Models That Prove Their Own Correctness

Anonymous Authors'

Abstract

How can we trust the correctness of a learned
model on a particular input of interest? Model
accuracy is typically measured on average over a
distribution of inputs, giving no guarantee for any
fixed input. This paper proposes a theoretically-
founded solution to this problem: to train Self-
Proving models that prove the correctness of their
output to a verification algorithm V' via an In-
teractive Proof. We devise a generic method for
learning Self-Proving models, and we prove con-
vergence bounds under certain assumptions. As
an empirical exploration, our learning method
is used to train a Self-Proving transformer that
computes the Greatest Common Divisor (GCD)
and proves the correctness of its answer.

1. Introduction

Bob is studying for his algebra exam and stumbles upon a
question () that he cannot solve. He queries a Large Lan-
guage Model (LLM) for the answer, and it responds with a
number: 42. Bob is aware of recent research showing that
the LLM attains a 90% score on algebra benchmarks (cf.
Frieder et al. 2023), but should he trust that the answer to
his particular question) is indeed 42?

Bob could ask the LLM to explain its answer in natural lan-
guage. Though he must proceed with caution, as the LLM
might try to convince him of an incorrect answer (Turpin
et al., 2023). Moreover, even if 42 is the correct answer, the
LLM may fail to produce a convincing proof (Wang et al.,
2023). If only the LLM could formally prove its answer,
Bob would verify the proof and be convinced.

This paper initiates the study of Self-Proving models (Fig-
ure 1) that prove the correctness of their answers via an
Interactive Proof system (Goldwasser et al., 1985). Self-
Proving models successfully convince a verification algo-
rithm V' with worst-case soundness guarantees: for any

! Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Input x

Outputy Verification

Algorithm

Self-Proving
Model q
a,

|

accept/reject

[y

Figure 1. Self-Proving models. For input z, Self-Proving model
Py generates an output y and sends it to a Verification Algorithm
V. Then, over ¢ € [R] rounds, V' sends query ¢;, and receives an
answer a; from Py. Finally, V decides (“accept/reject”) whether
it is convinced that y is a correct output for x.

question, with high probability over the interaction, V" will
not be convinced of an incorrect answer. This is even when
the prover with which V' is interacting has access to Vs
specification, and far more computational power.

Contributions and organization. In Section 2 we define
Self-Proving models. In Section 3 we propose Transcript
Learning (TL), a method for learning learning Self-Proving
models; we prove convergence bounds for TL under con-
vexity and Lipschitzness assumptions. In Section 4 and Ta-
ble 1 we evaluate TL and its Annotated variant (ATL) by
training Self-Proving transformers to compute the Greatest
Common Divisor (GCD).!

Related work is deferred to Appendix A.

2. Self-Proving models

We introduce and formally define our learning framework
in which models prove the correctness of their output. We
start with preliminaries from the learning theory and proof
systems literature in Section 2.1. We then introduce our
main definition in Section 2.2.

!Code, data and models will be released upon publication.

Models That Prove Their Own Correctness

Table 1. Self-Proving transformers computing the GCD. We
train a 6.7M parameter GPT to compute the GCD of two integers
sampled log-uniformly from [10%]. Vanilla GPT correctly gener-
ates the GCD for almost all inputs, but does not prove correctness
to a simple verification algorithm. GPT trained with Transcript
Learning (GPT+TL) proves its answer 60.3% of the time; training
with Annotated Transcript Learning (GPT+ATL) increases this to
96.7%. See Section 4 for more details.

LEARNING METHOD CORRECTNESS VERIFIABILITY
GPT (BASELINE) 99.8% -
GPT+TL 98.8% 60.3%
GPT+ATL 98.6% 96.7%

2.1. Preliminaries

Let X be a set of finite tokens and X* denote the set of
finite sequences of such tokens. We consider sequence-to-
sequence models Fy: ¥* — ¥*, which are total functions
that produce an output for each possible sequence. A model
is parameterized by a real-valued, finite dimensional vector
6. We consider models as randomized functions, meaning
that Fy () is a random variable over ¥*, of which samples
are denoted by y ~ Fy(x).

Before we can define models that prove their own correct-
ness, we must first define correctness. Correctness is de-
fined with respect to an input distribution x over ¥*, and
a ground-truth F'* that defines correct answers. For sim-
plicity of presentation, we focus on the case that each input
x € X¥* has exactly one correct output F™*(z) € ¥*, and
a zero-one loss function on outputs (the general case is left
for future work). The fundamental goal of machine learn-
ing can be thought of as learning a model of the ground
truth F'*. Formally,

Definition 2.1 (Correctness). Let p be a distribution of in-
put sequences in X* and let F'*: ¥* — ¥* be a fixed (de-
terministic) ground-truth function. For any o € [0, 1], we
say that model Fj is a-correct (with respect to p) if

Pr [y=F*"(2)] > a.

T
y~Fo(z)

An interactive proof system (Goldwasser et al., 1985) is
a protocol carried out between an efficient verifier and a
computationally unbounded prover. The prover attempts to
convince the verifier of the correctness of some assertion,
while the verifier accepts only correct claims. The prover
is powerful yet untrusted; in spite of this, the verifier must
reject false claims with high probability.

In the context of this work, it is important to note that the
verifier is manually-defined (as opposed to learned). For-
mally, the verifier is a probabilistic polynomial-time algo-
rithm tailored to a particular ground-truth capability F'™*.

Informally, the verifier is the anchor of trust: think of the
verifier as an efficient and simple algorithm, hosted in a
trustworthy environment.

Given an input x € X*, the model Fy “claims” that y ~
Fy(z) is correct. We now define what it means to prove
this claim. We will use Py to denote Self-Proving models,
noting that they are formally the same object (a randomized
mapping from X* to X*) as vanilla models. We change
the notation to emphasize that Py outputs y ~ Pp(z) but
can also be prompted by the verifier, unlike Fy who is only
expected to generate an output.

A Self-Proving model proves that y ~ Py(x) is correct
to a verifier V' over the course of R rounds of interaction
(Figure 1). In each round ¢ € [R], verifier V queries Py on
a sequence ¢; € X* to obtain an answer a; € X*; once the
interaction is over, V' accepts or rejects. For fixed x,y €
3>*, the decision of V after interacting with Py is a random
variable over Vs decision (accept/reject), determined by
the randomness of V' and Fy. The decision random variable
is denoted by V% (z,5).

We present a definition of Interactive Proofs restricted to
our setting.

Definition 2.2. Fix a soundness error s € (0, 1), a finite
set of tokens ¥ and a ground truth F*: ¥* — ¥*. A
verifier V (in an Interactive Proof) for F'* is a probabilis-
tic polynomial-time algorithm that is given explicit inputs
x,y € ¥* and black-box (oracle) query access to a prover
P2 1t interacts with P over R rounds (see Figure 1) and
outputs a decision V¥ (z,y) € {0,1}. Verifier V satisfies
the following two guarantees:

e Completeness: There exists an honest prover P* such
that, for all x € >*,

Pr[VF (z, F*(z)) accepts] = 1,
where the probability is over the randomness of V.3

e Soundness: For all P and for all z,y € X*, if y #
F*(z) then

Pr[V¥ (z,y) accepts] < s,

where the probability is over the randomness of V' and
P, and s is the soundness error.

By definition, the soundness error s of a verifier V' bounds
the probability that it is mistakenly convinced of an incor-
rect output; in that sense, the smaller s, the “better” the

>We intentionally write P rather than Py: Interactive Proofs
are defined with respect to all possible provers, not just parame-
terized ones.

3WLOG, the honest prover is deterministic by fixing the opti-
mal randomness of a randomized prover.

