, yield-
ing f(G⊔C′) : R2n → Rd. We connect C ′ and G
by fixing the activations of C ′ to those attained by
HC(z) when evaluating fG(z). Thus, inference for
(x, z) ∈ R2n is given by f(G⊔C′)(x | C ′ = HC(z)).
We then set input constraints to bound z within Z ,
and output constraints to limit the distance ∥·∥p be-
tween the logits of C ′ and G. Further details appear
in Appendix F. We remark that input robustness and
patching robustness can also be certified simultane-
ously within a single verification query by extending the siamese encoding (see Appendix G).

4 FROM CIRCUITS TO MINIMAL CIRCUITS

A common convention in the literature is that smaller circuits (i.e., lower circuit size) are generally
considered more interpretable than larger ones (Mueller et al.; Adolfi et al., 2024; Chowdhary et al.,
2025; Wang et al., 2023; Bhaskar et al., 2024; Shi et al., 2024; Conmy et al., 2023). This makes
minimality an important additional guarantee (Adolfi et al., 2024; Chowdhary et al., 2025; Shi et al.,
2024; Mueller et al.). While many works have pursued minimal circuits, recent studies highlight that
“minimality” itself can take different forms (Adolfi et al., 2024), ranging from the weak notion of
quasi-minimality to the strong notion of cardinal-minimality. In this work, we extend this spectrum
to four main forms and provide rigorous proofs linking them to different optimization algorithms.

4.1 MINIMALITY GUARANTEES

v1 = x2

v2 = x1

v3 = x1

v4 = x1 ⊕ x2

v5 = x1 ⊕ x2

v6 = x2 ⊕ x2 (= 0)

x1

x2

⊕ y

Figure 3: A toy Boolean circuit.

In this subsection, we introduce four central notions
of minimality. Since minimality must be defined rel-
ative to what qualifies as a “valid” or faithful circuit,
we begin by specifying a general faithfulness pred-
icate, Φ(C,G). Given a circuit C ⊆ G within the
computation graph G of a model fG, Φ(C,G) re-
turns True if C is faithful under some condition of
interest, and False otherwise. Instances of Φ may
include standard sampling-based measures used in
circuit discovery, such as requiring the mean-squared
error or KL-divergence between C and G to remain
below a threshold τ (Conmy et al., 2023). Alterna-
tively, Φ can reflect our provable measures that hold
across continuous domains (Section 3), e.g., defining
Φ(C,G) to require input and/or patching robustness.

Consider, for example, a toy Boolean circuit pre-
sented in Fig. 3 as a running example. For sim-
plicity, we assume that each node in the circuit corresponds to a component of the model.
The network takes inputs (x1, x2) ∈ {0, 1}2, whose outputs are aggregated by XOR, yielding
fG(x1, x2) = v1 ⊕ v2 ⊕ · · · ⊕ v6 = x2, since

fG(x1, x2) := x2 ⊕ x1 ⊕ x1 ⊕ (x1⊕x2)⊕ (x1⊕x2)⊕ (x2⊕x2)
= x2 ⊕ (x1⊕x1)︸ ︷︷ ︸

=0

⊕ [(x1⊕x2)⊕ (x1⊕x2)]︸ ︷︷ ︸
=0

⊕ (x2⊕x2)︸ ︷︷ ︸
=0

= x2.
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For simplicity, we set the faithfulness predicate to consider the very strong condition of strict equality
between the circuit and the model for every boolean input. In other words, for all x1 and x2 in
{0, 1}2, it holds that Φ(C,G) := fC(x1, x2) = fG(x1, x2) = x2. A more detailed description of
this example appears in Appendix C.2.

We begin with the weakest form of minimality and proceed step by step until we reach the strongest.
The first notion, quasi-minimality, introduced by (Adolfi et al., 2024), defines C as a subset that
includes a “breaking point”: some component that, when removed, breaks the circuit’s faithfulness:

Definition 3 (Quasi-Minimal Circuit). Given G, a quasi-minimal circuit C ⊆ G concerning Φ, is a
circuit for which Φ(C,G) holds (“C is faithful”), and there exists some element (i.e., node/edge) i in
C for which Φ(C \ {i}, G) is false.

In our running example C = {v1, . . . , v5} is quasi-minimal: it satisfies v1 ⊕ · · · ⊕ v5 = fG, but
removing some essential node (e.g., v1) breaks this equality. However, we observe that the quasi-
minimality notion of (Adolfi et al., 2024) can be strengthened: instead of requiring a single breaking
point, one can demand that every component serves as one. Following conventions in the optimization
literature, we refer to this stronger notion as local minimality.

Definition 4 (Locally-Minimal Circuit). Given G, a locally-minimal circuit C ⊆ G concerning Φ, is
a circuit for which Φ(C,G) holds, and for any element i in C, Φ(C \ {i}, G) is false.

In our example, C = {v1, v2, v3} is locally minimal, as the predicate holds for {v1, v2, v3}, but
does not hold for {v1, v2}, {v1, v2}, and {v2, v3}. However, while local-minimality is stronger
than quasi-minimality, it still has a limitation. Although removing any single component from the
circuit C breaks it, removing multiple components may still leave C valid, giving a misleading sense
of minimality. For instance, in our locally minimal circuit C = {v1, v2, v3}, observe that while
removing any single component (i.e., v1, v2, or v3) breaks faithfulness, removing the pair {v2, v3}
(i.e., keeping only v1) nonetheless results in a faithful circuit. To address this, we define a stronger
notion: subset-minimality, which requires every subset of components to be a breaking point.

Definition 5 (Subset-Minimal Circuit). Given G, a subset-minimal circuit C ⊆ G concerning Φ, is
a circuit for which Φ(C,G) holds true, and for any subgraph S ⊊ C, Φ(C \ S,G) is false.

In the running example, C = {v2, v4} is a subset-minimal circuit, as v2⊕v4 = x1⊕ (x1⊕x2) = x2,
since every strict subset ({v2}, {v4}) fails to compute fG. We note that even this significantly stronger
notion of subset-minimality does not necessarily yield subsets of the absolute lowest cardinality. To
address this limitation, the final notion introduces the strongest form: a cardinally-minimal circuit,
which corresponds to the global optimum of minimality.

Definition 6 (Cardinally-Minimal Circuit). GivenG, a cardinally-minimal circuit C ⊆ G concerning
Φ is a circuit for which Φ(C,G) is true, and has the lowest cardinality |C| (i.e., there is no circuit
C ′ ⊆ G for which Φ(C ′, G) is true and |C ′| < |C|).

Here, {v1} is cardinally minimal, since v1 = x2 is functionally equivalent to fG and no smaller
faithful circuit exists.

4.2 ALGORITHMS FOR LOCAL AND QUASI MINIMAL CIRCUITS

In this subsection, we present optimization algorithms for discovering circuits with provable guar-
antees. Building on prior circuit discovery frameworks, we show how modifying or validating
optimization objectives changes the resulting guarantees. We also establish theoretical links between
objectives based on continuous robustness guarantees and different notions of minimality. We begin
with a standard greedy algorithm (Algorithm 1):
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Algorithm 1 Greedy Circuit Discovery Iterative Search

1: Input Model fG, circuit faithfulness predicate Φ
2: C ← G under some given element ordering (e.g., reverse topological sort)
3: for all i ∈ C do
4: if Φ(C \ {i}, G) then
5: C ← C \ {i}
6: end if
7: end for
8: return C

Algorithm 1 is a standard greedy procedure that starts with the full model graph G and iteratively
removes elements as long as the faithfulness property holds. Once no further element can be removed
without breaking the property, it halts. This greedy structure underlies many circuit discovery methods,
enforcing a stop when every single component is critical. This directly guarantees local-minimality:
Proposition 1. Given any model fG, and faithfulness predicate Φ, running Algorithm 1 converges to
a locally-minimal circuit C concerning Φ.

We note that each evaluation of Φ(C \ {i}, G) may be costly, depending on the predicate Φ (e.g.,
certifying input or patching robustness). To mitigate this, one may use a lighter notion of minimality
— the quasi-minimal circuits of (Adolfi et al., 2024) — which require only a logarithmic, rather than
linear, number of invocations. For completeness, we formally present and extend their binary-search
procedure, provided as Algorithm 3 in Appendix C. Algorithm 3 follows a procedure similar to
Algorithm 1, but employs a binary rather than iterative search. As a result, it yields a weaker notion of
minimal circuits, while requiring fewer queries. We can therefore establish the following proposition:
Proposition 2. While Algorithm 3 converges to a quasi-minimal circuit and performs O(log |G|)
evaluations of Φ(C,G) (Adolfi et al., 2024), Algorithm 1 converges to a locally-minimal circuit and
performs O(|G|) evaluations of Φ(C,G).

Finally, we note that both Algorithms 1 and 3 converge only to relatively “weak” forms of minimality.
Even the stronger local-minimality guarantee of Algorithm 1 can fall short: while every single-
element removal C \ {i} breaks faithfulness, removing two elements simultaneously, C \ {i, j}, may
still yield a faithful circuit. This undermines C’s “minimality” and shows that neither algorithm
ensures the stronger notion of subset-minimality.
Proposition 3. There exist infinitely many configurations of fG, and Φ, for which Algorithm 1 and
Algorithm 3 do not converge to a subset-minimal circuit C concerning Φ.

4.3 THE CIRCUIT MONOTONICITY PROPERTY AND ITS IMPACT ON MINIMALITY

To address the issue of algorithms converging to “bad” local minima, we identify a key property of
the faithfulness predicate Φ with crucial implications for stronger minimal subsets — monotonicity:
Definition 7. We say that a circuit faithfulness predicate Φ is monotonic iff for any C ⊆ C ′ ⊆ G it
holds that if Φ(C,G) is true, then Φ(C ′, G) is true.

Intuitively, monotonicity means that once Φ(C,G) holds for a circuit C (i.e., it is “faithful”), it will
keep holding as elements are added. In other words, enlarging the circuit never breaks faithfulness.
This property is essential for Algorithm 1, as it underpins the stronger minimality guarantee:
Proposition 4. If Φ is monotonic, then for any model fG, Algorithm 1 converges to a subset-minimal
circuit C concerning Φ.

The condition of monotonicity. Interestingly, we establish a novel connection between the guarantees
on the input and patching domains outlined in Section 3 and the monotonic behavior of Φ:
Proposition 5. Let Φ(C,G) denote validating whether C is input-robust concerning ⟨fG,Z⟩ (Def. 1),
and simultaneously patching-robust concerning ⟨fG,Z ′⟩ (Def. 2). Then if Z ⊆ Z ′ andHG(Z ′) is
closed under concatantion, Φ is monotonic.

Intuitively, Proposition 5 shows that if the patching domain Z ′ subsumes the input domain Z , and the
activation spaceHG(Z ′) is closed under concatenation, i.e., concatenating any two partial activations
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remains within HG(Z ′) — then the faithfulness predicate Φ is monotonic. This introduces a new
class of evaluation conditions that are monotonic by construction, yielding stronger minimal circuits.

Proposition 6. If the condition Φ(C,G) is set to validating whether C is input-robust concerning
⟨fG,Z⟩ (Def. 1), and also patching-robust with respect to ⟨fG,Z ′⟩ (Def. 2), then if Z ⊆ Z ′ and
HG(Z ′) is closed under concatantion, Algorithm 1 converges to a subset-minimal circuit.

4.4 FROM SUBSET-MINIMAL CIRCUITS TO CARDINALLY-MINIMAL CIRCUITS

Although the monotonicity of Φ provides a stronger guarantee of subset-minimality, it still does
not ensure convergence to the globally minimal circuit (i.e., a cardinally-minimal circuit). A naive
approach to obtain such circuits is to enumerate all C ⊆ G, verify Φ(C,G), and choose the one with
the lowest cardinality |C|, but this quickly becomes intractable even for modestly sized graphs.

