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ABSTRACT

Random features (RFs) are a popular technique to scale up kernel methods in
machine learning, replacing exact kernel evaluations with stochastic Monte Carlo
estimates. They underpin models as diverse as efficient transformers (by approx-
imating attention) to sparse spectrum Gaussian processes (by approximating the
covariance function). Efficiency can be further improved by speeding up the con-
vergence of these estimates: a variance reduction problem. We tackle this through
the unifying lens of optimal transport, finding couplings to improve RFs defined
on both Euclidean and discrete input spaces. They enjoy theoretical guarantees and
sometimes provide strong downstream gains, including for scalable approximate
inference on graphs. We reach surprising conclusions about the benefits and limi-
tations of variance reduction as a paradigm, showing that other properties of the
coupling should be optimised for attention estimation in efficient transformers.

1 INTRODUCTION

Kernel methods are ubiquitous in machine learning (Canu and Smola, 2006; Smola and Schölkopf,
2002; Kontorovich et al., 2008; Campbell, 2002). Through the kernel trick, they provide a mathemati-
cally principled and elegant way to perform nonlinear inference using linear learning algorithms. The
eponymous positive definite kernel function k : X × X → R measures the ‘similarity’ between two
datapoints. The input domain X may be continuous, e.g. the set of vectors in Rd, or discrete, e.g. the
set of graph nodes or entire graphs.

Random features for kernel approximation. Though very effective on small datasets, kernel
methods suffer from poor scalability. The need to materialise and invert the Gram matrix K :=
[k(xi,xj)]

N
i=1 leads to a time complexity cubic in the size of the dataset N . Substantial research has

been dedicated to improving scalability by approximating this matrix, a prominent example being
random features (RFs) (Rahimi and Recht, 2007; 2008; Avron et al., 2017b; Liu et al., 2022). These
randomised mappings ϕ : Rd → Rs construct low-dimensional or sparse feature vectors that satisfy

k(x,y) = E
(
ϕ(x; {ωi}mi=1)

⊤ϕ(y; {ωi}mi=1)
)
. (1)

The expectation E is taken over an ensemble of random frequencies {ωi}mi=1 drawn from a distri-
bution η. The space in which {ω}mi=1 live and manner in which they are combined to construct
ϕ(x; {ωi}mi=1) depends on the particular input space X and kernel function k being approximated.
This paper will consider several examples. Hereafter, the dependence on {ωi}mi=1 will be suppressed
to reduce notational clutter. The set of RFs {ϕ(xi)}Ni=1 can be used to construct a low-rank or sparse
approximation of the Gram matrix, providing substantial space and time complexity savings. RFs
exist for a variety of kernels, including for continuous and discrete input spaces (Dasgupta et al.,
2010; Johnson, 1984; Choromanski et al., 2020; Goemans and Williamson, 2001; Rahimi and Recht,
2007; Choromanski, 2023; Tripp et al., 2024).

Variance reduction for RFs. Replacing E by the mean over random samples of {ωi}mi=1, Eq. 1
can be understood as a Monte Carlo (MC) estimate of k. In applications, it is often found that this
estimate converges slowly. This can be addressed by taking many samples m, but this undermines
the efficiency gains of RFs. Therefore, substantial effort has been dedicated to reducing the variance
of the kernel estimates. Variance reduction methods include quasi-Monte Carlo (QMC; Dick et al.,
2013; Yang et al., 2014a), common random numbers (CRNs; Glasserman and Yao, 1992), antithetic
variates (Hammersley and Morton, 1956) and structured Monte Carlo (SMC; Yu et al., 2016). These
techniques work by replacing i.i.d. frequencies {ωi}mi=1 by a dependent ensemble, with the sample
dependencies designed to improve RF convergence.
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Limitations of previous techniques. The best choice of dependencies between {ωi}mi=1 is an active
research area. Though straightforward to apply, standard QMC techniques are suboptimal. They are
based on hard-coded ‘low-discrepancy sequences’ so typically do not incorporate information about
the particular kernel k being approximated. Empirical performance may be poor and theoretical
guarantees lacking in the low-sample, high-dimensional regime (Rowland et al., 2018; Morokoff
and Caflisch, 1995), which is precisely where RFs are most important. On the other hand, hand-
crafted SMC dependencies, which impose strict geometrical conditions like orthogonality between
frequencies, tend to fare better (Yu et al., 2016). But they are difficult to design, theoretical guarantees
are hard-won and optimality is not guaranteed. RFs for estimating kernels defined on discrete spaces
like the nodes of a graph have only recently been developed (Choromanski, 2023; Tripp et al., 2024),
so here very few effective variance reduction techniques have even been proposed. This paper asks:
can we devise a principled framework for coupling RFs, providing variance reduction across basis
functions and input domains, including with very few samples?

Optimal transport. To answer this, we propose to frame variance reduction as optimal transport
(OT): an active research area of applied mathematics that studies how to move (probability) mass
between distributions as efficiently as possible (Villani et al., 2009). This novel perspective equips
us with proof techniques and numerical tools to identify the best possible dependencies between
samples, giving lower kernel estimator variance compared to previous approaches. OT allows us
to improve couplings for RFs in both Euclidean and discrete spaces, including with different basis
functions. To our knowledge, this has never before been achieved in the same paper.

Our contributions. This work presents unifying strategies to reduce the variance of random features.

1. We frame the problem of variance reduction of RFs as optimal transport (OT) (Sec. 2), and use
this perspective to improve the convergence of three popular classes of RFs: random Fourier
features, random Laplace features and graph random features.

2. For random Fourier features (RFFs) and random Laplace features (RLFs), we exactly solve the
OT problem for the norms of m = 2 orthogonal frequencies (Sec. 3). We introduce pairwise
norm-coupling, which guarantees lower variance for arbitrary m.

3. For graph random features (GRFs), we couple the lengths of random walks by finding a bipartite
matching between the quantiles of the marginal distributions (Sec. 4). This is the first time a
coupling between random walks has been optimised using data, beating hard-coded algorithms.

4. We test our algorithms on UCI datasets and real-world graphs, verifying that OT couplings
substantially reduce kernel estimator variance (Secs 3 and 4). We show that this sometimes
translates to much better performance in downstream tasks, including for approximate inference
with scalable graph-based Gaussian processes. However, we also reach surprising conclusions
about the limitations of variance reduction for RFs, including for efficient transformers.

All proofs are saved for the Appendices, but are also sketched in the main body where space allows.

2 PRELIMINARIES

From kernel estimation to optimal transport (OT). Define the kernel estimator
k̂(xi,xj) := ϕ(xi)

⊤ϕ(xj). Recall that ϕ(·) is computed using random frequencies {ωi}mi=1, with
the space in which they live, distribution from which they are drawn, and manner in which they are
combined dependent on the particular kernel being approximated. The estimator is unbiased provided
each frequency ωi obeys some marginal distribution η. Importantly, independence of {ωi}mi=1 is not
required: any joint distribution with marginals η gives an unbiased estimator. We refer to the set of
such joint distributions as couplings.

The coupling between the frequencies determines the estimator variance. We want to solve:

minimise I(µ) = Eω1:m∼µc(ω1:m) for µ ∈ Λm(η), (2)

where we defined the cost function c(ω1:m) :=
(
ϕ(x)⊤ϕ(y)

)2
and Λm(η) denotes the set of

couplings of m random variables with marginal measures η. This is precisely the Kantorovich
formulation of a multi-marginal OT problem (see Eq. 4 of the seminal OT text of Villani (2021)). We
will generally consider cost functions where the minimiser exists and we want to find efficient new
MC couplings, so the task is to find the optimal coupling µ∗ = argminµ∈Λm(χd) [Eω1:m∼µc(ω1:m)]
with the smallest estimator variance. The relationship between variance reduction and OT was also
noted by Rowland et al. (2018) in a different context.
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(Approximately) solving the OT problem. The formulation of Eq. 2 depends on the particular
RF mechanism and kernel being approximated. We will show that one can solve it exactly for
RFFs and RLFs (Sec. 3) and approximately for GRFs (Sec. 4), which have input domains X = Rd

(d-dimensional Euclidean space) and X = N (the set of graph nodes) respectively. This gives new
couplings with lower RF variance than previous algorithms.

3 RANDOM FOURIER FEATURES AND RANDOM LAPLACE FEATURES

RFFs and RLFs. To begin, we consider the task of approximating the popular Gaussian kernel
k(xi,xj) := exp(−∥xi − xj∥2/2) with data {xi}Ni=1 ⊂ Rd. This can be achieved using Rahimi
and Recht’s celebrated random Fourier features (RFFs) (Rahimi and Recht, 2007),

ϕRFF(x) =

√
1

m

(
⊙m

i=1

[
sin(ω⊤

i x), cos(ω
⊤
i x)

])
, (3)

where ⊙ denotes concatenation. These provide an unbiased estimate if the frequencies {ωi}mi=1
are marginally Gaussian, ωi ∼ N (0, Id). RFFs are widely used for scaling kernel methods such
as Gaussian processes (GPs; Williams and Rasmussen, 2006) and support vector machines (SVMs;
Scholkopf and Smola, 2018). The time complexity of computing the exact posterior of a GP is
O(N3), where N is the number of datapoints. Using RFFs, one can approximate the posterior with
m ≪ N features, reducing this cost to O(Nm2). Changing basis functions, k(xi,xj) can also be
approximated using random Laplace features (RLFs) (Yang et al., 2014b),

ϕRLF(x) =

√
1

m
exp(−∥x∥2)(⊙m

i=1 exp(ω
⊤
i x)), (4)

where again ωi ∼ N (0, Id). Unlike RFFs, RLFs guarantee positive kernel estimates. This makes
them better suited to approximating attention in efficient transformers (Choromanski et al., 2020),
where negative estimates cause training instabilities. Using m RLFs to get a low-rank decomposition
of attention with N d-dimensional tokens, one can reduce the time complexity of transformers from
O(N2 +Nd) to O(Nmd) with low performance loss.

Orthogonal random features. A common variance reduction technique for both RFFs and RLFs is
the orthogonality trick (Yu et al., 2016; Rowland et al., 2018; Reid et al., 2023; Choromanski et al.,
2018). Exploiting the isotropy of N (0, Id), one can constrain the frequency vectors {ωi}mi=1 to be
exactly orthogonal whilst preserving their marginal distributions. This is found to reduce the kernel
estimator variance and improve performance in downstream tasks. Whilst this technique couples
the directions of the random frequencies {ω̂i}mi=1, their norms {ωi}mi=1 (with ωi := ∥ωi∥2) are left
independent so the coupling is suboptimal. By solving an OT problem, we will show how coupling
the norms can further reduce estimator variance.

3.1 SOLVING THE OT PROBLEM FOR MAXIMAL VARIANCE REDUCTION

Consider an ensemble of m orthogonal random frequency directions {ω̂i}mi=1, jointly randomly
rotated so they are marginally isotropic. Our task is to couple their norms {ωi}mi=1 to suppress the
RFF and RLF kernel estimator variance. The marginal distribution of each ωi must be χd (a Chi
distribution with d degrees of freedom) to ensure that each ωi is marginally Gaussian. We can extend
recent results by Reid et al. (2023) to compute the OT cost functions.
Lemma 3.1 (OT formulation for RFFs and RLFs). When estimating k(x,y) with m orthogonal
RFFs and RLFs, the OT formulation of the variance reduction problem is:

µ∗ = arg min
µ∈Λm(χd)

[Eω1:m∼µc(ω1:m)] , where (5)

cRFF(ω1:m) =

m∑

i,j ̸=i

∞∑

k=0

(−1)kz2k
(
ω2
i + ω2

j

)k

22kk!Γ(k + d
2 )

, cRLF(ω1:m) =

m∑

i,j ̸=i

∞∑

k=0

v2k(ω2
i + ω2

j )
k

22kk!Γ(k + d
2 )
, (6)

with z := ∥x− y∥2 and v := ∥x+ y∥2. Γ is the gamma function.

This is a tough multi-marginal OT problem. However, remarkably, we can solve it exactly, under
mild asymptotic assumptions for RFFs, when m = 2. The following result is novel.

3
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Theorem 3.2 (Solution to OT problem when m = 2). Denote by Fχd
(·) the cumulative distribution

function (CDF) of χd. Consider m = 2 orthogonal frequencies with norms (ω1, ω2). For RLFs, the
OT problem in Eq. 5 is solved by the negative monotone coupling

Fχd
(ω1) + Fχd

(ω2) = 1. (7)

For RFFs, Eq. 7 ensures lower cost than any other coupling, provided z is sufficiently small.

Proof sketch. We defer a full proof of this important result to App. A.2; here is a brief sketch. OT
plans satisfy a property called ‘c-monotonicity’, which specifies how the support of the optimal
coupling depends on the cost function. For RLFs, cRLF immediately implies negative monotonicity
(Eq. 7). For RFFs, this is only true for the first nontrivial term in z. By bounding the contribution from
the remaining terms, one can show that Eq. 7 still guarantees lower variance than any other coupling
if z is small enough. Specifically, letting µNM denote the negative monotone coupling, for any other
coupling µ′ ∈ Λ2(η)\ {µNM} there exists some constant δ(µ′) > 0 such that I(µNM) < I(µ′) for all
z < δ (Lemma A.6).

Given m = d orthogonal frequencies, one can partition the ensemble into ⌊d
2⌋ orthogonal pairs, with

one remaining frequency if d is odd. For every pair, one can impose negative monotone coupling
(Eq. 7). We refer to such ensembles as pairwise norm-coupled (PNC).

Definition 3.3 (Pairwise norm-coupled RFs). RFs are pairwise norm-coupled (PNC) if
d orthogonal frequencies {ωi}di=1 are arranged in ⌊d

2⌋ pairs, each of which is negative
montone-coupled so that Fχd

(ω1) + Fχd
(ω2) = 1. Different pairs are independent.

PNC is no more expensive than i.i.d. norms. To reduce the variance further, one can take multiple
independent PNC ensembles. An important corollary of Thm. 3.2 is as follows.
Corollary 3.4 (Superiority of pairwise norm-coupled RFs). For any m, the variance of pairwise
norm-coupled RFs is guaranteed to be lower than orthogonal RFs with independent norms, in full
generality for RLFs and provided z is small enough for RFFs.

Negative monotone coupling differs from OT plans usually seen in machine learning; it is a space-
filling coupling that seeks long transport plans that give diverse samples. However, it is a popular
heuristic technique for variance reduction via common random numbers (CRNs) in computational
statistics (Glasserman and Yao, 1992). To our knowledge, this is the first result applying it to
improving the convergence of orthogonal RFs, and the first corresponding guarantees for variance
reduction. We make one further theoretical contribution for RLFs.
Theorem 3.5 (Recovering antithetic sampling with RLFs). For RLFs with m = 2 frequencies whose
respective orientations (ω̂1, ω̂2) are unconstrained, variance is minimised by conditioning that
ω1 = −ω2 almost surely (that is, opposite directions and equal norms).

This coupling is known as antithetic sampling (Hammersley and Morton, 1956). Thm. 3.5 shows
that, given a PNC ensemble {ωi}di=1, we can obtain further variance reduction by augmenting it to
{±ωi}di=1. Antithetic sampling is also a common (though often heuristically motivated) variance
reduction strategy used e.g. when estimating attention in Performers (Choromanski et al., 2020). We
can reinterpret its effectiveness as an OT coupling.

3.2 PUSHING FURTHER WITH NUMERICAL OT SOLVERS

Multi-marginal OT. In Sec. 3.1 we proposed PNC RFs: a computationally efficient coupling that
is guaranteed to reduce variance for any m. We obtained it by solving the variance reduction OT
problem exactly in m = 2, then combining ⌊d

2⌋ independent copies to get the ensemble. Can
we do better by inducing dependencies between the all the m frequencies’ norms? Solving this
multi-marginal OT problem analytically is a tough open problem.

Copulas as numerical OT solvers. Whilst an analytic solution to the multi-marginal OT variance
reduction problem is (for now) out of reach, we can make progress using a numerical OT solver. Our
strategy is to restrict Λm(χd), the full set of joint distributions over m random variables with χd

marginals, to a tractable subset amongst which we can efficiently optimise and sample. One such
subset is provided by Gaussian copulas (Nelsen, 2006; Haugh, 2016): joint distributions obtained by

4
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FN F−1
χd

Figure 1: Copula schematic for d = 2. Random variables are drawn from a Gaussian distribution with
correlation matrix Σ. They are pushed forward using FN then F−1

χd
to obtain coupled variables with

marginal χd distributions. Σ is learned using gradient-based optimisation, approximately solving the
multi-marginal OT problem in Eq. 5.

FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 1.000 ±0.028 1.000 ±0.042 1.000 ±0.082 1.000 ±0.037 1.000 ±0.023 1.000 ±0.018

HALTON 1.028 ±0.029 0.991 ±0.042 0.995 ±0.082 0.913 ±0.033 0.927 ±0.021 1.176 ±0.022

ORTHOGONAL 0.627 ±0.019 0.535 ±0.023 0.617 ±0.070 0.669 ±0.024 0.586 ±0.013 0.639 ±0.016

+ PNC 0.563 ±0.019 0.433 ±0.019 0.544 ±0.071 0.547 ±0.020 0.481 ±0.011 0.606 ±0.018

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 1.000 ±0.092 1.000 ±0.036 1.000 ±0.086 1.000 ±0.018 1.000 ±0.026 1.000 ±0.029

HALTON 0.721 ±0.067 0.777 ±0.031 0.779 ±0.084 0.728 ±0.015 0.721 ±0.021 0.893 ±0.028

ORTHOGONAL 0.418 ±0.041 0.546 ±0.026 0.614 ±0.098 0.527 ±0.013 0.489 ±0.016 0.360 ±0.019

+ PNC + ANTITHETIC 0.367 ±0.043 0.486 ±0.027 0.618 ±0.119 0.438 ±0.013 0.418 ±0.016 0.324 ±0.019

Table 1: Performance of RFFs and RLFs on kernel estimation with UCI datasets with different
coupling schemes, taking d random frequencies for RFFs and 2d for RLFs (see main text for details).
We show RMSEs to the ground truth kernel values, normalised such that the RMSE of the I.I.D.
estimator is equal to one. Lower is better. Error bars are standard errors on the reported RMSEs. Our
couplings consistently give the lowest variance.

taking a multivariate Gaussian and pushing each of its coordinates forward first with the Gaussian
CDF FN , and then the χd inverse CDF F−1

χd
. Fig. 1 gives a visual overview for d = 2. If the

diagonal terms of the underlying Gaussian covariance matrix Σ ∈ Rm×m are equal to 1 (i.e. it is
a correlation matrix), this has the prescribed marginals so unbiasedness is baked in. Meanwhile,
correlations between the random variables are controlled by the off-diagonal entries of Σ. This
parameterises a broad set of couplings, including PNC (Def. 3.3). In App. A.5 we demonstrate
that it is possible to use gradient descent with the reparameterisation trick to learn the optimal
copula covariance matrix Σ, approximately solving the multi-marginal OT problem. We do this by
minimising the kernel approximation error on training data, exploiting the fact that all operations to
construct the features are differentiable. In doing so, we optimise the RF coupling. Remarkably, this
data-dependent optimisation does not to find couplings much better than PNC: see the training curves
in Fig. 5. This suggests that our scheme may already be close optimal for m ̸= 2. Intuitively, one
cannot simultaneously anticorrelate too many random variables, so strong pairwise couplings already
perform very well. Whilst copulas have previously been used as numerical OT solvers (Chi et al.,
2019), this is (to our knowledge) their first application to learning a Monte Carlo coupling.

3.3 EXPERIMENTS FOR NORM-COUPLED RFS

To test PNC RFs (Def. 3.3), we now compute kernel estimates with RFFs and RLFs for UCI datasets.
We choose the kernel lengthscale parameters based on a training set, by training a GP (RFFs) or
selecting reasonable values for Performers (RLFs) (Choromanski et al., 2020). We then compute the
kernel approximation RMSE (Frobenius norm error of K̂) on a test set. Full details are in App. B.1.

Results for variance reduction. Table 1 shows the results. For RFFs, we take m = d orthogonal
frequencies. For RLFs, we also include their antiparallel directions, giving m = 2d frequencies.
For each dataset, the RMSEs are normalised by the result with i.i.d. features. As a further baseline,
we include RFs constructed using Halton sequences (Dick et al., 2013; Yang et al., 2014a), a fixed,
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off-the-shelf QMC scheme that can provide small gains but is clearly suboptimal. The third row
shows orthogonal frequencies with independent norms (Yu et al., 2016). When we also couple the
frequencies’ norms using our PNC scheme (plus antithetic sampling for RLFs, due to Thm 3.5), we
access even lower estimator variance at no extra computational cost. Note that the small z condition
for RFFs is found to be nonrestrictive in practice.

Downstream tasks. We have achieved our objective of variance reduction, a popular and intensely
studied goal in the literature (Yu et al., 2016; Rowland et al., 2018; Reid et al., 2023; Likhosherstov
et al., 2022; Yang et al., 2014a; Le et al., 2013; Bojarski et al., 2017; Choromanski et al., 2017; Lyu,
2017; Shen et al., 2017; Dao et al., 2017; Munkhoeva et al., 2018). It is conventionally understood
that PNC RFs should therefore improve downstream performance in applications. Surprisingly, when
we run exhaustive Gaussian process experiments in App. B.2, we do not observe such a gain.

The reason for this counterintuitive behaviour is as follows. When optimising a coupling, we minimise
the variance of pointwise kernel estimates {k(xi,xj)}Ni,j=1. However, functions like the predictive
mean and KL divergence are highly nonlinear in these estimates. For example, they may involve
inverting a Gram matrix. Downstream quantities therefore depend on the joint distribution of the
kernel estimates, which are modified nontrivially by the coupling. Variance reduction alone cannot
guarantee an improvement. Fig. 6 in App. B.2 also shows how these quantities behave as m grows.

Performers. As a concrete example, consider estimating attention, âij := k̂(xi,xj)/
∑N

l=1 k̂(xi,xl)
using random Laplace features (Choromanski et al., 2020). This normalises the kernel evaluation
between the i and j tokens by the sum with all the other tokens. Taylor expanding, if the kernel
estimators have equal means µ, the average mean square error MSE(âi) := 1

N

∑N
j=1 MSE(âij) obeys

MSE(âi) =
1

N2µ2

(
1

N

N∑
j=1

Var(k̂(xi,xj))−
1

N2

N∑
j1,j2=1

Cov(k̂(xi,xj1), k̂(xi,xj2))

)
+O(

1

N3
). (8)

Table 2: Performer test accuracies on Im-
ageNet with different coupling schemes.
Counterintuitively, maximising the point-
wise kernel estimator variance by posi-
tively correlating feature norms boosts
performance – a different OT problem to
the naive, obvious choice.

LAPLACE FEATURES TEST ACC.

ORTHOGONAL 0.625 ±0.003

ORTHOGONAL + PNC 0.620 ±0.003

ORTHOGONAL + PM 0.633 ±0.003

By coupling the frequency norms, PNC reduces
Var(k̂(xi,xj)) as intended. However, it also reduces
the covariance Cov(k̂(xi,xj1), k̂(xi,xj2)), so MSE(âi)
does not actually substantially improve overall. In
stark contrast, if we instead take the positive mono-
tone (PM) coupling where {ωi}mi=1 are all equal almost
surely, then Var(k̂(xi,xj)) is maximised (see App. B.3).
But these strong, positive correlations also increase
Cov(k̂(xi,xj1), k̂(xi,xj2)) by an even greater amount.
Hence, we find that MSE(âi) falls (see Fig. 7). This is
surprising: maximising the pointwise kernel estimator vari-
ance by solving the OT problem with the ‘wrong’ sign on
the cost function reduces the MSE of the attention scores
after normalisation. In fact, the improvement is so big that
it increases the average test accuracy of Performers trained on ImageNet (Deng et al., 2009) by
+0.8%, whereas PNC makes no statistically significant difference. See Table 2. This demonstrates
the limitations of simple variance reduction and invites a more careful treatment, considering the
downstream quantities of interest. App. B.3 gives further discussion and transformer training details.

4 GRAPH RANDOM FEATURES

We now shift our attention from Rd to the discrete domain. Consider an undirected graph G(N , E)
where N := {v1, ..., vN} is the set of nodes and E is the set of edges, with (vi, vj) ∈ E if and only
if there exists an edge between vi and vj in G. Graph node kernels k : N ×N → R are positive
definite, symmetric functions defined on pairs of nodes of G, reflecting some notion of their ‘closeness’
via the graph edges and weights. k captures the structure of G, letting practitioners repurpose popular
kernelised learning algorithms to the discrete domain (Smola and Kondor, 2003b;a). Examples
include the diffusion, regularised Laplacian, cosine and random walk kernels, all of which are
typically considered as functions of the graph Laplacian matrix (Kondor and Lafferty, 2002). We
give a short introduction in App. C.1.

Graph random features. As in the Euclidean setting, graph kernel methods scale poorly due to the
O(N3) time complexity of inverting the Gram matrix K := [k(vi, vj)]

N
i,j=1. In fact, even computing

K often incurs a cubic cost since it involves multiplying large adjacency matrices. Research has been
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matching between quantiles

p

l

π(σ) graph random walks

Figure 2: Schematic overview of σ-coupled GRFs with σ = 24351. Left: permutation density with
uniform marginals. Centre: bipartite matching between quantiles of geometric distributions over
walk lengths. Right: ensemble of graph random walks with lengths to be coupled.

dedicated to improving efficiency by approximating K, including graph random features (GRFs)
(Choromanski, 2023; Reid et al., 2024b). These are sparse vectors {ϕGRF(vi)}Ni=1 ⊂ RN that satisfy
Kij = E

[
ϕGRF(vi)

⊤ϕGRF(vj)
]
, so their dot product is equal to the true graph kernel in expectation.

GRFs are constructed in subquadratic time.

Coupled random walks. For GRFs, the ‘frequencies’ {ωi}mi=1 are simple random walks: sequences
of graph nodes (vi)

l
i=1 with (vi, vi+1) ∈ E . At every timestep, the walker chooses one of its

neighbours uniformly and at random. The length of the walk l is also a random variable, drawn from
a geometric distribution l ∼ G(p), p ∈ (0, 1). In other words, the walker terminates with probability
p at every timestep. Random walks are usually taken to be independent, but this can lead to slow
mixing times, poor efficiency and high kernel estimator variance (Alon et al., 2007; Zhou et al., 2015).
A natural question is: can we couple graph random walks to improve the convergence of GRFs?

Sec. 3 couples Gaussian vector norms. A simple, analogous approach to couple random walks is
via their lengths. For GRFs, the constraint for unbiasedness is that the marginal distribution of each
variable l must remain geometric. Reid et al. (2024c) proposed a simple, ad-hoc algorithm to achieve
this called antithetic termination, which directly anticorrelates the walkers’ termination events at
every timestep (see App. C.2). They provide asymptotic theoretical guarantees, but only for particular
choices of graph kernel. In the next section, we will see that our novel method of optimising a
coupling with data performs much better.

4.1 APPROXIMATING AND SOLVING THE OT PROBLEM FOR GRFS

Here, we present our novel approach for formulating and approximately solving the variance reduction
OT problem with GRFs. It works by mapping to a corresponding bipartite matching problem which
we can solve efficiently with linear programming techniques. Fig. 2 gives a visual overview.

Constructing GRFs from random walks. To obtain ϕGRF(vi) ∈ RN , one samples m random walks
{ω(i)

k }mk=1 out of node vi ∈ N and averages their ‘projections’,

ϕGRF(vi) =
1

m

m∑

k=1

ψ(ω
(i)
k ). (9)

The projection function ψ(·) : Ω → RN maps from the set of graph random walks
Ω :=

{
(vi)

l
i=1 | vi ∈ N , (vi, vi+1) ∈ E , l ∈ N

}
to a sparse N -dimensional feature vector satisfying

k(vi, vj) = Eω(i),ω(j) [ψ(ω(i))⊤ψ(ω(j))]. ψ(·) depends on the particular kernel being approximated.
We direct the reader to the work of Reid et al. (2024b) for an introduction to GRFs, and also provide
background in App. C.1. ψ(·) is a complicated function; it is difficult to reason about analytically
but straightforward to compute for a particular walk. Moreover, its input walks are discrete random
variables so ψ(·) is not differentiable with respect to the lengths l(i)k (where k = 1, ...,m and vi ∈ N
is the walker’s start node). This precludes straightforward gradient-based optimisation (Sec. 3.2).

A pair of walkers. Initially consider just m = 2 walkers. The kernel estimator k̂(vi, vj) is

k̂(vi, vj) = ϕGRF(vi)
⊤ϕGRF(vj) =

1

4

(
ψ(ω

(i)
1 ) + ψ(ω

(i)
2 )
)⊤ (

ψ(ω
(j)
1 ) + ψ(ω

(j)
2 )
)
, (10)
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which is unbiased provided (i) the marginal distribution of each ω
(i,j)
1,2 is a simple random walk with

geometrically distributed length (hereafter denoted ηG) and (ii) walks from node vi are independent
from walks from node vj . The variance of the estimator depends on

E
(
k̂(vi, vj)

2
)
=

1

16
E
ω

(i,j)
1,2

([(
ψ(ω

(i)
1 ) + ψ(ω

(i)
2 )
)⊤ (

ψ(ω
(j)
1 ) + ψ(ω

(j)
2 )
)]2)

, (11)

where the expectation is taken over both the directions and lengths of the random walks. Suppose
the directions remain independent, but the lengths l(i)1 and l(i)2 (and likewise l(j)1 and l(j)2 ) are to
be coupled for variance reduction, analogously to the vector norms in Sec. 3. Let Edirs denote the
expectation over the walkers’ directions. We want to minimise:

E
(l

(i)
1 ,l

(i)
2 )∼µ,(l

(j)
1 ,l

(j)
2 )∼µ

Edirs

([(
ψ(ω

(i)
1 ) + ψ(ω

(i)
2 )
)⊤ (

ψ(ω
(j)
1 ) + ψ(ω

(j)
2 )
)]2)

for µ ∈ Λ2(ηG). (12)

OT, permutation densities and bipartite matchings. The OT problem in Eq. 12 is analytically
intractable. To make progress, we must make approximations. We report full details in App. C.3,
limiting the main text to a high-level discussion of the main points.

First, to make the objective amenable to Monte Carlo approximation, we move Edirs inside the
square. This is because, unlike the expression in Eq. 12, Edirs(ψ(ω

(i,j)
1,2 )) can be efficiently estimated

by simulating random walks. Second, we must optimise amongst the class of couplings Λ2(ηG),
joint distributions of two discrete random variables with geometrically distributed marginals. As
in Sec. 3.2, a sensible numerical approach is to limit oneself to a tractable subclass of Λ2(ηG).
Taking inspiration from numerical OT, consider the family of measures π(σ) on [0, 1]2 described by
the permutation densities pσ(x, y) := n1σ(⌈nx⌉)=⌈ny⌉, with σ a permutation of order n (that is, a
bijection σ : [[n]] → [[n]]). The unit square is split into a n× n grid where each row and column has
a single ‘tile’ of probability density n and is 0 otherwise (Fig. 2 left). Both marginal distributions
of π(σ) are uniform on [0, 1] and are transformed to a probability distribution η by pushing forward
with the inverse CDF, F−1

η (·) := inf{x ∈ R : Fη(x) ≥ ·}. Transforming both coordinates in this
way yields a joint measure µ(σ) ∈ Λ2(η) which will give an unbiased estimator. n! such couplings
exist for a given permutation order n; we aim to efficiently find the one with the lowest variance.

The permutations σ ∈ Sn can be interpreted as matchings between the n quantiles of the geometric
distributions over the lengths of a pair of walkers (Fig. 2 centre). With the correct choice of σ, they
can ensure that e.g. if one of the walk lengths is short then the other tends to be long, diversifying the
ensemble (Fig. 2 right). Optimising σ, the approximate OT problem can be written

σ∗ = arg min
σ∈Sn

∑
q1∈[[n]]

∑
q2∈[[n]]

[(
ψ̂(q

(i)
1 ) + ψ̂(σ(q1)

(i))
)⊤ (

ψ̂(q
(j)
2 ) + ψ̂(σ(q2)

(j))
)]2

(13)

where ψ̂(q(i)) := Eu∼U(( q−1
n , q

n ])

(
Edirsψ(F

−1
ηG

(u)(i))
)
. U((a, b]) is the uniform distribution on the

interval (a, b]. Eq. 13 is a quadratic assignment problem (Finke et al., 1987; Burkard et al., 1998).
This family is generally NP hard, but in our case the cost function has some convenient extra
symmetric structure. In fact, the following is true.
Theorem 4.1 (Solving Eq. 13). Given a set of vectors {ψ̂(q(i)), ψ̂(q(j))}nq=1 ⊂ RN , Eq. 13 can be
solved with high probability in time complexity independent of N . Moreover, in the special case
where i = j, it can be solved in polynomial time in n (under mild technical assumptions on the set).