Models That Prove Their Own Correctness

verifier V. In our setting, we think of a manually-defined
verifier V' who is formally proven (by a human) to have a
small soundness error by analysis of Vs specification.

Towards defining Self-Proving models (Section 2.2), let us
observe the following. Completeness and soundness are
worst-case guarantees, meaning that they hold for all pos-
sible inputs € X*. In particular, completeness implies
that for all x € X*, the honest prover P* convinces V' of
the correctness of F*(x); in classical proof systems there is
no guarantee that an “almost honest” prover can convince
the verifier (cf. Paradise (2021)). Yet, if we are to learn a
prover Py, we cannot expect it to agree with P* perfectly,
nor can we expect it to always output £*(z). Indeed, Self-
Proving models will have a distributional guarantee with
respect to inputs x ~ (.

2.2. Self-Proving models

We define the Verifiability of a model P, with respect to an
input distribution p and a verifier V. Intuitively, Verifiabil-
ity captures the ability of the model to prove the correctness
of its answer y ~ Py(x), when the input z is sampled from
. We call models capable of proving their own correctness
as Self-Proving models.

Definition 2.3 (Self-Proving model). Fix a verifier V' for
a ground-truth F*: ¥* — ¥* as in Definition 2.2, and a
distribution . over inputs X*. The Verifiability of a model
Py: ¥* — ¥* is defined as

very, () = Pr [V (z,y)accepts]. (1)

T
y~Pp(x)

We say that model Py is 3-Self-Proving with respect to V'
and p if very,,(6) > B.

Now, consider any input distribution p, ground-truth F'*,
and a verifier V for F'* with soundness error s. By a union
bound, if model Py is 3-Verifiable, then it is (S —s)-correct.
That is to say, Verifiability is formally a stronger guarantee
than correctness when V' has small soundness error s.

The benefit of Verifiability over correctness is captured by
the following scenario. Alice wishes to use a model Py to
compute some functionality F'* on an input z in a high
risk setting. Alice generates yo ~ FPy(xg). Should Alice
trust that yq is correct? If Alice has a held-out set of labeled
samples, she can estimate Pp’s average correctness on L.
Unfortunately, (average) correctness provides no guaran-
tee regarding for the correctness of the particular (g, yo)
that Alice has in hand. If, however, Alice has access to a
verifier V' for which Py is Self-Proving, then she can trust
the model on an input-by-input (rather than average-case)
basis: Alice can execute V on (zg, yo) and black-box ac-
cess to Pp. Soundness of V' guarantees that if g is incor-
rect, then V rejects with high probability, in which case

Alice should either generate Py(x) again—or find a better
model.

3. Learning Self-Proving Models

With a sound verifier V' at hand, obtaining Self-Proving
models with respect to V' holds great promise: a user that
prompts the model with input = does not need to take it
on good faith that Py(x) is correct; she may simply verify
this herself by executing the verification protocol. How,
then, can we learn models that are not just approximately-
correct, but Self-Proving as well?

The challenge is to align the model with a verifier. The
intuition behind our leaning method, Transcript Learning
(TL), is that the interaction of the verifier and prover can be
viewed as a sequence itself, which is called the transcript
m € ¥*. The idea is to learn a model not just of x — y*
for a correct output y*, but of x — y*n*, where 7* is a
transcript of an interaction in which the verifier accepted.

We assume that, when training a Self-Proving model, the
learner has access to input samples x ~ p and correct out-
puts F*(z), as well as the verifier specification (code). Ad-
ditionally, the learner can emulate the verifier, as the latter
is required to be computationally efficient.*

We assume also that, when training a Self-Proving model,
the learner has access to transcripts of interactions in which
the verifier accepts. This is a reasonable assumption to
make when the honest prover P* (see Definition 2.2) is ef-
ficient, as in the case in Doubly-Efficient Interactive Proof
systems as defined by Goldwasser et al. (2015) and de-
veloped in other theoretical (e.g. Goldreich & Rothblum
2018) and applied (e.g. Zhang et al. 2021) works.? In this
case, an honest prover P* can be run by the learner during
training to collect accepting transcripts without incurring
heavy computational cost.

More formally, TL requires access to an (honest) transcript
generator T*. Given an input z, the generator 7 *(x) sam-
ples a sequence P*(x)m* € ¥* such that 7* is an accepted
transcript. TL then autoregressively optimizes the model
towards generating accepting transcripts. It is described in
Algorithm 1. At a very high level, it works by repeatedly
sampling & ~ p and transcript y*7* ~ T*(z), and up-
dating the logits towards agreeing with y*7* via Gradient
Ascent.

We prove that, under certain conditions (fully specified in

*We refer the reader to classical literature on Interactive Proof
systems for formal definitions of computational efficiency (e.g.
Goldreich 2008).

In Appendix C we introduce Reinforcement Learning from
Verifier Feedback (RLVF), which does not require access to ac-
cepting transcripts.

Models That Prove Their Own Correctness

Appendix B), TL is expected to output a Self-Provable
model.

Theorem 3.1 (Theorem B.5, informal). Fix an input dis-
tribution p, a verifier V and an autoregressive model fam-
ily {Py}g. Fix a transcript generator T* such that the ex-
pected agreement with T* is convex in 0. For any ¢ > 0
such that there exists 6* with at least > 1 — €/2 expected
agreement with T*, let B be the minimal norm of such 6*.
Let p > 0 such that for all 0 with ||0|| < B, the logits of Py
are p-Lipschitz in 6. Denote by 0 the output of TL running
for number of iterations

4p2 . 32
B @

N>R? (L, +1)*-
and learning rate \ = e/2R2?L2p. Then the expected Veri-
fiability of 0 is at least 1 — .

Looking at Equation (2), we see that the sample complex-
ity of TL grows like that of SGD (e.g. Shalev-Shwartz
& Ben-David 2014), multiplied by the number of rounds
and length of answers in the proof system. Minimizing
these quantities (known collectively as the communication
complexity) has been an overarching goal in the study of
proof systems (e.g. Goldreich & Hastad (1998); Goldreich
et al. (2002); Reingold et al. (2021)). Theorem 3.1 for-
mally shows the benefit of communication-efficient proof
systems in the context of Self-Proving models.

3.1. Learning from annotated transcripts

To minimize the length of messages exchanged in an In-
teractive Proof system, the honest prover is designed to
send the shortest possible message to the verifier, contain-
ing only essential information.

However, when training Self-Proving model, it may be use-
ful for it to first generate an “annotated” answer a which is
then trimmed down to the actual answer a to be sent to the
verifier. We formally adapt the framework from Sections 2
and 3 to this setting in Appendix D, where we present An-
notated Transcripts. This can be viewed as adding Chain-
of-Thought (Wei et al., 2022) to the model. The Tran-
script Learning algorithm naturally extends to annotated
transcripts as well.

4. Experimental Results

We describe our experimental setup, and present ablation
studies that shed additional light on the effect of annotation
and representation on Verifiability.

Setup. Charton (2024) empirically studies the power and
limitations of learning GCDs with transformers. We follow
their setup and two conclusions on settings that make for

faster learning: Training from the log-uniform distribution,
and a base of representation with many prime factors.

We fix a base of representation B = 210 and use x to de-
note an integer x encoded as a B-ary string.® For sequences
of integers, we write (x1Xz2) to denote the concatenation of
x1 with xg, delimited by a special token. The vocabulary
size is needed for this representation is |X| ~ 210.

We choose the input distribution p to be the log-uniform
distribution on [10%], and train the transformer on se-
quences of the form (x;x2y), where z1,29 ~ p and
y = GCD(x1,x2). This is a scaling-down of Charton
(2024), to allow single GPU training of Self-Proving trans-
formers. In all of our experiments, we use a GPT model
(Vaswani et al., 2017) with 6.3M parameters trained on a
dataset of 1024K samples in batches of 1024. Full details
are deferred to Appendix F.

