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ABSTRACT

DETR-based methods, which use multi-layer transformer decoders to refine ob-
ject queries iteratively, have shown promising performance in 3D indoor object
detection. However, the scene point features in the transformer decoder remain
fixed, leading to minimal contributions from later decoder layers, thereby limit-
ing performance improvement. Recently, State Space Models (SSM) have shown
efficient context modeling ability with linear complexity through iterative inter-
actions between system states and inputs. Inspired by SSMs, we propose a new
3D object DEtection paradigm with an interactive STate space model (DEST).
In the interactive SSM, we design a novel state-dependent SSM parameterization
method that enables system states to effectively serve as queries in 3D indoor
detection tasks. In addition, we introduce four key designs tailored to the char-
acteristics of point cloud and SSM: The serialization and bidirectional scanning
strategies enable bidirectional feature interaction among scene points within the
SSM. The inter-state attention mechanism models the relationships between state
points, while the gated feed-forward network enhances inter-channel correlations.
To the best of our knowledge, this is the first method to model queries as sys-
tem states and scene points as system inputs, which can simultaneously update
scene point features and query features with linear complexity. Extensive exper-
iments on two challenging datasets demonstrate the effectiveness of our DEST-
based method. Our method improves the GroupFree baseline in terms of AP50 on
ScanNet V2 (+5.3) and SUN RGB-D (+3.2) datasets. Based on the VDETR base-
line, Our method sets a new state-of-the-art on the ScanNetV2 and SUN RGB-D
datasets.

1 INTRODUCTION

With the widespread application of LiDAR and depth cameras, it is becoming easier to obtain 3D
point clouds of real scenes. The large amounts of 3D scene data provide rich geometric information
for 3D scene understanding in fields such as autonomous driving, robotics, and augmented reality.
As a fundamental task in 3D scene understanding, 3D indoor object detection has garnered sig-
nificant attention from both academia and industry. Unlike 3D object detection (Shi et al., 2019;
Yin et al., 2021; Lang et al., 2019; Shi et al., 2020b;a) in autonomous driving scenarios, 3D indoor
object detection involves objects with more diverse categories and shapes, posing more significant
challenges for the model design and training.

To address the above challenges, numerous 3D indoor object detection methods have been proposed,
which can be roughly divided into three categories: vote-based methods (Qi et al., 2019; Xie et al.,
2020; Zhang et al., 2020), expansion-based methods (Gwak et al., 2020; Rukhovich et al., 2022;
Wang et al., 2022a), and DETR-based methods (Misra et al., 2021; Liu et al., 2021; Wang et al.,
2023; Shen et al., 2024). Vote-based methods (Qi et al., 2019; Xie et al., 2020; Zhang et al., 2020)
use a voting mechanism to shift surface points toward the object center and then generate candi-
date points by clustering the points that have shifted to the same regions. Although these methods
have achieved great success in 3D object detection, The vote mechanism is performed in a category-
independent manner, leading to the shifted points that are adjacent but belong to different cate-
gories being grouped, which limits the model detection capability. Expansion-based methods (Gwak
et al., 2020; Rukhovich et al., 2022; Wang et al., 2022a) use generative sparse decoders to generate
high-quality proposals based on object surface voxel features with the same semantic prediction.
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(a) Comparison of Transformer and ISSM-based Decoder Layers (b) Performance Improvement Across Different Layers
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Figure 1: (a): Transformer decoder solely updates the features of the query points, while our
ISSM-based decoder simultaneously updates the features of scene points and query points. (b):
The DETR-based models show only slight accuracy enhancements in the later layers, whereas the
DEST-based methods significantly boost the performance in the later layers.

Compared with vote-based methods, expansion-based methods consider the semantic consistency
of voxels within the same group and achieve better performance. However, expansion-based meth-
ods require a carefully designed proposal generation module and involve numerous manually set
thresholds, which limits the model versatility. Recently, DETR-based methods (Misra et al., 2021;
Liu et al., 2021; Wang et al., 2023; Shen et al., 2024) have shown promising performance in 3D
object detection. Unlike the above methods, DETR-based methods select a small group of voxels
or points as the initial object queries and use the scene point features to refine these queries. The
query refinement module is simple in design and retains the original geometric structure of the input
3D point cloud. Based on the query refinement module, DETR-based methods have achieved the
best performance in indoor object detection tasks. However, DETR-based methods still face a key
issue that limits their performance. These methods employ multi-layer transformer decoders (Car-
ion et al., 2020) to iteratively refine the object queries. While the transformer decoder layers update
the query point features, they do not simultaneously update the scene point features as shown in
Figure 1 (a). As a result, each decoder layer uses the same scene point features to refine the queries,
leading to only marginal improvements from the later layers. As shown in Figure 1 (b), we evaluate
the detection accuracy improvements of different decoder layers in two DETR-based models (Liu
et al., 2021; Shen et al., 2024) on the ScanNet V2 (Dai et al., 2017) dataset. GroupFree (Liu et al.,
2021) achieves only a 2.12 performance improvement in the last six layers, while VDETR (Shen
et al., 2024) shows a mere 0.64 improvement in the last four layers. Based on the above analysis,
the fixed scene point features constrain the potential performance enhancement of the models.

To address this issue, an intuitive idea is to introduce a self-attention mechanism (Vaswani, 2017) be-
tween different decoder layers to update the scene point features. However, the quadratic complexity
of the self-attention mechanism significantly reduces the model efficiency, making this approach im-
practical. Recently, state space model-besed methods (Gu et al., 2021a; Gu & Dao, 2023; Dao & Gu,
2024) have shown efficient context modeling with linear complexity through interactions between
system states and inputs. The pioneer works lead us to think: Is it possible to design a State Space
Model (SSM) to replace the transformer decoder, enabling the simultaneous update of scene
features and query point features? SSM is used to describe the evolution of system states and to
predict future states and system outputs based on system inputs. Therefore, if we model the query
point features as the system states and the scene point features as the system inputs at different time
steps, we can simultaneously obtain the final system states (updated query point features) and the
system outputs at each time step (updated scene point features). However, existing SSMs (Gu et al.,
2021a; Gu & Dao, 2023; Dao & Gu, 2024) are not suitable for modeling queries as system states, for
two main reasons: (1). Update the states solely based on the system inputs. Existing SSMs (Gu
& Dao, 2023; Dao & Gu, 2024) adjust the SSM parameters (∆,B,C) solely using system inputs
without considering the system states. Therefore, the state points cannot adaptively select system in-
puts to update themselves, while different query points need to focus on distinct regions of the scene.
(2). Cannot directly process 3D point cloud. Existing SSMs are inherently designed to process
sequential data, and their unidirectional modeling and sensitivity to input order pose challenges for
feature modeling of scene points and query points.

Based on the above discussion, we propose a new 3D object DEtection paradigm with a STate space
model (DEST) to address the performance limitation caused by the fixed scene point features. The
proposed DEST consists of two core components: a novel Interactive State Space Model (ISSM)
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and an ISSM-based decoder. In the ISSM, we model the query point features as the system states
and the scene point features as the system inputs at different time steps. Unlike previous SSMs (Gu
et al., 2021a; Gu & Dao, 2023; Dao & Gu, 2024), the proposed ISSM determines how to update
the system states based on both the system states and system inputs. Specifically, we modify the
SSM parameters (∆,B,C) to be dependent on the system states and design a spatial correlation
module to model the relationship between state points and scene points. Therefore, the system
states in the ISSM can effectively fulfill the role of queries in complex 3D indoor detection tasks.
In the ISSM-based decoder, four modules are designed for feature modeling of scene points and
query points: Hilbert-based point cloud serialization strategy, ISSM-based Bidirectional Scan (IBS)
module, Inter-state attention module, and Gated Feed-Forward Network (GFFN). The proposed se-
rialization strategy is designed to serialize the scene points based on the Hilbert curve (Hilbert &
Hilbert, 1935), benefiting from its locality-preserving properties. The IBS module is designed to
achieve bidirectional interaction among different scene points, while the inter-state attention mod-
ule is designed to capture the relationships between state points. Lastly, the GFFN is designed to
enhance inter-channel correlations through a gated linear unit. The ISSM-based decoder can replace
the transformer decoder in DETR-based methods to address the performance limitations caused by
fixed scene point features. As shown in Figure 1 (b), our DEST-based method significantly enhances
the performance in the later layers.