Exploiting circuit blocking-set duality for efficient approximation of cardinally-minimal circuits.
In this subsection, we leverage the idea that neural networks often contain small “circuit blocking-
sets” — subgraphs C ′ ⊆ G whose altered activations break the faithfulness of any circuit C that
excludes them. We prove a duality between circuits (under monotone faithfulness predicates) and
these blocking-sets, enabling a new algorithmic construction that approximates — and sometimes
exactly recovers — cardinally minimal circuits far more efficiently than naive search. Formally, for
fG and Φ, a circuit blocking-set is any C ′ ⊆ G such that Φ(C \ C ′, G) fails for all C ⊆ G, yielding
a duality grounded in a minimum-hitting-set (MHS) relation between circuits and blocking-sets:

Proposition 7. Given some model fG, and a monotonic predicate Φ, the MHS of all circuit blocking-
sets concerning Φ is a cardinally minimal circuit C for which Φ(C,G) is true. Moreover, the MHS of
all circuits C ⊆ G for which Φ(C,G) is true, is a cardinally minimal blocking-set w.r.t Φ.

The definition of MHS, a classic NP-Complete problem is given in Appendix B.7. This duality is
powerful because, despite NP-completeness, MHS can often be solved efficiently in practice with
modern solvers such as MILP or MaxSAT (Ignatiev et al., 2019a). Hence, similar dualities have
already been central to formal reasoning and provable explainability methods (Bacchus & Katsirelos,
2015; Ignatiev et al., 2019b; Bassan & Katz, 2023; Liffiton et al., 2016). With this duality theorem in
hand, we can design an algorithm that often computes (or approximates) cardinally minimal circuits:

Algorithm 2 Cardinally Minimal Circuit Approximation using MHS duality

1: Input model fG, faithfulness predicate Φ, tmax ∈ [|G|]
2: BlockingSets← ∅
3: for t← 1 to tmax do
4: Ct ← {S ⊆ G,∀U ⊆ BlockingSets : |S| = t, U ̸⊆ S}
5: for all S ∈ Ct do ▷ parallelization
6: if ¬Φ(G \ S,G) then
7: BlockingSets← BlockingSets ∪ S
8: end if
9: end for

10: C ← MHS(BlockingSets)
11: if Φ(C,G) then return C
12: end if
13: end for

Algorithm 2 leverages Proposition 7 by iterating over blocking-sets in parallel and computing each
set’s MHS to obtain a circuit C. This establishes a lower bound on the cardinally minimal circuit and,
through successive refinements, converges to the minimal one. While the number of blocking-set
subsets may be excessive in the worst case, in practice their size is often tractable (see Section 5)
yielding a low tmax and enabling more efficient — or closely approximate — computation of cardinally
minimal circuits. This is formalized in the following claim:

Proposition 8. Given a model fG, and a monotonic predicate Φ, Algorithm 2 computes a subset C
whose size is a lower bound to the cardinally minimal circuit for which Φ(C,G) is true. For a large
enough tmax value, the algorithm converges exactly to the cardinally minimal circuit.
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5 EXPERIMENTAL EVALUATION

Experimental setup. We evaluate our method on standard benchmarks from the neural network
verification literature (Brix et al., 2024; 2023): (i) MNIST, (ii) CIFAR-10, (iii) GTSRB, and (iv) Tax-
iNet (a real-world dataset used in verification-based input-explainability studies (Wu et al., 2023a;
Bassan et al., 2025)) . For neural network verification, we use the state-of-the-art α, β-CROWN
verifier (Bak et al., 2021; Müller et al., 2022a; Brix et al., 2024); for MHS we use RC2 (Ignatiev
et al., 2019a). For consistency, we evaluate our results on model architectures from prior verification
studies, particularly the neural network verification competition (VNN-COMP) (Brix et al., 2024);
full architectural details appear in Appendix D. To balance circuit discovery difficulty and human
interpretability, we chose the circuit granularity level to be neurons for MNIST and convolutional
filters for CIFAR-10, GTSRB, and TaxiNet. Both provable and sampling-based variants use the
standard logit-difference metric (Conmy et al., 2023). Further details are in Appendices E, F and G.

5.1 CIRCUIT DISCOVERY WITH INPUT-ROBUSTNESS GUARANTEES

We begin by evaluating the continuous input robustness guarantees of our method. We compare
two variants of Algorithm 1: (i) a standard sampling-based approach, where faithfulness is assessed
by applying the logit-difference predicate with tolerance δ on sampled inputs, and (ii) a provable
approach, which, via the siamese encoding of Section 3.1, certifies that the logit difference always
remains below δ throughout the continuous input domain. For both methods, we report circuit size
and robustness over the continuous input neighborhood across 100 batches (one circuit per batch).
We set the input neighborhood using ϵp values aligned with VNN-COMP (Brix et al., 2024) (with
variations in Appendix E) and adopt zero-patching in both settings. Results (Table 1) show that the
provable method is slower, due to solving certification queries, yet achieves 100% robustness with
comparable circuit sizes, whereas the sampling-based baseline attains substantially lower robustness.
An illustrative example appears in Figure 4.

Table 1: Circuit results from Algorithm 1, where Φ is defined either by bounding logit differences
under input sampling or by verifying the bound using the siamese encoding.

Dataset Sampling-based Circuit Discovery Provably Input-Robust Circuit Discovery

Time (s) Size (|C|) Robustness (%) Time (s) Size (|C|) Robustness (%)

CIFAR-10 0.23 ±0.52 16.47 ±9.08 46.5 ±5.0 2970.85 ±874.23 19.18 ±10.16 100.0 ±0.0
MNIST 0.31 ±0.89 12.56 ±2.30 19.2 ±4.0 611.93 ±97.14 15.84 ±2.33 100.0 ±0.0
GTSRB 0.11 ±0.33 28.91 ±4.69 27.6 ±4.0 991.08 ±162.91 29.59 ±4.45 100.0 ±0.0
TaxiNet 0.01 ±0.00 5.77 ±0.80 9.5 ±3.0 180.00 ±40.39 6.82 ±0.46 100.0 ±0.0

5.2 CIRCUIT DISCOVERY WITH PATCHING-ROBUSTNESS GUARANTEES

Table 2: Circuit results from Algorithm 1, where Φ is defined either by bounding logit differences
under zero patching, mean patching, or by verifying the bound using the siamese encoding.

Dataset Zero Patching Mean Patching Provably Patching-Robust Patching

Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%)

CIFAR-10 0.1 ± 0.3 65.1 ±3.0 46.4 ±6.0 0.0 ±0.0 64.1 ±3.6 33.3 ±5.7 5408.5 ±1091.0 65.6 ±1.6 100.0
MNIST 0.1 ±0.3 20.0 ±1.5 58.0 ±5.3 0.0 ±0.0 19.2 ±1.8 55.7 ±5.3 714.9 ±207.1 17.0 ±2.3 100.0
GTSRB 0.3 ±0.9 32.6 ±4.2 38.0 ±4.4 0.0 ±0.0 33.4 ±4.2 40.5 ±4.5 2907.2 ±721.7 34.3 ±4.1 100.0
TaxiNet 0.0 ±0.1 5.8 ±0.8 57.1 ±5.0 0.0 ±0.1 5.4 ±0.7 63.3 ±4.9 175.7 ±52.7 5.4 ±0.6 100.0

To assess patching robustness, we study three variants of Algorithm 1 enforcing a bounded logit
difference under different patching schemes: (i) zero-patching, (ii) mean-patching, and (iii) a certified
variant that, using a siamese encoding (Section 3.2), verifies the bound uniformly over a continuous
patching domain. Circuits found with zero or mean patching are then evaluated under the same
continuous-domain criterion as the certified setting. Results appear in Table 2. Circuits found
under standard patching (zero/mean) are sensitive to changes in the patching domain and yield low
robustness, whereas the verified method certifies this property and achieves 100% robustness. Despite
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Figure 4: Examples of ResNet circuits at the filter level on CIFAR-10. Filters are numbered within
each layer, with non-circuit filters in gray and residual connections shown as dashed lines. We
compare circuits from the sampling-based discovery and the provably robust variant, highlighting
components unique to the provable circuit in green.

the higher computational cost (due to the reliance on verification), the provable method delivers much
stronger robustness at comparable circuit sizes.

5.3 EXPLORING DIFFERENT MINIMALITY GUARANTEES OF CIRCUIT DISCOVERY

We experiment with the minimality guarantees from Sec. 4 and their connection to the robustness and
patching guarantees of Sec. 3. For the Φ predicate, we certify both input- and patching robustness
using a double-siamese encoding (Sec. 3.2), with environments Z ⊆ Z ′, and run Alg. 1, 2, 3. Alg. 2
is run with tmax = 3, restricting the contrastive blocking-set enumeration to sets of size at most
three. Our experiments show that MHS size consistently lower-bounds circuit size, with no circuit
falling below its MHS. In some runs, the iterative Alg. 1 circuits meet the bound exactly, and some
MHS circuits are certified as faithful (i.e., satisfying both input and patching robustness), as shown in
Fig. 5a.
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Figure 5: (a) Circuit size vs. MHS of blocking sets size, with the dashed equality line y=x as the
lower bound. (b) Convergence of circuit size over the first 10 minutes; shaded region shows deviation.
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We also note the efficiency–circuit size trade-off in Figure 5b: the quasi-minimal (Alg. 3) procedure
terminates fastest but plateaus at larger sizes with weaker minimality; the iterative search (Alg. 1)
achieves smaller sizes (stronger minimality) at higher runtime; and the MHS (Alg. 2) loop is slowest
yet progressively approaches a cardinally minimal (optimal) circuit size.

6 RELATED WORK

Circuit discovery. Our work joins recent efforts on circuit discovery in MI (Olah et al., 2020; Elhage
et al., 2021; Dunefsky et al., 2024), particularly those advancing automated algorithms (Conmy et al.,
2023; Hsu et al., 2024). Other relevant avenues include metrics for circuit faithfulness (Marks et al.,
2024; Hanna et al., 2024), differing patching strategies (Jafari et al., 2025; Syed et al., 2024; Haklay
et al., 2025; Miller et al., 2024; Zhang & Nanda, 2024), minimality criteria (Chowdhary et al., 2025;
Wang et al., 2023), and applications (Yao et al., 2024; Sharkey et al., 2025).

Theoretical investigations of MI. Several recent directions have examined other theoretical aspects
of MI, often linked to circuit discovery. These include framing MI within a broader causal abstraction
framework (Geiger et al., 2025; 2024), connecting it to distributed alignment search (DAS) (Wu
et al., 2023b; Sun et al., 2025); analyzing learned circuit logic through abstract interpretation from
program analysis (Palumbo et al., 2025), proof theory (Miller et al., 2024; Wu et al., 2025), statistical
identification (Méloux et al., 2025), and complexity theory (Adolfi et al., 2024).

Neural network verification and formal explainability. Our certification of robustness guarantees
(input and patching) builds on the rapid progress of neural network verification (Brix et al., 2024;
Wang et al., 2021; Zhou et al., 2024a; Chiu et al., 2025; Müller et al., 2021; Singh et al., 2019). These
advances have also been applied to certifying provable guarantees for input-based explainability
notions (Wu et al., 2023a; Bassan et al., 2025; Izza et al., 2024; Audemard et al., 2022; La Malfa
et al., 2021) (often termed formal explainable AI (Marques-Silva & Ignatiev, 2022)). Verification
has also been applied to activation-pattern specifications (NAPs) (Geng et al., 2023), which encode
active/inactive neuron states and induce input regions beyond local perturbation balls. Recent
work (Geng et al., 2024) further aims to learn minimal NAPs by removing redundant neuron states
while preserving correctness. Our work is the first to employ neural network verification based
strategies for circuit discovery in mechanistic interpretability.

7 LIMITATIONS AND FUTURE WORK

A limitation of our framework, shared by all methods offering robustness guarantees over continuous
domains, is its reliance on neural network verification queries. While current verification techniques
remain limited for state-of-the-art models, they are advancing rapidly in scalability (Brix et al.,
2024; Wang et al., 2021; Zhou et al., 2024a). Our framework provides a novel integration of such
tools to mechanistic interpretability, enabling circuit discovery with provable guarantees. Hence, as
verification methods continue to scale, so will the reach of our approach, as our extensive experiments
are grounded in α-β-CROWN, the current leading verifier, and evaluated on standard benchmarks
from the annual NN verification competition. Moreover, our novel theoretical results, covering
guarantees over input domains, patching domains, and minimality, lay strong groundwork for future
research on provable circuit discovery, including probabilistic and statistical forms of guarantees.