Following Charton (2024), we find that transformers can
correctly compute the GCD with over 99% probability over
(z1,22) ~ p. To what extent can they prove their answer?
To answer this question, we devise a natural proof system.
Its specification and formal guarantees are deferred to Ap-
pendix E. We denote its verification algorithm by V/, and
highlight some useful features:

» The proof system consists of one round (R = 1). The
verifier makes no query, and simply receives a proof
« from the prover.

e Completeness: For any x1,z2,y € [10%] such that
y = GCD(z1,x2), there exists a proof 7 such that
V(x1x2ym) accepts. As detailed in Appendix E, the
proof 7 consists of a pair of integers who are Bézout
coefficients for x1, Ts.

 Soundness: If y # GCD(x1,x2), then V(x1X2y7)
rejects for any alleged proof m € ¥*.

To measure Verifiability, we train a Self-Proving trans-
former using Transcript Learning on sequences (x1X2y)
and estimate for how many inputs x;,x3 ~ u does the
model generate both the correct GCD y and a valid proof
. We test on 1000 pairs of integers x, 25, ~ u held-out of
the training set, prompting the model with (x] x5) to obtain
(y'n"), and testing whether V (x}x5y’7’) accepts.

Table 1 (p. 2) shows that Transcript Learning for 100K it-
erations results in a Self-Proving transformer that correctly
proves 60.3% of its answers; there is an additional 38.5%
answers which are correct, but the transformer fails to gen-
erate an accepted proof. Annotated Transcript Learning all
but closes this gap, proving 96.7% of its answers. We fur-
ther investigate the effect of annotations next.

B = 210 is chosen following Charton (2024) to be an integer
with many prime factors.

Models That Prove Their Own Correctness

[te] ~
| £ 1 5
T=3 I 8 T=4 1 g T=6 T=7
1 © 1 ©
5 —e—| 1S e e Fe
1 2 12
i 3 i 3 wB=2 o wB=3 | wB=4
82.0% 84.0% 86.0% 88.0% 90.0% 92.0% 94.0% 96.0% 43.0% 44.0% 45.0% 46.0% 47.0% 48.0%
Verifiability Verifiability

Figure 2. Left: T is the number of steps added in Annotated Transcript Learning. Dashed lines bound the Verifiability of models that
can only prove for integers up to a certain number of steps. Off chart to the left are bounds for depths 3 (47%), 4 (63%), and 5 (75%).
Each T was run with three seeds, with mean + standard error depicted. See Appendix G for additional figures. Right: For each b € [4],
we sampled 17 bases B € {2,. .., 1386} such that the number of prime divisors w(B) = b. A Self-Proving transformer was trained via
Transcript Learning for twenty epochs on a dataset of 1024K identical samples encoded in base B.

Models generalize beyond annotations. The proof 7 is
annotated by including intermediate steps in its computa-
tion. Details are deferred to Appendix E; roughly speak-
ing, we observe that the proof 7 for input (a,b) is ob-
tained as the last element in a sequence a,b,my, s, ...
computed by the Euclidean algorithm. We annotate the
proof 7 by prepending to it the sequence of Euclidean steps
(m1,...,mr) up to some fixed cutoff 7T".

Figure 2 shows how T affects the Verifiability of the
learned model. As suggested by Lee et al. (2024), training
the model on more intermediate steps results in better per-
formance; in our case, increasing the number of intermedi-
ate steps 7" yields better Self-Proving models. One might
suspect that models only learn to execute the Euclidean al-
gorithm in-context. To rule out this hypothesis, we derive
an upper bound on the possible efficacy of such limited
models. This bound is based on the Euclidean depth of
integers (x1,x2), which we define as the number of inter-
mediate steps that the Euclidean algorithm makes before
terminating on input (x1,x2). Indeed, a model that only
learns the to compute (in-context) the simple arithmetic of
the Euclidean algorithm would only be able to prove the
correctness of inputs (x1, z2) whose depth does not exceed
the annotation cutoff 7'.

Figure 2 tells a different story: For each cutoff T', we es-
timate the probability that integers x1,x2 ~ p have Eu-
clidean depth at most 7" on 10° sampled pairs. Larger an-
notation cutoff 7" increases Verifiability, but all models ex-
ceed their corresponding Euclidean depth bound.

Base of representation. As mentioned previously, Char-
ton (2024) concludes that, for a given base of representation
B, transformers correctly compute the GCD of integers
T1, Ty that are products of primes dividing B. Simply put,
choosing a base B with many different prime factors yields
models with better correctness (accuracy), which suggests
why base B = 210 = 2-3-5-7 yielded the best results. Fig-
ure 2 shows that w(B) correlates not just with correctness
(Charton, 2024), but also with Verifiability. Although the

finding is statistically significant, the overall difference is
by a few percentage points; we attribute this to the smaller
(10%) number of samples on which models were trained,
relative to our other experiments.

5. Conclusions

Trust between a learned model and its user is fundamen-
tal. In recent decades, Interactive Proofs (Goldwasser et al.,
1985) have emerged as a general theory of trust established
via verification algorithms. This work demonstrates that
models can learn to formally prove their answers in an In-
teractive Proof system. We call models that possess this
capability Self-Proving.

The definition of Self-Proving models forms a bridge be-
tween the rich theory of Interactive Proofs and the con-
temporary topic of Trustworthy ML. Interactive Proofs of-
fer formal worst-case soundness guarantees; thus, users
of Self-Proving models can be confident when their mod-
els generate correct answers—and detect incorrect answers
with high probability.

We propose Transcript Learning (TL), a generic method for
learning Self-Proving models. One natural direction for fu-
ture work is improving the sample complexity bounds for
TL (Theorem 3.1). Another direction is designing a method
for learning without an honest transcript generator; we pro-
pose such a method (inspired by RLHF, Irving et al. 2018)
in Appendix C.

We train a small (6.3M parameter) transformer that learns
to generate the Greatest Common Divisor (GCD), and
proves its answer. Facing forward, we note that Interac-
tive Proofs exist for capabilities far more complex than the
GCD (Shamir, 1992); scaling up our experiments is the
next step towards bringing Self-Proving models from the-
ory to practice.

Models That Prove Their Own Correctness

References

Agarwal, A., Kakade, S. M., Lee, J. D., and Mabhajan,
G. On the theory of policy gradient methods: Opti-
mality, approximation, and distribution shift. J. Mach.
Learn. Res., 22:98:1-98:76, 2021. URL http://
jmlr.org/papers/v22/19-736.html.

Anil, C., Zhang, G., Wu, Y., and Grosse, R. B. Learn-
ing to give checkable answers with prover-verifier
games. CoRR, abs/2108.12099, 2021. URL https:
//arxiv.org/abs/2108.120909.

Bezout, E. Theorie Generale Des Equations Algebriques.
Kessinger Publishing, 1779. ISBN 9781162056128.
URL https://books.google.co.il/books?
1d=wQZvSwAACAAJ.

Scal-
CoRR,

Brown-Cohen, J., Irving, G., and Piliouras, G.
able Al safety via doubly-efficient debate.
abs/2311.14125, 2023. doi: 10.48550/ARXIV.2311.
14125. URL https://doi.org/10.48550/
arXiv.2311.14125

Charton, F. Linear algebra with transformers. Trans.
Mach. Learn. Res., 2022, 2022. URL https://
openreview.net/forum?id=Hp4g7FAXXG.

Charton, F. Can transformers learn the greatest common
divisor? In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 6-11, 2024. OpenReview.net, 2024.