Proof sketch. Details and definitions are in App. C.3.1. The time complexity can be made independent
of the number of nodes N by performing dimensionality reduction using the celebrated Johnson-
Lindenstrauss transformation (Dasgupta et al., 2010), which preserves pairwise dot products with
high probability. In the special case i = j, Eq. 13 can be rewritten as finding a permutation σ that
minimises the L2 norm of some particular N2-dimensional vector. In App. C.3.1 we provide a
novel algorithm to achieve this efficiently by projecting onto a sequence of random Gaussian vectors,
requiring only a mild geometrical condition called ϵ-separation. See Lemma C.2 for full details.

More pragmatically, one can set q1 = q2 to simplify to a related linear assignment problem, which can
be solved efficiently in time O(n3) using e.g. the Hungarian algorithm (Kuhn, 1955). We empirically
investigate how this final approximation modifies the objective in App. C.3. Taking the optimal
permutation and corresponding coupling µ(σ), we define σ-coupled GRFs as follows.
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Definition 4.2 (σ-coupled GRFs). GRFs are σ-coupled if they are constructed using pairs
of random walks with lengths drawn from the coupling µ(σ), with the optimal permutation σ
obtained by solving a matching problem between the quantiles of the distributions over walk
lengths (specifically, Eq. 57 in App. C.3).

Besides being easy to optimise and sample from, there are also more rigorous OT motivations for the
choice of σ-couplings µ(σ). They relate to the asymptotic behaviour of µ(σ) as the permutation order
n→ ∞ and the stability of OT plans (Villani, 2021). We defer this technical point to App. D. As in
Sec. 3.2, another interesting question is whether one could couple the lengths of m > 2 walkers. This
is challenging and has received little attention in the literature. One possibility would be to combine
m− 1 permutations, finding a minimum-weights m-partite matching with all subgraphs constrained
to be complete Km. Another approach would be to approximately solve this multi-marginal OT
problem using the Sinkhorn-Knopp algorithm (Sinkhorn and Knopp, 1967; Cuturi, 2013).

Broader applicability. As a final remark, the utility of our algorithm extends to graph-based
estimators beyond GRFs. For example, it can be used to improve estimates of the PageRank vector, a
popular measure of the importance of the nodes of a graph proposed by Page et al. (1998) to rank
websites in search engine results. σ-couplings consistently match or beat the previous best algorithm
for coupling walk lengths (Reid et al., 2024c). See Fig. 9 in App. E for the full results.

4.2 EXPERIMENTS WITH σ-COUPLED GRFS

We now empirically evaluate σ-coupled GRFs for variance reduction of graph node kernel estimates.
For real-world graphs, we show that lower variance unlocks better approximate inference with
scalable graph-based Gaussian processes (GPs), a novel application of GRFs.

Gram matrix approximation. GRFs take the termination probability phalt as a hyperparameter, deter-
mining the rate of decay of the geometric distribution over walk length. A smaller value of phalt sam-
ples longer walks and gives more accurate kernel estimates, but takes longer to run. The optimal cou-
pling changes depending on phalt. We consider the values phalt ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, finding the
optimal permutation σ in each case. To find the optimal σ, we solve the matching problem (App. C.3)

0.1 0.2 0.3 0.4 0.5

termination probability

0.25
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GRFs kernel estimator error

i.i.d.

antithetic

σ-coupled

Figure 3: Kernel estimator error vs termina-
tion probability. Insets show permutations for
phalt ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

for a random Erdős-Rényi graph with N = 100
nodes, taking a permutation order n = 30 and choos-
ing the 2-regularised Laplacian kernel as our target.
We use the Hungarian algorithm, averaging the cost
matrix over every possible node pair (vi, vj) ∈ N 2.
Having computed couplings µ(σ) for each value of
phalt, we then test the corresponding σ-coupled GRFs
on a variety of real-world graphs. Fig. 3 shows the
results for cora (N = 2708), with the rest left to
App. F.1. We plot the relative Frobenius norm error
of the Gram matrix approximation ∥K− K̂∥F/∥K∥F
with walkers that are i.i.d., antithetic (Reid et al.,
2024c) or σ-coupled. For each phalt, σ-coupled GRFs
give equally good or smaller kernel estimator errors.
Our OT approach often substantially outperforms an-
tithetic termination: a data-independent, hard-coded
algorithm designed specifically to improve GRFs
(Reid et al., 2024c). We include visualisations of
the optimal permutations for different values of phalt in the inset, verifying that the σ-coupling adapts
to different hyperparamaters.

Novel application: σ-coupled GRFs for scalable graph-based GPs. We now apply σ-coupled
GRFs to scalable graph-based Gaussian processes (GPs), where improved estimation of the covariance
function permits better approximate inference. Scalable GPs are a novel application of GRFs that
may be of independent interest (Borovitskiy et al., 2021; Mostowsky et al., 2024).

Consider the task of probabilistic graph interpolation. This aims to predict unknown graph function
values, along with principled uncertainty estimates, from an observed set (Pfaff et al., 2020). Take
mesh graphs G where every node vi ∈ N has a normal vector ni ∈ R3 (Dawson-Haggerty, 2023).
Our task is to predict the z-components of a masked set, {(ni)z}Ntest

i=1 with Ntest = ⌊0.05N⌋. To

9
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achieve this, we use a graph-based GP with a heat kernel covariance function. We compute a sparse,
unbiased approximation of this kernel using GRFs with {16, 32, 64} walkers that are i.i.d., antithetic
(Reid et al., 2024c) or σ-coupled. Details of GP hyperparameter optimisation are given in App. F.2.
Fig. 4 shows the results. For mesh graphs of different sizes (the largest as big as 8700 nodes), we plot
the relative Frobenius norm error of the Gram matrix approximation, the test root mean square error
(RMSE), and the KL divergence to the true posterior. Our variance reduction method unlocks more
accurate predictions and better uncertainty quantification, sometimes by a factor of > 2.
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Figure 4: Graph GP regression. Rows show the kernel estimation error, test set RMSE, and KL-
divergence between the true and approximate posterior. Lower is better. σ-coupled GRFs give better
predictions and uncertainty estimates, sometimes by a factor of > 2. Standard errors are shaded.

Probabilistic interpolation of traffic data. We also train a scalable graph-based GP on a traffic flow
dataset of the highways of San Jose, California, curated by Borovitskiy et al. (2021) using data from
Chen et al. (2001) and OpenStreetMap. The graph has 1016 nodes, with speed only known at 325.
We use 250 randomly-chosen nodes as training data and the remainder as test data. With this sparse,
noisy dataset, σ-coupled GRFs again give substantially better predictions and uncertainty estimates.
Fig. 11 in App. F.3 shows the full results.

5 DISCUSSION AND OUTLOOK

OT provides a powerful, unifying paradigm for variance reduction with random features. It offers
perspectives, proof techniques and numerical algorithms for finding novel RF couplings on continuous
and discrete input domains, substantially beating previous algorithms in both settings and with
disparate basis functions.

Variance reduction is not all you need. Whilst the presence of variance reduction is unambiguous,
downstream benefits tell a more nuanced story. With GRFs for scalable GPs, variance reduction
permits much better approximate inference (Sec. 4.2). With RFFs and RLFs, this is not the case.
For instance, when approximating attention in Performers (Choromanski et al., 2020), maximising
the pointwise kernel estimator variance – the ‘wrong’ OT problem – turns out to improve predictive
performance after row normalisation. This shows that, though popular, naive variance reduction is
not always the right goal. Whilst there has been some recognition of this in the literature (Liu et al.,
2021), we believe it to be underappreciated.

Right framing, wrong cost function. Therefore, we posit that OT provides the right framing for the
problem of coupling RFs, but sometimes pointwise kernel variance is the wrong cost function. This
choice may not fully capture how the joint distribution over kernel estimates determines downstream
performance. Coupling to optimise e.g. the spectral properties of K̂ (Choromanski et al., 2018; Avron
et al., 2017a) or the variance of row-normalised attention scores may prove better. These objectives
are rarely considered in the literature. Fortunately, OT provides a suite of theoretical and numerical
tools achieve this; one simply modifies the cost function in Eq. 2, optimising a different characteristic
of the coupling. We hope this research will spur future work in this exciting direction.
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6 ETHICS AND REPRODUCIBILITY

Ethics statement: Our work is foundational with no immediate ethical concerns apparent to us.
However, increases in scalability provided by improvements to MC algorithms could exacerbate
existing and incipient risks of machine learning, from bad actors or as unintended consequences.

Reproducibility statement: Every effort has been made to ensure the work’s reproducibility. The
core algorithms are presented in Defs 3.3 and 4.2, with exhaustive details and discussion in the
Appendices. Theoretical results are proved with full assumptions in Apps A and C.3.1, with proof
sketches included in the main text for clarity. We will make source code available if accepted. All
datasets are available online. We give links to suitable repositories in every instance. Where possible,
results are reported with uncertainties to facilitate comparison.
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A SOLVING THE OT PROBLEM FOR RFFS AND RLFS

In this appendix, we provide proofs for the theoretical results in Sec. 3.1 and supplement the discussion
of copula-based numerical OT solvers in Sec. 3.2.

A.1 PROOF OF LEMMA 3.1

We begin by proving Lemma 3.1, which formulates variance reduction for RFFs and RLFs as an
optimal transport problem. We will first reason about the simpler case of RLFs, then consider RFFs.

Proof of Lemma 3.1. Consider the following recently-derived result by Reid et al. (2023).
Lemma A.1 (Kernel estimator MSE for RLFs (Reid et al., 2023)). When estimating the Gaussian
kernel k(x,y) := exp(−∥x− y∥22/2) for datapoints {x,y} ⊂ Rd using random Laplace features
(synonymously, positive random features), the mean square error of the kernel estimate k̂(x,y) is
given by:

MSE(k̂) =
e−2x2−2y2

m

(
(e2v

2

− ev
2

) + (m− 1)(ρ(x,y)− ev
2

)
)

(14)

where m is the number of sampled random frequencies, v := ∥xi + xj∥2 is a data-dependent scalar
and ρ(xi,xj) is the RF-conformity,

ρ(x,y) :=
Γ(d2 )

m(m− 1)

∑

i,j ̸=i

Eωij

( ∞∑

k=0

v2kω2k
ij

22kk!Γ(k + d
2 )

)
. (15)

Here, ωij := ∥ωi + ωj∥2 is the norm of the resultant of a pair of distinct frequencies and Γ is the
Gamma function.

Proof. Reid et al. (2023).

The simple derivation, reported in full by Reid et al. (2023), is based on rewriting the angular integral
as a Hankel transform, yielding a Bessel function of the first kind with a known Taylor expansion.

Supposing that ωi ⊥ ωj , we have that ωij =
√
ω2
i + ω2

j , where ωi := ∥ωi∥2 denotes the L2-norm
of the frequency ωi. Note that, for ωi to be marginally Gaussian, we require that the marginal
distribution over its norm is χd, a Chi distribution with d degrees of freedom. Substituting this into
Eq. 14 and dropping terms unmodified by the coupling and irrelevant multiplicative factors, it is
straightforward to arrive at the expression for the cost function cRLF in Eq. 6.

Finding the cost function for RFFs is only slightly more difficult. We begin by citing another recent
result by Reid et al. (2023).
Lemma A.2 (Kernel estimator MSE for RFFs (Reid et al., 2023)). When estimating the Gaussian
kernel k(x,y) := exp(−∥x− y∥22/2) for datapoints {x,y} ⊂ Rd using random Fourier features,
the mean square error of the kernel estimate k̂(x,y) is given by:

MSE(k̂) =
1

m

(
(1− e−z2

)2

2
+ (m− 1)(ζ(x,y)− e−z2

)

)
(16)

where m is the number of samples, z := x− y and ζ(x,y) is defined by

ζ(x,y) :=
1

m(m− 1)

∑

i,j ̸=i

Eωi,ωj

[
cos(ω⊤

i z) cos(ω
⊤
j z)

]
. (17)

Proof. Reid et al. (2023).

Note the close resemblance to Eq. 15. The only term that depends on couplings between the random
frequencies {ωi}mi=1 is ζ(x,y), which we seek to suppress with carefully engineered correlations.
From elementary trigonometry, cosω⊤

i z cosω⊤
j z = 1

2 (cos
(
(ωi + ωj)

⊤z
)
+ cos

(
(ωi − ωj)

⊤z
)
,

and for any coupling scheme ωi ± ωj is isotropic. Defining the random variables
ω(+) := ∥ωi + ωj∥2 and ω(−) := ∥ωi − ωj∥2 and integrating out the angular part,

ζ(xi,xj) =
1

m(m− 1)

∑
i,j ̸=i

Γ(d/2)2
d
2
−2Eω(±)

[
(ω(+)z)1−

d
2 J d

2
−1(ω

(+)z) + (ω(+)z)1−
d
2 J d

2
−1(ω

(−)z)
]

(18)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025.

where Jα(x) is a Bessel function of the first kind, order α. If ωi ⊥ ωj , ω(+) = ω(−) so their
distributions are identical. It follows that we can write

ζ(x,y) =
Γ(d2 )

m(m− 1)

∑

i,j ̸=i

Eωi,ωj

[ ∞∑

k=0

(−1)kz2k
(
ω2
i + ω2

j

)k

22kk!Γ(k + d
2 )

]
. (19)

Again dropping multiplicative factors and terms unmodified by the coupling, we arrive at the RFF OT
cost function cRFF specified in Eq. 6. This completes the derivation.

A.2 PROOF OF THM. 3.2

We now solve the OT problem formulated in Lemma 3.1 exactly in the special case that m = 2 (with
mild asymptotic assumptions for RFFs). For the reader’s convenience, we copy it from the main text
below.
Theorem A.3 (Solution to OT problem when m = 2). Denote by Fχd

(·) the cumulative distribution
function (CDF) of χd. Consider m = 2 orthogonal frequencies with norms (ω1, ω2). For RLFs, the
OT problem in Eq. 5 is solved by the negative monotone coupling

Fχd
(ω1) + Fχd

(ω2) = 1. (20)

For RFFs, Eq. 7 ensures lower cost than any other coupling, provided z is sufficiently small.

The proof of Thm. 3.2 uses ideas from optimal transport theory. In particular, it modifies arguments
made for a related problem by (among others) Thorpe (2019), to which we direct the interested reader
for further context and discussion. Before giving the proof, we establish some basic definitions and
results.
Definition A.4 (c-monotone sets). Given a cost function c : Rd × Rd → R, we refer to a set Γ ∈ R2

as c-monotone if for all pairs (x1, y1), (x2, y2) ∈ Γ we have that

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1). (21)

It is intuitive that c-monotonicity should be a property of the support of Kantorovich optimal transport
plan: if we could have accessed lower cost by sending x1 → y2 and x2 → y1 instead of x1 → y1
and x2 → y2, the plan would have done this instead. This is formalised as follows.
Lemma A.5 (Support of optimal transport plan is c-monotone (Thorpe, 2019)). Consider η ∈ P(R),
and assume that µ∗ ∈ Λ(η) is the Kantorovich optimal transport plan for a continuous cost function
c(x, y). Then for all (x1, y1), (x2, y2) ∈ supp(µ∗) we have that

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1). (22)

Proof. Thorpe (2019).

We are now ready to provide our proof of Thm. 3.2.

Proof of Thm. 3.2. Inspecting the cost functions in Eq. 6, it is clear that in the special case m = 2 we
have that

cRFF(ω1, ω2) =

∞∑

k=0

(−1)kz2k
(
ω2
1 + ω2

2

)k

22kk!Γ(k + d
2 )

, cRLF(ω1, ω2) =

∞∑

k=0

v2k(ω2
1 + ω2

2)
k

22kk!Γ(k + d
2 )
, (23)

with z := ∥x− y∥2 and v := ∥x+ y∥2 as usual.

First consider cRLF. We claim that for any x1, x2, y1, y2 ≥ 0 satisfying Eq. 22 for this cRLF, x1 < x2
implies y1 ≥ y2. This is seen by observing that

cRLF(x1, y1) + cRLF(x2, y2)− cRLF(x1, y2)− cRLF(x2, y1)

=

∞∑

k=0

v2k

22kk!Γ(k + d
2 )

[
(x21 + y21)

k + (x22 + y22)
k − (x21 + y22)

k − (x22 + y21)
k
]

=

∞∑

k=0

v2k

22kk!Γ(k + d
2 )

k∑

i=0

(
k

i

)[
(y22)

k−i − (y21)
k−i
] [
(x22)

i − (x21)
i
]
.

(24)
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Supposing that x1 < x2, Eq. 22 is satisfied if and only if y1 ≥ y2, verifying the statement.