8 CONCLUSION

We introduce a framework for discovering circuits with provable guarantees, covering both (i) con-
tinuous input-domain robustness, (ii) continuous patching-domain robustness, and (iii) multiple
forms of minimality. Central to our approach is the notion of circuit monotonicity, which reveals
deep theoretical connections between input, patching, and minimality guarantees, and underpins the
convergence of circuit discovery algorithms. Our experiments, which leverage recent advancements
in neural network verification, confirm that our framework delivers substantially stronger guarantees
than standard sampling-based approaches commonly used in circuit discovery. By bridging circuit
discovery with neural network verification, this work takes a novel step toward designing safer, more
reliable circuits, and lays new theoretical and algorithmic foundations for future research in provable
circuit discovery.
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Appendix
The appendix collects proofs, model specifications, and supplementary experimental results that
support the main paper.

Appendix A contains additional background on neural network verification, circuit discovery, and
patching.
Appendix B contains the complete proofs of all propositions.
Appendix C provides the pseudocode for the greedy quasi-minimality algorithm, together with a
more detailed explanation of the toy example illustrating the minimality notion.
Appendix D provides specifications of the datasets and architectures used.
Appendix E provides additional details on the input-robustness experiment’s methodology, verifica-
tion setup, and evaluation.
Appendix F provides additional details on the patching-robustness experiment’s methodology,
verification setup, and evaluation.
Appendix G provides details on the minimality evaluation experiment’s methodology, verification
setup, and evaluation.
Appendix H provides the LLM usage discolsure.

A ADDITIONAL BACKGROUND ON NEURAL NETWORK VERIFICATION AND
CIRCUIT DISCOVERY

Neural Network Verification. Neural network verification provides formal guarantees about
the behavior of a neural network fG over a continuous input region. Classic SMT/MILP-based
approaches (Katz et al., 2017; Wu et al., 2024; Katz et al., 2019; Tjeng et al., 2017; Ehlers, 2017)
encode ReLU networks and specifications as logical or mixed-integer constraints and offer exact
guarantees, but scale only to small–medium models. Abstract-interpretation methods (Singh et al.,
2019; Gehr et al., 2018; Ferrari et al., 2022; Müller et al., 2022b) propagate over-approximations
layer by layer, giving fast but incomplete robustness certificates. A major advance came from linear-
relaxation–based bound propagation, notably CROWN (Zhang et al., 2018) and follow-ups (Wang
et al., 2021; Chiu et al., 2025; Zhou et al., 2024b; Shi et al., 2025), which compute tight dual-based
linear bounds and serve either as scalable incomplete verifiers or as strong relaxations inside exact
search. Modern branch-and-bound (BaB) frameworks leverage these relaxations to achieve complete
verification at scale, with α-β-CROWN and related variants now dominating VNN-COMP (Brix
et al., 2024) and handling million-parameter models. Recent progress includes tighter relaxations
(e.g., SDP hybrids (Chiu et al., 2025)), cutting planes (Zhou et al., 2024b), and support for non-ReLU
nonlinearities (Shi et al., 2025). Verification today routinely certifies robustness for moderately large
CNNs and ResNets, though major challenges remain for transformers, complex architectures, and
richer temporal or relational specifications.

Circuit discovery and patching. An important step in circuit discovery is patching, which seeks to
isolate the computational role of a hypothesized circuit by intervening on the activations outside it. In
a typical setup, the model is run on a base input, and activations at selected non-circuit nodes are
replaced — either with fixed baseline values (e.g., zero or mean activation) or with activations taken
from a counterfactual input. If the model’s output remains unchanged, the circuit is understood to
be sufficient for the behavior; if it changes, this reveals a dependency on the patched components.
Numerous patching protocols have been proposed, including activation replacement, path patching,
and attention/head interventions (Jafari et al., 2025; Syed et al., 2024; Haklay et al., 2025; Miller
et al., 2024; Zhang & Nanda, 2024; Nanda et al., 2023), all aiming to identify model components
whose behavior is necessary or sufficient for a target computation. To the best of our knowledge,
our method is the first to provably certify the stability of circuits under families of such patching
interventions.

B PROOFS OF MAIN RESULTS

This appendix presents the proofs of the main propositions stated in the main paper.
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B.1 PROOF OF PROPOSITION 1

Proposition 1. Given any model fG, and faithfulness predicate Φ, running Algorithm 1 converges to
a locally-minimal circuit C concerning Φ.

Proof. We need to establish two points: (i) The final circuit C returned by Algorithm 1 is faithful,
i.e., Φ(C,G) holds. (ii) No component i ∈ C can be removed without breaking faithfulness; in other
words, for every i in C, Φ(C \ {i}, G) is false.

In the first part of the proof, the algorithm starts with C ← G. Since the full model graph G is faithful
to itself, Φ(G,G) holds. At each step, the algorithm checks Φ(C \ {i}, G) for the current component
i and updates C ← C \ {i} only if this predicate remains true. Hence, the invariant is preserved
throughout, and the final circuit C still satisfies Φ(C,G).

For the second part of the proof, note that the algorithm processes each component i ∈ G exactly
once. If for some remaining i ∈ C the predicate Φ(C \ {i}, G) were true, then i would have been
removed when it was considered. Therefore, the fact that i remains in C means that Φ(C \ {i}, G) is
false, establishing that C is locally minimal with respect to Φ. This completes the proof.

B.2 PROOF OF PROPOSITION 2

Proposition 2. While Algorithm 3 converges to a quasi-minimal circuit and performs O(log |G|)
evaluations of Φ(C,G) (Adolfi et al., 2024), Algorithm 1 converges to a locally-minimal circuit and
performs O(|G|) evaluations of Φ(C,G).

Proof. For the local minimality part of the proof, observe that Algorithm 1 processes each component
ofG individually. By Proposition 1, it converges to a locally minimal circuit. Since it tests Φ upon the
removal of every one of the |G| components, the procedure carries out O(|G|) predicate evaluations
in total.

The quasi-minimality algorithm 3 and its runtime were established in Adolfi et al. (2024). For
completeness, we restate the argument regarding the number of evaluations: the algorithm halves
the candidate index range at each step, requiring at most ⌈log |G|⌉ predicate evaluations before
termination. Thus, its complexity is O(log |G|).

B.3 PROOF OF PROPOSITION 3

Proposition 3. There exist infinitely-many number of configurations of fG, and Φ, for which Algo-
rithm 1 and Algorithm 3 do not converge to a subset-minimal circuit C concerning Φ.

Proof. Consider a small nonlinear counterexample network fG : R→ R, with underlying structure
G and node set VG := {v1, v2, v3, v4}. The network is defined over a one-dimensional input x, with
three hidden nodes v1, v2, v3 and an output node v4.

Consider a one–dimensional input x, three hidden units v1, v2, v3, and an output neuron v4:

v1(x) := ReLU(x), v2(x) := ReLU(x), v3(x) := x, v4(u, v, w) := u− v +w (3)

Therefore, the following holds:

fG(x) := v4
(
v1(x), v2(x), v3(x)

)
= v1(x)− v2(x) + v3(x) = x for all x ∈ [−1, 1] (4)

For any subset C ⊆ {v1, v2, v3}, define fC by applying zero–patching to all hidden units outside C.
We take the faithfulness predicate to be strong equality, i.e., corresponding to δ = 0 and ϵp given by
the ℓ∞ norm over the domain [0, 1]. In particular:

Φ(C,G) ⇐⇒ ∀x ∈ [0, 1], fC(x) = fG(x) (5)
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Iterative (Algorithm 1). No single removal preserves Φ. Removing any one hidden unit breaks
equality:

fG\{v1}(x) = −ReLU(x) + x ̸= x for x > 0,

fG\{v2}(x) = ReLU(x) + x ̸= x for x > 0,

fG\{v3}(x) = ReLU(x)− ReLU(x) = 0 ̸= x for x ̸= 0.

(6)

Hence, Algorithm 1 halts at C = G (locally minimal). Yet a strict subset is faithful: removing the
pair {v1, v2} yields fG\{v1,v2}(x) = v3(x) = x, so Φ(G \ {v1, v2}, G) holds. Therefore, G is not
subset–minimal.

Quasi (Algorithm 3). With a valid order (v1, v3, v2), Algorithm 3 first tests the prefix removal
{v1, v3}, leaving fG(x) = −ReLU(x) ̸= x, then tests {v1}, leaving fG(x) = −ReLU(x) + x ̸= x;
it never considers the pair {v1, v2} and so returns C = G, which is not subset–minimal by the
previous paragraph.

Since this holds for every m ∈ N, we obtain infinitely many configurations where both algorithms
fail to return a subset–minimal circuit.

Infinite family. For any m ≥ 1, add pairs (pi, qi) with pi(x) = qi(x) = ReLU(x) and set

gv(x) = v3(x) +

m∑

i=1

(
pi(x)− qi(x)

)
.

Then fG(x) = x on [0, 1], any single removal (of v3, some pj , or some qj) breaks equality, but
removing a whole pair {pj , qj} preserves it. Greedy and (with order p1, . . . , pm, v3, q1, . . . , qm)
QMSC both return G. Thus there are infinitely many such configurations.

B.4 PROOF OF PROPOSITION 4

Proposition 4. If Φ is monotonic, then for any model fG, Algorithm 1 converges to a subset-minimal
circuit C concerning Φ.

Proof. By definition, establishing subset-minimality of the circuit C requires showing: (i) that C is
faithful, i.e., Φ(C,G) holds, and (ii) that no proper subgraph C ′ ⊆ C also satisfies Φ(C ′, G).

For the first part of the proof, in a similar fashion to the faithfulness preservation argument of the
predicate Φ that was mentioned in the proof of Proposition 1, we describe the following logic chain:
the algorithm starts from C0 := G and iterates over the components in G in some given ordering (e.g.
reverse topological order). This “maintains” at each step a circuit Ct, for which at the first initial
step, by definition Φ(G,G) holds true (the full model is faithful to itself). At every iteration t, the
algorithm updates Ct+1 := Ct \ {t} only when G,Ct \ {c}) is true. Hence, the invariant Φ(G,Ct)
is preserved throughout, and particularly, at the termination of the loop invariant, we have that for the
final returned circuit C, then Φ(C,G) still holds.

For the second part of the proof, assume towards contradiction that there exists some C ′ ⊊ C for
which it holds that Φ(C ′, G) is true. Now, pick any c⋆ ∈ C \ C ′. Let Ct be the circuit at iteration t
where this iteration marks the step over which the algorithm has evaluated whether to add c⋆ to the
circuit. Because c⋆ is present in the final returned circuit C, then by induction it was not removed at
any step t when considered, and hence it must hold that Φ(Ct \ {c⋆}, G) is false. On the other hand,
we have the following inclusions:

C ′ ⊆ C \ {c⋆} ⊆ Ct \ {c⋆}. (7)

And so by the very definition of the monotonicity of C with respect to Φ, we obtain that:

Φ(C ′, G) =⇒ Φ(Ct \ {c⋆}, G) (8)
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This contradicts the fact that we have derived that Φ(Ct \ {c⋆}, G) must be false from the algorithm’s
progression. Hence, we have obtained that for any subset C ′ ⊊ C it holds that Φ(C ′, G) is false, and
hence C is subset-minimal with respect to Φ.

B.5 PROOF OF PROPOSITION 5

Proposition 5. Let Φ(C,G) denote validating whether C is input-robust concerning ⟨fG,Z⟩ (Def. 1),
and simultaneously patching-robust concerning ⟨fG,Z ′⟩ (Def. 2). Then if Z ⊆ Z ′, andHG(Z ′) is
closed under concatantion, Φ is monotonic.