Christiano, P. F,, Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan,
S. V. N,, and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 4299—
4307, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/

25th International Conference on Automated Deduc-
tion, Berlin, Germany, August 1-7, 2015, Proceed-
ings, volume 9195 of Lecture Notes in Computer Sci-
ence, pp. 378-388. Springer, 2015. doi: 10.1007/
978-3-319-21401-6_26. URL https://doi.org/
10.1007/978-3-319-21401-6_26.

Frieder, S., Pinchetti, L., Chevalier, A., Griffiths, R.,
Salvatori, T., Lukasiewicz, T., Petersen, P., and Berner,
J. Mathematical capabilities of chatgpt. In Oh, A.,
Naumann, T., Globerson, A., Saenko, K., Hardt,
M., and Levine, S. (eds.), Advances in Neural Infor-
mation Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023,
NeurIlPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.
nips.cc/paper_files/paper/2023/hash/

58168e8a92994655d6da3939%9e7cc0918-Abstract—-Dataset

and_Benchmarks.html.

Goldreich, O. Computational complexity - a con-
ceptual perspective. Cambridge University Press,
2008. ISBN 978-0-521-88473-0. doi: 10.1017/
CBO0O9780511804106. URL https://doi.org/
10.1017/CB09780511804106.

Goldreich, O. and Hastad, J. On the complexity of in-
teractive proofs with bounded communication. Inf.
Process. Lett., 67(4):205-214, 1998. doi: 10.1016/
S0020-0190(98)00116-1. URL https://doi.org/
10.1016/50020-0190(98)00116-1.

Goldreich, O. and Rothblum, G. N. Simple doubly-efficient
interactive proof systems for locally-characterizable sets.
In Karlin, A. R. (ed.), 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-
14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs,
pp. 18:1-18:19. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2018. doi: 10.4230/LIPICS.ITCS.2018.
18. URL https://doi.org/10.4230/LIPIcs.
ITCS.2018.18.

d5e2c0adad503c91£91df240d0cd4ed49-Abstract

html.

Condon, A., Feigenbaum, J., Lund, C., and Shor,
P. W Probabilistically checkable debate sys-
tems and nonapproximability of pspace-hard func-
tions. Chic. J. Theor. Comput. Sci., 1995, 1995.
URL http://cjtcs.cs.uchicago.edu/
articles/1995/4/contents.html.

de Moura, L. M., Kong, S., Avigad, J., van Doorn,
F., and von Raumer, J. The lean theorem prover
(system description). In Felty, A. P. and Middel-
dorp, A. (eds.), Automated Deduction - CADE-25 -

Goldreich, O., Vadhan, S. P, and Wigderson, A. On
interactive proofs with a laconic prover. Com-
put. Complex., 11(1-2):1-53, 2002. doi: 10.1007/
S00037-002-0169-0. URL https://doi.org/10.
1007/s00037-002-0169-0.

Goldwasser, S., Micali, S., and Rackoff, C. The knowl-
edge complexity of interactive proof-systems (extended
abstract). In Sedgewick, R. (ed.), Proceedings of the
17th Annual ACM Symposium on Theory of Comput-
ing, May 6-8, 1985, Providence, Rhode Island, USA, pp.
291-304. ACM, 1985. doi: 10.1145/22145.22178. URL
https://doi.org/10.1145/22145.22178.

http://jmlr.org/papers/v22/19-736.html
http://jmlr.org/papers/v22/19-736.html
https://arxiv.org/abs/2108.12099
https://arxiv.org/abs/2108.12099
https://books.google.co.il/books?id=wQZvSwAACAAJ
https://books.google.co.il/books?id=wQZvSwAACAAJ
https://doi.org/10.48550/arXiv.2311.14125
https://doi.org/10.48550/arXiv.2311.14125
https://openreview.net/forum?id=Hp4g7FAXXG
https://openreview.net/forum?id=Hp4g7FAXXG
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
http://cjtcs.cs.uchicago.edu/articles/1995/4/contents.html
http://cjtcs.cs.uchicago.edu/articles/1995/4/contents.html
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.4230/LIPIcs.ITCS.2018.18
https://doi.org/10.4230/LIPIcs.ITCS.2018.18
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1145/22145.22178

Models That Prove Their Own Correctness

Goldwasser, S., Kalai, Y. T., and Rothblum, G. N. Dele-

gating computation: Interactive proofs for muggles. J.
ACM, 62(4):27:1-27:64, 2015. doi: 10.1145/2699436.
URL https://doi.org/10.1145/2699436.

Goldwasser, S., Rothblum, G. N., Shafer, J., and Yehuday-
off, A. Interactive proofs for verifying machine learn-
ing. In Lee, J. R. (ed.), 12th Innovations in Theoreti-
cal Computer Science Conference, ITCS 2021, January
6-8, 2021, Virtual Conference, volume 185 of LIPIcs,
pp. 41:1-41:19. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2021. doi: 10.4230/LIPICS.ITCS.2021.
41. URL https://doi.org/10.4230/LIPIcs.
ITCS.2021.41.

Gransden, T., Walkinshaw, N., and Raman, R. SEPIA:

search for proofs using inferred automata. In Felty,
A. P. and Middeldorp, A. (eds.), Automated Deduction
- CADE-25 - 25th International Conference on Auto-
mated Deduction, Berlin, Germany, August 1-7, 2015,
Proceedings, volume 9195 of Lecture Notes in Computer
Science, pp. 246-255. Springer, 2015. doi: 10.1007/
978-3-319-21401-6_16. URL https://doi.org/
10.1007/978-3-319-21401-6_16.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A.,
Basart, S., Tang, E., Song, D., and Steinhardt,
J. Measuring mathematical problem solving with
the MATH dataset. In Vanschoren, J. and Yeung,
S. (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual, 2021. URL https:
//datasets—benchmarks-proceedings.
neurips.cc/paper/2021/hash/

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papail-

iopoulos, D. Teaching arithmetic to small transform-
ers. In The Twelfth International Conference on Learn-
ing Representations, ICLR 2024, Vienna, Austria, May
6-11, 2024. OpenReview.net, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,

B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 6-11, 2024. OpenRe-
view.net, 2024.

Malach, E. Auto-regressive next-token predictors are uni-

versal learners. CoRR, abs/2309.06979, 2023. doi:
10.48550/ARXIV.2309.06979. URL https://doi.
org/10.48550/arXiv.2309.06979.

Murty, S., Paradise, O., and Sharma, P. Pseudointelli-

gence: A unifying lens on language model evaluation.
In Bouamor, H., Pino, J., and Bali, K. (eds.), Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, Singapore, December 6-10, 2023, pp.
7284-7290. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.
485. URL https://doi.org/10.18653/v1/
2023.findings—-emnlp.485.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba,

W., and Abbeel, P. Overcoming exploration in re-
inforcement learning with demonstrations. In 20718
IEEE International Conference on Robotics and Au-
tomation, ICRA 2018, Brisbane, Australia, May 21-
25, 2018, pp. 6292-6299. IEEE, 2018. doi: 10.1109/
ICRA.2018.8463162. URL https://doi.org/10.
1109/ICRA.2018.8463162.

be83ab3ecd0db773eb2dclb0al’7836al-Abstract-round2.

html.

Irving, G., Christiano, P. F,, and Amodei, D. Al safety
via debate. CoRR, abs/1805.00899, 2018. URL http:
//arxiv.org/abs/1805.00899.

Karp, R. M. Reducibility among combinatorial problems.

In Miller, R. E. and Thatcher, J. W. (eds.), Proceed-
ings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights,
New York, USA, The IBM Research Symposia Series, pp.
85-103. Plenum Press, New York, 1972. doi: 10.1007/
978-1-4684-2001-2\ 9. URL https://doi.org/
10.1007/978-1-4684-2001-2_09.