Denote by ΓRLF := supp(µ∗) the support of the optimal transport plan for the cost function cRLF, and
consider some point (x0, y0) ∈ Γ. An immediate implication of the statement above is that

ΓRLF ⊂ {(x, y) : x ≤ x0, y ≥ y0} ∪ {(x, y) : x ≥ x0, y ≤ y0}. (25)

Let A = [0, x0]× [y0,∞), B = [0, x0)× [0, y0), C = [x0,∞)× [0, y0] and D = (x0,∞]× (y0,∞].
Note thatA∪B∪C∪D = R+×R+ so µ∗(A∪B∪C∪D) = 1 since the measure is normalised. The
subsets are also disjoint apart from A ∩ C = (x0, y0), a singleton of zero measure.1 Eq. 25 implies
that µ∗(B) = 0 = µ∗(D), whereupon 1 = µ∗(A∪C) = µ∗(A)+µ∗(C) = µ∗(A∪B)+µ∗(C∪B).
Now A∪B = ([0, x0]×R+)\({x0}× [0, y0)) and the set {x0}× [0, y0) is zero measure. Therefore,
µ∗(A ∪B) = µ∗([0, x0]× R+) = Fχd

(x0). Likewise, µ∗(C ∪B) = µ∗(R+ × [0, y0]) = Fχd
(y0).

Relabelling (x0, y0) ∈ Γ by (ω1, ω2), Eq. 20 immediately follows. This completes the proof that
negative monotone coupling minimises the kernel estimator variance for orthogonal RLFs.

Let us now turn to the case of RFFs. The optimal transport plan µ∗ will instead be cRFF-monotone.
Unfortunately, Eq. 24 does not hold in general for cRFF, so we cannot immediately use the same
arguments to conclude that the OT plan is negative monotone. However, it does hold if we just
consider the first few terms of its Taylor expansion in z. The following is true.
Lemma A.6 (Negative monotone coupling for RFFs). Denote by µNM the negative monotone coupling.
Consider a coupling µ′ ∈ Λ2(η)\ {µNM}, i.e. any other feasible transport map which is not negative
monotone. There exists some constant δ(µ′) > 0 such that I(µNM) < I(µ′) for all z < δ (where
I(µ) denotes the expectation of the cost function under µ).

Proof. Recall that, for RFFs, the cost function is of the form

cRFF(ω1, ω2) =

∞∑

k=0

(−1)kz2k
(
ω2
1 + ω2

2

)k

22kk!Γ(k + d
2 )

, (26)

and that we would like to solve µ∗ = arg minµ∈Λ2(η)

[
Eω1,2∼µcRFF(ω1, ω2)

]
. In general, µ∗ =

µ∗(z, d). This is a very challenging OT problem; we do not believe that a simple closed-form solution
exists. However, we can make progress expanding in k. The k = 0 and k = 1 terms are trivial since
they do not contain ω1,2 cross terms. We have

µ∗ = arg minµ∈Λ2(η)

[
z4

32Γ(2 + d
2 )

E
(
(ω2

1 + ω2
2)

2
)
+

∞∑

k=3

(−1)kz2k

22kk!Γ(k + d
2 )

E
((
ω2
1 + ω2

2

)k)
]
.

(27)
We can solve the OT problem exactly for the first term, recovering negative monotone coupling. That
is,

arg minµ∈Λ2(η)

[
z4

32Γ(2 + d
2 )

E
(
(ω2

1 + ω2
2)

2
)
]
= µNM (28)

for any z > 0 and d finite. Note also that

maxµ∈Λ2(η)E
((
ω2
1 + ω2

2

)k)
= 2kE

(
ω2k
)

(29)

because the coupling that maximises the expectation is positive monotone (this follows from our
previous arguments almost automatically). This is evaluated as the kth moment of a χ2

d distribution,
which is nothing other than 2kΓ(k2 + d)/Γ(k2 ). This means we can upper bound the magnitude of the
kth term in the expansion by: z2k/

(
k!Γ(k2 )

)
. So for any coupling (feasible transport plan) we can

upper bound the magnitude of the sum on the right by: g(z) :=
∑∞

k=3 z
2k/
(
k!Γ(k2 )

)
. This goes to 0

as z → 0 and increases monotonically.

Consider some coupling µ′ ∈ Λ2(η)\ {µNM}. Since the minimiser is unique (if µ′ is not negative
monotone, it is not a minimiser), there is a positive constant c such that

c := Eµ′
(
ω2
1 + ω2

2

)2 − EµNM

(
ω2
1 + ω2

2

)2
> 0. (30)

1e.g. since (x0, y0) ⊂ {x0} × R+ and µ+({x0} × R+) = pχ(x = x0) = 0 since the marginal measure χ
is nonatomic.
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But we also have that∣∣∣∣∣EµNM

∞∑

k=3

(−1)kz2k
(
ω2
1 + ω2

2

)k

22kk!Γ(k + d
2 )

− Eµ∗

∞∑

k=3

(−1)kz2k
(
ω2
1 + ω2

2

)k

22kk!Γ(k + d
2 )

∣∣∣∣∣ < 2g(z). (31)

Therefore, to guarantee that I(µNM) < I(µ′), it is sufficient that
z4

32Γ(2 + d
2 )
c > 2g(z). (32)

Since g(z)/z4 is also monotonically increasing and evaluates to 0 and z = 0 (by inspecting its
Taylor expansion), it is always possible to solve this to find z = δ(µ′) such that, for z < δ(µ′),
I(µNM) < I(µ′) is guaranteed. This holds for any dimensionality d and any measure µ′ that is not
negative monotone.

This shows that the negative monotone coupling gives lower expected cost with RFFs than any other
coupling if z is sufficiently small, concluding our proof of Thm. 3.2.

We briefly note that, as a straightforward extension of the arguments above, for RFFs the decrease in
estimator variance by taking µNM can be lower bounded by

I(µ′)− I(µNM) ≥ z4

32Γ(2 + d
2 )
c− 2g(z) (33)

for any joint measure µ′ ∈ Λ2(η)\ {µNM}.

Comments on small z for RFFs. We have seen that for RFFs it is only possible to prove optimality
of µNM when z is small enough. Here, we comment on why this result is nonetheless interesting
and useful. Firstly, note that in practice pairwise norm coupling still substantially suppresses kernel
estimator variance, even at data lengthscales chosen by training an exact GP independent of the
RF construction (Table 1). Even if at bigger z the method no longer provides the smallest possible
estimator variance, it can still substantially reduce it compared to an i.i.d. coupling. Second, from
a more theoretical perspective, the large d, small sample regime is exactly where standard QMC
methods often fail. It is interesting that OT-driven methods can still provide theoretical guarantees in
this low-sample, high-dimensionality setting. Last, we note that, for RFF variance reduction schemes,
it is very common to only guarantee gains in the asymptotic limit. This is also the case e.g. for
orthogonality (Reid et al., 2023; Yu et al., 2016): a well-established and widely-used algorithm.

A.3 PROOF OF COROLLARY 3.4

We now prove that pairwise norm-coupled RFs (Def. 3.3) provide strictly lower kernel estimator
variance than i.i.d. RFs.

Proof of Corollary 3.4. Supposing that we have m = d frequencies, the sum
∑d

i,j ̸=i has d(d− 1)
terms in total. Of these, 2⌊d

2⌋ correspond are negative monotone norm couplings, and the remainder
are independent. The independent terms are the same in the pairwise norm-coupled and fully
i.i.d. configurations, so can be ignored. By Thm. 3.2, we have seen that negative monotone coupling
exactly solves the variance reduction OT problem for RLFs, so these variance contributions will be
strictly smaller in the norm-coupled case. It immediately follows that pairwise norm-coupled RLFs
give strictly lower kernel estimator variance than orthogonal independent-norm RLFs. For RFFs,
Thm. A.6 shows that negative monotone coupling is better than i.i.d. if z is small enough, so the
result again follows.

A.4 PROOF OF THM. 3.5

We now drop the restriction that ω̂1 ⊥ ω̂2 and consider the variance reduction problem for m = 2
frequencies whose respective direction is unconstrained. We will prove Thm. 3.5, which asserts that
in this case the best possible coupling is antithetic, ω1 = −ω2.

Proof of Thm. 3.5. Recalling the expression for RLF variance in Lemma A.1, the more general OT
problem under consideration is

µ∗ = arg min
µ∈Λ2(N )

[
Eω1,ω2∼µ

∞∑

k=0

v2k∥ω1 + ω2∥k2
22kk!Γ(k + d

2 )

]
. (34)
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The term in square parentheses is an expectation of an infinite sum, every term of which is greater
than or equal to 0. The sum is manifestly minimised if ∥ω1 +ω2∥2 = 0, which sets every term (apart
from the first) to 0. This is achieved if and only if ω1 = −ω2: a valid coupling called ‘antithetic
sampling’. Any other joint distribution assigns nonzero probability to the event ∥ω1 + ω2∥2 > 0, so
this optimal coupling is unique.

A.5 COPULAS AS NUMERICAL OT SOLVERS

In the main text, we noted that finding an analytic solution to the multi-marginal OT problem for
RFFs and RLFs (Eq. 5) is an open problem. In Sec. 3.2, we briefly presented an alternative numerical
approach using copulas. Here, we discuss this in greater detail.

Copulas. A copula is a multivariate cumulative distribution function (CDF) whose marginals are
uniformly distributed on [0, 1]. By Sklar’s theorem (Sklar, 1959), its joint distribution can be arbitrary.
Given a copula, we can easily enforce the constraint that its marginals are χd by pushing each
coordinate forward with the inverse CDF F−1

χd
(·), whilst retaining necessary flexibility in the joint to

reduce estimator variance. Copulas can be used to model dependencies between random variables
and are popular tools in quantitative finance (Haugh, 2016).

Gaussian copulas. The general family of copulas is still intractable to optimise and sample from so
we constrain ourselves to Gaussian copulas. These are distributions with uniform marginals whose
joint distributions are determined by multivariate Gaussians, defined below.

Definition A.7 (Gaussian copula). Let {gi}mi=1 ∼ N (0,Σ) where Σ ∈ Rm×m is a correlation matrix,
i.e. a positive definite matrix with unit diagonals, and let FN be the CDF of the standard univariate
Gaussian. We say {ui}mi=1, where ui := FN (gi), is distributed according to a Gaussian copula with
covariance Σ. We use the notation {ui}mi=1 ∼ GC(Σ) to denote this.

Parameterising correlation matrices. Gaussian copulas are easy to sample from since they involve
sampling a multivariate Gaussian and applying the univariate Gaussian CDF. We are therefore left with
the task of finding an appropriate correlation matrix Σ, for which we turn to numerical optimisation.
The family of m × m correlation matrices can be parameterised by a vector θ ∈ Rm(m−1)/2. In
fact, there exist tractable bijections between unconstrained vectors of real numbers θ ∈ Rm(m−1)/2

and lower triangular Cholesky factors Lθ such that Σ = LθL
⊤
θ is a valid correlation matrix (Bhat

and Mondal, 2021). In particular, suppose that for each i = 1, . . . , N, and j = 1, . . . , i, we have
θij ∈ R+, where θii = 1. Then the parameterisation we use is

Lij =

{
θij
si

for i ≤ j,

0 otherwise,
(35)

where si =
√∑i

j=1 θ
2
ij . Note that, since we are directly parameterising the Cholesky factor, we can

sample from the associated Gaussian copula with O(m2) computational cost.

Optimising correlation matrices. In order to pick an appropriate correlation matrix Σ, we optimise
it directly to minimise the root mean squared error (RMSE) loss

L(θ) = E{ui}



√√√√ 1

N2

N∑

i,j=1

(ϕRF(xi)⊤ϕRF(xj)− k(xi,xj))2


 , (36)

where {ui} ∼ GC(LθL
⊤
θ ).Note that ϕRF here depends on ui by pushing forward with F−1

χd
and using

the result as random frequency norms, though we have suppressed this dependence for notational
simplicity. Assuming that ϕRF is differentiable with respect to ωi, which is the case in RFFs and
RLFs, we can optimise the copula parameters θ by estimating the loss in Eq. 36, computing its
gradients with respect to θ, and updating its values accordingly.

Training curves. Fig. 5 shows an example of training curves for RFFs and RLFs using a numerically
optimised Gaussian copula to learn an appropriate norm-coupling, here on the Boston dataset. We
observe that the numerically optimised copula recovers the performance of the pairwise norm coupling
scheme we proposed. This suggests that the proposed scheme may in fact be (close to) optimal.
Rigorous analytical investigation is an important avenue for future work.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025.

0 500 1000 1500 2000

0.210

0.225

k
er

n
el

R
M

S
E

RFFs

0 1000 2000 3000 4000

0.90

1.05

RLFs

train steps

orthogonal + copula (learned) orthogonal (fixed) orthogonal + PNC (fixed)

Figure 5: Training RMSE losses on a split of the Boston dataset. For the ‘orthogonal + copula
(learned)’ configuration, we display the raw training loss (light blue) as well as an exponential moving
average (dark blue). The performance of the coupling scheme returned by optimising the copula
matches the performance of the ‘orthogonal + PNC’ scheme that we proved is optimal for the m = 2
case. The optimisation is very noisy but this can be mitigated by increasing the number of samples
used in the reparameterisation trick.

B RFF AND RLF EXPERIMENTAL DETAILS

In this appendix, we supplement the discussion in Sec. 3.3, providing more details of our experimental
setup for Gram matrix estimation. We also apply norm-coupled RFs to sparse spectrum Gaussian
processes (Lázaro-Gredilla et al., 2010), showing that in this case variance reduction does not help
downstream performance. We provide experimental details for the Performer (Choromanski et al.,
2020) results in Table 2.

B.1 DETAILS FOR RFF AND RLF EXPERIMENTS

Overview. In both our RFF and RLF experiments, we compare different coupling schemes for
approximating the Gaussian kernel. The Gaussian kernel, including a lengthscale parameter ℓ, an
output scale variable σv and a noise scale parameter σn, takes the form

k(xi, xj) = σ2
v exp

(
− 1

2ℓ2
||xi − xj ||22

)
.

Our baselines include standard methods for sampling random frequency vectors for use within RFFs
and RLFs: i.i.d. sampling and Halton sequences (Halton, 1960). In addition, for both settings,
we consider ensembles of frequency vectors that are coupled to have orthogonal directions but
i.i.d. lengths. For a dataset of dimension d, for RFFs we use ensembles of d orthogonal vectors. For
RLFs we use ensembles of 2d vectors, including d orthogonal basis vectors and their d antiparallel
vectors.

Selecting kernel hyperparameters. We want to compare our coupling schemes using realistic kernel
hyperparameter values, which we determine as follows. A realistic application setting for RFFs
is within GPs for probabilistic regression. Therefore, we first fit a GP on a tractable subset of the
data, specifically a maximum of 256 randomly chosen datapoints, to select appropriate parameters
ℓ, σv and σn. We optimise the exact GP marginal likelihood with respect to these hyperparameters,
and subsequently fix them. On the other hand, it is well-documented that RLFs suffer from poor
estimator concentration when the data norm becomes large because of the exponential function in
the feature map (Eq. 4); see e.g. Thm. 4 and App. F6 of Choromanski et al. (2020) or Thm. 4.3
of Likhosherstov et al. (2022), where the authors bound the L2-norm of queries and keys. This is
anecdotally responsible for the deterioration in performance of Performers when networks become
very deep. To reflect this fact and choose a data regime where vanilla RLFs can perform reasonably
well (so we can assess any gains from our coupling), we set the lengthscale ℓ to two twice the average
summed norm of the data, namely

ℓ =
2

N2
train

Ntrain∑

i,j=1

||xi + xj ||2, (37)

over the training set. We train the rest of the kernel parameters (σv and σn) to maximise the marginal
likelihood of the data under the exact GP.

Splitting procedure. To obtain mean evaluation metrics and standard errors, we evaluate the methods
on multiple random splits as follows. For each dataset, we conduct cross validation with 20 splits,
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splitting each dataset into a training and a test set. Because we train an exact GP to determine kernel
hyperparameters and evaluate its predictive NLL, we need to limit the number of datapoints used in
both the training and the test set. We set them to a maximum of 256 points each by sub-sampling
at random without replacement. After training the GP, we evaluate the metrics on the test set, and
repeat this procedure for all 20 splits.

Optimisation details. We train the exact GP using the Adam optimiser (Kingma and Ba, 2014),
using a learning rate of 10−2. The exact GP optimisation stage converges around 1000 steps, and we
run it up to 5000 steps.