Proof. We begin by formally stating the condition of an activation space being closed under concate-
nation:
Definition 1. We say that an activation space HG(Z) of some model fG and domain Z ⊆ Rn

is closed under concatination iff for any two partial activations α, α′, where α ∈ HC(Z) is an
activation over the circuit C ⊆ G, and α′ ∈ HC′(Z) is an activation over the circuit C ′ ⊆ G, then
it holds that α ∪ α′ ∈ HC∪C′(Z).

Now, let there be some C ⊆ C ′ ⊆ G, for which C ′ := C ⊔ {c′1, . . . , c′t}. We assume that the
predicate Φ is defined as validating whether some circuit C is input-robust concerning ⟨fG,Z⟩, and
also patching-robust with respect to ⟨fG,Z ′⟩. In other words, this implies that Φ(C,G) holds if and
only if:

∀z ∈ Z :=

k⋃

j=1

Bpϵp(xj), ∀α ∈ HC(Z ′) :
∥∥ fC(z | C = α)− fG(z)

∥∥
p
≤ δ (9)

We note that the following notation is equivalent to the following:

max
z∈Z,α∈HC(Z′)

∥∥ fC(z | C = α)− fG(z)
∥∥
p
≤ δ ⇐⇒

max
z∈Z,z′∈Z′

∥∥ fC(z | C = HC(z
′))− fG(z)

∥∥
p
≤ δ

(10)

where we use the notationHC(z
′) to denote the specific activation over C when computing fG(z′)

for some z′ ∈ Rn.

Since our goal is to prove that Φ is monotonic, it suffices to show that C ′ also satisfies the above
conditions. An equivalent formulation is to verify the condition for any C ′ := C ⊔ {c′i}, i.e., for
supersets that differ from C by a single element rather than an arbitrary subset. This is valid because
adding subsets inductively, one element at a time, is equivalent to adding the entire subset at once.
We therefore proceed under this formulation and assume, for contradiction, that the conditions fail to
hold for C ′. In other words, we assume the following:

∃z ∈ Z, ∃α ∈ HC′(Z ′) :
∥∥ fC′(z | C ′ = α)− fG(z)

∥∥
p
> δ ⇐⇒

max
z∈Z,α∈H

C′ (Z′)

∥∥ fC′(z | C ′ = α)− fG(z)
∥∥
p
> δ ⇐⇒

max
z∈Z,z′∈Z′

∥∥ fC′(z | C ′ = HC′(z′))− fG(z)
∥∥
p
> δ

(11)

This is also equivalent to stating that:

max
z∈Z,z′∈Z′

∥∥∥ fC⊔{c′i}(z | C ⊔ {c′i} = HC⊔{c′i}
(z′))− fG(z)

∥∥∥
p
> δ (12)

Let us denote by S ⊆ R the set of all values that are feasible to obtain by fC(z | C = HC(z
′)) and

by S ⊆ R all values that are feasible by fC(z | C ′ = HC′(z′)). More precisely:
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S := {fC(z |C = HC(z
′)) : z ∈ Z, z′ ∈ Z ′}, ∧ S′ := {fC′(z |C ′ = HC′(z′)) : z ∈ Z, z′ ∈ Z ′}

(13)

For finalizing the proof of the proposition, we will make use of the following Lemma:
Lemma 1. Given the predefined fG, the circuits C ⊆ C ′ ⊆ G, and the aforementioned notations of
S and S′, then it holds that S′ ⊆ S.

Proof. We first note that by definition:

S′ := {fC′(z | C ′ = HC′(z′)) : z ∈ Z, z′ ∈ Z ′} =
{fC⊔{c′i}(z | C ⊔ {c′i} = HC⊔{c′i}

(z′)) : z ∈ Z, z′ ∈ Z ′} (14)

We also note that for any z ∈ Rn it holds, by definition, that:

fC(z | C = HC(z
′)) = f∅(z | C = HC(z

′), C = HC(z)) (15)

The notation f∅(z | C = HC(z
′), C = HC(z)) simply means that we fix the activations of C to

HC(z) and those of C toHC(z
′). From the same manipulation of notation, we can get that:

fC⊔{c′i}(z | C ⊔ {c′i} = HC⊔{c′i}
(z′)) =

f∅(z | C ⊔ {c′i} = HC⊔{c′i}
(z′), C ⊔ {i} = HC⊔{c′i}(z)) =

f∅(z | C ⊔ {c′i} = HC⊔{c′i}
(z′), C = HC(z), {c′i} = Hc′i

(z)) =

f∅(z | C \ {c′i} = HC\{c′i}(z
′), C = HC(z), {c′i} = Hc′i

(z))

(16)

To prove that S′ ⊆ S, let us take some z0, z′0 ∈ Z . We will now prove that for any such choice of
z0, z′0 then the following holds:

fC′(z0 | C ′ = HC′(z′0)) ⊆ S (17)

Since z′0 ∈ Z ′, z0 ∈ Z ⊆ Z ′, and HG(Z ′) is closed under concatination, then by definition it
holds that fixing the activations of C \ {c′i} to HC\{c′i}(z

′
0) ∈ HC\{c′i}(Z

′) and those of {c′i} to
H{c′i}(z0) ∈ H{c′i}(Z ′) yields an activation α ∈ HC\{c′i}∪{c′i}(Z

′) = HC(Z ′).

Hence, we arrive at:

fC′(z0 | C ′ = HC′(z′0)) =

fC⊔{c′i}(z0 | C ⊔ {c′i} = HC⊔{c′i}
(z′0)) =

f∅(z0 | C \ {c′i} = HC\{c′i}(z
′
0), C = HC(z0), {c′i} = Hc′i

(z0)) =

f∅(z0 | C = α,C = HC(z0))

(18)

Since we have shown that α ∈ HC(Z ′) and sinceHC(z0) ∈ HC(Z) then we have that:

fC′(z0 | C ′ = HC′(z′0)) =
f∅(z0 | C = α,C = HC(z0)) ∈

{fC(z | C = HC(z
′)) : z ∈ Z, z′ ∈ Z ′} = S

(19)

This establishes that S′ ⊆ S, and hence concludes the proof of the lemma.

Now to finalize the proof of the proposition, we recall that we have shown that the following holds
(and can now rewrite this expression given our new definition of S):
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max
z∈Z,z′∈Z′

∥∥ fC(z | C = HC(z
′))− fG(z)

∥∥
p
≤ δ ⇐⇒

max
z∈Z,y∈S

∥ y − fG(z) ∥p ≤ δ
(20)

We have also assumed towards contradiction that the following holds, and we can similarly further
rewrite this term given our new definition of S′:

max
z∈Z,z′∈Z′

∥∥ fC′(z | C ′ = HC′(z′))− fG(z)
∥∥
p
> δ ⇐⇒

max
z∈Z,y∈S′

∥ y − fG(z) ∥p > δ
(21)

However, since we have proven in Lemma 1 that S′ ⊆ S then we know that:

max
z∈Z,y∈S

∥ y − fG(z) ∥p ≥ max
z∈Z,y∈S′

∥ y − fG(z) ∥p (22)

which stands in contradiction to euqations 20 and 21, hence implying the monotonicity of Φ, and
concluding the proof of the proposition.

B.6 PROOF OF PROPOSITION 6

Proposition 6. If the condition Φ(C,G) is set to validating whether C is input-robust concerning
⟨fG,Z⟩ (Def. 1), and also patching-robust with respect to ⟨fG,Z ′⟩ (Def. 2), then if Z ⊆ Z ′ and
HG(Z ′) is closed under concatantion, Algorithm 1 converges to a subset-minimal circuit.

Proof. The claim follows directly from Propositions 4 and 5. SinceZ ⊆ Z ′, Proposition 5 implies that
Φ(C,G) is monotonic. By Proposition 4, it follows that Algorithm 1 converges to a subset-minimal
circuit C with respect to Φ.

B.7 PROOF OF PROPOSITION 7

Proposition 7. Given some model fG, and a monotonic predicate Φ, the MHS of all circuit blocking-
sets concerning Φ is a cardinally minimal circuit C for which Φ(C,G) is true. Moreover, the MHS of
all circuits C ⊆ G for which Φ(C,G) is true, is a cardinally minimal blocking-set w.r.t Φ.

Proof. Prior to the proof of Proposition 7, which establishes the connection between Minimum Hitting
Sets (MHS) and cardinal minimality, we first recall the definition of MHS:
Definition 2 (Minimum Hitting Set (MHS)). Given a collection S of sets over a universe U , a hitting
set H ⊆ U for S is a set such that

∀S ∈ S, H ∩ S ̸= ∅.
A hitting set H is called minimal if no subset of H is a hitting set, and minimum if it has the smallest
possible cardinality among all hitting sets.

We now move to prove that the MHS of blocking-sets is a cardinally minimal faithful circuit. Let C
be a minimum hitting set (MHS) of the set of blocking-sets B. Assume towards contradiction that
¬Φ(C,G). Set B⋆ := G \C. Then Φ(G \B⋆, G) = Φ(C,G) is false, so B⋆ ∈ B. Yet by definition
C ∩B⋆ = ∅, contradicting that C hits every set in B. Hence Φ(C,G) holds.

We now move forward to prove minimality. Assume there exists C ′ ⊆ G with Φ(C ′, G) and
|C ′| < |C|. We claim C ′ is also a hitting set of B, contradicting the minimality of C as an MHS.
Indeed, if some B ∈ B satisfied C ′ ∩B = ∅, then C ′ ⊆ G \B, and by monotonicity of Φ we would
have Φ(G \B,G), contradicting B ∈ B. Hence C ′ hits all of B, contradicting that C is an MHS.

For the second part of the proof, let C := {C ⊆ G : Φ(C,G) } and let B be a minimum hitting set
of C. Assume towards contradiction that it is not, namely Φ(G \B,G) holds. Then C⋆ := G \B is
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a faithful circuit, implying C⋆ ∈ C. Yet by definition C⋆ ∩B = ∅, contradicting that B hits every set
in C.

Finally, assume towards contradiction that there exists a blocking-set B′ with |B′| ≤ |B|. Let C ∈ C.
If C ∩ B′ = ∅, then C ⊆ G \ B′, and by monotonicity of Φ, we obtain that Φ(G \ B′, G) holds,
contradicting B′ being a blocking-set. Hence, C ∩ B′ ̸= ∅, so B′ is a hitting set of C. But since
|B′| ≤ |B|, this contradicts the minimality of B as an MHS. Therefore, B is cardinally minimal
among blocking-sets.

B.8 PROOF OF PROPOSITION 8

Proposition 8. Given a model fG, and a monotonic predicate Φ, Algorithm 2 computes a subset C
whose size is a lower bound to the cardinally minimal circuit for which Φ(C,G) is true. For a large
enough tmax value, the algorithm converges exactly to the cardinally minimal circuit.

Proof. We begin with the proof for the part on the lower bound to cardinally minimal circuit size. Let
C be the output of Algorithm 2 for some tmax. By definition, C is the MHS of the set of blocking-sets
accumulated by the algorithm, denoted Btmax .

Assume towards contradiction that |C| is not a lower bound for the size of a cardinally minimal
circuit. This would imply the existence of a faithful circuit C ′ with Φ(C ′, G) and |C ′| ≤ |C|. From
the minimality of C as a hitting set, it follows that C ′ is not a hitting set. Hence, there exists some
B ∈ Btmax such that C ′ ∩ B = ∅. This implies C ′ ⊆ G \ B, and by monotonicity of Φ we obtain
Φ(G \B,G), contradicting B being a blocking-set.

We now continue to the second part of the proof regarding the convergence to cardinally minimal for
large enough tmax. For tmax = |G|, the algorithm iterates over all possible blocking-sets. Hence, the
resulting output C is the MHS of all circuit blocking-sets, and by Proposition 7 we conclude that C
is a cardinally minimal circuit.

C MINIMALITY GUARANTEES: ALGORITHMS AND ILLUSTRATIONS

C.1 GREEDY CIRCUIT DISCOVERY BINARY SEARCH FOR QUASI-MINIMAL CIRCUITS

We formalize the binary search procedure introduced in (Adolfi et al., 2024) in Algorithm 3.