Knuth, D. E. The Art of Computer Programming, Vol-

ume II: Seminumerical Algorithms. Addison-Wesley,
1969. ISBN 0201038021. URL https://www.
worldcat.org/oclc/310551264.

Nogueira, R. F.,, Jiang, Z., and Lin, J. Investigating the

limitations of the transformers with simple arithmetic
tasks. CoRR, abs/2102.13019, 2021. URL https:
//arxiv.org/abs/2102.130109.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,

C. L., Mishkin, P, Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller,
L., Simens, M., Askell, A., Welinder, P, Christiano,
P. E, Leike, J.,, and Lowe, R. Training language
models to follow instructions with human feedback.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A. (eds.), Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/

blefde53be364a73914£58805a001731-Abstract-Confere

html.

https://doi.org/10.1145/2699436
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
http://arxiv.org/abs/1805.00899
http://arxiv.org/abs/1805.00899
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://www.worldcat.org/oclc/310551264
https://www.worldcat.org/oclc/310551264
https://doi.org/10.48550/arXiv.2309.06979
https://doi.org/10.48550/arXiv.2309.06979
https://doi.org/10.18653/v1/2023.findings-emnlp.485
https://doi.org/10.18653/v1/2023.findings-emnlp.485
https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/ICRA.2018.8463162
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html

Models That Prove Their Own Correctness

Paradise, O. Smooth and strong pcps. Com-
put. Complex., 30(1):1, 2021. doi: 10.1007/
S00037-020-00199-3. URL https://doi.org/
10.1007/s00037-020-00199-3.

Polu, S. and Sutskever, I. Generative language modeling
for automated theorem proving. CoRR, abs/2009.03393,
2020. URL https://arxiv.org/abs/2009.
03393.

Reingold, O., Rothblum, G. N., and Rothblum, R. D.
Constant-round interactive proofs for delegating compu-
tation. SIAM J. Comput., 50(3), 2021. doi: 10.1137/
16M1096773. URL https://doi.org/10.1137/
16M1096773.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P, Dupont, E., Ruiz, F. J., Ellenberg,
J. S., Wang, P, Fawzi, O., et al. Mathematical discov-
eries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Shalev-Shwartz, S. and Ben-David, S. Understanding
Machine Learning - From Theory to Algorithms. Cam-
bridge University Press, 2014. ISBN 978-1-10-705713-
5. URL http://www.cambridge.org/de/
academic/subjects/computer—science/

Turpin, M., Michael, J., Perez, E., and Bowman, S. R.
Language models don’t always say what they think:
Unfaithful explanations in chain-of-thought prompting.
In Oh, A., Naumann, T., Globerson, A., Saenko,
K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.
nips.cc/paper_files/paper/2023/hash/

ed3fea9033a80feall376299fa’7863f4a-Abstract-Confere

html.

Uesato, J., Kushman, N., Kumar, R., Song, H. F., Siegel,
N. Y., Wang, L., Creswell, A., Irving, G., and Hig-
gins, I. Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275, 2022.
doi: 10.48550/ARXIV.2211.14275. URL https://
doi.org/10.48550/arXiv.2211.14275.

Valiant, L. G. A theory of the learnable. Commun. ACM, 27
(11):1134-1142, 1984. doi: 10.1145/1968.1972. URL
https://doi.org/10.1145/1968.1972.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.

pattern-recognition-and-machine-learning/ Attention is all youneed. In Guyon, L., von Luxburg, U.,
understanding-machine-learning-theory-algoBengigsS., Wallach, H. M., Fergus, R., Vishwanathan,

Shamir, A. IP = PSPACE. J. ACM, 39(4):869-877, 1992.
doi: 10.1145/146585.146609. URL https://doi.
org/10.1145/146585.1466009.

Siu, K. and Roychowdhury, V. P. Optimal depth neural
networks for multiplication and related problems. In
Hanson, S. J., Cowan, J. D., and Giles, C. L. (eds.),
Advances in Neural Information Processing Systems 5,
[NIPS Conference, Denver, Colorado, USA, November
30 - December 3, 1992], pp. 59-64. Morgan Kaufmann,
1992. URL http://papers.nips.cc/paper/

657—optimal—depth—neural—networks—for—multslpl Saf P~ fleds) ?’]}"oceegmgs

Sutton, R. S., McAllester, D. A., Singh, S., and Man-
sour, Y. Policy gradient methods for reinforcement
learning with function approximation. In Solla,
S. A., Leen, T. K., and Miiller, K. (eds.), Advances
in Neural Information Processing Systems 12, [NIPS
Conference, Denver, Colorado, USA, November 29 -
December 4, 1999], pp. 1057-1063. The MIT Press,
1999. URL http://papers.nips.cc/paper/

1713-policy-gradient-methods—for- relnforcegngndceb; r¥1nlr]?01;;;n§% }%ﬁ

Trinh, T. H.,, Wu, Y., Le, Q. V., He, H., and Luong, T
Solving olympiad geometry without human demonstra-
tions. Nat., 625(7995):476-482, 2024. doi: 10.1038/
S41586-023-06747-5. URL https://doi.org/
10.1038/s41586-023-06747-5.

Wang, B., Yue, X,

S. V. N,, and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 5998—
6008, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053clcd4al845aa-Abstract.

html.

Wildchen, S., Sharma, K., Turan, B., Zimmer, M.,

and Pokutta, S. Interpretability guarantees with
Merlin-Arthur cla551ﬁers In Dasgupta, S., Mandt,
%’ BS27uh In-
ternational Conference on Artificial Intelligence and
Statistics, volume 238 of Proceedings of Machine
Learning Research, pp. 1963-1971. PMLR, 02-04
May 2024. URL https://proceedings.mlr.
press/v238/waldchen24a.html.

and Sun, H.
fend its belief in truth?

Can chatgpt de-
evaluating LLM reasoning
o, J., and Bali,
indings o, ssoczanon or Computationa
Linguistics: EMNLP 2023, Singapore, December 6-
10, 2023, pp. 11865-11881. Association for Compu-
tational Linguistics, 2023. doi: 10.18653/V1/2023.
FINDINGS-EMNLP.795. URL https://doi.org/
10.18653/v1/2023.findings—emnlp.795.

on approxlm ition.

https://doi.org/10.1007/s00037-020-00199-3
https://doi.org/10.1007/s00037-020-00199-3
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2009.03393
https://doi.org/10.1137/16M1096773
https://doi.org/10.1137/16M1096773
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
http://papers.nips.cc/paper/657-optimal-depth-neural-networks-for-multiplication-and-related-problems
http://papers.nips.cc/paper/657-optimal-depth-neural-networks-for-multiplication-and-related-problems
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.1145/1968.1972
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.mlr.press/v238/waldchen24a.html
https://proceedings.mlr.press/v238/waldchen24a.html
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://doi.org/10.18653/v1/2023.findings-emnlp.795

Models That Prove Their Own Correctness

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., and Communications Security, Virtual Event, Republic
Xia, F, Chi, E. H., Le, Q. V., and Zhou, D. Chain-of- of Korea, November 15 - 19, 2021, pp. 159-177. ACM,
thought prompting elicits reasoning in large language 2021. doi: 10.1145/3460120.3484767. URL https:
models. In Koyejo, S., Mohamed, S., Agarwal, A., //doi.org/10.1145/3460120.3484767.

Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in

Neural Information Processing Systems 35: Annual

Conference on Neural Information Processing Systems

2022, NeurIPS 2022, New Orleans, LA, USA, November

28 - December 9, 2022,2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4fl5af0f7b3labcad-Abstract-Conference.
html.