B.2 PNC RFFS FOR GAUSSIAN PROCESSES

Kernel and posterior approximations. Suppose that we have drawn an ensemble of frequency
vectors from which we construct random features {ϕRF(xi)

N
i=1}. Group these in a large design matrix

Φ,
Φ := [ϕRF(xi)]

N
i=1, (38)

where ϕRF(xi) of course depends on the ensemble frequencies {ωi}mi=1 (suppressed for notational
compactness). For RFFs Φ ∈ RN×2m whereas for RLFs Φ ∈ RN×m. We estimate the Gram matrix
by K̂ := ΦΦ⊤.

As noted by Lázaro-Gredilla et al. (2010), this RF kernel approximation is exactly equivalent to a
linear model, namely

y = wΦ+ ϵ, (39)
where w ∼ N (0, I) and ϵ ∼ N (0, σ2

nI). The prior covariance of this linear model is Φ⊤Φ+ σ2
nI,

which is, by construction, equal in expectation to the exact covariance produced by the kernel, namely
K+ σ2

nI. The predictive means of the approximate linear model and corresponding exact model are

µapprox = Φp

(
1

σ2
n

ΦdΦ
⊤
d + I

)−1

Φdy, (40)

µexact = Kpd(Kdd + σ2
nI)

−1y, (41)

whereas the predictive covariances are

Capprox = Φ⊤
p

(
1

σ2
n

ΦdΦ
⊤
d + I

)−1

Φp + σ2
nI, (42)

Cexact = Kpp −Kpd(Kdd + σ2
nI)

−1Kdp. (43)

Here, Φd and Φp are the design matrices corresponding to the training inputs and prediction outputs
respectively, Kdd is the covariance matrix corresponding the training inputs, Kpp is the covariance
matrix corresponding to the prediction inputs and Kpd and Kdp are the cross-covariance matrices
between the training and prediction datapoints. These models become exactly equivalent in the limit
of an infinite number of features m since the kernel approximation becomes exact.

We have seen that pairwise norm coupling improves the approximation of the Gram matrices K.
In particular, we are able to suppress the variance of each pointwise kernel estimate (Thm. 3.2 and
Corr. 3.4), and therefore the relative Frobenius norm error between the true and approximate Gram
matrices (Table 1). In light of the discussion above, it would be natural to assume that this would
result in more accurate approximations of the predictive mean and covariance. However, in the
following section we will see that surprisingly this is not the case.

Evaluating posterior approximation quality. Table 3 takes the RFs from Sec. 3.3, where we found
that our coupling can substantially improve the quality of kernel estimation. It then reports the KL
divergence between the exact predictive posterior and the approximate predictive posteriors computed
with RFFs and RLFs, respectively. To be clear, Eqs 40 and 42 can be rewritten

µapprox = K̂pd(K̂dd + σ2
nI)

−1y, Capprox = K̂pp − K̂pd(K̂dd + σ2
nI)

−1K̂dp (44)

where K̂dd = Φ⊤
d Φd, K̂pd = Φ⊤

d Φp, K̂pd = Φ⊤
p Φd and K̂pp = Φ⊤

p Φp. It is then straightfor-
ward to compute the KL divergence between Gaussian distributions with means µapprox, µexact and
covariances Capprox, Cexact.
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Figure 6: Results on a single train-test split of the POWER dataset, showing kernel approximation
RMSE, KL divergence to the true predictive posterior, test RMSE of predictions and KL divergence
to the true prior. We have successfully reduced the variance of the kernel approximation, but this may
not help downstream metrics. Standard errors are shaded but too small to easily see.

Surprisingly, we find that, even though our couplings improve the accuracy of kernel approximation,
the approximate mean and covariance and hence the KL divergence to the true posterior do not
necessarily improve. In Table 1 we routinely see variance reductions of 10-20%, but even with very
many trials this is not reflected in the data splits used for Table 3. This is also the case for predictive
RMSEs (normalised and unnormalised by the i.i.d. result) and the predictive negative log likelihoods
on held out test sets, also reported in Table 3.

The reason for this experimental finding is that, as is clear in Eq. 44, the posterior is highly nonlinear
in K̂. This is on account of the presence of matrix multiplications and inversions. These nonlinear
operations on the Gram matrix entries mean that, despite our pointwise estimates being unbiased,
µapprox and Capprox are in fact biased. We have achieved our objective of variance reduction of K̂ –
with pairwise norm coupling, it is both theoretically mandated and empirically observed. But clearly
this does not necessitate variance (or bias) reduction for µapprox and Capprox. The relationship between
the distribution of K̂ and the distribution of the approximate posterior is more complex.

Variance reduction does not always help predictive performance. To sharpen this point, we now
take a single data split of the POWER dataset and plot the the kernel approximation RMSE (i.e. kernel
estimator variance), as well as various quantities of predictive interest, against the number of features
m. We exclude the Halton coupling (which is consistently worse than ‘orthogonal’) for clarity of
presentation. Fig. 6 shows the results.

The left hand panel confirms that we have achieved our stated objective of variance reduction.
Moreover, for all couplings the quality of approximation improves as we introduce more ensembles
of size d. Reading left to right, the other three panels show: (i) the KL divergence between the exact
and approximate GP predictive posteriors (as in Table 3), (ii) the predictive RMSE on a held out test
set, and (iii) the KL divergence between the exact and approximate GP priors. In every instance,
orthogonality provides a substantial gain but, despite the encouraging results for kernel RMSE, there
is no additional benefit from PNC.

However, it would be wrong to draw the simplistic conclusion that PNC does not give large enough
variance savings to see downstream gains: comparable reductions from orthogonality yield substantial
improvements. The problem is more fundamental, relating to how the joint distribution of kernel
estimates – beyond just the second moment of its pointwise entries – interacts with nonlinear
operations like matrix multiplication and inversion.

Table 4 gives companion results to Table 3 but for m = 8d (instead of m = d). In this regime,
all the kernel estimators are closer to the groundtruth kernel value so the difference between their
performance on downstream tasks is smaller – even between i.i.d. and orthogonal frequencies, which
are well-separated when m = d in Table 3. Note that this is also behaviour is also clear from the
upper range of number of features in Fig. 6, where again the performances saturate.
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KL divergence (between approximate and exact predictive posteriors)
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 1.491 ±0.106 0.013 ±0.001 1.570 ±0.417 0.150 ±0.007 0.357 ±0.025 2.128 ±0.197

HALTON 1.548 ±0.104 0.014 ±0.001 1.596 ±0.419 0.138 ±0.006 0.356 ±0.024 2.263 ±0.204

ORTHOGONAL 1.166 ±0.113 0.004 ±0.000 1.635 ±0.423 0.029 ±0.002 0.235 ±0.017 1.990 ±0.191

+ PNC 1.168 ±0.113 0.004 ±0.000 1.589 ±0.416 0.029 ±0.002 0.235 ±0.017 1.985 ±0.190

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 0.552 ±0.064 0.028 ±0.003 5.925 ±1.961 0.199 ±0.011 0.230 ±0.024 0.759 ±0.068

HALTON 0.574 ±0.064 0.024 ±0.003 5.811 ±1.897 0.146 ±0.009 0.213 ±0.022 0.834 ±0.074

ORTHOGONAL 0.486 ±0.059 0.014 ±0.002 5.494 ±1.774 0.059 ±0.005 0.165 ±0.018 0.679 ±0.058

+ PNC + ANTITHETIC 0.482 ±0.058 0.014 ±0.002 5.468 ±1.780 0.050 ±0.006 0.165 ±0.018 0.673 ±0.058

Predictive RMSE (normalised)
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 1.000 ±0.027 1.000 ±0.043 1.000 ±0.179 1.000 ±0.016 1.000 ±0.025 1.000 ±0.067

HALTON 1.013 ±0.027 1.001 ±0.043 1.005 ±0.179 0.991 ±0.016 0.999 ±0.025 1.021 ±0.068

ORTHOGONAL 0.917 ±0.026 0.994 ±0.044 1.019 ±0.182 0.915 ±0.019 0.930 ±0.025 0.974 ±0.066

+ PNC 0.917 ±0.026 0.994 ±0.044 1.033 ±0.180 0.915 ±0.019 0.930 ±0.025 0.975 ±0.066

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 1.000 ±0.028 1.000 ±0.043 1.000 ±0.192 1.000 ±0.017 1.000 ±0.029 1.000 ±0.073

HALTON 1.007 ±0.028 0.997 ±0.044 1.003 ±0.190 0.964 ±0.017 0.989 ±0.029 1.019 ±0.075

ORTHOGONAL 0.979 ±0.027 0.990 ±0.044 1.003 ±0.187 0.899 ±0.018 0.958 ±0.028 0.979 ±0.071

+ PNC + ANTITHETIC 0.981 ±0.027 0.991 ±0.044 1.006 ±0.187 0.909 ±0.018 0.958 ±0.028 0.982 ±0.071

Predictive RMSE (unnormalised)
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 11.333 ±0.304 2.587 ±0.112 64.259 ±11.506 4.840 ±0.076 3.468 ±0.086 4.976 ±0.332

HALTON 11.479 ±0.305 2.589 ±0.112 64.562 ±11.505 4.799 ±0.077 3.464 ±0.086 5.081 ±0.336

ORTHOGONAL 10.398 ±0.292 2.572 ±0.114 65.477 ±11.721 4.430 ±0.093 3.225 ±0.088 4.847 ±0.331

+ PNC 10.398 ±0.291 2.572 ±0.115 66.404 ±11.594 4.429 ±0.093 3.225 ±0.088 4.852 ±0.330

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 10.098 ±0.284 2.587 ±0.112 85.772 ±16.446 5.025 ±0.083 3.243 ±0.094 4.224 ±0.310

HALTON 10.173 ±0.285 2.580 ±0.113 86.060 ±16.333 4.845 ±0.083 3.209 ±0.093 4.303 ±0.315

ORTHOGONAL 9.882 ±0.272 2.562 ±0.115 86.042 ±15.997 4.518 ±0.091 3.108 ±0.092 4.136 ±0.301

+ PNC + ANTHITHETIC 9.908 ±0.270 2.563 ±0.115 86.258 ±15.998 4.569 ±0.090 3.108 ±0.092 4.150 ±0.301

Predictive NLL
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 4.609 ±0.106 2.388 ±0.042 7.077 ±0.926 3.037 ±0.020 2.764 ±0.043 4.808 ±0.437

HALTON 4.666 ±0.108 2.389 ±0.042 7.105 ±0.924 3.025 ±0.020 2.762 ±0.043 4.942 ±0.449

ORTHOGONAL 4.301 ±0.095 2.381 ±0.042 7.381 ±1.122 2.913 ±0.022 2.640 ±0.041 4.684 ±0.432

+ PNC 4.304 ±0.095 2.381 ±0.042 7.543 ±1.086 2.913 ±0.022 2.639 ±0.041 4.693 ±0.433

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 3.930 ±0.059 2.389 ±0.042 12.981 ±3.953 3.076 ±0.023 2.644 ±0.041 3.384 ±0.235

HALTON 3.948 ±0.060 2.387 ±0.042 12.929 ±3.927 3.024 ±0.022 2.628 ±0.040 3.453 ±0.245

ORTHOGONAL 3.880 ±0.056 2.379 ±0.042 12.722 ±3.867 2.935 ±0.022 2.581 ±0.038 3.312 ±0.223

+ PNC + ANTITHETIC 3.885 ±0.055 2.380 ±0.042 12.729 ±3.864 2.948 ±0.022 2.582 ±0.038 3.319 ±0.223

Table 3: Downstream performance on held out test sets when m = d. Includes KL divergence
between exact and approximate GP predictive posteriors; predictive RMSEs (normalised to RMSE of
I.I.D. and unnormalised); and predictive negative log likelihoods of the approximate GP predictive
posteriors. Reported errors are equal to two standard errors, i.e. 98% confidence intervals, computed
by averaging across splits. Note that differences between data splits are responsible for large
errors; within each split we take enough trials that the standard errors become small. Substantially
lower kernel estimator variance does not in general guarantee better predictive performance, though
performance tends to be no worse. While m = d features is not enough for good predictive
performance in absolute terms, it exaggerates the difference between couplings and makes for easier
comparison (see e.g. Fig. 6). We average over 20 data splits.
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Kernel estimator RMSE (unnormalised)
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 0.527 ±0.029 0.088 ±0.012 0.264 ±0.035 0.137 ±0.014 0.301 ±0.018 0.107 ±0.009

HALTON 0.550 ±0.031 0.089 ±0.013 0.262 ±0.036 0.123 ±0.014 0.281 ±0.019 0.126 ±0.011

ORTHOGONAL 0.340 ±0.014 0.061 ±0.007 0.160 ±0.033 0.094 ±0.010 0.181 ±0.012 0.074 ±0.005

+PNC 0.304 ±0.013 0.055 ±0.006 0.141 ±0.030 0.079 ±0.007 0.154 ±0.011 0.071 ±0.005

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 1.312 ±0.118 0.382 ±0.159 0.645 ±0.212 0.376 ±0.044 0.629 ±0.082 0.392 ±0.057

HALTON 1.336 ±0.380 0.297 ±0.047 0.453 ±0.075 0.249 ±0.030 0.539 ±0.084 0.357 ±0.031

ORTHOGONAL 1.096 ±0.103 0.285 ±0.071 0.433 ±0.121 0.159 ±0.015 0.466 ±0.062 0.433 ±0.166

+PNC + ANTITHETIC 1.123 ±0.148 0.227 ±0.048 0.391 ±0.092 0.113 ±0.012 0.461 ±0.087 0.338 ±0.052

KL divergence (between approximate and exact predictive posteriors)
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 0.122 ±0.010 0.003 ±0.001 0.046 ±0.013 0.003 ±0.001 0.017 ±0.004 0.139 ±0.030

HALTON 0.122 ±0.010 0.503 ±0.948 0.045 ±0.012 0.003 ±0.000 0.017 ±0.004 0.150 ±0.031

ORTHOGONAL 0.117 ±0.009 0.002 ±0.001 0.042 ±0.011 0.003 ±0.000 0.016 ±0.004 0.133 ±0.029

+PNC 0.115 ±0.008 0.002 ±0.001 0.041 ±0.011 0.003 ±0.000 0.015 ±0.004 0.135 ±0.029

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 0.234 ±0.053 0.067 ±0.050 1.827 ±1.802 0.003 ±0.001 0.051 ±0.023 0.742 ±0.319

HALTON 0.231 ±0.048 0.066 ±0.050 1.992 ±2.062 0.003 ±0.000 0.047 ±0.023 0.754 ±0.321

ORTHOGONAL 0.227 ±0.049 0.066 ±0.050 1.889 ±1.838 0.003 ±0.001 0.048 ±0.023 0.713 ±0.319

+PNC + ANTITHETIC 0.232 ±0.053 0.067 ±0.052 1.846 ±1.776 0.003 ±0.001 0.051 ±0.024 0.713 ±0.315

Predictive RMSE (normalised)
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 1.000 ±0.057 1.000 ±0.073 1.000 ±0.438 1.000 ±0.051 1.000 ±0.054 1.000 ±0.174

HALTON 0.997 ±0.054 1.001 ±0.073 0.992 ±0.429 1.001 ±0.051 0.999 ±0.056 0.996 ±0.173

ORTHOGONAL 0.996 ±0.056 1.001 ±0.073 1.004 ±0.443 1.000 ±0.051 0.999 ±0.056 0.999 ±0.175

+PNC 1.001 ±0.056 1.001 ±0.073 1.008 ±0.445 1.000 ±0.051 0.997 ±0.056 0.994 ±0.171

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 1.000 ±0.050 1.000 ±0.080 1.000 ±0.487 1.000 ±0.051 1.000 ±0.061 1.000 ±0.199

HALTON 0.992 ±0.050 1.001 ±0.081 1.020 ±0.484 1.000 ±0.051 0.996 ±0.060 1.004 ±0.201

ORTHOGONAL 0.993 ±0.050 1.000 ±0.083 1.031 ±0.507 1.000 ±0.051 0.995 ±0.060 0.995 ±0.198

+PNC + ANTITHETIC 0.996 ±0.052 1.002 ±0.083 1.022 ±0.492 1.000 ±0.051 0.999 ±0.061 0.992 ±0.198

Predictive RMSE (unnormalised)
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 8.016 ±0.458 2.595 ±0.189 56.066 ±24.574 4.321 ±0.221 2.689 ±0.146 3.954 ±0.689

HALTON 7.996 ±0.429 2.597 ±0.190 55.601 ±24.064 4.326 ±0.221 2.687 ±0.150 3.938 ±0.683

ORTHOGONAL 7.987 ±0.449 2.597 ±0.190 56.312 ±24.840 4.321 ±0.223 2.686 ±0.150 3.948 ±0.690

+PNC 8.026 ±0.446 2.597 ±0.189 56.506 ±24.955 4.323 ±0.221 2.682 ±0.150 3.928 ±0.677

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 8.244 ±0.410 2.710 ±0.218 81.045 ±39.468 4.319 ±0.221 2.773 ±0.170 4.339 ±0.862