In summary, the core contributions of this paper are as follows: (1). We propose a novel SSM-based
3D object detection paradigm DEST to overcome the performance limitations caused by fixed scene
point features during the query refinement process. To the best of our knowledge, this is the first
method to model queries as system states within an SSM framework. (2). We design a novel ISSM
whose system states can effectively function as queries in complex 3D indoor detection tasks. In
addition, we develop an ISSM-based decoder tailored to the characteristics of 3D point clouds, fully
harnessing the potential of the ISSM for 3D object detection. (3). Extensive experimental results
demonstrate that the proposed SSM-based 3D object detection method consistently enhances the
performance of baseline detectors on two challenging indoor datasets, i.e., ScanNet V2 (Dai et al.,
2017) and SUN RGB-D (Song et al., 2015). Moreover, comprehensive ablation studies validate the
effectiveness of each designed component.

2 RELATED WORK

2.1 3D OBJECT DETECTION.

The goal of 3D object detection is to estimate oriented 3D object bounding boxes with their category
labels from a point cloud. According to the application scenario, 3D object detection is typically
divided into outdoor and indoor detection tasks. Outdoor 3D object detection is commonly used in
autonomous driving scenes, where objects are primarily distributed across a wide 2D plane. There-
fore, outdoor 3D detection methods typically project the 3D point cloud into a bird’s-eye view
(BEV) and utilize 2D convolutional networks to detect 3D objects. For instance, MV3D (Chen
et al., 2017) directly projects the point cloud onto a 2D grid for feature processing and detection.
VoxelNet (Zhou & Tuzel, 2018) first converts the point cloud into a 3D volumetric grid and uses
a 3D CNN for feature extraction. Then, it projects the 3D voxels into a BEV for bounding box
prediction. PointPillars (Lang et al., 2019) employs PointNet (Qi et al., 2017a) to learn point cloud
representations organized in vertical columns (pillars), then uses a 2D convolutional neural network
to process flattened pillar features in the BEV.

In contrast, indoor 3D object detection involves handling a more diverse set of object categories and
shapes, as well as more complex spatial relationships between objects. Existing indoor 3D object
detection methods can be broadly categorized into three groups: vote-based methods, expansion-
based methods, and DETR-based methods. For vote-based methods, VoteNet (Qi et al., 2019),
as the pioneering work, designs a novel 3D proposal mechanism based on deep Hough voting.
MLCVNet (Xie et al., 2020) introduces three context modules into the voting and classifying stages
of VoteNet to encode contextual information at different levels. BRNet (Cheng et al., 2021) back-
traces the representative points from the vote centers to better capture the fine local structural features
surrounding the potential objects from the raw point clouds. H3DNet (Zhang et al., 2020) predicts
a hybrid set of geometric primitives and converts the predicted geometric primitives into object
proposals. For expansion-based methods, GSDN (Gwak et al., 2020) proposes a generative sparse
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tensor decoder to generate virtual center features from surface features while discarding unlikely
object centers. FCAF3D (Rukhovich et al., 2022) further introduces a fully convolutional anchor-
free indoor 3D object detection method. CAGroup3D (Wang et al., 2022a) generates high-quality
3D proposals by leveraging a class-aware local grouping strategy on object surface voxels with
consistent semantic predictions. The above methods require carefully designed proposal generation
modules and involve several manually set thresholds. DETR (Carion et al., 2020) is a pioneering
work that applies Transformers (Vaswani, 2017) to 2D object detection, eliminating many hand-
crafted components such as Non-Maximum Suppression (Neubeck & Van Gool, 2006) or anchor
boxes (Girshick, 2015; Ren, 2015; Lin, 2017). Currently, DETR and its variants (Zhu et al., 2020;
Dai et al., 2021; Liu et al., 2022) have achieved state-of-the-art results in various 2D object detection
tasks. Inspired by these works, numerous DETR-based 3D object detection methods have been
explored. 3DETR (Misra et al., 2021) is the first to introduce an end-to-end Transformer model
for 3D object detection, achieving promising results. GroupFree (Liu et al., 2021) employs a key
point sampling strategy to select candidate points and utilizes the attention mechanism to update
query point features. LeadNet (Wang et al., 2023) further improves the transformer decoder by
introducing a dynamic object query sampling module and a dynamic Gaussian weight map. Most
recently, VDETR (Shen et al., 2024) proposes a novel 3D vertex relative position encoding method,
which directs the model to focus on points near the object, achieving state-of-the-art performance.
However, these DETR-based methods use fixed scene point features in different decoder layers,
which limits the detection capabilities of later layers. Unlike the above methods, we propose an
ISSM-based decoder that simultaneously updates both scene point and query point features.

2.2 STATE SPACE MODELS (SSMS).

Recently, SSMs (Kalman, 1960; Gu et al., 2021a;b) have become a prominent research focus. S4 (Gu
et al., 2021a) demonstrates the capability of capturing long-range dependencies with linear complex-
ity. Mamba (Gu & Dao, 2023) further enhances S4 by introducing a selection mechanism, specifi-
cally parameterizing the SSM based on the system input. The selection mechanism allows Mamba
to selectively retain information, facilitating the efficient processing of long sequence data. Inspired
by Mamba, Vision Mamba (Zhu et al., 2024) introduces an SSM-based visual model. VMamba (Liu
et al., 2024) furthermore incorporates a 2D selective scan module, enabling the model to perform
selective scanning of two-dimensional images. In the field of point cloud understanding, numer-
ous Mamba-based works have emerged. PointMamba (Liang et al., 2024) proposes a simple yet
effective Mamba-based baseline, while PCM (Zhang et al., 2024) develops diverse point cloud seri-
alization methods that significantly improve performance. These methods have achieved promising
results by leveraging the efficient context modeling and linear complexity of Mamba. Unlike these
methods that use SSMs to design feature encoders, we design an SSM-based decoder to address the
performance limitations caused by fixed scene point features in the transformer decoder.

3 METHOD

Below, we first briefly review the existing SSMs (Section 3.1), followed by an overview of the
proposed DEST (Section 3.2). Subsequently, we offer detailed explanations of the two core compo-
nents: the Interactive State Space Model (Section 3.3) and the ISSM-based decoder (Section 3.4).
Lastly, we outline the model setups for the two baseline models (Section 3.5).

3.1 PRELIMINARIES

SSM is used to describe the evolution of system states h(t) ∈ RK and predict future states h′(t) and
system outputs y(t) based on system inputs x(t). The system can be defined as follows:

h′(t) = Ah(t) + Bx(t), y(t) = Ch′(t), (1)

where A ∈ RK×K represents the state transition matrix that describes how the system states evolve,
B ∈ RK×1 denotes the control matrix that describes the influence of the system inputs on the system
states, and C ∈ R1×K is the observation matrix characterizing the impact of the system states on
the system outputs. To handle discrete-time sequence data inputs, the Zero-Order Hold is typically
used to discretize the SSM. The discretized version of equation 1 is as follows:

ht = Aht−1 + Bxt, yt = Cht, (2)
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Figure 2: The overall framework of the DEST-based method for 3D object detection. We first
utilize an encoder to extract 3D features, followed by a state sampling module to select state points,
referred to as queries in DETR architecture. Subsequently, we input both the scene points and state
points into the ISSM-based decoder for simultaneous updates. Finally, the updated state points are
fed into a detection head to predict the 3D bounding boxes.