Welleck, S., Liu, J., Lu, X., Hajishirzi, H., and Choi,
Y. Naturalprover: Grounded mathematical proof
generation with language models. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/
1fc548a8243ad06616eee731e0572927-Abstract-Conference.
html.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A. Le-
andojo: Theorem proving with retrieval-augmented lan-
guage models. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances
in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.
nips.cc/paper_files/paper/2023/hash/
4441469427094£8873d0fecb0Ocd4elcee-Abstract—-Datasets_
and_Benchmarks.html.

Yang, M., Schuurmans, D., Abbeel, P., and Nachum, O.
Chain of thought imitation with procedure cloning.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A. (eds.), Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/
ebdb990471£653dffb425eff03c7c980-Abstract-Conference.
html.

Zhang, J., Liu, T., Wang, W., Zhang, Y., Song, D., Xie,
X., and Zhang, Y. Doubly efficient interactive proofs
for general arithmetic circuits with linear prover time.
In Kim, Y., Kim, J., Vigna, G., and Shi, E. (eds.),
CCS '21: 2021 ACM SIGSAC Conference on Computer

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
https://doi.org/10.1145/3460120.3484767
https://doi.org/10.1145/3460120.3484767

Models That Prove Their Own Correctness

A. Related Work

This paper is situated at the intersection of machine learning (ML) theory and Interactive Proof systems (IPs). We briefly
discuss recent relevant work from these literatures.

ML and IPs. IPs have found numerous applications in ML towards a diverse set of goals. Anil et al. (2021) introduce
Prover—Verifier Games, a game-theoretic framework for learned provers and verifiers. Wildchen et al. (2024) cast the
problem of model interpretability as a Prover—Verifier interaction between a learned feature selector and a learned feature
classifier. Debate systems (Condon et al., 1995), a multiprover variant of IPs, were considered for aligning models with
human values (Irving et al., 2018; Brown-Cohen et al., 2023). In such Debate systems, two competing models are each
given an alleged answer y # 3, and attempt to prove the correctness of their answer to a (human or learned) judge. Lastly,
Murty et al. (2023) define Pseudointelligence: a model learner Lj; and an evaluator learner L are each given samples
from a ground-truth; L) learns a model of the ground-truth, while Ly learns an evaluator of such models; the learned
evaluator then attempts to distinguish between the learned model and the ground-truth in a Turing Test-like interaction.

All of these works consider learned verifiers, whereas our work focuses on training models that interact with a manually-
defined verifier. More related in this regard is IP-PAC (Goldwasser et al., 2021), in which a learner proves that she learned
a model that is Probably Approximately Correct (Valiant, 1984). We, however, consider models that prove their own
correctness on a per-input basis, rather than learners that prove average-case correctness of a model.

Models that generate formal proofs. Self-Proving models are verified by an algorithm with formal completeness and
soundness guarantees (see Definition 2.2). In this sense, Self-Proving models generate a formal proof of the correctness of
their output. Several works propose specialized models that generate formal proofs.

AlphaGeometry (Trinh et al., 2024) is capable of formally proving olympiad-level geometry problems; Gransden et al.
(2015); Polu & Sutskever (2020); Yang et al. (2023) and others train models to produce proofs in Coq, Metamath and Lean
(de Moura et al., 2015); FunSearch (Romera-Paredes et al., 2024) evolves LLM-generated programs by systematically
evaluating their correctness. Indeed, all of these can be cast as Self-Proving models developed for specific proof systems.
Meanwhile, this work defines and studies the class of such models in general. Several works (e.g. Welleck et al. 2022)
consider models that generate natural language proofs or explanations, which are fundamentally different from formal
proofs (or provers) verified by an algorithm.

Training on intermediate steps. Chain-of-Though (CoT, Wei et al. 2022) refers to additional supervision on a model in
the form of intermediate reasoning steps. CoT is known to improve model performance whether included in-context (Wei
et al., 2022) or in the training phase itself (Yang et al., 2022). Transcript Learning (TL, Section 3) can be viewed as training
the model on a Chain-of-Thought induced by the interaction of a verifier and an honest prover (Definition 2.2).

To complete the analogy, let us adopt the terminology of Uesato et al. (2022), who consider outcome supervision and
process supervision. In our case, the outcome is the decision of the verifier, and the process is the interaction between the
verifier and the model. Thus, Reinforcement Learning from Verifier Feedback (RLVF, Appendix C) is outcome-supervised
while TL is process-supervised. In a recent work, Lightman et al. (2024) find that process-supervised transformers outper-
form outcome-supervised ones on the MATH dataset (Hendrycks et al., 2021).

Transformers for arithmetic. In Section 4 we train and evaluate Self-Proving transformers to generate the GCD of two
integers and prove its correctness to a verifier. These experiments leverage a long line of work on neural models of arith-
metic tasks originating with Siu & Roychowdhury (1992). Of particular relevance is the recent paper of Charton (2024),
who trains transformers to generate the GCD—without a proof of correctness. We benefit from conclusions suggested in
their work and start from a similar (scaled-down) experimental setup. Our main challenge (obtaining Self-Proving models)
is overcome by introducing Annotated Transcript Learning (ATL).

We conduct ablation experiments to find two deciding factors in ATL. First, we study the effect of the amount of annotation
given in the form of intermediate steps (Lee et al., 2024), which is related to (AR) length complexity (Malach, 2023).
Second, we characterize ATL efficacy in terms of an algebraic property of the tokenization scheme (cf. Nogueira et al.
2021; Charton 2022; 2024).

10

Models That Prove Their Own Correctness

B. Theoretical analyses for Section 3

Before we can prove Theorem 3.1, we must first fully specify the theoretical framework in which our results reside.
Continuing from Section 2, we define a learner as an algorithm A with access to a family of autoregressive models
{Py}o and samples from the input distribution =z ~ p. In our setting of Self-Proving models (and in consistence with the
Interactive Proofs literature), we give the learner the full specification of the verifier V. More formally,

Definition B.1 (Self-Proving model learner). A (Self-Proving model) learner is a probabilistic oracle Turing Machine A
with the following access:

* A family of autoregressive models {Py}ycra where d € N is the number of parameters in the family. Recall (Sec-
tion 3) that for each # and z € ¥*, the random variable Py(z) is determined by the logits log ps(2) € RI*|. For any
z € ¥* and o € ¥, the learner A can compute the gradient of the o™ logit, that is, V log Proip,(s)lo = o'].

¢ Sample access to a the input distribution p. That is, A can sample = ~ p.

* The full specification of the verifier V, i.e., the ability to emulate the verification algorithm V. More specifically, A
is able to compute Vs decision after any given interaction; that is, given input x, output y, and a sequence of queries
and answers (q;, a;)1 |, the learner A can compute the decision of V' after this interaction.

Throughout this section, we will refer to the transcript of an interaction between a verifier and a prover (see Figure 1). We
will denote ™ = (y, q1, a1, - - -,qr,ar), and for any index s € |r| we will write 7, € 3°~! to denote the s-long prefix of
7. Moreover, we will use m € X* to denote the transcript of an interaction between a verifier and a prover.

Recall that Transcript Learning requires access to an honest transcript generator. Before we can formally define this object,
it will be useful to define a query generator for a verifier V.

Definition B.2 (Query generator). Fix a verifier V' in a proof system with R € N rounds, where the verifier issues queries

of length L, = |g;| and the prover (model) responses with answers of length L, = |a;|.” The query generator V,
corresponding to V' takes as input a partial interaction and samples from the distribution over next queries by V. Formally,
for any r < R, given input z, output y, and partial interaction (g¢;, a;)i_,, V4(2,y,q1,a1, - .., gr,) is a random variable
over a8

We assume that access to the verifier specification (Definition B.1) includes access to the query generator. After all, the
verifier—who is assumed to be efficient—sampled from V,, during the interaction. Moreover, we will assume that for any
partial interaction and any sequence ¢’, the learner is able to compute the probability that ¢’ was the next query. In other
words, we assume the learner can compute the probability density function of V.