HALTON 8.175 ±0.410 2.713 ±0.219 82.627 ±39.211 4.320 ±0.222 2.763 ±0.168 4.356 ±0.871

ORTHOGONAL 8.183 ±0.411 2.710 ±0.224 83.571 ±41.127 4.320 ±0.220 2.761 ±0.166 4.319 ±0.860

+PNC + ANTITHETIC 8.212 ±0.428 2.715 ±0.225 82.838 ±39.877 4.320 ±0.219 2.770 ±0.169 4.305 ±0.857

Predictive NLL
FOURIER FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 3.467 ±0.085 2.375 ±0.073 5.021 ±0.202 2.888 ±0.057 2.407 ±0.048 2.793 ±0.258

HALTON 3.471 ±0.084 2.376 ±0.073 5.021 ±0.205 2.888 ±0.057 2.408 ±0.048 2.797 ±0.262

ORTHOGONAL 3.459 ±0.088 2.375 ±0.073 5.023 ±0.204 2.888 ±0.057 2.406 ±0.048 2.787 ±0.258

+PNC 3.462 ±0.088 2.375 ±0.073 5.018 ±0.202 2.888 ±0.057 2.407 ±0.048 2.784 ±0.262

LAPLACE FEATURES CONCRETE ABALONE CPU POWER AIRFOIL BOSTON

I.I.D. 3.546 ±0.113 2.438 ±0.104 9.694 ±7.105 2.888 ±0.057 2.442 ±0.060 3.693 ±0.978

HALTON 3.542 ±0.111 2.437 ±0.104 9.722 ±7.220 2.888 ±0.057 2.438 ±0.058 3.708 ±0.989

ORTHOGONAL 3.544 ±0.112 2.436 ±0.102 9.836 ±7.410 2.887 ±0.057 2.440 ±0.059 3.637 ±0.947

+PNC + ANTITHETIC 3.543 ±0.114 2.435 ±0.102 9.686 ±7.279 2.888 ±0.057 2.437 ±0.058 3.648 ±0.947

Table 4: Equivalent results for m = 8d. Companion results to Table 3 taking m = 8d features, so
the quality of kernel approximation and performance on downstream tasks are both much better. In all
cases, the approximate kernel converges to the true kernel so it becomes more difficult to distinguish
the different algorithms. We still observe that our methods provide substantial variance reduction
(see top row).
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B.3 NORM-COUPLED RLFS IN PERFORMERS

In Sec. 3.3, we used random Laplace features for attention approximation in Performers (Choromanski
et al., 2020), a type of efficient transformer that estimates softmax using a low rank decomposition.
Here, we discuss the results in greater detail.

Derivation of Eq. 8. Let Xij denote the random variable k̂(xi,xj), which is an unbiased estimate of
exp(x⊤

i xj) constructed using features {exp(∥xi∥2/2)ϕRLF(xi)}Ni=1. Unbiasedness follows trivially
from the fact that RLFs give an unbiased estimate of the Gaussian kernel. Normalising by the sum
of attention scores, let us define âij := Xij/

∑
j Xij . Let Xij = µij + δij with µij := E(Xij) and

E(δij) = 0. Then

â2ij = (µ2
ij + 2µijδij + δ2ij)(

∑

k

µik +
∑

k

δik)
−2

=
µ2
ij + 2µijδij + δ2ij

N2µ̄2
i

(
1− 2

∑
k δik
Nµ̄i

+ 3

∑
kl δikδil
N2µ̄2

i

+O(
1

N3
)

)
,

(45)

where we defined µ̄i :=
1
N

∑
j µij , the average groundtruth attention score across tokens. Since we

are targeting µij

Nµ̄i
,

MSE(âij) =
1

N2µ̄i
2

(
δ2ij −

4µijδij
Nµ̄i

∑

k

δik +
3µ2

ij

N2µ̄2
i

∑

kl

δikδil

)
+O

(
1

N3

)
. (46)

As in the main text, denote MSE(âi) := 1
N

∑
j MSE(âij), the average mean squared error over the

tokens to which i attends. To better see the intuitive behaviour, suppose also that µij = µ̄i ∀ j. Then

MSE(âi) =
1

N2µ̄i
2


 1

N
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(
1

N3

)
,

(47)

as reported in Eq. 8.

Positive monotone coupling. In contrast to Eq. 7, we say that random variables (ω1, ω2) are postive
monotone-coupled if ω1 = ω2 almost surely. This is a valid transport plan, the identity. Clearly, all
m frequencies in an ensemble can be simultaneously positive monotone-coupled by making them
equal. It is intuitive that this should maximise the kernel estimator variance since we sample only
one frequency lengthscale. The proof is a trivial extension of the arguments made for Thm. 3.2 in
App. A.2, simply taking cRLF → −cRLF so that the support of the OT plan swaps. We omit it for
brevity. It is also intuitive that this will increase the covariance between kernel estimates.

Variance, covariance, and attention approximation error. Modifying the norm coupling between
frequencies changes both Var(k̂(xi,xj)) and Cov(k̂(xi,xj)), so MSE(âi) can change unpredictably.
Fig. 7 shows the results for randomly N = 16 synthetic, normally distributed 16-dimensional keys,
x ∼ N (0, 1√

d
Id). Strikingly, maximising the kernel estimator variance with a positive monotone

(PM) coupling ends up improving the quality of attention estimation since it also also increases the
covariance between the unnormalised scores. This counterintuitive finding shows highlights the
limitations of variance reduction as a paradigm.

Performer experimental details. To obtain the results in Table 2, we train a Performer-ViT
(Dosovitskiy et al., 2020; Choromanski et al., 2020) on the ImageNet (1M) dataset (Deng et al., 2009).
We estimate attention using m = 128 random features that are orthogonal with norms that are: (i)
i.i.d. (ii) PNC (Def. 3.3), or (iii) positive monotone-coupled (i.e. equal among blocks of size d). We
use a transformer with 12 layers and heads, with hidden size 768 and MLP dimension 3072. We take
16×16 patches, and train with the Adam optimiser for 90 epochs with a compound learning rate (104
steps linear warmup, constant, then cosine decay, with base LR 3× 10−3 and final LR 1× 10−5).
The batch size is 4096. To get the standard errors, we average between 34 and 48 seeds per coupling.
We see that the lower attention MSE unlocked by PM coupling improves predictive performance over
the baseline.
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Figure 7: Kernel variance Var(k̂(xi,xj)), kernel covariance Cov(k̂(xi,xj)) and attention mean
squared error MSE(ai) plotted against number of frequencies for different coupling schemes. As
intended, PNC decreases the kernel estimator variance, but it also decreases the kernel estimator co-
variance so the attention MSE remains essentially unchanged. On the other hand, positive monotone
coupling (PM) drastically increases both kernel variance (which it maximises) and kernel covariance.
The latter offsets the former (Eq. 47), so that attention MSE actually drops: a remarkable, counterin-
tuitive finding.

C GRAPH RANDOM FEATURES

In this appendix, we provide a self-contained introduction to graph random features (GRFs) and
previously proposed techniques to reduce their variance. We also explain the motivations behind the
series of approximations used in Sec. 4.1, and where possible provide empirical evidence that these
approximations for tractability and efficiency do not substantially degrade the performance of the
learned σ-coupling.

C.1 CONSTRUCTING GRAPH RANDOM FEATURES

For the reader’s convenience, we begin by providing a brief introduction to GRFs.

Graph node kernels. Recall that graph node kernels k : N×N → R are positive definite, symmetric
functions defined on pairs of nodes of G. Note that one can also define kernels that take pairs of
graphs as inputs, but these are not the object of our study.

Many of the most popular graph node kernels in the literature are functions of weighted adjacency
matrices (Smola and Kondor, 2003b; Chapelle et al., 2002). In particular, they are often functions of
the graph Laplacian matrix,

L := D−W, (48)
where W is a (weighted) adjacency matrix and D is a diagonal degree matrix (satisfying Dii =∑

j Wij). It is also common to consider its normalised variant,

L̃ := D− 1
2LD− 1

2 , (49)

whose spectrum is contained in [0, 2] (Chung, 1997). We provide examples in Table 5.

Name Form

d-regularised Laplacian (IN + σ2L)−d

p-step random walk (αIN − L)p, α ≥ 2
Diffusion exp(−σ2L/2)

Inverse Cosine cos (Lπ/4)

Table 5: Examples of graph node kernels. The exp and cos mappings are defined via Taylor series
expansions rather than element-wise, e.g. exp(M) := limn→∞(IN + M/n)n and cos(M) :=
Re(exp(iM)). σ and α are regularisers.

Formula for graph random features. Computing graph node kernels exactly is computation-
ally expensive because of the O(N3) cost of e.g. matrix inversion or exponentiation. Inspired by
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the success of random Fourier features in the Euclidean domain (Rahimi and Recht, 2007), the
recently-introduced class of graph random features (GRFs) permits unbiased approximation of k in
subquadratic time (Choromanski, 2023; Reid et al., 2024b). Intuitively, GRFs interpret the powers of
weighted adjacency matrices in the Taylor expansions of the expressions in Table 5 as weighted sums
over walks on a graph. Instead of computing this infinite sum of walks exactly, we can sample m
finite walks (using importance sampling) to construct an unbiased estimate of k.

Concretely, GRFs compute a set of estimators {ϕGRF(vi)}i∈N such that k(vi, vj) =
E[ϕGRF(vi)

⊤ϕGRF(vj)] by taking:2

ϕGRF(vi) =
1

m

m∑

k=1

ψ(ω
(i)
k ), (50)

where ω
(i)
k is the kth walk (out of a total of m) simulated out of the starting node vi.

We remind the reader that by a ‘walk’ we mean a sequence of neighbouring graph nodes.
The projection function ψ(·) : Ω → RN maps from the set of graph random walks
Ω :=

{
(vi)

l
i=1 | vi ∈ N , (vi, vi+1) ∈ E , l ∈ N

}
to a sparse N -dimensional feature vector. It is com-

puted as follows:

ψ(ω(i))q :=
∑

ωiq∈Ωiq

ω̃(ωiq)f(len(ωiq))

p(ωiq)
I(ωiq ∈ ω(i)), q = 1, ..., N. (51)

In this expression,

• ψ(ω(i))q is the qth component of the feature projection of the random walk ω(i) (itself a sequence
of neighbouring graph nodes beginning with vi).

• Ωiq is the set of all graph walks between nodes vi and vq , of which each ωiq is a member.
• I(·) is the indicator function that evaluates to 1 if its argument is true and 0 otherwise.
• ωiq ∈ ω(i) is the condition that ωiq , a particular walk between nodes vi and vq , is a prefix subwalk

of ω(i), the random walk we actually sample.3
• f : N → R is the modulation function, which controls the particular graph node kernel we choose

to approximate.
• len(ωiq) is the length of graph walk ωiq .
• p(ωiq) is the marginal probability of sampling a random walk ωiq, which is known from the

sampling strategy.
• ω̃(ωiq) is a function that returns the products of weights of the edges traversed by ωiq .

Intuitively, to construct ψ(ω(i)) using a random walk ω(i), we look at the node that it visits at each of
the len(ω(i)) + 1 timesteps before termination. At every node, we add a contribution to the feature at
the corresponding coordinate that depends on (i) the product of edge weights traversed so far, (ii) the
known marginal probability of sampling the walk so far, and (iii) a ‘modulation function’ f applied
to the number of steps taken so far. We refer the reader to the original works of Choromanski (2023)
and Reid et al. (2024b) for further technical details, experimental results and a proof of unbiasedness.

C.2 ANTITHETIC TERMINATION

In this section, we briefly describe antithetic termination (Reid et al., 2024c): a previously-proposed
variance reduction algorithm that couples the lengths of pairs of random walks.

Consider a random walker that terminates with probability p at every timestep. In practice, this
can be achieved by drawing a ‘termination random variable’ t from a uniform distribution on [0, 1],
t ∼ U([0, 1]), and ending the walk if t < p. Now consider two such walkers with corresponding
termination random variables t1, t2. If they are independent, t1 and t2 are drawn independently.
Antithetic termination instead proposes to induce a nontrivial joint distribution by first drawing

2Strictly, for unbiased estimation of diagonal kernel entries {k(vi, vi)}vi∈N we should construct two
independent sets of features, but this is found to make little practical difference (Reid et al., 2024b) so we omit
further discussion in this manuscript.

3Meaning that the walk ω(i) from node vi initially follows ωiq , then optionally continues to visit further
nodes. Note the subtle difference in usage of the symbol ∈ compared to in the expression ωiq ∈ Ωiq , where it
means ‘a member of the set of walks’ rather than ‘a prefix subwalk’.
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t1 ∼ U([0, 1]) as usual, and then setting t2 = mod 1(t1 +
1
2 ). t2 still follows a uniform marginal

distribution so we preserve unbiasedness, but this coupling forces walkers to terminate at different
timesteps (if phalt < 0.5) which the authors prove reduces the estimator variance under certain
assumptions. This is one example of a possible hand-crafted coupling between random walk lengths
that improves estimator concentration.

It is also possible to improve the accuracy of estimators using graph random walks by coupling
walker directions (Reid et al., 2024a; Luo, 2019). This approach is complementary to our own and
can be combined with it. Formulating coupled walker directions in terms of OT is an interesting and
involved technical challenge; we defer its study to future work.

C.3 APPROXIMATING THE OT PROBLEM: DETAILS AND DISCUSSION FOR SEC. 4.1

In this appendix, we discuss the steps to formulate the OT matching problem in Sec. 4.1. We will
especially focus on the approximations needed to make the objective in Eq. 12 tractable, describing
their motivation and where possible investigating how they modify the original objective.

To begin, we remind the reader of the OT formulation of the variance reduction problem for GRFs:

minimise E
(l

(i)
1 ,l

(i)
2 )∼µ,(l

(j)
1 ,l

(j)
2 )∼µ

(
Edirs

[(
ψ(ω

(i)
1 ) + ψ(ω

(i)
2 )
)⊤ (

ψ(ω
(j)
1 ) + ψ(ω

(j)
2 )
)]2)

for µ ∈ Λ2(ηG),

(52)

where Λ2(ηG) is the set of joint distributions on N2 with geometrically distributed marginals, l(i)1 is
the length of walk ω

(i)
1 out of node vi, Edirs averages the directions of walkers of a particular length,

and ψ(ω(i)
k ) is the projection function that maps from random walks to feature vectors (see Eq. 9).

Averaging walker trajectories. As noted in the main text, the cost function in Eq. 52 is not
analytically tractable. We can approximate it using MC sampling of graph random walks. To do so, it
will be convenient to introduce the direction-averaged feature vector ψ̃(·) : N → RN satisfying

ψ̃(l(i)) := Edirs[ψ(ω
(i))]. (53)

This computes the average feature projection over all walks of a given length l(i) out of node vi.
It is straightforward to estimate by simulating a finite number of random walks. If we move the
expectation over walker directions inside the square bracket, the (now approximate) OT problem
becomes

minimise E
(l

(i)
1 ,l

(i)
2 )∼µ,(l

(j)
1 ,l

(j)
2 )∼µ

[(
ψ̃(l

(i)
1 ) + ψ̃(l

(i)
2 )
)⊤ (

ψ̃(l
(j)
1 ) + ψ̃(l

(j)
2 )
)]2

for µ ∈ Λ2(ηG). (54)

The price we pay is that we have ignored some higher-order corrections from the variance of the
directions of the walks, but as we have seen in Sec. 4.2 this does not prevent us from obtaining an
effective, computationally cheap coupling.

Using σ-couplings. Unfortunately, Eq. 54 remains intractable. To make progress, we must restrict our
search-space of joint distributions from Λ2(ηG) – the set of all joint distributions with geometrically-
distributed marginals – to a tractable subclass. Taking inspiration from approaches in numerical
OT, we have considered the class of permutation densities defined by pσ(x, y) := n1σ(⌈nx⌉)=⌈ny⌉,
with σ a permutation of order n (that is, a bijection σ : [[n]] → [[n]]), transformed coordinate-wise by
pushing forward with the appropriate inverse CDF. This may initially seem an arbitrary choice, but it
is motivated by three important observations. First, we have seen that this class of joint distributions
frames the minimisation as a matching problem which, under further simplifying assumptions, we
can efficiently solve using techniques from linear programming. Second, it is straightforward to
sample from so the learned coupling will be practically useful. Third, it is well-motivated by results
in discrete OT; see App. D for concrete theoretical guarantees. Once again, we have seen that in
practice, even at modest permutation order n, this class contains couplings that can substantially
outperform both i.i.d. walkers and antithetic termination (Reid et al., 2024c).