A = exp(∆A), B = (∆A)−1(exp(∆A)− I)∆B, C = C (3)
where ∆ represents the timescale from system states ht−1 to the next ht. The entire sequence
transformation can also be represented in a convolutional form:

K = (CB,CAB, · · · ,CA
N−1

B), y = x ∗K, (4)

where N is the length of the input sequence x, and K ∈ RN denotes a global convolution kernel,
which can be efficiently pre-computed. However, due to the Linear Time-Invariant (LTI) nature of
SSM, the parameters (∆,A,B,C) remain fixed across all time steps, which limits their ability to
handle varying input sequences.

Recently, Mamba (Gu & Dao, 2023) introduced a selection mechanism that treats the parameters
(∆,B,C) as functions of the input, effectively transforming the SSM into a time-varying model:

ht = φA(xt)ht−1 + φB(xt)xt, yt = φC(xt)ht, (5)

where φA(xt), φB(xt) and φC(xt) denote the parameter matrices are dependent on the system
inputs xt. While the selection mechanism addresses the limitations of the LTI model, it also does
not allow for parallel computation using equation 4. To tackle this challenge, Mamba introduced
hardware-aware selective scanning, achieving near-linear complexity. Mamba2 (Dao & Gu, 2024)
propose a refinement version of the selective SSM by leveraging structured semiseparable matrices
and the state space dual framework, further enhancing performance and efficiency. In this paper, we
model the relationship between the system states and system inputs based on Mamba and Mamba2,
adapting it to more challenging point cloud tasks.

3.2 OVERVIEW

Figure 2 presents the overall framework of the DEST-based method for 3D object detection. In 3D
object detection on point clouds, given a set containing N points, the objective is to generate a set
of 3D oriented bounding boxes with classification scores to cover all ground-truth objects. The pro-
posed DEST-based detector primarily consists of three components: an encoder for extracting point
features, a sampling module for generating the initial system states, and an ISSM-based decoder to
refine system states and predict the 3D oriented bounding boxes. In this paper, we focus primarily
on the decoder design, leveraging the SSM to facilitate the simultaneous updating of query points
and scene points, thereby mitigating the performance limitations.

3.3 INTERACTIVE STATE SPACE MODEL

In the ISSM, we model the query points as the initial system states h0 ∈ RK×C and the scene
points as the system inputs x ∈ RM×C . As shown in Figure 3, we provide the overview of the
ISSM. Compared to Mamba, we expand the dimension of ∆ to make it state-dependent and design
a spatial correlation module to generate the SSM parameters (∆,B,C).

Extension of ∆. In Mamba, the important parameter ∆ ∈ RM×C controls the balance between
how much to focus on or ignore the current input. Specifically, a larger ∆ resets the states ht−1 to
focus on the current input xt, while a smaller ∆ retains the states ht−1 and disregards the current
input xt. However, in both Mamba and Mamba2, ∆ only considers the system inputs x without
accounting for differences in initial system states h0. In 3D object detection tasks, query points
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Figure 3: Overview of the Interactive State Space Model. In the ISSM, we model the query
points as the system states and the scene points as the system inputs. We design a spatial correlation
module to parameterize the SSM based on the initial system states and inputs.

have different positions across varying scenes, and different query points focus on different system
inputs. Updating the states h by considering only the system inputs x prevents the state points
h from adequately focusing on their respective regions. To address this issue, we modify ∆ to
have distinct values for each system input and state, expanding ∆ ∈ RM×C to ∆ ∈ RM×K×C .
Although the expansion of ∆ affects the discretization formula as equation 3, it does not impact
the discretized state space model as equation 2. Therefore, the proposed ISSM can achieve efficient
parallel computation by utilizing the hardware-aware selective scanning strategy (Gu & Dao, 2023)
or the state space dual framework (Dao & Gu, 2024).

Spatial Correlation. The success of Mamba demonstrates that the state selection mechanism is
crucial for SSMs. For 3D object detection tasks, the proposed ISSM needs to address a more
complex state updating problem. A key challenge lies in enabling state points to select the ap-
propriate scene points for self-updating. DETR-based methods (Wang et al., 2023; Shen et al.,
2024) have inspired us that query points should primarily focus on points surrounding the rel-
evant 3D bounding boxes. Therefore, we design a spatial correlation module that encodes the
spatial relationships between scene points x and initial state points h0 to derive the parameters
(∆ ∈ RM×K×C ,B ∈ RM×K ,C ∈ RM×K) in the ISSM. Specifically, for each state point hi0, we
first predict a rotated 3D bounding box. We then calculate the relative offsets 4P i ∈ RM×K×8×3

between the scene points and the eight vertices of the bounding box. Finally, we use an MLP to map
these positional relationships to the parameters in the ISSM:

Si =

8∑
j=1

MLP(4P i
j ), ∆i

s = Linearc(S
i), Bi

s = Linear1(Si), Ci
s = Linear1(Si), (6)

where Lineard is a parameterized projection to dimension d. Since there are numerous background
points within the scene points, we need to prevent these from interfering with the system states.
Therefore, we use the features of the scene points to modify the parameters of ISSM:

∆i = BCk(Linearc(x))+∆i
s, Bi = BCk(Linear1(x))+Bi

s, Ci = BCk(Linear1(x))+Ci
s, (7)

where BCk denotes broadcasting the values to K dimensions. Apart from modeling positional
correlations and background information, we design an explicit delay kernel for ∆i:

∆i
g = ∆i × exp(αmin(R(hi0)− Px, 0)), (8)

where R(hi0) is the circumscribed sphere radius of the bounding box predicted by the state point
hi0, Px denotes the position of the scene points and α is a learnable parameter. With the parameters
(∆i

g,B
i,Ci), the state points h can select the appropriate scene points x for updating, while the

scene points x can simultaneously acquire surrounding structural information from the state points
h. In practice, we observe that the numerous combinations between state points h and scene points x
result in significant memory overhead. Therefore, following VDETR (Shen et al., 2024), we utilize
a smaller predefined 3D table T ∈ R10×10×10 to obtain Si of equation 6 through grid sampling. In
Appendix, we further discuss the mathematical relationship between the system states in the state
space model and the query points in the transformer decoder.

3.4 ISSM-BASED DECODER

Based on the above ISSM, we further design an ISSM-based decoder suitable for 3D point cloud
detection as shown in Figure 4 (a). The ISSM-based decoder consists of four core components:
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Figure 4: (a): Illustration of ISSM-based decoder architecture. (b): Detailed Structure of the ISSM-
based Bidirectional Scan. (c): Detailed Structure of the Gated Feed-Forward Network (GFFN).

a Hilbert-based point cloud serialization strategy, an inter-state attention module, an ISSM-based
Bidirectional Scan (IBS) module, and a Gated Feed-Forward Network (GFFN).