A transcript generator is a random variable over transcripts that faithfully represents the interaction of the verifier with
some prover for a given input. An honest transcript generator is one who is fully supported on transcripts accepted by the
verifier.

Definition B.3 (Honest transcript generator). Fix a verifier V' in a proof system of R € N rounds. A transcript generator
Ty for V is a randomized mapping from inputs « € ¥* to transcripts 7 = (y, q1,a1,...,9r,ar) € ¥*. For any input x,
Ty (x) satisfies that for each r < R, the marginal of 7y () on the 7™ query (¢,.) agrees with the corresponding marginal of
the query generator (V7),..

A transcript generator 7% = Ty is honest if it is fully supported on transcripts 7* for which the verifier accepts.’

Notice that for any verifier V, there is a one-to-one correspondence between transcript generators and (possibly random-
ized) provers. We intentionally chose not to specify a prover in Definition B.3 to emphasize that transcripts can be “col-
lected” independently of the honest prover (see completeness in Definition 2.2). As long as the generator is fully supported
on honest transcripts, it can be used for Transcript Learning, described next (TL, Algorithm 1).

"We can assume that queries (resp. answers) all have the same length by padding shorter ones.

8For completeness’ sake, we can say that when prompted with any sequence z that does not encode an interaction, V,(z) is fully
supported on a dummy token L € 3.

“WLOG we can assume that the prover sends her final answer a g, the verifier’s decision is deterministic.

11

Models That Prove Their Own Correctness

Algorithm 1 Transcript Learning (TL)

1: Hyperparameters: Learning rate A € (0, 1) and number of samples N € N
2: Input: An autoregressive model family {Py}ycga, verifier specification (code) V, and sample access to an input
distribution 4 and an accepting transcript generator 7y (-)

3: Output: A vector of parameters € R?
4: Initialize 0y := 0
5. fori=0to N —1do
6: Sample x ~ pand 7 = (y,q1,a1,...,qr,ar) ~ Ty (z). Denote ag =y
7. foreachr =0to R do
8: Let S(r) denote the indices of the 7" answer a,. in 7*
9: for each s € S(r) do
10: Compute # Forwards and backwards pass
as(6;) = Pr [= ms]
a~pe,; (zm<s)
Cfs(ez) = Veas(gi) = Vylog Pr [U = 7Ts]
a~pe, (TT<s)

11: end for
12: if » > 1 then
13: Let g, denote the ' query g, in 7*, and let ¢ denote its first index. Thatis, 7%, = (y,q1,a1, ..., qt—1,0t—1)
14: Compute # Emulate the verifier

Br(0:)= Pr [¢'=gq

0=, Pr i =d
15: end if
16: end for
17: Update
b1 =0+ A-ao(6:) - | [Br0)es(8) |- D di(6)
r€[R] re[RJU{0}
s€S(r) seS(r)

18: end for

19: Output § := % Zie[N] 0;

Convergence of TL is proven by a reduction to Stochastic Gradient Descent (SGD). Essentially, we are tasked with proving
that TL estimates the gradient of the Verifiability of its model Py. More precisely, TL estimates the gradient of a function
that bounds the Verifiability from below. Maximizing this function therefore maximizes the Verifiability.

The lower-bounding function is the agreement of the transcript generator induced by Py with the provided honest transcript
generator 7;7. More formally, we let T‘f denote the transcript generator induced by the model Py: for each z, 7"3(:17) is
simply the distribution over transcripts of interactions between V' and P, on input x. We first prove that this function is
differentiable.

Lemma B.4. Fix an input distribution |1 over X* and a verifier V with round complexity R and answer length L. Fix an
honest transcript generator Ty;. For any model Py, it holds that

Vo Pr r=m1= E |a®)-| [] 6:0)-a0) - > dil0)

T~ T
7~ T () T~ T rE[R] re[RJu{o}
m~TE (z) s€S(r) seS(r)

where S(r), B.(0), as(0) and dy() are as defined in Algorithm 1.

Note that Lemma B.4 is true for any model Py. Moreover, the random vector over which the expectation is taken (in the

12

Models That Prove Their Own Correctness

right hand side) is precisely the direction of the update performed in Algorithm 1. We now prove Lemma B.4, from which
we derive Theorem 3.1.

Proof. Throughout this proof, expectations and probabilities will be over the same distributions as in the lemma statement.
First,

Pr [r=7"]= E_Pr[r=7"],
and so, by the linearity of the gradient,
Vo Pr [r=n"= E_V, (Pr [r = w*}) . 3)

The probability that the output of V and Py on input z is equal to a given transcript is (by the law of total probability) the
product of probabilities that each of the tokens of the transcript is equal to the corresponding token of the given transcript,
both tokens generated by V’s queries and by Py’s answers, when conditioning on the prefix of the transcript.

Formally, consider any fixed 7* = (y*,q},a},...,qk,a})) and denote the random variable 7 = (y,q1,a1,...,¢R,aR).
For any r € [R] denote the random variables V<" = V,(y,q1,a1,...,¢,-1,a,-1) and T‘f’q = Tl (yqra1 -+ ar_1q:).
Then,
P;—I' [7'(' = ﬂ—*} =]ir[(y*7 qika aTa e 7q}k%7 a*R) = (y7 q1,01, ..., QR,GR)] (4)
= Pr [y=vy"]- Pr [¢g=¢q]- Pr [a=a
vl T el e o=
= Pr =y Pr [q=q']- Pr [oc=m (5)
vl T e laal By o=
seS(r)
= 040(0) : H 67“(9) ! as(a)) (6)
re[R]
seS(r)

where Equation (4) uses independence of the verifier and models’ randomness, Equation (5) uses the autoregressive prop-
erty of Py (Definition B.1), and Equation (6) is by definition of o and £,

Next, a basic calculus identity gives
Vo (Pr [r= W*]) =Pr[r=7"]-Vglog (Pr [r= ﬂ'*]) . (7

s

Let us focus on the last term. By Equation (6),

Volog (Pr[r="]) = Vologao(®) - | T 5:(6)-as(6)

r€[R]
seS(r)

= Vlogy ap(6) + Z Vo log f,(0) + Vg logy as(0)
r€[R)
seS(r)

= Vloggag(6) + Y Vologyas(6) ®)
r€[R]
seS(r)

= Y Veloggas(0)= > d.(0) ©)

re[R]U{0} re[R]U{0}
ses(r) seS(r)

13

Models That Prove Their Own Correctness

where Equation (8) is because log ,-(8) := log Prq,NVq(mzt) [¢" = ¢| is a constant and therefore has a gradient of zeros,
and Equation (9) is by definition of d(6).
Combining Equations (6), (7) and (9) concludes the proof. O

We are now ready to prove Theorem 3.1. We restate it below in full formality.

Theorem B.S5. [Theorem 3.1, formal] Fix a verifier V, an input distribution u, and an autoregressive model family

{Po}peray, and a norm || - || on R%. Fix an honest transcript generator Ty} such that the expected agreement
agreer. (6) = zPl;L [m =77
7~ Ty (2)
n~TE ()

is convex in 0. For any € > 0, we define

B, = min{||9*|\ s agreer. 0)>1- 6/2}
pe = max {||Vologpo(2)| : 2 € 5, 16| < B}

For any ¢ > 0 such that B. and p. are both finite, we denote by 0 the output of TL (Algorithm 1) running for number of

iterations
AR? - (L, +1)%- p2 - B?
2

N > (10)

€

and learning rate A = ¢/2R*L2p.. Then the expected Verifiability (over the randomness of the samples collected by TL)
is at least 1 — €. That is,

Elvery,,(0)] > 1 —e.
7

Proof. Our strategy is to cast TL as Stochastic Gradient Ascent (SGD). We follow Shalev-Shwartz & Ben-David (2014,
Section 14.3), which is presented for Descent (SGD) but is equivalent up to sign change.