We now replace Λ2(ηG) in Eq. 54 by the set of measures {µ(σ)}σ∈Sn
obtained by pushing permutation

densities through the required inverse CDF. Sn is the set of permutations [[n]] → [[n]]. Denote by
ψ̂(·) : [[n]] → RN the function

ψ̂(q(i)) := Eu∼U(( q−1
n , q

n ])

(
ψ̃(F−1

ηG
(u)(i))

)
. (55)
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This takes the direction-averaged feature vector for node vi (see Eq. 53) and evaluates a further
average over walk lengths corresponding to the qth quantile of the geometric distribution ηG. Again,
this is straightforward to estimate by simulating walks. With a further approximation of the objective,
we can consider

σ∗ = arg min
σ∈Sn

∑
q1∈[[n]]

∑
q2∈[[n]]

[(
ψ̂(q

(i)
1 ) + ψ̂(σ(q1)

(i))
)⊤ (

ψ̂(q
(j)
2 ) + ψ̂(σ(q2)

(j))
)]2

(56)

which is a matching problem.

Solving the matching problem. Though we can now efficiently estimate the cost function with
MC, it is is still difficult to solve the matching problem in Eq. 56 efficiently because it is quadratic
(Finke et al., 1987; Burkard et al., 1998). Minimum weights quadratic bipartite matching problems
are generally NP-hard, but here the problem has extra symmetry that makes it simpler.

In App. C.3.1, we discuss possible approaches to directly solve the matching problem in Eq. 56. In
particular, we prove that it can be solved with high probability at a time complexity independent of
the number of nodes N , and give a polynomial time algorithm for the special case of diagonal kernel
entries k(vi, vi). Notwithstanding this progress, as a simpler first recourse we can just make a further
approximation by restricting the sum to q1 = q2 diagonal terms. This is the approximation used to
get the results in the main text. Doing so, we arrive at

σ∗ = arg min
σ∈Sn

∑
q∈[[n]]

[(
ψ̂(q(i)) + ψ̂(σ(q)(i))

)⊤ (
ψ̂(q(j)) + ψ̂(σ(q)(j))

)]2
. (57)

This is now a minimum-weights bipartite matching problem with linear weights. Even though the
search space of possible permutations of order n is of size n!, it is well known that it can be solved
efficiently and exactly using algorithms from linear programming (e.g. the Hungarian algorithm
(Kuhn, 1955)) in time O(n3). As stated in Sec. 4.1 of the main text, we can use this optimal
permutation to construct σ-coupled GRFs.

This approximation might seem unreasonable since it involves discarding all the off-diagonal q1 ̸= q2
terms from the objective, but for modest permutation order n we can empirically test the effect
this has on the quality of the obtained coupling. We achieve this by comparing to the best possible
permutation obtained by exhaustively searching the n! possibilities.
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Figure 8: Relative Frobenius norm error (normalised by
i.i.d. result) with permutations of order n learned using ex-
act and approximate objectives. ‘Cayley distance’ shows the
difference between the learned permutations. Although drop-
ping off-diagonal terms from the objective in Eq. 56 changes
the σ-coupling, it does not significantly detriment variance
reduction.

Fig. 8 plots the results for GRF es-
timates of the 2-regularised Lapla-
cian kernel on the eurosis graph,
comparing the approximate and ex-
act objectives. The former can be
computed efficiently but the latter is
evaluated at a cost exponential in n,
so we limit to n = 10 and smaller.
We plot the kernel approximation er-
ror (normalised by the i.i.d. result)
for different permutation orders. We
also plot the Cayley distance between
the permutations, which measures
the difference between them. As
n grows, the permutations become
more different so we are clearly not
finding the same coupling. Nonethe-
less, we do not see a statistically sig-
nificant difference in the amount of
variance reduction. This suggests
that our linear proxy objective is rea-
sonable. We defer more detailed analytic study of this curious phenomenon to future work.

How important are the approximations? This section has provided comprehensive details about
the series of approximations required to make the GRF variance reduction OT problem tractable and
solve it efficiently. We close by emphasising that, even if these approximations mean that we are not
exactly solving the original OT problem, we clearly nonetheless obtain a computationally efficient
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coupling that offers much greater variance reduction compared to heuristically-motivated techniques.
Analytic intractability is common in OT (Sec. 3 being an obvious exception), but fortunately this
framework also equips us with a powerful arsenal of numerical tools to achieve our goal of finding
effective, cheap sample couplings.

C.3.1 PROOF OF THM. 4.1: TOWARDS AN ANALYTIC SOLUTION TO EQ. 56

To assuage any possible dissatisfaction with the q1 = q2 approximation in Eq. 57, in this section we
discuss progress towards solving the optimisation problem in Eq. 56 exactly. In particular, we prove
Thm. 4.1: that it can be solved with high probability and

1. at a time complexity independent from the dimensionality of vectors {ψ̂(q(i,j))}nq=1 (at the cost
of a one-time pre-processing), or

2. in polynomial time in the special case i = j (under mild assumptions about the distribution of the
averaged projection vectors {ψ̂(q(i,i))}nq=1).

This is possible because of the extra structure in the quadratic matching problem. A general efficient
solution remains (for now) out of reach, but we hope this progress will spur further research in this
direction. Note especially that independence of the time complexity from the dimensionality of
{ψ̂(q(i,i))}nq=1 means that the difficulty of the optimisation does not depend on the number of nodes
N : a very convenient property for large graphs.

Proof. First, for clarity of exposition, we will introduce more convenient notation and important
definitions. For a given ϵ > 0 and a vector v ∈ Rd, define the set Nϵ(v) = {w ∈ Rd : |αv,w − π

2 | ≤
ϵ}, where αv,w is an angle between v and w. Then define the property of ϵ-separation as follows.
Definition C.1. For a given ϵ > 0, a set of vectors V and a vector v ∈ V , we say that v is ϵ-separated
in V if

Nϵ(v) ∩
⋃

x∈V\{v}

Nϵ(x) = ∅. (58)

Simplifying notation, we can rewrite Eq. 56 as the following optimisation problem:

σ∗ = argminσ

∑

q1,q2∈{1,...,n}

[(v(i)
q1 + v

(i)
σ(q1)

)⊤(v(j)
q2 + v

(j)
σ(q2)

)]2, (59)

where σ is the permutation of the sequence (1, 2, ..., n) and v
(i,j)
q := ψ̂(q(i,j)). With every permuta-

tion σ of the sequence (1, ..., n), we will associate the perfect matching M(σ) in its corresponding
bipartite graph with monochromatic classes of size n each. Denote

f
(i)
M(σ)

:=
∑

e∈M(σ)

u(i)
e , (60)

where ue is given by

u
(i)
(k,σ(k)) = vec

[
(v

(i)
k + v

(i)
σ(k))⊗ (v

(i)
k + v

(i)
σ(k))

]
. (61)

Here, ⊗ represents the outer product and vec is the ‘vectorising’ operation that flattens its input to a
vector. Note that that u(k,σ(k)) ∈ RN2

.

It is straightforward to see that, in this notation, the optimisation problem becomes

σ∗ = argminσf
(i)
M(σ)

⊤
f
(j)
M(σ). (62)

We will now discuss progress towards solving this efficiently.

Making the problem independent of N . Let us first show how we can make the optimisation
problem independent of the number of nodes N with high probability, at the cost of a one-time
pre-processing. Our basic approach is to conduct dimensionality reduction of the vectors u(i,j)

e via
the Johnson-Lindenstrauss Transform (JLT) (Dasgupta and Gupta, 2003). Specifically, we compute

û
(i,j)
(k,σ(k)) =

1√
r
Gu

(i,j)
(k,σ(k)), (63)
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where r ∈ N denotes the number of random projections and G ∈ Rr×N2

is a Gaussian matrix
with entries taken independently at random from N (0, 1). From the well-known properties of JLT
(Dasgupta et al., 2010), we have that

E[(û(i)
(k,σ(k)))

⊤û
(j)
(k,σ(k))] = (u

(i)
(k,σ(k)))

⊤u
(j)
(k,σ(k)) (64)

since it is unbiased. We also have that

1− ϵ ≤
∥û(i)

(k,σ(k)) ± û
(j)
(k,σ(k))∥

2
2

|u(i)
(k,σ(k)) ± u

(j)
(k,σ(k))|

2
2

≤ 1 + ϵ, (65)

with r = O( log(n)ϵ2 ) random projections, with probability p = 1 − neg(n). Here, neg denotes the
negligible function of n.

Eq. 65 describes the ability of the JLT to (approximately) preserve L2-norms. The analogous property
for preservation of dot-products also holds, which of interest to us given Eq. 62. It follows because
for any x,y ∈ RN2

,

x⊤y =
∥x+ y∥2 − ∥x− y∥2

4
. (66)

The properties above lead us directly to an algorithm to decouple the time complexity of the optimi-
sation from N . One simply replaces every u

(i,j)
(k,σ(k)) with its corresponding dimensionality-reduced

û
(i,j)
(k,σ(k)) for r = O( log(n)ϵ2 ) and ϵ > 0 small enough. Then, by the concentration result listed above

and the union bound over all pairs (i, j), we conclude that the optimal σ (potentially not unique) will
remain optimal after applying the JLT (since all dot-products are approximately preserved). This
completes the analysis. We stress that r does not depend directly on the dimensionality of u(i,j)

(k,σ(k)),
and therefore on N .

Polynomial in n algorithm for i = j. We can make further progress in the special case that i = j,
i.e. if we are minimising the variance of diagonal kernel entries k(vi, vi). Denote by T (n) time
complexity of an efficient polynomial-time algorithm for solving the minimum weights matching
problem on bipartite graphs with monochromatic parts of size n each. The following is true.

Lemma C.2. If Eq. 59 has a unique solution σ∗ and furthermore fM(σ∗) is ϵ-separated in F =
{fM(σ) : σ ∈ Sn} for some 0 < ϵ < π

2 (where Sn denotes the set of all permutations of the sequence
(1, ..., n)), then, for any k > 0, σ∗ can be found in time k ·T (n) with probability 1− (1− pϵ)

k. Here,
pϵ is given by the following formula:

pϵ = P



∣∣∣∣∣∣
arccos


 g1√

g21 + ...+ g2N2


− π

2

∣∣∣∣∣∣
≤ ϵ


 , (67)

with g ∈ RN2

a random isotropic vector.

Proof of Lemma C.2. If i = j, the expression in Eq. 62 is simply ∥fM(σ)∥22. Thus, the goal is to find a
permutation σ that minimises the L2-norm of the vector fM(σ). We propose the following algorithm.
At every iteration, replace each vector ue with the projection ue = u⊤

e g for g ∈ N (0, IN2). Note
that, from ϵ-separability, we have that if g ∈ Nϵ(v), then the permutation σ corresponding to the
minimum weight matching in the bipartite graph with weights given by ue is also equal to σ∗. This
captures the intuition that the shortest vector will have the smallest projection on a random vector
that is almost perpendicular to it, provided none of the other vectors are also almost perpendicular to
this projection direction. From the fact that g is taken from the isotropic distribution, we know that
the probability that g ∈ Nϵ(v) is exactly pϵ, where pϵ is a geometrical constant that depends only on
N . Our algorithm solves the projected minimum weight matching problem (in time T (n)) at every
iteration and stores the solution σ. Vectors g at different iterations are chosen independently. After k
iterations, the algorithm computes the original objective for every previously-obtained solution and
selects the one with the smallest value. From the above, this returns the optimal permutation σ∗ with
probability 1− (1− pϵ)

k, which completes the proof.

Having considered both claims, the proof of Thm. 4.1 is complete.
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D ASYMPTOTIC OPTIMALITY OF PERMUTATION DENSITIES FOR VARIANCE
REDUCTION

In Sec. 4.1 of the main text, we alluded to the choice of permutation densities pσ(x, y) :=
n1σ(⌈nx⌉)=⌈ny⌉ depicted in Fig. 2 being not only convenient (in terms of ease of sampling and
optimising), but also well-motivated by results from OT theory. Here, we make this statement
concrete, showing that in the limit of infinite permutation order n this class contains the solution to a
broad range of OT problems.
Theorem D.1 (Asymptotic optimality of permutation densities). Consider the class of joint measures
Λ(σ) := {µ(σ)} specified by permutations σ of order n, given by permutation densities pσ pushed
forward coordinate-wise using the (left-continuous) inverse CDF F−1

η . Suppose also that the marginal
measure η is absolutely continuous with respect to Lebesgue measure. Consider also a continuous
function f : R → R whose expectation is to be estimated using m = 2 coupled samples. In the limit
n→ ∞, the class Λ(σ) contains measures that converge weakly to the optimal transport plan – that
is, the sample coupling which provides the smallest possible estimator variance.

Proof. Consider the set {ui := 1
n

(
i− 1

2

)
}ni=1 for some n ∈ N. Consider also a random variable X

with measure η ∈ P(R) and corresponding distribution function F . Define its left-continuous inverse
F−1(y) := inf{x ∈ R : F (x) ≥ y}. Given some permutation order n ∈ N, consider the set

{
xi := F−1 (ui) = F−1

(
i− 1

2

n

)}n

i=1

(68)

which we will refer to as the quantile midpoints. Then consider the discrete measure

ηn :=
1

n

n∑

i=1

δxi
(69)

where δxi
(A) = 1 if xi ∈ A and 0 otherwise (with A ⊂ R). Denote by Fn the distribution associated

with ηn. Clearly, ηn → η weakly as n → ∞ since Fn(x) → F (x) for any continuity point x of F
(Billingsley, 2013). In this sense, the measure ηn is a discrete approximation to η.

Now consider the variance reduction OT problem for estimating Eω∼η[f(ω)] with m = 2 samples,

µ∗ = arg minµ∈Λ2(η)

[
E(ω1,ω2)∼µf(ω1)f(ω2)

]
. (70)

Solving this analytically for arbitrary f is not in general tractable. On the other hand, if we instead
take the discretised marginals ηn, we must solve

µ∗
n = arg minµ∈Λ2(ηn)

[
E(ω1,ω2)∼µf(ω1)f(ω2)

]
. (71)

This special case of discrete marginal measures where all points have equal mass can be solved
exactly. Our discussion is based on the proof outlined in the introduction to Villani (2021), to which
the interested reader is directed for full details.

OT with equal-mass discrete marginal measures. Any measure in Λ2(ηn) can be represented as a
bistochastic n× n matrix B = [Bij ]

N
i,j=1 ∈ Bn, meaning that all Bij are nonnegative and satisfy

∑

i

Bij = 1 ∀ j;
∑

j

Bij = 1 ∀ i. (72)

Therefore, the Kantorovich problem reduces to

inf
B∈Bn


 1

n

∑

ij

BijCij


 (73)

where we have encoded the transport costs in the cost matrix C = [f(xi)f(xj)]
n
i,j=1. Bij is

interpreted as the mass of the singleton (xi, xj). This is a linear minimisation problem on a convex
bounded set. It is well known that a solution always exists and corresponds to the convex hull of
optimal permutation matrices. In more detail: by Choquet’s theorem the problem admits solutions
which are at the extremal points of Bn (points that cannot be written as a nontrivial linear combination
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of other points in Bn). By Birkhoff’s theorem these are exactly the permutation matrices B(σ) :=
[δσ(i)j ]

n
i,j=1 with σ ∈ Sn. So the optimal discrete coupling is the convex hull of the discrete joint

measures corresponding to the set of optimal permutations. See the work of Villani (2021) for further
details. Choosing just one of these optimal permutations σ (since any convex combination of the
corresponding measures will give the same amount of variance reduction), we have that

µ∗
n = µ(σ)

n :=

n∑

i=1

1

n
δ(xi,xσ(i)). (74)

Stability of OT plans. Another important result in optimal transport is the stability of transference
plans: namely, that if ηn → η weakly then the optimal coupling πn ∈ Λ2(ηn) also converges to
the optimal π ∈ Λ2(η) weakly provided the cost function c(Xi, Xj) (in our case f(Xi)f(Xj)) is
continuous and

lim sup
n→∞

∫
c(x1, x2)dπn(x, y) <∞. (75)

This important observation underpins the effectiveness of numerical approximations to optimal
transport. We direct the reader to Thm. 1.7.2 by Panaretos and Zemel (2020) for a proof sketch and
Thm. 5.20 by Villani et al. (2009) for more detailed exposition. It follows that µ∗

n converges weakly
to the true optimal coupling µ∗.