Hilbert-based point cloud serialization strategy. SSMs are designed for ordered 1D sequences,
which are not suitable for unordered point clouds. To model the scene points as the system inputs
of the ISSM, we need to serialize the scene points. Following PTv3 (Wu et al., 2024), we lever-
age space-filling curves to serialize point clouds. Among these space-filling curves, the Hilbert
curve (Hilbert & Hilbert, 1935) is renowned for its efficient locality preservation. Thus, we generate
six different serialized results for the point cloud by reordering the x, y, and z axes of the Hilbert
curve, aiming for comprehensive observation of the point cloud. The detailed serialization process
is shown in Appendix A.3. Additionally, unlike serialized attention in PTv3, the sequential feature
modeling in ISSM is more sensitive to changes in the serialization method. Therefore, we apply dif-
ferent serialization methods for each decoder layer without the shuffle order strategy used in PTv3,
ensuring that the ISSM-based decoder can comprehensively capture scene point features.

Inter-state attention module. In 3D object detection, objects in a scene often exhibit strong cor-
relations. For example, tables and chairs commonly appear together, while beds and toilets rarely
coexist in the same room. In DETR-based decoder layers (Carion et al., 2020; Misra et al., 2021;
Liu et al., 2021; Shen et al., 2024), the self-attention mechanism for queries is employed to model
the correlations between different objects. However, in the ISSM, there is no design specifically for
interactions between state points. To capture such relationships, we employ a standard self-attention
mechanism for state points. The inter-state attention module allows states to capture richer features,
particularly enhancing the detection performance for objects with ambiguous boundaries or those
that are challenging to distinguish from the background.

IBS module. To facilitate bidirectional interaction among different scene points in a single pass, we
follow Vision Mamba (Zhu et al., 2024) and introduce a bidirectional scanning mechanism into our
ISSM. Figure 4 (b) illustrates the detailed structure of the IBS module. Firstly, we input the forward-
ordered and backward-ordered scene points into their respective forward and backward ISSMs. Both
the forward and backward ISSMs use state points as system states, with each ISSM generating the
updated features of the scene points and state points as outputs. We then fuse the outputs using
a linear layer to obtain the final features of the scene points and state points. Additionally, we
incorporate a depthwise convolution (Chollet, 2017) for local feature extraction of the scene points.
In Appendix A.2, we provide detailed algorithmic procedures of the IBS module.

GFFN. The gating mechanism (Dauphin et al., 2017) introduces gated linear units, allowing the
model to dynamically select activation paths based on the input. This selectivity enhances the model
flexibility, enabling the model to better capture complex patterns. Thus, we design the GFFN to
replace the standard FFN, as shown in Figure 4 (c). For the ordered scene points, we also incorporate
a depthwise convolution to fully leverage the spatial structural information of the point cloud.

3.5 MODEL SETUPS

For a fair comparison, we build our DEST-based 3D detector based on two baseline DETR-based
models: GroupFree (Liu et al., 2021) and VDETR (Shen et al., 2024), respectively. For GroupFree
baseline, the input points Pin ∈ RN×3 contain only position information. We replace all trans-
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former decoder layers with our proposed ISSM-based decoder layers while retaining the original
spatial encodings and the original detection heads. For the training loss, we employ the same detec-
tion loss with GroupFree and introduce an additional objectness loss for the scene points. Specifi-
cally, we use a MLP head to determine whether a scene point is a foreground point and apply a binary
focal loss to supervise the prediction results. For VDETR baseline, the input points Pin ∈ RN×6

include both position and RGB information. In the decoder, we also replace all transformer decoder
layers with our ISSM-based decoder layers while retaining the original detection heads. Regarding
the spatial encodings, we generate them for the corresponding state points using the predicted 3D
bounding boxes and for the scene points using their point positions. For the training loss, we employ
the same detection loss with VDETR and introduce the same objectness loss as above for the scene
points. Due to space limitations, more details can be found in the Appendix.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND METRICS

Dataset. We evaluate our DEST-based detector on two challenging 3D indoor object detection
datasets, including ScanNet V2 (Dai et al., 2017) and SUN RGB-D (Song et al., 2015). ScanNet V2
dataset contains 1201 training samples and 312 validation samples, each annotated with per-point
instance and semantic labels, as well as axis-aligned 3D bounding boxes across 18 categories. SUN
RGB-D dataset is a monocular dataset, containing over 10000 indoor RGB-D images annotated with
per-point semantic labels and oriented 3D bounding boxes across 37 categories. We follow previous
methods (Qi et al., 2019; Liu et al., 2021) to evaluate our approach on the 10 most common classes
of objects. The training and validation splits contain 5285 and 5050 point clouds, respectively.

Evaluation Metrics. Following the standard evaluation protocol (Qi et al., 2019), we evaluate our
ISSM-based detector performance with the mean Average Precision (AP25 and AP50) under two
different Intersections over Union (IoU) thresholds of 0.25 and 0.5. Since the input point clouds are
obtained through random sampling, both the training and testing processes are stochastic. To ensure
the reliability of the test results, we run the training 5 times and independently test each trained
model 5 times. We report both the highest performance and the average results under 5× 5 trials.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Different 3D detection models employ various techniques in terms of encoder architecture and
bounding box parameterization, with some methods using point clouds with color information as
model inputs. Therefore, it is unfair to compare the performance of different methods directly.
Among these 3D detection methods, GroupFree (Liu et al., 2021) is a pioneer in designing the
DETR-based method for point clouds, demonstrating strong performance across multiple datasets.
VDETR (Shen et al., 2024) builds upon 3DETR (Misra et al., 2021) by introducing the positional
encoding in the decoder, achieving state-of-the-art performance. To demonstrate the effectiveness
of our method, we implement the DEST-based detector on top of the two DETR-based methods.

As shown in Table 1, we compare our DEST-based detector with the previous 3D object detec-
tion methods on the ScanNet V2 and SUN RGB-D datasets. The results indicate that our method
significantly outperforms the baseline methods on both datasets, whether measured by the highest
performance or the average results over multiple trials. For the GroupFree baseline, our DEST-based
detector demonstrates substantial performance improvements across different decoder scales. For
example, on the ScanNetV2 dataset, our method achieves a 4.3 increase in AP50 based on GroupFree
(S) and a 5.3 increase based on GroupFree (L). For the VDETR baseline, our DEST-based detector
achieves new state-of-the-art performance on both datasets. Specifically, our approach reaches 78.8
in AP25 and 67.9 in AP50 on the ScanNet V2 dataset, which is 1.0 and 1.9 better than the base-
line model. Additionally, our method achieves 69.2 in AP25 and 52.2 in AP50 on the SUN RGB-D
dataset with the gains of 1.2 and 1.1. In Appendix, we further present a visual comparison of the
prediction results with different baseline methods. The experimental results clearly demonstrate
the effectiveness of our method. Our DEST-based decoder addresses the performance limitations
caused by fixed scene point features during the query refinement process, resulting in a significant
performance boost.
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Table 1: Comparison on the ScanNet V2 and SUN RGB-D datasets. We report both the highest
performance (H) and the average results (A) under multiple trials. ‘RGB’ indicates that the input
point clouds of the methods include color information. GroupFree(S) denotes a model with a 6-layer
decoder and 256 object candidates. GroupFree(L) denotes a model with a 12-layer decoder and 512
object candidates. TTA is the test-time augmentation used in VDETR.