Algorithm 3 Greedy Circuit Discovery Binary Search

1: Input: Model fG, circuit faithfulness predicate Φ with Φ(G,G) ∧ ¬Φ(∅, G)
2: C ← G, low← 0, high← |G|
3: while high− low > 1 do
4: mid← ⌊(low + high)/2⌋
5: Cmid ← G \G[1 : mid]
6: if Φ(Cmid, G) then
7: low← mid; C ← Cmid
8: else
9: high← mid

10: end if
11: end while
12: return C

C.2 TOY EXAMPLE: MINIMALITY NOTIONS

To illustrate the distinctions between the four minimality notions introduced in Definitions 3,4,5,6
(Section 4), we construct a simple Boolean toy network.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

For simplicity, we illustrate the different minimality notions using a Boolean circuit with XOR gates.
While this abstraction makes the example easier to follow, it is without loss of generality, since
Boolean gates can be equivalently expressed with ReLU activations.

(Specifically, the XOR gate satisfies

x1 ⊕ x2 = ReLU(x1 − x2) + ReLU(x2 − x1),
as for x1, x2 ∈ {0, 1} both terms vanish when x1 = x2, and exactly one equals 1 when x1 ̸= x2).

We emphasize that this encoding is not part of the computation graph, which can be defined indepen-
dently. Accordingly, our toy boolean circuit (Fig. 6) can be viewed as a small feed-forward ReLU
network. Despite its small size, this network cleanly separates the notions of cardinal, subset, local,
and quasi-minimal circuits.

v1 = x2

v2 = x1

v3 = x1

v4 = x1 ⊕ x2

v5 = x1 ⊕ x2

v6 = x2 ⊕ x2 (= 0)

x1

x2

⊕ y

Figure 6: Boolean toy network with XOR aggregation: y = v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5. With v1 = x2,
v2 = v3 = x1, v4 = v5 = x1⊕x2, and v6 = x2⊕x2 = 0 the full model computes fG(x1, x2) = x2.

Explanation. For clarity and simplicity, we define a Boolean network G which takes inputs in
(x1, x2) ∈ {0, 1}2. The network G is composed of six components, whose vertex set is denoted
VG = {v1, v2, v3, v4, v5, v6}, aggregated by XOR (Fig. 6):

y = v1⊕v2⊕v3⊕v4⊕v5⊕v6, with v1 = x2, v2 = v3 = x1, v4 = v5 = x1⊕x2, v6 = x2⊕x2

The full network computes fG(x1, x2) = x2, since

fG(x1, x2) = x2 ⊕ x1 ⊕ x1 ⊕ (x1⊕x2)⊕ (x1⊕x2)⊕ (x2⊕x2)
= x2 ⊕ (x1⊕x1)︸ ︷︷ ︸

=0

⊕ [(x1⊕x2)⊕ (x1⊕x2)]︸ ︷︷ ︸
=0

⊕ (x2⊕x2)︸ ︷︷ ︸
=0

= x2.

We pick the faithfulness predicate to be

Φ(C,G) := fC(x1, x2) = fG(x1, x2) = x2 ∀(x1, x2),
i.e., C is faithful if it computes the same output as G on all inputs.

This single construction cleanly separates the four minimality notions:

For each circuit C, we verify that it satisfies fC(x1, x2) = x2 and state why it meets (or fails) the
corresponding minimality condition.

• Cardinal-minimal: Ccard = {v1}. It computes fCcard
= v1 = x2 = fG. No circuit with

fewer components can be faithful.
• Subset-minimal: Csub = {v2, v4}. The computation is

v2 ⊕ v4 = x1 ⊕ (x1 ⊕ x2) = x2.

Removing any component breaks correctness: {v2} = x1 ̸= x2 and {v4} = x1 ⊕ x2 ̸= x2.
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• Local-minimal: Cloc = {v1, v2, v3}. It computes

v1 ⊕ v2 ⊕ v3 = x2 ⊕ x1 ⊕ x1 = x2.

Removing any single component breaks correctness: {v1, v2} = x2 ⊕ x1 ̸= x2, {v1, v3} =
x2 ⊕ x1 ̸= x2, {v2, v3} = x1 ⊕ x1 = 0 ̸= x2. However, removing two components may
still leave a correct singleton (e.g. {v1}), so it is not subset-minimal.

• Quasi-minimal: Cquasi = {v1, v2, v3, v4, v5}. It computes

v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 = x2.

The circuit contains a single essential component (v1), while the remaining ones can be
removed in various combinations without changing the output (e.g., v2 ⊕ v3 = 0 and
v4 ⊕ v5 = 0). Hence it is faithful but not minimal under any stricter notion.

D BENCHMARKS, MODELS AND ARCHITECTURAL SPECIFICATIONS

We evaluate our methods on four standard benchmarks in neural network verification: three classifi-
cation benchmarks (CIFAR-10 (Krizhevsky & Hinton, 2009), GTSRB (Stallkamp et al., 2011), and
MNIST (Lecun et al., 1998)) and one regression benchmark, TaxiNet (Julian et al., 2020).

For each benchmark, we perform circuit discovery at the natural level of granularity for the model:
convolutional filters (or channels) in CNNs and neurons in the fully connected network. The number
of components at each granularity is summarized in Table 3.

Table 3: Granularity and number of components considered for circuit discovery across the benchmark
models.

Dataset Model Examined Granularity # Components

MNIST FC Neurons 31
GTSRB CNN Filters 48
CIFAR-10 ResNet Filters 72
TaxiNet CNN Filters 8

Data Selection. For the input and patching robustness experiments (Appendices E, F), we con-
structed at least 100 batches per benchmark, sampled from the test set using only correctly predicted
inputs (or low-error inputs in the regression case). In classification tasks, each batch contained k = 3
samples from a single class, evenly distributed across classes. In the regression task, batches of
k = 3 were drawn from inputs with absolute error below 0.2, excluding large deviations relative to
the model’s performance. Specifically, we sampled 100 batches for CIFAR-10 and MNIST (10 per
class), 129 batches for GTSRB (3 per class across 43 classes), and 100 batches for the regression
benchmark TaxiNet.

For the minimality guarantees experiment (Subsection 5.3, Appendix G), we used 50 singleton
batches (k = 1), obtained by selecting one sample from each MNIST batch above, thereby preserving
the even class distribution.

D.1 CIFAR-10

For the CIFAR-10 benchmark Krizhevsky & Hinton (2009), we use the ResNet2b model, originating
from the VNN-COMP neural network verification competition (Bak et al., 2021). This residual
network consists of an initial convolutional layer, two residual blocks, and a dense classification head
producing 10 output classes. In total, it comprises 72 filters (also referred to as channels).
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Layer / Block Output Dim. Details

Input 32× 32× 3 CIFAR-10 image
Conv1 16× 16× 8 3× 3, stride 2

Residual Block 1
Conv1 8× 8× 16 3× 3, stride 2
ReLU 8× 8× 16 non-linearity
Conv2 8× 8× 16 3× 3, stride 1
Skip connection 8× 8× 16 identity/projection
Output 8× 8× 16 addition + ReLU

Residual Block 2
Conv1 8× 8× 16 3× 3, stride 1
ReLU 8× 8× 16 non-linearity
Conv2 8× 8× 16 3× 3, stride 1
Skip connection 8× 8× 16 identity
Output 8× 8× 16 addition + ReLU

Flatten 1× 2048 –
Linear1 2048 → 100 ReLU
Linear2 100 → 10 Output logits

Table 4: Full architecture of the ResNet2b model used in Bak et al. (2021) for the CIFAR-10
benchmark

D.2 GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) Stallkamp et al. (2011) is a large-scale
image classification dataset containing more than 50,000 images of traffic signs across 43 classes,
captured under varying lighting and weather conditions.

We adopt the GTSRB-CNN model used in recent explainability studies (Bassan et al., 2025). This
architecture is a convolutional network with two convolutional layers using ReLU activations and
average pooling, followed by two fully connected layers. It outputs logits over 43 traffic sign classes.

In total, the GTSRB-CNN comprises 48 filters across its two convolutional layers (16 + 32).

Layer Output Dim. Details

Input 32× 32× 3 GTSRB image
Conv1 32× 32× 16 3× 3, padding 1, ReLU
AvgPool1 16× 16× 16 2× 2
Conv2 16× 16× 32 3× 3, padding 1, ReLU
AvgPool2 8× 8× 32 2× 2
Flatten 1× 2048 –
FC1 2048 → 128 ReLU
FC2 128 → 43 Output logits

Table 5: Architecture of the GTSRB-CNN model used in (Bassan et al., 2025).

D.3 MNIST

We use a simple, classic fully connected feedforward network for MNIST classification, which we
trained given the simplicity of the task. The model achieves 95.20% accuracy on the test set. It
consists of two hidden layers with ReLU activations of sizes 13 and 11, followed by a linear output
layer, comprising 31 non-input neurons in total and 10,479 trainable parameters.
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Layer Dimensions Activation

Input 28× 28 = 784 –
Fully Connected (fc1) 784 → 13 ReLU
Fully Connected (fc2) 13 → 11 ReLU
Fully Connected (fc3) 11 → 10 –

Table 6: Architecture of the fully connected MNIST network. The model has 31 hidden neurons in
total, which we treat as the granularity for circuit discovery.

D.4 TAXINET

The TaxiNet dataset (Julian et al., 2020) was developed by NASA for vision-based aircraft taxiing, and
consists of synthetic runway images paired with continuous control targets. Unlike the classification
benchmarks, TaxiNet is a regression task: the model predicts real-valued outputs corresponding to
flight control variables.

For our experiments, we adopt the TaxiNet CNN regression model introduced in the VeriX frame-
work (Wu et al., 2023a) and subsequently used in other explainability studies (Bassan et al., 2025).
This convolutional network, comprising 8 filters, achieves a mean squared error (MSE) of 0.848244,
and a root mean squared error (RMSE) of 0.921.

Layer Output Dim. Details

Input 27× 54× 1 TaxiNet image
Conv1 27× 54× 4 3× 3, padding 1, ReLU
Conv2 27× 54× 4 3× 3, padding 1, ReLU
Flatten 1× 5832 –
FC1 5832 → 20 ReLU
FC2 20 → 10 ReLU
FC3 10 → 1 Regression output

Table 7: Architecture of the CNN regression model used for TaxiNet, following the VeriX frame-
work (Wu et al., 2023a).

EXPERIMENTAL DETAILS

E INPUT ROBUSTNESS CERTIFICATION

In this experiment, we evaluate the robustness of discovered circuits over a continuous input neighbor-
hood Bpϵ (x), as established in Section 3.1. We compare two variants of the iterative circuit discovery
procedure in Algorithm 1, which differ in their elimination criterion:

1. Sampling-based Circuit Discovery: directly evaluates the metric on the input batch at each
step.

2. Provably Input-Robust Circuit Discovery: certifies that the metric holds across the entire
input neighborhood (Def. 1).

The procedure traverses network components sequentially, deciding at each step whether to retain or
remove a component. As noted in Conmy et al. (2023), the traversal order influences the resulting
circuit. Following their approach, we proceed from later fully-connected or convolutional layers
toward earlier ones, ordering neurons or filters within each layer lexicographically. For consistency,
we fix the patching scheme for all non-circuit components to zero-patching.
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E.1 METHODOLOGY

E.1.1 SIAMESE NETWORK FOR VERIFICATION

To integrate circuit discovery with formal verification, we construct a Siamese Network, which pairs
the full model with a candidate circuit, and outputs the concatenation of the two networks’ logits.

This Siamese formulation provides the interface for the neural network verification used in two
settings:

• Provably Input-Robust Circuit Discovery: certify at each elimination step that the candi-
date circuit satisfies the metric across the continuous input neighborhood, ensuring robust-
ness is preserved.

• Evaluation: verify after discovery (via either sampling- or provable-based methods) that
the resulting circuit is robust over the same neighborhood.

Output Metric. For consistency, all of our experiments employ the same output metric for both the
sampling-based and provably input-robust discovery methods. We measure the difference in logits,
requiring this difference to remain within a tolerance δ.