The OT plan is (asymptotically) in our search class. Lastly, we have that our search class of
couplings Λ(σ) (corresponding to permutation densities pushed forward by F−1

η ) contains measures
that converge in distribution to µ(σ)

n when n→ ∞. In this mathematical sense, the asymptotic limit
the class of couplings amongst which we optimise includes measures that give the greatest possible
variance reduction: roughly speaking, our method is ‘asymptotically optimal’. This is intuitive
because as the order of the permutation grows each ‘tile’ of nonzero density narrows and can be
increasingly well-approximated by a delta function.

To see this, consider the measure on [0, 1]2 described by the permutation density pσ(x, y) =
n1σ(⌈nx⌉)=⌈ny⌉. Consider also the discrete measure on [0, 1]2 given by 1

n

∑n
i=1 δui with the set

{ui}ni=1 the quantile midpoints defined previously. These measures converge in distribution (their
corresponding joint CDFs can differ by at most 1

n at any point, which goes to 0 as n→ ∞). They
will also converge in distribution when pushed forward coordinate-wise by F−1

η by continuity of η. It
follows that at asymptotic n µ(σ)

n and µ(σ) converge in distribution, which completes the proof.

We remark that not all the assumptions in Thm. D.1 hold in the GRF setting. In particular, neither the
marginal measure η nor the function f is continuous. The intention of including Thm. D.1 is to build
intuition for the reader and provide some motivation for our choice of permutation densities. We
defer a rigorous investigation into relaxing these restrictive assumptions – a tough measure-theoretic
problem – to future work.

E ESTIMATING PAGERANK

In this appendix, we demonstrate a further use of the variance reduction OT techniques developed
for graph random walks in Sec. 4: estimating the PageRank vector (Page et al., 1998). This popular
measure of the relative importance of the nodes N of a graph is expensive to compute exactly so is
often estimated by sampling random walks (Fogaras et al., 2005). We will show that OT can be used
to find a coupling between the walks to reduce the estimator variance, demonstrating the versatility
of our approach beyond improving RFs.

E.1 SETUP: ESTIMATING PAGERANK WITH RANDOM WALKS

The PageRank vector is the stationary distribution of Markov chain whose state space is the set of all
graph nodes N , with a transition matrix

P̃ := (1− phalt)P+
phalt

N
E. (76)
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Here, phalt ∈ (0, 1) is a scalar, N is the number of nodes and E = [1]i,j∈N is a matrix whose entries
are all ones. P is the transiton matrix of a simple random walk,

Pij =

{
1
di

if (i, j) ∈ E
0 otherwise

(77)

with di the degree of the ith node. Since P̃ is stochastic, aperiodic and irreducible, we define the
unique PageRank vector ρ ∈ RN :

ρ⊤P̃ = ρ⊤, ρ⊤1 = 1, (78)

where we normalised the sum of vector entries to 1. Computing ρ analytically is expensive. Rear-
ranging and Taylor expanding (1− (1− phalt)P)−1, it is straightforward to see that

ρi =
phalt

N

∑

j∈N

∞∑

k=0

(1− phalt)
kPk

ji. (79)

This is simply a sum over all walks from each of the graph nodes vj to node vi, weighted by their
respective probabilities – that is, the expected number of random walkers ending at node vi if they
terminate with probability phalt at every timestep – which invites the estimator proposed by Fogaras
et al. (2005),

ρ̂i =
1

Nm

∑

vj∈N

m∑

n=1

I[nth walk from node vj terminates at node vi]. (80)

An interesting and practically important question is whether the variance of the estimator ρ̂ can be
improved by coupling random walks. As with GRFs, this can be achieved using antithetic termination
(Reid et al., 2024c) (see Sec. C.2). However, we will see that our OT length coupling approach does
equally well or better.

E.2 OT FORMULATION OF PAGERANK VARIANCE REDUCTION

Given m = 2 walks, the variance of the PageRank estimator Var(ρ̂i) depends on the quantity

E(ρ̂2
i ) = E

[
1

N2m2

∑
vj ,vk∈N

2∑
n1,n2=1

I[n1th walk from node vj terminates at node vi]

· I[n2th walk from node vk terminates at node vi]
]
.

(81)

After a few lines of algebra, the OT problem to minimise this quantity is

minimise E(l1,l2)∼µ

∑
vj∈N

P[RW of length l1 from node vj terminates at node vi]

· P[RW of length l2 from node vj terminates at node vi] for µ ∈ Λ2(ηG)

(82)

without making any approximations. P(·) denotes the probability of the event in brackets. As with
GRFs, for tractability we restrict our search space of joint distributions to permutation densities
pushed forward coordinate-wise with the geometric distribution inverse CDF, and this becomes

σ∗ = argmin
σ

∑
vj∈N

∑
q∈[[n]]

P[RW with length in qth quadrant from node vj terminates at node vi]

· P[RW with length in σ(q)th quadrant from node vj terminates at node vi].
(83)

The probabilities can be efficiently estimated by simulating random walks on the graph and recording
where they terminate. This leaves us with a minimum-weights bipartite matching problem which can
as usual be solved efficiently with the Hungarian algorithm (Kuhn, 1955).

Note that we made fewer simplifications than for GRFs (Sec. C.1). They only requirements for
tractability are restricting the class of considered joints to σ-couplings and computing MC estimates
of the terms in the OT cost matrix. We do not need to e.g. move Edirs inside a square or approximate
a quadratic matching problem by a linear-weights counterpart.
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Figure 9: PageRank estimator errors ∥ρ − ρ̂∥2 for a range of real-world graphs when 2 random
walkers are taken to be i) i.i.d., ii) antithetic or iii) σ-coupled. Lower is better. The error is always
at least as small and often substantially better when the walkers are coupled using our OT coupling.
One standard error is shaded.

E.3 EMPIRICAL RESULTS FOR PAGERANK

We now provide experiments using our OT coupling to improve the convergence of
PageRank estimates. Fig. 9 shows the results. For termination probabilities phalt ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, we compute the optimal permutation σ by solving the
matching problem in Eq. 83 on an Erdős-Rènyi graph with N = 100 nodes, taking permutation order
n = 10 as a hyperparameter. We then test these couplings on a range of real-world graphs (Ivashkin,
2023) of different sizes, plotting the estimator error ∥ρ− ρ̂∥2 (where ρ is the true PageRank vector
and ρ̂ is its MC estimate) against the termination probability phalt. We include walkers that are i.i.d.,
antithetic (Reid et al., 2024c) and σ-coupled. At every value of phalt, our method performs at least as
well as the baselines, and in some cases (e.g. on the very large cora graph) it gives much greater
variance reduction.

Note that we only consider connected subgraphs and take 1000 repeats for standard errors. Read-
ing the plots from left to right for the top row and then the bottom, the number of nodes are:
{34, 62, 105, 115, 398, 986, 1133, 1272, 2120, 2708}. The shape of the curve and size of the gain
from coupling depends on the particular graph being considered. For some graphs it is not possible
to obtain a big reduction in PageRank estimator variance by coupling walkers (e.g. football and
newsgroup), so neither antithetic termination nor our σ-coupling can provide a big gain. A detailed
investigation of how these observations relate to the mathematical graph structure is deferred to future
work.

F GRFS FOR GPS: ADDITIONAL DETAILS AND EXPERIMENTAL RESULTS

In this appendix, we supplement Sec. 4.2 by providing further experimental results for GRFs,
including Gram matrix estimation on a wider range of graphs and a scalable graph-based GP on a
different real-world dataset. We also provide technical background and tedious details considered too
long for inclusion in the main text.

F.1 MORE RESULTS FOR GRAM MATRIX ESTIMATION

First, we run the experiment in the first part of Sec. 4.2 for more real-world graphs. We approximate
the 2-regularised Laplacian kernel (I− σ2L̃)−2 with a regularisation parameter σ = 1 and m = 2
walkers. Fig. 10 shows the results, with the kernel approximation error normalised by the i.i.d. result
(unlike in Fig. 3) for clarity of comparison. The σ-coupling consistently reduces the estimator
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Figure 10: Relative Frobenius norm error ∥K− K̂∥F/∥K∥F between true and approximated Gram
matrices for different termination probabilities when walkers are i) i.i.d., ii) antithetic (Reid et al.,
2024c) or iii) σ-coupled using our OT approach. All results are normalised by the i.i.d. variance for
easy comparison. Lower is better. The σ-coupling is consistently as good or better across values of
phalt and graph topologies and sizes. One standard error is shaded.

variance, providing equally good or better results compared to the hand-crafted antithetic termination
algorithm. The size of the gain depends on the graph structure.

F.2 SCALABLE GPS ON GRAPHS

A very short introduction to graph-based GPs. In certain applications of Gaussian processes,
kernels based on Euclidean distance are unsuitable – e.g. when predicting traffic congestion since
locations that are spatially close may not be connected by roads. Kernels defined on the nodes of a
graph G may be more appropriate, giving structured covariance matrices that encode the dependence
between pairs of vertices. We can then perform inference and make predictions using GPs on graphs
(Borovitskiy et al., 2021; Zhi et al., 2023).

Like their Euclidean counterparts, exact GPs on graphs suffer O(N3) time complexity, making them
impractical for very large structures. Techniques to improve their scalability include graph Fourier
feature approximations, which approximate the kernel matrix using a truncated eigenvalue expansion
computed using the Lanczos algorithm. The price of increased speed is that our kernel estimate is
biased. Another approach is to restrict to kernels whose inverses are sparse, e.g. a Matérn kernel
with a small integer ν-parameter, at the expense of lost flexibility (Borovitskiy et al., 2021). In
this paper, we have proposed to instead use GRFs, which give an unbiased estimate to the kernel
matrix in subquadratic time. GRFs are sparse: intuitively, ϕGRF(vi) is constructed by simulating m
random walks out of vi and adding weighted contributions only at the coordinates corresponding
to visited nodes. For walks with geometrically-distributed lengths this is typically a small subset
of N . Therefore, the matrix K̂ := [ϕ(vi)

⊤ϕ(vj)]
N
i,j=1 is a sparse, unbiased estimate to any kernel,

not just specific families.4 We can use established numerical routines for sparse linear algebra to
speed up training, providing computational savings on big graphs. This is analogous to the sparse
spectrum GPs discussed in App. B (Lázaro-Gredilla et al., 2010); the interested reader might benefit
from reviewing this section first.

Our contribution to scalable graph-based GPs. Using GRFs for scalable approximate inference
on graphs is itself a novel contribution that deserves detailed exploration in future work. Since our
central goal is to use perspectives from OT to improve the convergence of GRFs, we confine our focus
to the question: can coupled random walks give more accurate estimates of graph GP posteriors? We
defer a detailed comparison of our method to other scalable graph-based GP techniques to a future
self-contained paper.

4Strictly: any graph node kernel that is expressible as a function of a weighted adjacency matrix.
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Training GRF-GPs: technical details. Here, provide details to supplement Sec. 4.2. We use
mesh graphs made available by Dawson-Haggerty (2023), taking the faces as our graph nodes.
Reading left to right, the number of nodes are: 894, 999, 1280, 1572, 3838, 8700. For probabilistic
mesh interpolation, we use the diffusion kernel K = κ exp(−γ2L̃). Here, L̃ is the normalised graph
Laplacian (Eq. 49) and κ, γ are learnable parameters corresponding to the signal variance and kernel
lengthscale respectively. The observation noise σ is also learnable. For every graph, we construct
a kernel estimate by sampling m = 8 i.i.d. random walks out of every node. We then train the
corresponding vanilla GP by optimising the log marginal likelihood on observed nodes, using the
Adam optimiser (Kingma and Ba, 2014) for 1000 epochs (after which both the objective value and
the hyperparameters are empirically found to have converged). We freeze κ, γ, σ and compute the
corresponding exact kernel. We approximate this exact kernel using {16, 32, 64} random walks that
are either i.i.d., antithetic or σ-coupled. We perform approximate Bayesian inference in each case,
computing the accuracy of the kernel estimate, the average test RMSE and the KL divergence to the
true posterior distribution (unnormalised by the number of test points). We use permutations of order
n = 50 and a termination probability phalt = 0.4. As reported in the main body, coupling the lengths
of graph random walkers permits better approximate Bayesian inference with GPs on graphs.

Intuition for the effectiveness of coupling lengths for GRFs. When we couple the lengths of
random walks, we ’diversify’ the ensemble, sampling walks with a different number of hops. This is
a very direct way to ensure we explore the graph more effectively, avoiding (by chance) simulating
pairs of very similar walks. It is intuitive that improving ‘coverage’ of the graph means we estimate
the kernel more effectively, letting us model more interactions between different graph nodes. This
may explain why our method is so effective in this setting. However, we stress that coupling schemes
for estimators defined on discrete spaces like graphs were only introduced very recently (Reid et al.,
2024c), so further work is needed for a rigorous understanding of this phenomenon.

F.3 PROBABILISTIC TRAFFIC INTERPOLATION

In this section, we provide further details about the final experiment of Sec. 4.2, which uses a scalable
graph-based GP to predict traffic flow speeds on the highways of San Jose, California.

Dataset. Readers are directed to the original paper (Borovitskiy et al., 2021) for exhaustive details
about the dataset curation and graph computation. Here, we simply remark that this graph is
sufficiently large that exact GP methods become slow (N = 1016), and observations are only made
at a small subset of the nodes (325) so good uncertainty quantification is essential.

Results for GRFs. We randomly divide the nodes into training and test datasets of sizes Ntrain = 250
and Ntest = 75 respectively. As described in App. F.2, we train a scalable GRF-GP with m = 8
i.i.d. walkers set up to approximate the diffusion kernel, optimising the training data negative log
marginal likelihood. Next, we freeze the kernel and noise parameters, and compare the performance
of GRFs with m ∈ {4, 8, 16} i.i.d., antithetic (Reid et al., 2024c) and σ-coupled walkers. As before,
we consider the quality of Gram matrix approximation, the accuracy of predictions (test RMSE) and
the quality of the predictive uncertainties (KL divergence to true posterior). Fig. 11 shows the results.
σ-GRFs consistently do best on all metrics, even with a severely restricted sampling budget.
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Figure 11: Results for probabilistic traffic interpolation experiment. Plots show the kernel approx-
imation accuracy, test RMSE and KL divergence to the true posterior for graph kernels estimated
using i.i.d., antithetic and σ-coupled GRFs. Lower is better. σ-coupling gives the best results for
approximate inference. One standard error over random draws of walkers is shaded.
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G REBUTTALS: EXTRA RESULTS FOR HUMM

G.1 FURTHER EVIDENCE OF GENERALISABILITY

Here, we give further evidence of the generalisability of our scheme. We show that our PNC algorithm
(Def. 3.3) provides strong empirical improvements for the convergence of estimates of other radial
basis function (RBF) kernels, beyond the Gaussian example considered in Sec. 3. In particular, we
consider approximating the popular Matérn class of covariance functions (Williams and Rasmussen,
2006), defined by

kMatérn(xi,xj) :=
21−ν

Γ(ν)

(√
2ν∥xi − xj∥2

l

)
Kν

(√
2ν∥xi − xj∥2

l

)
(84)

with positive parameters ν and l, where Kν is a modified Bessel function. It is well known that this
covariance function has spectral density

S(ω) =
2dπd/2Γ(ν + d

2 )(2ν)
ν

Γ(ν)l2ν

(
2ν

l2
+ 4π2ω⊤ω

)−(ν+d/2)

(85)

in d dimensions. We can sample frequency vectors {ωi}mi=1 from this density and use them to
construct RFFs (Eq. 3), thereby unbiasedly approximating the Matérn kernel.

Clearly, S(ω) is isotropic, so it is possible condition that frequency vectors are mutually orthogonal.
Moreover, we are free to couple their norms using our PNC scheme, though now each obeys a
different marginal distribution compared to the Gaussian case.

Experimental results. We construct RFFs to approximate the Matérn kernel with smoothness
parameters ν ∈ { 1

2 ,
3
2 ,

5
2}, taking random frequencies marginally distributed as in Eq. 85. As

before, we consider sampling frequencies that are (i) i.i.d., (ii) orthogonal with independent norms,
and (iii) orthogonal with PNC norms. For the dataset, we randomly generate N = 64 vectors
xi ∼ N (0, Id/d) of dimensionality d = 8. For simplicity, we set the kernel lengthscale l = 1.
Fig. 12 shows the error on the Gram matrix approximation as the number of features grows. Even
for this different kernel and across different choices for the smoothness parameter ν, PNC
continues to substantially suppress kernel estimator variance. This provides strong evidence
that our OT-driven norm coupling scheme is generalisable across RBF kernels, and is not
specific to the Gaussian example.
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Figure 12: Kernel estimation RMSE of the Matérn kernel with different smoothness parameters ν,
taking different coupling schemes for the frequency vectors. Once again, we see that PNC provides
substantial variance reduction, outperforming all the baselines.
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