Method RGB ScanNet V2(H) ScanNet V2(A) SUN RGB-D(H) SUN RGB-D(A)
AP25 AP50 AP25 AP50 AP25 AP50 AP25 AP50

VoteNet (Qi et al., 2019) 7 62.9 39.9 - - 57.7 - - -
HGNet (Chen et al., 2020) 7 61.3 34.4 - - 61.6 - - -
3D-MPA (Engelmann et al., 2020) 7 64.2 49.2 - - - - - -
MLCVNet (Xie et al., 2020) 7 64.5 41.4 - - 59.8 - - -
GSDN (Gwak et al., 2020) 7 62.8 34.8 - - - - - -
H3DNet (Zhang et al., 2020) 7 64.4 43.4 - - 60.1 39.0 - -
BRNet (Cheng et al., 2021) 7 66.1 50.9 - - 61.1 43.7 - -
3DETR (Misra et al., 2021) 7 65.0 47.0 - - 59.1 32.7 - -
VENet (Xie et al., 2021) 7 67.7 - - - 62.5 39.2 - -
GroupFree(S)(Liu et al., 2021) 7 67.3 48.9 66.3 48.5 63.0 45.2 62.6 44.4
GroupFree(L)(Liu et al., 2021) 7 69.1 52.8 68.6 51.8 - - - -
RBGNet (Wang et al., 2022b) 7 70.6 55.2 69.9 54.7 64.1 47.2 63.6 46.3
HyperDet3D (Zheng et al., 2022) 7 70.9 57.2 - - 63.5 47.3 - -
LeadNet (Wang et al., 2023) 7 68.0 51.3 - - 63.4 45.8 - -
FCAF3D (Rukhovich et al., 2022) 3 71.5 57.3 70.7 56.0 64.2 48.9 63.8 48.2
TR3D (Rukhovich et al., 2023) 3 72.9 59.3 72.0 57.4 67.1 50.4 66.3 49.6
CAGroup3D (Wang et al., 2022a) 3 75.1 61.3 74.5 60.3 66.8 50.2 66.4 49.5
VDETR (Shen et al., 2024) 3 77.4 65.0 76.8 64.5 67.5 50.4 66.8 49.7
VDETR(TTA) (Shen et al., 2024) 3 77.8 66.0 77.0 65.3 68.0 51.1 67.5 50.0

GroupFree(S)(Liu et al., 2021) 7 67.3 48.9 66.3 48.5 63.0 45.2 62.6 44.4
+ DEST(ours) 7 68.8(+1.5) 53.2(+4.3) 67.9(+1.6) 52.7(+4.2) 65.3(+2.3) 48.4(+3.2) 64.7(+2.1) 47.6(+3.2)

GroupFree(L)(Liu et al., 2021) 7 69.1 52.8 68.6 51.8 - - - -
+ DEST(ours) 7 71.3(+2.2) 58.1(+5.3) 70.5(+1.9) 56.8(+5.0) - - - -

VDETR (Shen et al., 2024) 3 77.4 65.0 76.8 64.5 67.5 50.4 66.8 49.7
+ DEST(ours) 3 78.5(+1.1) 66.6(+1.6) 77.8(+1.0) 66.2(+1.7) 68.4(+0.9) 51.8(+1.4) 67.4(+0.8) 50.9(+1.2)

VDETR(TTA) (Shen et al., 2024) 3 77.8 66.0 77.0 65.3 68.0 51.1 67.5 50.0
+ DEST(ours) 3 78.8(+1.0) 67.9(+1.9) 78.3(+1.3) 66.9(+1.6) 69.2(+1.2) 52.2(+1.1) 68.8(+1.3) 51.6(+1.6)

4.3 ABLATION EXPERIMENTS

In this section, we verify the key design moduels of our DEST-based detector. All ablation ex-
periments are conducted on the ScanNet V2 dataset with the GroupFree(S) baseline. Following
GroupFree (Liu et al., 2021), we report the average performance of 25 trials by default.

Effect of the designed modules. As shown in Table 2, we incrementally add each designed mod-
ule in an SSM-based baseline. The SSM-based baseline is also built on GroupFree(S), using the
standard Mamba2 block and FFN as the decoder components. The SSM-based baseline lacks the
adaptability to the state points and cannot handle unordered point cloud inputs, resulting in a signif-
icant performance drop. Introducing the serialization and bidirectional scan strategies improves the
model performance, but still lags behind GroupFree(S). A substantial performance boost is observed
when the proposed ISSM replaces the Mamba2 block. This boost is attributed to the adaptive ability
of the ISSM, allowing state points to select appropriate scene points for feature updating. Further
incorporating an inter-state mechanism and a gated linear unit achieves the best performance.

Effect of the ISSM. ISSM is the core of the proposed DEST and is responsible for the information
exchange and updating between scene and state points. Compared with the selective SSM, ISSM
extends the dimension of ∆ and introduces a spatial correlation module and a delay kernel to assist
scene points in generating the SSM parameters. To analyze the impact of parameter generation, we
evaluate different combinations of parameter generation methods. As shown in the second and third
rows of Table 3, using the spatial correlation module and delay kernel to generate SSM parameters
leads to a significant performance improvement. The results indicate that allowing state points to
focus on their relevant regions is crucial for designing SSMs for 3D object detection. Moreover,
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Table 2: Effect of the designed modules.
We progressively add the proposed modules
to the SSM-based baseline to verify the con-
tribution of each module.

Method AP25 AP50

GroupFree(S) 66.3 48.5
Baseline 60.2 41.6

w/ serialization 62.8 43.5
w/ bidirectional scan 63.7 44.8
w/ ISSM 67.1 50.6
w/ inter-state attention 67.6 51.9
w/ GFFN 67.9 52.7

Table 3: Effect of the ISSM. Here, φ(x) represents
generating the SSM parameters using the scene
points x. φ(S) indicates the incorporation of spa-
tial correlation S to generate the parameters. R(h)
denotes the addition of a delay kernel for ∆.

φ(x) φ(S) R(h) AP25 AP50

3 7 7 64.3 46.1
3 3 7 67.2 51.3
3 7 3 67.4 50.8
7 3 3 66.7 49.4
3 3 3 67.9 52.7

Table 4: Effect of the simultaneous updat-
ing. “Fixed” denotes that the scene point fea-
tures used in each decoder layer remain as those
outputted by the encoder. “GroupFree∗” indi-
cates that we introduced a GFFN in each de-
coder layer to update the scene point features.

Method Fixed AP25 AP50

GroupFree(S) 3 66.3 48.5
GroupFree∗ 7 66.8 49.0
DEST(ours) 3 66.6 49.3
DEST(ours) 7 67.9 52.7

Table 5: Comparison of the model param-
eters and inference speed on ScanNet V2.
“Param.” denotes the total parameters.

Method Param. Latency AP25 AP50

GroupFree(S) 13.8 M 21 ms 67.3 48.9
+ DEST(ours) 19.6 M 34 ms 68.8 53.2
GroupFree(L) 28.2 M 68 ms 69.1 52.8
+ DEST(ours) 39.8 M 98 ms 71.3 58.1

FCAF3D 67.2 M 138 ms 71.5 57.3
CAGroup3D 120.7 M 472 ms 75.1 61.3
VDETR 75.6 M 238 ms 77.8 66.0
+ DEST(ours) 80.1 M 263 ms 78.8 67.9

comparing the fourth and fifth rows, we find that considering only spatial relationships also results
in a drop in performance. When the above modules are combined to generate SSM parameters, the
DEST-based detector achieves the best performance.

Effect of the scene point updating. To evaluate the impact of scene point feature updating, we
conduct ablation experiments as shown in Table 4. In the second row, we add the proposed GFFN
to GroupFree(S) to update the scene point features. However, due to its limited receptive field, it
only achieves a slight performance improvement. In the third row, we fix the scene point features
in the proposed DEST-based detector, which results in a significant performance decline. These
results demonstrate the effectiveness of the simultaneous updating in DEST-based methods. In the
DEST-based methods, scene points can capture global contextual information through state points
for self-updating, thereby providing more effective information for subsequent decoder layers.