In classification tasks over an input z, we focus on the logit of the gold-class, indexed by k, and
require that the predictions of the circuit C and the full model G differ by at most δ:

|fG(z)[k]− fC(z)[k]| ≤ δ,

where the absolute value denotes the ℓp-norm on the one-dimensional vector corresponding to the k-th
entry. In the sampling-based method, it is evaluated on the sampled batch, whereas in the provable
(siamese) setting, this criterion is certified over the concatenated logits of the siamese encoding. For
instance, in a 10-class classification task, the verification constraint on the siamese network’s output
is:

| logits[:10][k]− logits[10:][k] | ≤ δ.
where the first 10 entries correspond to the logits of the full model G and the second to those of the
circuit C.

In regression settings (e.g., TaxiNet), the same principle applies to the full output (a scalar-valued
prediction), measuring the absolute difference between the model and the circuit. In both cases, this
metric directly instantiates the norm metric used in the robustness definitions (Definitions 1, 2).

Input Neighborhoods. In our setup, the neighborhood B∞ϵp (x) is defined in the input space with
respect to the L∞ norm. For fully connected models (e.g., MNIST), inputs are flattened into vectors
and the perturbation ball is defined over this representation. For convolutional models (e.g., CIFAR-10,
GTSRB, TaxiNet), inputs are multi-channel tensors, and the neighborhood is applied independently
to each channel and spatial location.

E.1.2 VERIFICATION AND EXPERIMENTAL SETUP (INPUT ROBUSTNESS)

Since sound-and-complete verification of piecewise linear activation networks against linear properties
is NP-hard Katz et al. (2017), Some queries may not complete within the allotted time; in such cases,
the outcome is reported as unknown. In practice, with the α, β-CROWN verifier, we limit each query
to 45 seconds of Branch-and-bound time.

For fairness, we report robustness statistics only on batches where the robustness check of the
sampling-based method was determined (robust or non-robust, excluding timeouts) In the main paper
results, the rate of timed-out instances was 1% on MNIST, 1.6% on GTSRB, 1% on CIFAR-10, and
5% on TaxiNet. Comparable rates were observed in the neighborhood size variations E.2.1 studies
(on average, 0.5% for MNIST, 3% for CIFAR-10, and 2.7% for TaxiNet), and in the tolerance level
variations δ E.2.2 (on average 8.6% for TaxiNet, 3.6% for MNIST).

Experiments on MNIST, GTSRB, and CIFAR-10 were conducted on a unified hardware setup with a
48 GB NVIDIA L40S GPU paired with a 2-core, 16 GB CPU. For the TaxiNet model, we used only a
2-core, 36 GB CPU machine.
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E.2 ROBUSTNESS EVALUATION AND PARAMETER VARIATIONS

We evaluate the robustness of circuits discovered by both methods over the neighborhood B∞ϵp (x),
using formal verification via the Siamese Network as described above. The parameter ϵp controls
the neighborhood size: if too small, the resulting circuits are trivial; if too large, the perturbations
become unrealistic and off-distribution. We choose ϵp values within ranges commonly used in prior
verification work or empirically selected to balance circuit size and robustness. In addition, we vary
both parameters, ϵp and δ, to analyze their effect.

E.2.1 VARIATION OF INPUT NEIGHBORHOOD SIZE ϵp

We fix the tolerance δ and vary the input neighborhood size ϵp. For CIFAR-10 and MNIST, we use
δ = 2.0; for GTSRB, δ = 5.0. For the TaxiNet regression model, we set δ = 0.92 (the model’s root
mean squared error, RMSE), reflecting its typical prediction scale (larger deviations would let the
circuit drift more than the full model from the ground truth). Results are reported in Table 8. Rows
highlighted in gray correspond to the results selected in the main paper.

Dataset ϵp Sampling-based Circuit Discovery Provably Input-Robust Circuit Discovery

Time (s) Size (|C|) Robustness (%) Time (s) Size (|C|) Robustness (%)

MNIST (δ=2.0)
0.005 0.015 ±0.003 12.57 ±2.29 46.0 ±5.0 677.36 ±183.65 14.51 ±2.41 100.0 ±0.0
0.009 0.016 ±0.013 12.56 ±2.30 25.3 ±4.4 663.60 ±181.13 15.76 ±2.25 100.0 ±0.0
0.010 0.309 ±0.889 12.56 ±2.30 19.2 ±4.0 611.93 ±97.14 15.84 ±2.33 100.0 ±0.0
0.050 0.027 ±0.065 12.57 ±2.29 0.0 ±0.0 1700.05 ±562.36 28.75 ±6.67 100.0 ±0.0

TaxiNet (δ=0.92)
0.001 0.040 ±0.146 5.76 ±0.77 62.2 ±4.9 201.81 ±34.16 6.07 ±0.71 100.0 ±0.0
0.005 0.010 ±0.002 5.77 ±0.80 9.5 ±3.0 180.00 ±40.39 6.82 ±0.46 100.0 ±0.0
0.010 0.010 ±0.002 5.78 ±0.79 2.0 ±1.4 271.03 ±54.23 7.91 ±0.32 100.0 ±0.0

CIFAR-10 (δ=2.0)
0.007 0.035 ±0.001 16.70 ±9.48 73.7 ±4.4 2104.13 ±118.95 17.96 ±9.90 100.0 ±0.0
0.012 0.116 ±0.367 16.91 ±9.12 58.1 ±5.1 2226.34 ±103.71 18.88 ±9.21 100.0 ±0.0
0.015 0.228 ±0.517 16.47 ±9.08 46.5 ±5.0 2970.85 ±874.23 19.18 ±10.16 100.0 ±0.0

GTSRB (δ=5.0)
0.001 0.111 ±0.329 28.91 ±4.69 27.6 ±4.0 991.08 ±162.91 29.59 ±4.45 100.0 ±0.0

Table 8: Effect of varying the input neighborhood size ϵp under a fixed tolerance δ. Reported values
are means with standard deviations. For robustness (a binary variable), we report the standard error
(SE). Bold values indicate robustness percentages. Rows highlighted in gray correspond to the results
selected in the main paper.

E.2.2 VARIATION OF TOLERANCE LEVEL δ

We vary the tolerance δ while fixing the input neighborhood size ϵp to the dataset-specific values used
in the main paper (MNIST: ϵp=0.01, TaxiNet: ϵp=0.005). Results are reported in Table 9. Rows
corresponding to the main paper results are highlighted in gray.

Dataset δ Sampling-based Circuit Discovery Provably Input-Robust Circuit Discovery

Time (s) Size (|C|) Robustness (%) Time (s) Size (|C|) Robustness (%)

MNIST (ϵp=0.01)
0.50 0.083 ± 0.329 19.72 ± 1.50 15.6 ± 3.8 460.14 ± 36.59 22.02 ± 2.52 100.0 ± 0.0
2.00 0.309 ± 0.889 12.56 ± 2.29 19.2 ± 4.0 611.93 ± 97.14 15.84 ± 2.33 100.0 ± 0.0
3.00 0.013 ± 0.001 9.44 ± 1.92 34.0 ± 4.7 577.41 ± 35.84 12.27 ± 2.52 100.0 ± 0.0

TaxiNet (ϵp=0.005)
0.50 0.038 ± 0.115 6.84 ± 0.86 32.1 ± 5.2 93.08 ± 22.75 7.75 ± 0.46 100.0 ± 0.0
0.70 0.008 ± 0.001 6.15 ± 0.81 14.8 ± 3.8 114.51 ± 23.95 7.31 ± 0.53 100.0 ± 0.0
0.92 0.010 ± 0.002 5.77 ± 0.80 9.5 ± 3.0 180.00 ± 40.39 6.82 ± 0.46 100.0 ± 0.0
1.00 0.009 ± 0.002 5.57 ± 0.82 9.5 ± 3.0 142.62 ± 24.77 6.66 ± 0.52 100.0 ± 0.0
1.20 0.009 ± 0.001 5.43 ± 0.96 6.1 ± 2.4 155.03 ± 26.34 6.32 ± 0.59 100.0 ± 0.0

Table 9: Variation on tolerance level δ, with input neighborhood size ϵ fixed to the dataset-specific
values used in the main experiments. Reported values are means with standard deviations. For
robustness (a binary variable), we report the standard error (SE). Rows highlighted in gray correspond
to the results selected in the main paper.
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E.2.3 EVALUATION UNDER ALTERNATIVE OUTPUT METRICS

To further assess the generality of our framework, we repeat the robustness evaluation using alternative
output metrics beyond the default logit-difference criterion. Specifically, we consider two additional
formulations:

• Consistent winner class: Given some target class t ∈ [d], enforces that the winner class remains
consistent over a specified region. This metric directly targets preservation of the predicted class
across the input domain and is widely used in robustness verification studies. The criterion then
enforces that:

∀z ∈ Z, argmax
j

(fG(z))(j) = argmax
j

(fC(x | C = α)(z))(j) = t.

To allow greater flexibility, we relax the requirement by permitting the predicted class to remain
consistent under any change that stays within a tolerance δ ∈ R+ above the runner-up class. When
δ = 0, this reduces back to the original definition. To make this threshold more meanignful and
interpretable, we set δ as a configurable fraction α ∈ (0, 1] of the model’s original winner–runner
gap on the unperturbed input. In our experiments, for simplicity, we enforce the consistency
condition only between the winner and runner-up classes.

• Abs-Max: Bounds the maximum absolute deviation across all output dimensions by a specified
threshold. This criterion does not guarantee class invariance but constrains the overall output drift.
Formally, we require:

∀z ∈ Z, ∥fG(z)− fC(x | C = α)∥∞ ≤ δ,
ensuring that no individual logit differs by more than δ.

We evaluate both metrics, using the same discovery configurations and ϵp as in the main input-
robustness experiments. For the logits-difference metric, we used the same δ as in our main experiment
(Table 1). In the winner-runner setting, we set α = 0.5 (preserving half the original margin), and
for the abs-max criterion we used δ = 4.0. Results are reported in Table 10, which compares the
sampling-based and provable discovery methods under each metric.

Dataset Metric Sampling-based Circuit Discovery Provably Input-Robust Circuit Discovery

Time (s) Size (|C|) Robustness (%) Time (s) Size (|C|) Robustness (%)

MNIST Logit-diff 0.31 ±0.89 12.56 ±2.30 19.2 ±4.0 611.93 ±97.14 15.84 ±2.33 100.0 ±0.0
Winner–Runner 0.13 ± 0.60 5.18 ± 1.05 73.0 ±4.4 638.57 ± 20.94 12.04 ± 5.79 100.0 ±0.0
Abs-Max 0.014 ± 0.012 25.55 ± 2.90 6.0 ±2.4 362.61 ± 55.73 28.11 ± 2.37 100.0 ±0.0

Table 10: Comparison of circuit discovery methods under alternative output metrics. Reported values
are means with standard deviations. For robustness (a binary variable), we report the standard error
(SE). All methods use the same configurations as in the main experiments.

Across all metrics, the same overall trend is observed: the provable method consistently approaches
100% robustness while maintaining circuit sizes comparable to those of the sampling-based baseline,
which attains substantially lower robustness. This consistency across different metrics suggests that
the robustness of the provable approach is not tied to a particular output metric, but reflects a stable
characteristic of the method.

E.2.4 COVERAGE ANALYSIS OF PROVABLY-ROBUST VS. SAMPLING-BASED CIRCUITS

To better understand the relationship between the circuits identified by our provably-robust procedure
and those produced by the sampling-based method, we conduct an explicit coverage analysis over
several robustness radii ϵ ∈ {0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05} on the MNIST benchmark.
All other settings, including tolerance and metric definitions, follow those used in the main experiment
(as discussed in section E.1). We conduct these experiments on a 2-core CPU machine with 16 GB of
RAM.

For each perturbation radius ϵp, we examine the provably input-robust circuit Cp derived for that ra-
dius and the sampling-based circuitCs, each obtained over 100 different inputs (as in our experimental
setup), resulting in 100 circuit pairs for every ϵp.
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For these two circuits, we compute: (i) the size of the intersection, |Cp ∩ Cs|, (ii) the components
unique to the provable circuit (provable-only), |Cp \ Cs|, and (iii) the components unique to the
sampling-based circuit (sampling-only), |Cs \ Cp|.
We average these quantities over the 100 circuit pairs and report their means and standard deviations.
To summarize the overall similarity/discrepancy between Cp and Cs across ϵp, we additionally
compute standard set-similarity measures: Intersection over Union (IoU), Dice coefficient, and two
asymmetric coverage metrics (provable-over-sampling and sampling-over-provable). These aggregate
trends are visualized in Fig. 7. To further highlight the non-overlapping components, Table 11 reports
their counts and their percentages relative to the full network size.

Because the sampling-based method does not enforce a robustness condition, its circuit size remains
constant across ϵp, while the provable-based circuits naturally expand as ϵp increases in order to
guarantee certified robustness. We indeed view that as the required robustness grows, the provably-
robust circuits include additional components essential for certification.
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|Cs|  (Provable over sampling)

|Cp Cs|
|Cp|  (Sampling over provable)

Symmetric difference ratio = |Cp Cs|
|Cp Cs|

Figure 7: Comparison of similarity and coverage metrics between provably-robust and sampling-based
circuits. We report symmetric measures (IoU, Dice), a symmetric difference ratio, and asymmetric
coverage ratios (provable over sampling, sampling over provable) to illustrate both overlap and
directional differences.

As shown in Fig. 7, the provably robust circuits consistently recover the vast majority of units
identified by the sampling-based method across all ϵp values, with especially high agreement for
small perturbation radii (e.g., IoU and Dice ≈ 0.9 at ϵp = 0.005). As ϵp increases, the overlap
between the two circuits gradually decreases (IoU drops toward 0.5), indicating that the sampling-
based circuits capture a smaller fraction of the provable-based ones under larger perturbations.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Dataset ϵp |Cp \ Cs| % of full net |Cs \ Cp| % of full net

MNIST

0.005 2.64 7.76% 0.70 2.06%
0.007 3.32 9.76% 0.74 2.18%
0.010 4.10 12.06% 0.81 2.38%
0.020 6.24 18.35% 0.58 1.71%
0.030 7.73 22.74% 0.39 1.15%
0.040 10.94 32.18% 0.24 0.71%
0.050 16.11 47.38% 0.13 0.38%

Table 11: Set differences between the provably-robust circuit Cp and the sampling-based circuit Cs.
For each ϵp, we report (i) the number of units appearing only in the provably-robust circuit |Cp \ Cs|,
(ii) the number appearing only in the sampling-based circuit |Cs \ Cp|, and (iii) the corresponding
percentages relative to the full network size for that dataset.

This reflects the fact that the provably-robust circuits expand to satisfy stronger robustness require-
ments. This trend is also evident in Table 11: the difference Cp \ Cs grows steadily with ϵp, while
Cs \ Cp remains small across all settings, and decreases further for larger perturbation radii - indicat-
ing that the sampling-based method contributes few components that are not required by the provable,
certified solution.

E.2.5 RUNTIME TRADE-OFF ACROSS INPUT NEIGHBORHOOD SIZES

We aim to further analyze the runtime trade-off of the provably-robust method. For each input-
robustness radius ϵp, we run the method to obtain a corresponding provably robust circuit and report
the mean circuit-size-over-time curves (with standard deviation shown as shaded regions) across these
circuits for different input neighborhoods induced by increasing ϵp. We perform this analysis on the
MNIST benchmark, using the same perturbation radii and experimental settings as in the coverage
analysis in Appendix E.2.4.
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Figure 8: Provable-robust circuit size over time on MNIST for different neighborhood radii ϵp.
Shaded regions denote the standard deviation.

In all cases, the curves start at the full network size at time 0 and then decrease monotonically as
components are pruned, until the procedure terminates. Across the smaller and closely spaced ϵp
values, the curves exhibit a very similar trajectory: an initial almost-linear decrease during the first
∼ 300 seconds, followed by a stabilization phase around ∼ 500 seconds. The standard deviation
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bands for these curves are also comparable. As expected, larger neighborhoods lead to larger final
circuit sizes.

For substantially larger neighborhoods (e.g., ϵp = 0.03-0.05), the behavior changes: the decrease
is slower, stabilization occurs later, and the variability (standard deviation) is considerably higher.
Moreover, for these larger and more widely spaced ϵp values, we observe a clear increase in overall
runtime (as indicated by where the curves terminate), reflecting the added complexity of discovering
robust certified circuits under broader perturbation regions.

E.2.6 QUALITATIVE OBSERVATIONS OF THE DISCOVERED CIRCUITS

While our method is centered on formal guarantees, and our evaluation therefore focuses on robustness
and minimality, we also include a brief exploratory look at the circuits discovered by our provably
robust procedure and by the sampling-based baseline. This examination is qualitative in nature and is
intended only to provide an informal visual sense of how the two circuits behave.

For this analysis, we consider several channel-level GTSRB circuits produced in the input-robustness
experiments. Recall that for each batch (composed of samples from the same class) we executed
both our provably robust discovery (under a given ϵ = 0.001 neighborhood) and the sampling-based
discovery, producing two circuits. In the examples below, we select pairs of circuits with comparable
sizes, where the sampling-based circuit is empirically non-robust while the provably robust circuit is
certified robust. We then analyze their behavior on a representative clean input from the batch and on
its corresponding adversarial example (an ϵ = 0.001-bounded adversarial perturbation).

To obtain a coarse semantic signal, we apply Grad-CAM (Selvaraju et al., 2017) to the last convolu-
tional layer of (i) the full model, (ii) the provably robust circuit, and (iii) the sampling-based circuit.
Grad-CAM produces a class-specific importance map by weighting spatial activations according to
the globally averaged gradients of the target class logit. Formally, for class c,

α
(c)
k :=

1

HW

∑

i,j

∂yc
∂Ak

ij

, CAMc(i, j) := ReLU

(∑

k

α
(c)
k Ak

ij

)
.

Here, yc denotes the logit of the target class c (the true label in our case), Ak is the k-th activation
map (i.e., the output of filter k) of spatial size H ×W , and α(c)

k is the Grad-CAM weight obtained
by spatially averaging the gradients ∂yc/∂Ak

ij . Multiplying these weights by the corresponding
activation maps and summing over channels, as in CAMc, highlights the spatial regions that the
model relies on most for predicting class c.

We use this mechanism to compare the behavior of the discovered circuits with that of the full model.
Following common practice in vision models, we apply Grad-CAM to the last convolutional layer
of the GTSRB networks. For visualization, we compute, normalize, and upsample the resulting
Grad-CAM maps. Figure 9 illustrates these maps for an illustrative GTSRB sample depicting a
roundabout sign.

While the sampling-based circuit is larger than the provably robust one (35 convolutional channels
compared to 26), the latter exhibits a closer match to the full model in the final convolutional layer.
As shown in Fig. 9b, the heatmaps of the full model on this sample align well with those of the
provably robust circuit, whereas the sampling-based circuit shows a less aligned activation pattern,
with some loss of emphasis on regions in the sign interior.

In addition, despite the very small perturbation radius (which makes the clean and perturbed images
visually almost indistinguishable; Fig. 9a), Fig. 9b shows that the sampling-based circuit shifts its
attention between the two inputs, while the provably robust circuit exhibits essentially no variation.
This may suggest that the provably robust circuit better maintains its focus under perturbations.

These observations, though not central to our evaluation, provide an additional qualitative lens on
how the discovered circuits operate.
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(a) Original input, and a perturbed input in the GTSRB
dataset.

(b) GradCAM computations at the last convolutional layer

Figure 9: Grad-CAM heatmaps comparison for a GTSRB input and its adversarial counterpart, shown
at the last convolutional layer across three models (the full model, the provably robust circuit, and the
sampling-based circuit).

E.2.7 ADDITIONAL QUALITATIVE INTERPRETATION OF COMPONENT-LEVEL BEHAVIOR

Another possible direction for qualitative analysis is to assign semantic interpretations to inner
components and subgraphs. This may include examining their behaviour and inferring the causal
pathways in which they participate.

In the example shown in Figure 4, we consider a CIFAR-10 bird sample together with its adversarial
perturbation (also displayed in Figure 10), and compare the two circuit variants extracted from the
ResNet model: the sampling-based circuit and the provably robust one. As illustrated, several filter-
level components are preserved in the provably robust circuit, enabling it to satisfy the robustness
criterion under perturbations.

To analyze the additional components, we focus on the first convolutional layer, as shown in Figure 4.
While later-layer interactions could also be insightful, for simplicity and clarity, we restrict our
attention to the first-layer filters applied to the perturbed bird image. As the figure illustrates, this
layer contains three filters shared by both circuits and one additional filter present only in the
provably-robust circuit.

We next examine the clean and adversarial images and their corresponding normalized difference
heatmap, presented in Figure 10 within the main paper. Although the perturbation at ϵ = 0.015
is visually almost indistinguishable from the clean input, visualizing their difference reveals that
substantial portions of the perturbation concentrate in the lower part of the image, beneath the bird’s
contour.
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Figure 10: Clean input x, its perturbed version z ∈ Bp
ϵp(x) with ϵp = 0.015, and the corresponding

difference heatmap.

(a) Shared filters across both circuits (b) Filter retained only
in the provably-robust
circuit

Figure 11: (a) Activation maps of the shared first-layer filters present in both the provably robust and
sampling-based circuits. (b) Activation map of the additional first-layer filter included only in the
provably robust circuit. Blue indicates negative activations; red indicates positive activations. White
denotes neutral or near-zero values.

To gain further insight, we inspect the activation maps of these filters on the perturbed input (Fig-
ure 11). We examine the three filters shared by both circuits as well as the additional filter unique to
the provably robust circuit. For each filter, we extract the signed activations (since this layer does not
apply a ReLU), normalize them, and upsample them for visibility. The resulting sign-normalized
maps display negative activations in blue and positive activations in red.

Across the three shared filters, we observe in Figure 11a that, although they react to and capture
aspects of the bird’s contour, all of them assign negative values to the lower region where the noise
is concentrated. Filter 0 outputs strongly negative values in this area, while filters 2 and 7 produce
values between negative and neutral, passing only a weak signal over that region.

In contrast, the additional filter included appears only in the provably-robust circuit (Figure 11b)
produces strong positive activations precisely over the lower, noise-affected region. It is the only
filter in this layer to do so. This suggests that its inclusion, together with the other filters, may help
enrich and stabilize the signal over the perturbed region of the input, potentially contributing to the
circuit’s certified robustness under this perturbation. Such an illustrative view suggests a possible
connection between the retained components and the circuit’s robustness.

F PATCHING ROBUSTNESS CERTIFICATION

In this experiment, we evaluate the robustness of discovered circuits when non-circuit components
are patched with feasible activations drawn from a continuous input range, rather than fixed constants,
as defined in Section 3.2. Operationally, for any circuit C, we test whether perturbing non-circuit
components within the range of activations induced by inputs z ∈ B∞ϵp (x) can cause a violation of
some metric ∥·∥p with tolerance δ. If no such violation exists, we declare C to be patching-robust 2.
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We compare three patching schemes within the iterative discovery framework (Algorithm 1):

1. Zero patching: sets all non-circuit components to zero.

2. Mean patching: replaces non-circuit components with their empirical means, estimated
from 100 randomly selected training samples.

3. Provably robust patching: verifies robustness across the full range of feasible activations
induced by a continuous input domain (Def. 2).

F.1 METHODOLOGY

F.1.1 PATCHING SIAMESE NETWORK FOR VERIFICATION

As an interface for verifying patching robustness, we employ a Patching Siamese network with two
branches: (i) a full-network patching branch, used to capture non-circuit activations for patching; and
(ii) a circuit branch restricted to C, where every non-circuit component is replaced by the activation
of its counterpart in the patching branch. This replacement is implemented through dedicated wiring
that copies the required activations from the first branch to the second.