4.4 COMPARISON OF PARAMETERS AND INFERENCE SPEED

The model complexity of both DETR-based and DEST-based methods is determined by the number
of scene points and query points. To ensure a fair comparison, we compare the model parameters
and inference speed with different DETR-based baseline methods. All experiments are conducted
on a Tesla V100 GPU. As shown in Table 5, our method demonstrates comparable model param-
eter efficiency and inference speed while enabling simultaneous updates of scene points and state
points. Although there is a slight increase in parameter count and computational cost compared to
the baseline methods, this overhead is acceptable given the substantial performance gains.

5 CONCLUSION

In this paper, we identify a crucial issue in DETR-based decoders: the fixed scene point features
lead to suboptimal refinement of query points in the later layers. To address this issue, we introduce
a novel DEST-based method that simultaneously updates scene and query point features. The key
contribution lies in designing the ISSM, which models query points as system states and scene
points as system inputs, allowing simultaneous updates with linear complexity. Our DEST-based
method demonstrates significant advantages through comparison experiments with two DETR-based
methods, and comprehensive ablation studies validate the effectiveness of each designed module.
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A APPENDIX

A.1 RELATIONSHIP BETWEEN QUERY AND STATE

In this section, we further analyze the relationship between queries in the attention mechanism
and the states in the State Space Model (SSM). For 3D object detection, the transformer decoder
employs an attention mechanism to facilitate the interaction between object candidate point features
h0 ∈ RK×C and scene point features x ∈ RM×C . Specifically, the object candidate point features
h0 serve as the query Q0, while the scene point features x act as the key K and value V . The
attention mechanism is then used to update h0:

Qi
m =

∑m
j=1 sim(Qi

0,Kj)Vj∑m
j=1 sim(Qi

0,Kj)
, (9)

where sim(, ) denotes the feature similarity calculation, Qi
m represents the i-th query updated using

the first m scene point features, Qi
0 denotes the initial i-th query, and K and V correspond to the

j-th key and value, respectively. The above equation can be reformulated as follows:

Qi
m =

[
∑m−1

j=1 sim(Qi
0,Kj)Vj ] + [sim(Qi

0,Km)Vm]∑m
j=1 sim(Qi

0,Kj)

=

∑m−1
j=1 sim(Qi

0,Kj)Vj∑m
j=1 sim(Qi

0,Kj)
+

sim(Qi
0,Km)∑m

j=1 sim(Qi
0,Kj)

Vm

=

∑m−1
j=1 sim(Qi

0,Kj)∑m
j=1 sim(Qi

0,Kj)

∑m−1
j=1 sim(Qi

0,Kj)Vj∑m−1
j=1 sim(Qi

0,Kj)
+

sim(Qi
0,Km)∑m

j=1 sim(Qi
0,Kj)

Vm

=

∑m−1
j=1 sim(Qi

0,Kj)∑m
j=1 sim(Qi

0,Kj)
Qi

m−1 +
sim(Qi

0,Km)∑m
j=1 sim(Qi

0,Kj)
Vm.

(10)

Based on the above equation, the query feature Qi
m updated with the first m points can be regarded

as a linear combination of the query featureQi
m−1 updated with the firstm−1 points and the feature

Vm of the m-th scene point. Furthermore, we rewrite the equation 10 in the following form:

Qi
m = Ai

mQ
i
m−1 +Bi

mVm, A
i
m =

∑m−1
j=1 sim(Qi

0,Kj)∑m
j=1 sim(Qi

0,Kj)
, Bi

m =
sim(Qi

0,Km)∑m
j=1 sim(Qi

0,Kj)
. (11)

In the discrete SSM, we observe that the interaction process between system states and scene points
shares a similar form with the equation 11:

him = A
i

mh
i
m−1 +B

i

mxm, (12)

where him denotes the i-th system state updated using the first m scene points, xm denotes the m-
th input of scene point features, while A

i

m and B
i

m are the parameters of the SSM. Therefore, we
consider the attention mechanism in the transformer decoder to be a type of SSM, which designs
the query update strategy through the feature similarity sim(, ). The previous SSMs only utilize xm
to generate the SSM parameters A

i

m and B
i

m, making them unsuitable for modeling query points in
3D object detection tasks. However, the update strategy based on feature similarity sim(, ) requires
significant computational overhead. Consequently, in the proposed ISSM, we utilize a spatial cor-
relation module and scene point features to generate SSM parameters as equation 7 and equation 8,
reducing the model overhead without compromising performance. Based on the above analysis,
we believe that the system states in our ISSM can effectively serve the role of the queries with the
appropriate parameters A

i

m and B
i

m.

A.2 ISSM-BASED BIDIRECTIONAL SCAN MODULE

In the ISSM-based decoder, the core design is the ISSM-based Bidirectional Scan (IBS) module.
The IBS module integrates an interactive state space model with bidirectional sequential modeling
tailored for point clouds. To illustrate the process of the IBS module more clearly, we provide the
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Algorithm 1 ISSM-based Bidirectional Scan Module Process
Require: scene points x: (B, M, C), initial state points h0: (B, K, C)
Ensure: updated scene points y: (B, M, C), final state points hM : (B, K, C)

1: /* normalize the input scene points x */
2: x′: (B, M, C)← Norm(x), h′0: (B, K, C)← Norm(h0)
3: x̂: (B, M, E)← Linearx(x′), z: (B, M, E)← Linearz(x′)

4: ĥ0: (B, K, E)← Linearh(h′0)
5: /* process with different direction */
6: for oin{forward,backward} do
7: x̂o: (B, M, E)← SiLU(DW Conv1do(x̂))
8: /* S is the spatial correlation of scene points and state points: (B, M, K, D) */
9: Bo: (B, M, K)← Broadcastk(LinearB,o

1 (x̂o)) + LinearB,s
1 (S)

10: Co: (B, M, K)← Broadcastk(LinearC,o
1 (x̂o)) + LinearC,s

1 (S)
11: /* softplus ensures positive ∆o, ∆delay is the proposed delay kernel: (B, M, K) */
12: ∆o: (B, M, K, E)← log(1 + exp(Broadcastk(Linear∆,o

E (x̂o)) + Linear∆,s
E (S)))⊗∆delay

13: /* ParameterA
o is learnable parameter: (M, E) */

14: Ao: (B, M, K, E)←∆o ⊗ ParameterA
o

15: Bo: (B, M, K, E)←∆o ⊗Bo

16: ŷo: (B, M, E), ĥoN : (B, K, E)← SSM(Ao,Bo,Co)(x̂o, ĥ0)
17: end for
18: /* gated linear unit and residual connection */
19: y′forward: (B, M, E)← ŷforward � SiLU(z)
20: y′backward: (B, M, E)← ŷbackward � SiLU(z)
21: y: (B, M, C)← Lineary(y′forward + y′backward) + x

22: hM : (B, K, C)← Linearh(ĥforward
N + ĥbackward

N ) + h0
23: return y and hM

detailed operations of the IBS module in Algorithm 1. The input scene points x and initial state
points h0 are first normalized by the normalization layer. Next, we linearly project the normalized
features x′ to x̂ and z, and the h′0 to ĥ0. Before we process the x̂ from the forward and backward
directions, we calculate the spatial correlation S of scene points and state points as equation 6 and
the explicit delay kernel ∆delay as equation 8. For each direction, we first apply the depthwise
convolution to the x̂ and get the x̂o. The SSM parameters (Bo, Co, ∆o) are generated based on the
x̂o, S and ∆delay. Then we use the ∆o to transform the Ao, Bo. Finally, we get the updated scene
points ŷo and updated state points ĥoN through the SSM. For the scene points ŷforward, ŷbackward, we
gated them by the z and add them together. Similarly, for the state points ĥforward

N , ĥbackward
N , we

add them directly. The updated scene and state points are then connected to x and h0 using residual
connections, respectively, to produce the final outputs y and hM .

A.3 POINT CLOUD SERIALIZATION

To enable unordered point clouds to be inputted into the SSM in an ordered manner, we use Hilbert
space-filling curves to sort the scene points. With the different priority of the x, y, and z axes, we
can get six different space-filling curves, which we denote as “xyz”, “xzy”, “yxz”, “yzx”, “zxy”, and
“zyx”. To better illustrate the point cloud serialization process, we visualize the 2D Hilbert space-
filling curves and the serialization results of the 2D point set in Figure 5. Specifically, we divide the
space into uniformly sized grids and then sort each grid based on the space-filling curve. Finally, we
sort the point set according to the indices of the grids where the points are located. As shown in Fig-
ure 5, different space-filling curves yield varying ordered results for the point sets. These different
serialization results represent observations of point clouds from different perspectives. Therefore,
we utilize six space-filling curves in 3D space, employing different serialization methods at different
decoder layers.
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Hilbert Curve (xy) Hilbert Curve (yx)Ordered Points (xy) Ordered Points (yx)

Figure 5: Visualization of Hilbert space-filling curves and Hilbert-based point cloud serializa-
tion. To facilitate analysis, we visualize all images in 2D space. By swapping the priority of the
coordinate axes, we can obtain different Hilbert space-filling curves. Different spatial filling curves
can yield distinct serialization results for the same point set.

A.4 MORE IMPLEMENTATION DETAILS

A.4.1 MODEL SETUP DETAILS

GroupFree baseline. Given the input points Pin ∈ RN×3 without RGB information, we employ
PointNet++ (Qi et al., 2017b) as the point cloud encoder for a fair comparison. In addition, we
utilize the same initial object candidate sampling module as employed in GroupFree (Liu et al.,
2021). However, unlike GroupFree, where the object candidate points are used as the initial query
points, they are treated as the initial state points in our ISSM-based model. In the decoder, we
replace all transformer decoder layers with our proposed ISSM-based decoder layers while retaining
the original spatial encodings and the original detection heads.

VDETR baseline. Given the input points Pin ∈ RN×6 with RGB information, we employ the
same 3D sparse convolution network of VDETR (Shen et al., 2024) as the point cloud encoder
for a fair comparison. Additionally, we utilize the same initial object query sampling module as
employed in VDETR (Shen et al., 2024) to sample the initial state points. In the decoder, we
also replace all transformer decoder layers with our proposed ISSM-based decoder layers while
retaining the original detection heads. Regarding the spatial encodings, we generate them for the
corresponding state points using the predicted 3D bounding boxes and for the scene points using
their point positions.

A.4.2 TRAINING DETAILS

Training with GroupFree baseline.

For the ScanNet V2 dataset, we use 50k points as input. In the training phase, we adopt the same data
augmentation as in GroupFree (Liu et al., 2021), including random flip, random rotation along the
z-axis [−5◦, 5◦], and random scaling [0.9, 1.1]. The encoder consists of four set abstraction layers
and two feature propagation layers. After feature extraction by the encoder, a total of 1024 points are
output as scene points. The detector is trained from scratch using the AdamW (Loshchilov, 2017)
optimizer (β1 = 0.9, β2 = 0.999) for 400 epochs. The weight decay is set to 5e-4. The initial
learning rate is 6e-3, which decays by a factor of 10 at the 280th and 340th epochs. The learning
rate of the decoder is set as 1

10 of that in the encoder.

For the SUN RGB-D dataset, we use 20k points as input. The encoder architecture and data augmen-
tation are the same as those used for ScanNet V2. Following GroupFree, we include an additional
orientation prediction branch in all decoder layers. During training, the detector is trained from
scratch using the AdamW optimizer (β1 = 0.9, β2 = 0.999) with 600 epochs. The weight decay
is set to 1e-7. The initial learning rate is 4e-3, which decays by a factor of 10 at the 420th epoch,
the 480th epoch, and the 540th epoch. The learning rate of the decoder is set as 1

20 of that in the
encoder.

Training with VDETR baseline.
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Table 6: Effect of the serialization strategy. “xyz”represents the axis priority order of the Hilbert
space-filling curve.

Strategy AP25 AP50

{“xyz”} × 6 66.6 51.1
{“xyz”, “xzy”} × 3 67.1 51.7
{“xyz”, “yzx”, “zxy”} × 2 67.4 52.1
{“xyz”, “xzy”, “yxz”, “yzx”, “zxy”, “zyx”} 67.9 52.7

Table 7: Effect of the bidirectional scan. “Uni-Scan” denotes using the unidirectional scan while
“Bi-Scan” denotes using the bidirectional scan. “Channel Flip” refers to reversing along the feature
channels.

Strategy AP25 AP50

Uni-Scan 67.1 50.9
Bi-Scan 67.9 52.7
Bi-Scan w/ Channel Flip 67.7 52.4

For the ScanNet V2 dataset, we use 100k points as input. In the training phase, we adopt the
data augmentation, including random cropping, random sampling, random flipping, random rota-
tion along the z-axis [−5◦, 5◦], random translation [−0.4, 0.4], and random scaling [0.6, 1.4]. After
feature extraction by the encoder, a total of 4096 points are output as scene points. The detector
is trained from scratch using the AdamW optimizer (β1 = 0.9, β2 = 0.999) for 540 epochs. The
weight decay is set to 0.1. The initial learning rate is 7e-4, which is warmed up for 9 epochs and
then is dropped to 1e-6 using the cosine schedule during the entire training process.

For the SUN RGB-D dataset, we use 100k points as input. The encoder architecture, data augmen-
tation and training settings are the same as those used for ScanNet V2. In the decoder, we include
an additional orientation prediction branch in all decoder layers.

A.5 MORE ABLATION EXPERIMENTS

In this section, we provide additional ablation experiments focusing on several modules designed in
our model: the serialization strategy, bidirectional scanning strategy, gated feed-forward network,
and depth-wise convolution. All ablation experiments are conducted on the ScanNet V2 dataset with
the GroupFree(S) baseline, and we report the average performance of 25 trials by default.

Effect of the serialization strategy. We conduct ablation experiments on the serialization strategy
used in the ISSM-based decoder. As shown in Table 6, employing a single space-filling curve for
serialization leads to a decrease in model performance. This is because a single serialization method
ensures that adjacent points in the sequence are spatially adjacent, but it cannot guarantee that all
spatially adjacent points remain adjacent in the sequence. Observing from multiple perspectives
is essential for better modeling the local relationships of high-dimensional data. The experimental
results also demonstrate that using different types of space-filling curves at different layers achieves
the best performance.

Effect of the bidirectional scan. To validate the effect of the bidirectional scanning on the proposed
ISSM-based method, we conduct ablation experiments as shown in Table 7. It is evident that bidi-
rectional scanning significantly improves model performance compared to unidirectional scanning.
In unidirectional scanning, scene points later in the sequence can access information from earlier
points, but earlier points cannot access information from later ones. The bidirectional scanning
strategy enables bidirectional interaction between scene points, leading to enhanced performance.
Additionally, we consider using a channel flip strategy, which enhances inter-channel correlations
by reversing feature channels. However, the channel flip strategy is unsuitable for our proposed
method, resulting in a slight performance decrease.

Ablation on the model size. For 3D object detection models, the feature dimension, decoder depth,
and the number of initial object candidates all significantly impact model performance. To design
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Table 8: Evaluation on different model size. “Encoder width” represents the feature dimension of
the encoder output, “# of layers” denotes the decoder depth, and “# of object candidates” denotes
the number of system states in the ISSM-based decoder.