We examine activations induced by inputs from a neighborhood around x: Z = B∞ϵp (x). As outlined
in Section 3.2, the siamese network is fed a concatenated input (x, z) (along the feature axis for
MNIST and the channel axis for CNNs). Here, x is routed to the circuit branch and z to the patching
branch. The verification domain is applied only to z, while x is held fixed. This setup simulates the
circuit running on x, with its non-circuit activations replaced by those induced from z ∈ Z . We note
that, for numerical stability on the verifier’s side, the circuit-branch input is enclosed in a negligible
10−5 L∞ ball.

For the output criterion, the resulting circuit logits are verified against the logits of the full model,
fG(x) (precomputed independently of the Siamese construction) under the logit-difference metric
with tolerance δ. This guarantees that the patching-robustness property (Def. 2) holds.

Input Neighborhoods. As in Section E.1.2, we define the neighborhood Z = B∞ϵp (x) using the
ℓ∞ norm.

F.2 ROBUSTNESS EVALUATION AND PARAMETER VARIATIONS

After discovery (using zero, mean, or provably robust patching), we verify the resulting circuits with
the Patching Siamese Network over the same B∞ϵp (x), reporting circuit size, runtime, and patching
robustness. Since typical ϵp values in the literature target input perturbations, we use larger values
for the patching domain to reflect the broader variability of internal activations while avoiding off-
distribution regimes. We report results below for varying (ϵp, δ) to assess their effects on robustness
and size.

F.2.1 VERIFICATION AND EXPERIMENTAL SETUP (PATCHING ROBUSTNESS)

We use the same hardware configuration as in the input-robustness study E.1.2. We set a Branch-
and-bound timeout of 45 seconds for MNIST, GTSRB, and TaxiNet as in the input experiment. For
CIFAR-10, iterative discovery queries in the provably robust method are limited to 45 seconds, while
discovered circuit-robustness evaluations are allowed up to 120 seconds. Queries that do not complete
within these limits are reported as unknown.

As in the input robustness experiment E, for fairness, we exclude cases where the robustness check
for zero or mean patching timed out from the reported robustness statistics. In our main results, the
timeout rates were 12% for MNIST, 2% for TaxiNet, 6.2% for GTSRB, and 31% for CIFAR-10,
while in the variations over ϵp ( F.2.2) they averaged 0.5% for TaxiNet and 8.8% for MNIST. Over
the δ variation ( F.2.3), the average timeout rate was 1.5% on TaxiNet and 14% on MNIST.
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F.2.2 VARIATION OF PATCHING NEIGHBORHOOD SIZE ϵp

We fix the tolerance level δ and vary the patching neighborhood size ϵp. For CIFAR-10 we use δ=0.1,
for MNIST δ=0.5, for TaxiNet δ=0.92, and for GTSRB δ=2.0. Table 12 extends the main results
with additional ϵp variations on the MNIST and TaxiNet benchmarks.

Dataset ϵp Zero Patching Mean Patching Provably Patching-Robust Patching

Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%)

MNIST (δ=0.5)
0.005 0.054 ± 0.182 19.87 ± 1.55 87.0 ±3.4 0.013 ± 0.001 19.19 ± 1.87 93.0 ±2.6 671.08 ±36.86 11.32 ± 2.56 100.0 ±0.0
0.009 0.013 ±0.000 19.92 ±1.51 65.9 ±5.0 0.013 ±0.001 19.13 ± 1.88 64.8 ±5.0 583.59 ±44.99 16.75 ± 2.26 100.0 ±0.0
0.010 0.060 ±0.322 19.96 ±1.50 58.0 ±5.3 0.016 ±0.003 19.16 ±1.84 55.7 ±5.3 714.87 ±207.08 17.03 ±2.30 100.0 ±0.0
0.050 0.015 ±0.005 19.76 ±1.50 1.2 ±1.2 0.015 ±0.003 19.09 ±1.81 1.2 ±1.2 598.41 ±156.96 23.20 ±1.17 100.0 ±0.0

TaxiNet (δ=0.92)
0.005 0.061 ±0.183 5.78 ±0.79 93.0 ±2.6 0.022 ±0.061 5.38 ±0.65 100.0 ±0.0 220.67 ±57.23 4.60 ±0.74 100.0 ±0.0
0.008 0.026 ±0.097 5.78 ±0.79 62.0 ±4.9 0.008 ±0.001 5.38 ±0.65 77.0 ±4.2 168.99 ±44.83 5.26 ±0.54 100.0 ±0.0
0.010 0.024 ±0.059 5.78 ±0.78 57.1 ±5.0 0.025 ±0.068 5.39 ±0.65 63.3 ±4.9 175.73 ±52.71 5.41 ±0.59 100.0 ±0.0
0.030 0.009 ±0.002 5.78 ±0.79 27.0 ±4.4 0.008 ±0.001 5.38 ±0.65 40.0 ±4.9 95.31 ±15.54 6.04 ±0.20 100.0 ±0.0
0.050 0.024 ±0.058 5.77 ±0.78 0.0 ±0.0 0.012 ±0.032 5.37 ±0.65 0.0 ±0.0 89.37 ±17.58 7.07 ±0.26 100.0 ±0.0

CIFAR-10 (δ=0.1)
0.030 0.109 ± 0.321 65.07 ± 3.00 46.4 ± 6.0 0.046 ± 0.003 64.07 ± 3.60 33.3 ± 5.7 5408.51 ± 1091.05 65.55 ± 1.64 100.0 ± 0.0

GTSRB (δ=2.0)
0.005 0.284 ± 0.951 32.65 ± 4.24 38.0 ± 4.4 0.041 ± 0.009 33.40 ± 4.16 40.5 ± 4.5 2907.17 ± 721.67 34.34 ± 4.07 100.0 ± 0.0

Table 12: Variations on patching neighborhood size ϵp with fixed tolerance δ. Reported values are
means with standard deviations (formatted as {mean ± std}). For robustness (a binary outcome), we
report the mean robustness with its standard error (SE), and display robustness values in bold. Rows
highlighted in gray correspond to the results selected in the main paper.

F.2.3 VARIATION OF TOLERANCE TOLERANCE δ

We fix ϵp and examine various tolerance values. As in the main paper results, we use ϵp=0.01 for
MNIST and Taxinet and vary the tolerance δ. Results are reported in Table 13

Dataset δ Zero Patching Mean Patching Provably Robust Patching

Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%) Time (s) Size (|C|) Rob. (%)

MNIST (ϵp=0.01)
0.25 0.142 ± 0.476 21.36 ± 1.87 48.6 ± 5.9 0.013 ± 0.000 21.22 ± 1.74 52.8 ± 5.9 523.67 ± 41.31 19.42 ± 2.01 100.0 ± 0.0
0.50 0.060 ± 0.322 19.96 ± 1.50 58.0 ± 5.3 0.016 ± 0.003 19.16 ± 1.84 55.7 ± 5.3 714.87 ± 207.08 17.03 ± 2.30 100.0 ± 0.0
1.00 0.013 ± 0.000 16.88 ± 1.85 61.2 ± 4.9 0.013 ± 0.001 16.11 ± 1.93 66.3 ± 4.8 690.42 ± 44.38 11.37 ± 2.64 100.0 ± 0.0

TaxiNet (ϵp=0.01)
0.50 0.011 ± 0.003 6.86 ± 0.78 74.0 ± 4.4 0.010 ± 0.001 5.83 ± 0.40 80.0 ± 4.0 157.67 ± 33.68 6.00 ± 0.00 100.0 ± 0.0
0.80 0.080 ± 0.210 6.04 ± 0.77 57.1 ± 5.0 0.010 ± 0.001 5.49 ± 0.54 61.2 ± 4.9 204.38 ± 40.04 5.68 ± 0.55 100.0 ± 0.0
0.92 0.024 ±0.059 5.78 ±0.78 57.1 ±5.0 0.025 ±0.068 5.39 ±0.65 63.3 ±4.9 175.73 ±52.71 5.41 ±0.59 100.0 ±0.0
1.20 0.011 ± 0.001 5.44 ± 0.96 46.9 ± 5.0 0.010 ± 0.003 5.20 ± 0.79 58.2 ± 5.0 246.14 ± 50.82 5.15 ± 0.51 100.0 ± 0.0

Table 13: Variation of tolerance level δ with fixed patching neighborhood size ϵp = 0.01. Reported
values are means with standard deviations (formatted as mean ± std). For robustness (a binary
outcome), we report the mean robustness with its standard error (SE), and display robustness means
in bold. Rows highlighted in gray correspond to the results selected in the main paper.

G EXPLORING CIRCUIT MINIMALITY GUARANTEES

In this experiment, we examine circuits that must simultaneously satisfy both input-robustness (Def. 1)
and patching-robustness (Def. 2), as introduced in Section 3.2. Specifically, we define Φ to require
that circuits remain robust within the input neighborhood Z = B∞ϵin(x), when non-circuit components
are patched with values drawn from the patching neighborhood Z ′ = B∞ϵp (x).
Thus, two domains are involved: one for inputs and one for obtaining activations used in patching.
Here, ϵin and ϵp denote the radii of the respective L∞-balls. In our setup, we use ϵin = 0.01,
ϵp = 0.012, and δ = 2.0.

G.1 VERIFYING SIMULTANEOUS INPUT- AND PATCHING-ROBUSTNESS WITH TRIPLED
SIAMESE

We certify simultaneous input- and patching-robustness using a tripled Siamese network with three
branches, each evaluated on its designated domain: (i) a full-network patching branch, which
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processes inputs z′ ∈ B∞ϵp (x) to capture activations for use as patching values; (ii) the full network,
which processes inputs z ∈ B∞ϵin(x) to provide reference logits fG(z); and (iii) the circuit branch,
also evaluated on z ∈ B∞ϵin(x) but restricted to C, where non-circuit components are masked and
instead receive transplanted activations from the patching branch.

This special wiring enables the direct transfer of non-circuit activations, allowing the verifier to
certify that the circuit logits fC(z) remain faithful to fG(z) across the input neighborhood B∞ϵin(x)
under patching values induced by B∞ϵp (x), thereby establishing the simultaneous input- and patching-
robustness property.

We evaluate three discovery strategies under this setting, all applied with the combined robustness
predicate Φ defined above:

1. Iterative discovery: Algorithm 1.
2. Quasi-minimal search: Algorithm 3.
3. Blocking-sets MHS method: Algorithm 2, leveraging circuit blocking set duality to

approximate cardinally minimal circuits.

G.2 BLOCKING-SETS MHS METHOD: ANALYSIS AND EXPERIMENTAL DETAILS

Experimental setup. We conduct experiments on the MNIST network (34 hidden neurons). Since
contrastive subsets are enumerated in increasing order of size, the number of verification queries
grows combinatorially. Even when restricted to subset sizes t ∈ {1, 2, 3}, each batch requires
thousands of verification calls. To keep computations tractable, we evaluate singletons (k = 1 per
batch) and enforce a 30-second timeout per query. In one rare case, the procedure produced an empty
circuit (size 0), as Φ held vacuously under a particular choice of environments and metric, eliminating
all components. This case was excluded from the reported results.

Parallelism. Unlike iterative discovery, where elimination steps are sequentially dependent, the
verification of contrastive subsets is independent. This independence allows full parallelization: we
distribute verification queries across 14 workers, with runtime scaling nearly linearly with the number
of workers.

Properties. Under monotonic Φ, the MHS method yields either (i) a lower bound on the size of any
cardinally minimal circuit, or (ii) when the hitting set itself satisfies Φ, a certified cardinally minimal
circuit. Although more computationally expensive than iterative discovery, MHS provides strictly
stronger guarantees: if the hitting set is valid, the result is provably cardinally minimal; otherwise, its
size gives a tight lower bound that exposes whether iterative discovery reached cardinal minimality
and quantifies any gap.

H DISCLOSURE: USAGE OF LLMS

An LLM was used solely as a writing assistant to correct grammar, fix typos, and enhance clarity.
It played no role in generating research ideas, designing the study, analyzing data, or interpreting
results; all of these tasks were carried out exclusively by the authors.
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