Encoder width # of layers # of object candidates AP25 AP50

288 2 256 66.2 45.9
288 4 256 67.1 49.3
288 6 256 67.9 52.7
288 8 256 68.3 54.1
288 12 256 68.6 54.8

288 6 256 67.9 52.7
288 6 512 68.7 53.6
288 6 1024 68.8 53.3

288 6 256 67.9 52.7
576 6 256 68.4 54.2
576 12 256 69.8 56.5
576 12 512 70.5 56.8

Table 9: Effect of the GFFN. “GLU on x” denotes using the gated linear unit on scene points x
while “GLU on h” denotes using the gated linear unit on state points h.

GLU on x GLU on h AP25 AP50

7 7 67.6 51.9
7 3 67.8 52.5
3 7 67.6 52.3
3 3 67.9 52.7

a model with better performance under a smaller model overhead, we conduct ablation experiments
on model size. As shown in Table 8, we experiment with different combinations of encoder width,
decoder depth, and the number of object candidates. First, increasing the number of decoder layers
leads to a continuous and significant performance improvement, particularly in AP50. This result
demonstrates that the ISSM-based decoder effectively updates the features of scene points, aiding
the query points in more accurately locating object positions. Second, moderately increasing the
number of initial object candidates also enhances model performance. However, when the number
becomes too large, numerous background points are introduced as negative samples, reducing de-
tection accuracy. Lastly, increasing the encoder feature dimension provides the model with richer
information, thereby improving performance. By selecting a larger encoder width, a deeper decoder,
and an appropriate number of query points, our model achieves optimal performance.

Effect of the GFFN. Introducing a gated linear unit (GLU) in the feed-forward network aims to
enhance feature modeling for both scene points and state points, allowing the model to selectively
pass or suppress certain features. This dynamic gating mechanism strengthens the ability to capture
complex patterns, improves training efficiency, and makes it more effective in handling long-range
dependencies. As shown in Table 9, including the gated linear unit positively impacts model perfor-
mance. Applying the GLU on both scene and state points leads to the best detection performance.

Effect of the local feature aggregation. In the ISSM-based decoder layer, we employ two depth-
wise convolutions in ISSM and GFFN for local feature aggregation of scene points. To analyze the
impact of this local feature aggregation on model performance, we conduct the ablation experiments
shown in Table 10. Eliminating the depth-wise convolutions from the ISSM-based decoder layer
results in a significant decrease in model performance. Furthermore, adding depth-wise convolutions
to the ISSM is more effective in improving detection accuracy than adding them to the GFFN. We
also analyze the impact of the kernel size in depth-wise convolutions on model performance. We
find that when the kernel size reaches 8, the model performance does not continue to increase with
larger kernel sizes. Therefore, in our ISSM-based decoder, we select a kernel size of 8 to balance
performance and computational cost.
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Table 10: Effect of the local feature aggregation. “Kernel” denotes the kernel size in depth-wise
convolution.

in ISSM in GFFN Kernel AP25 AP50

7 7 / 66.8 51.8
3 7 8 67.6 52.4
7 3 8 67.2 52.3
3 3 8 67.9 52.7

3 3 4 67.4 52.2
3 3 12 68.1 52.6
3 3 16 67.8 52.6

Table 11: Comparison of different scene point feature update methods.
Method AP25 AP50

GroupFree 66.3 48.5
w standard Transformer 66.7 49.1
w FlashAttention 66.5 49.2
w selective SSM 67.0 50.1

DEST (Ours) 67.9 52.7

A.6 VISUAL COMPARISON

In this section, we present a visual comparison of the prediction results of our method and DETR-
based methods. To ensure a fair comparison, we apply the same post-processing steps to the de-
tection results. First, we filter out low-quality predictions using a class confidence threshold of
0.3, followed by class-specific Non-Maximum Suppression with an IoU threshold of 0.5 to remove
redundant bounding boxes. As shown in Figure 6, Figure 7, and Figure 8, we first compare the
prediction results of our method with three baseline methods on the ScanNet dataset. Our method
successfully detects most target objects across various scenes, with the predicted bounding boxes
being more closely aligned with the ground truth labels. Subsequently, we present a visual com-
parison of the prediction results on the SUN RGB-D dataset. Since VDETR does not provide an
official implementation for the SUN RGB-D dataset, we only include a visual comparison with the
GroupFree baseline as shown in Figure 9. Since VDETR does not provide an official implementa-
tion for the SUN RGB-D dataset, we only include a visual comparison with the GroupFree baseline.
Unlike the ScanNet dataset, the SUN RGB-D dataset is generated from single images, which results
in point cloud data with more pronounced occlusions and uneven density, making the detection task
more challenging. Nevertheless, our method still achieves visually satisfactory detection results.

A.7 DISCUSSIONS ABOUT THE CHOICE FOR SSM

In this subsection, we discuss the choice of SSM for the DEST framework. To address the per-
formance bottleneck caused by fixed scene point features in transformer decoders, a straightforward
approach is to introduce a module in the decoder to update scene point features. To validate the effec-
tiveness of SSM in updating scene point features, we provide numerical comparisons with standard
self-attention, FlashAttention (Dao et al., 2022), and selective SSM (Gu & Dao, 2023). As shown in
Table 11, attention-based methods improve the detection accuracy of the baseline model but still fall
short compared to methods employing SSMs. This limitation arises because global attention is less
effective at handling local relationships in point clouds and may introduce noise that disrupts scene
point feature updates. In contrast, selective SSM uses 1D convolution to model local relationships
and incorporates a hidden state selection mechanism to focus on extracting relevant features. There-
fore, we adopt SSM to address the issue of fixed scene point features in the decoder. In our proposed
DEST method, query points representing foreground objects serve as state points, providing richer
and more task-specific foreground information to enhance scene point feature updates.
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Ground-truth GroupFree (S) DEST (ours)

Figure 6: Visual comparison with the GroupFree (S) baseline on ScanNet V2 dataset. The
ground truth is displayed in the first column, the baseline detection results in the second column,
and our detection results in the third column.

A.8 DISCUSSIONS ABOUT THE LIMITATIONS AND FUTURE RESEARCH

In this section, we discuss the limitations of this work and potential future research. We present a
novel framework, DEST, for 3D object detection, which utilizes the proposed ISSM to achieve joint
updates of scene points and query points during the decoding process. Although our method over-
comes the performance bottleneck caused by fixed scene features in transformer decoders and signif-
icantly improves the performance of DETR-based methods, there are still instances of missed object
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Ground-truth GroupFree (L) DEST (ours)

Figure 7: Visual comparison with the GroupFree (L) baseline on ScanNet V2 dataset. The
ground truth is displayed in the first column, the baseline detection results in the second column,
and our detection results in the third column.

detections. Through layer-by-layer analysis of the model, we find that the root cause of these missed
detections is the absence of initial object candidate points. This study primarily focuses on the de-
coder design and does not delve into designing an initial state point sampling method. Therefore,
designing a more effective state point sampling strategy to reduce the number of missed detections
is a promising direction for future research. Beyond improving the proposed DEST framework, ex-
ploring its effectiveness in other tasks, such as 3D point cloud segmentation, tracking, and even 2D
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Ground-truth VDETR DEST (ours)

Figure 8: Visual comparison with the VDETR baseline on ScanNet V2 dataset. The ground
truth is displayed in the first column, the baseline detection results in the second column, and our
detection results in the third column.

vision tasks, is an interesting research direction. In the future, we will further explore the potential
of the DEST framework in achieving unified point cloud perception tasks.
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Ground-truth GroupFree (S) DEST (ours)

Figure 9: Visual comparison with the GroupFree (S) baseline on SUN RGB-D dataset. The
ground truth is displayed in the first column, the baseline detection results in the second column,
and our detection results in the third column.
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