Let ¢ such that B, and p. are finite be given. Since B, < oo, let 6* be such that very,,,(6*) > 1 —¢/2 and ||0*|| < B.. To
prove the theorem, it suffices to prove that

E[very,,(8)] > very,,(6%) — e/2.

Following the notation in Algorithm 1, for every iteration ¢ € [N], r € [R] U {0} and s € S(r), the definition of p. gives
[|ds(6;)]| < pe. Thus, for each i € [N], we can bound the norm of the update step by

ao(®)- | TI br0)as(0:) |- > du(t)
r€[R] re[R]U{0}
seS(r) seS(r)

=lao(@) - | T ve0)ac) ||| > du(6:)

re[R] r€[R]U{0}
seS(r) seS(r)
SR Lot Y)] < @+ 1) (La+ 00,
re[RJU{0}
seS(r)

For the above, we used the fact that a5(6;), 5-(6;) < 1, the definition of the answer length L, (|S(r)| = L,), and the
triangle inequality on || - ||. Therefore, by Theorem 14.8 of Shalev-Shwartz & Ben-David (2014) and Lemma B.4, TL
(Algorithm 1) satisfies

E {agreeT* (9_)] > agree(0*) —e/2>1—¢,
0 v

14

Models That Prove Their Own Correctness

where the right inequality is by the choice of #*. The proof follows by observing that, for any # (and in particular an

expected one), it holds that agreer. (0) < very, u (0); this is because, for any x, whenever the transcript generated by
TY(x) agrees with *, then the verifier accepts (by definition of 7*).

O

C. Reinforcement Learning from Verifier Feedback (RLVF)

As mentioned in Section 3, Transcript Learning relies on access to an honest transcript generator to estimate gradients of
(a lower bound on) the Verifiability of a model Py. Our new notion of Reinforcement Learning from Verifier Feedback
(RLVF; Algorithm 2) estimates this gradient without access to a transcript generator. RLVF can be viewed as a modification
of TL in which the learner emulates the interaction of the verifier with its own model Fy. Rather than directly sampling
from the generator as in TL, it collects accepting transcripts by rejection sampling on emulated transcripts. It is inspired
by Reinforcement Learning from Human Feedback (Christiano et al., 2017), a method for aligning models with human
preferences, which has recently been used to align sequence-to-sequence models (Ouyang et al., 2022).

This rejection sampling means that RLVF requires its initial model Py, to have Verifiability bounded away from 0, so that
accepting transcripts are sampled with sufficient probability. Fortunately, such a Self-Proving base model can be learned
using TL. This suggests a learning paradigm in which a somewhat-Self-Proving base model is first learned with TL (with
Verifiability § > 0), and then “amplified” to a fully Self-Proving model using RLVF (cf. Nair et al. 2018).

RLVF is described in Algorithm 2, and is a learning algorithm under the model of Definition B.1. Before we proceed with
its analysis, let us make a few observations.

Firstly, the parameters are updated (line 15) only when an accepting transcript was generated. This means that the learner
can first fully generate the transcript (lines 7-10), and then take backwards passes (line 12) only if the transcript was
accepted by V. This is useful in practice (e.g. when using neural models) as backwards passes are more computationally
expensive than forwards passes.

On the other hand, this means that RLVF requires the parameter initialization 6, to have Verifiability bounded away from
0, so that accepting transcripts are sampled with sufficient probability. Fortunately, such a Self-Proving base model can be
learned using TL. This gives a learning paradigm in which a somewhat-Self-Proving base model is learned with TL (with
Verifiability § > 0), and then “amplified” to a fully Self-Proving model using RLVF. This can be seen as an adaptation of
the method of Nair et al. (2018) to the setting of Self-Proving models.

Secondly, in comparing Algorithms 1 and 2, we see that the latter (RLVF) does not keep track of the probabilities o; and
5. This is because, in RL terms, RLVF is an on-policy algorithm; it generates transcripts using the current learned model,
unlike TL which samples them from a distribution whose parameterization is unknown to the learner. Hence, the update
step in RLVF is simpler than TL. Furthermore, the RLVF learner does not require access to the density function of the
query generator V, (Definition B.2) unlike its TL counterpart.

We now prove that the update step in RLVF maximizes the Verifiability of FPp; this is analogous to Lemma B.4 for TL.

Lemma C.1. Fix an input distribution p over ¥* and a verifier V with round complexity R and answer length L,. For
any transcript (x,y,q1, - . . ,ar) we let Accy (x,y,q1, - . ., ar) denote the indicator random variable which equals 1 if and
only if V accepts the transcript. For any model Py, denoting by very,,,(0) the verifiability of Py (Definition 2.3), it holds
that

Vevery,u(0) = E |Acey(z,y,q1,...,ar) - Y, du(0)
y~Py(z) re[R]U{0}
(qrar)fy s€[La]

where (q,,a,;)E_, are as sampled in lines 5-6 of Algorithm 2, and CZ;(H) is as defined in line 8 therein.

Proof. Recall the transcript generator of PY, denoted by T‘G/ (see Lemma B.4). By the definitions of Verifiability in

15

Models That Prove Their Own Correctness

Algorithm 2 Reinforcement Learning from Verifier Feedback (RLVF)
1: Hyperparameters: Learning rate A € (0, 1) and number of samples N € N
2: Input: An autoregressive model family {Py}gcpa, initial parameters 6, € RY, verifier specification (code) V, and
sample access to an input distribution .

3: Output: A vector of parameters € R?
4: fori =0to N — 1do
5: Sample z ~ p.
6: Initialize ag := y and d; := 0.
7. foreachr =1to R do
8: Sample the r query # Emulate the verifier
qr ~ Vq(xa ap,q1,a1,--.,qr, ar)'
9: Sample the r™ answer # Forwards pass
Ay ~ P@(.’E, ap,4q1,0a1, - - - 7q7’7a7‘7Qa,.+1)'
10: Let 7 == (ag, q1,- -+, Qr—1,Gr)-
11: for each s € [L,] do
12: Let a, ; denote the s token in a,.. Compute # Backwards pass
ds(0;) =Vglog Pr [o=a.]
a~pe, (z7r)
13: end for
14: end for
15: ifV(x,y,q1,a1,...,qr, ar) accepts then
16: Update
re[R]U{0}
S€[Lq]
17: endif
18: end for

19: Output 0 := < > i bi-

Definition 2.3 and V (z,y, q1, - - . , ar) in the lemma statement,

very,,(6) = xf:ru [VPG(x,y) accepts|
y~Po(z)

= ZIE [ACCV (Iv Y, q1y--- 7(13)]

y~Po(x)
(QT 7ar)§=1

= E

T

Pr [Accy(x,m)]] (11)

AT
Now, for every input z, let IT* (z) C X* denote the set of accepting transcripts:
IT*(z) = {r" € " : Aceyx,m" accepts}.
Noting that IT*(z) has finite or countably infinite cardinality, for any fixed input we can write

Pr [Accy (z,7)] = Z Pr [r=m7]. (12)
T~T o+ €T () m~TE ()

16

Models That Prove Their Own Correctness

We will use Equations (4) through (9) in the proof of Lemma B.4. Up to a change in index notation, these show that, for
any 7,
Vo Pr [r=n= Pr =7 Vod, (0
GWNTQ(I)[TF m] ‘n'N'Te(z)[Tr T } Z o ()
re RU{0}
s€[Lg)

Combining Equations (11) and (12), by linearity of expectation we have that
Vevery,,(0) = > Vo Pr [r=7"]

el @ @

:xINEM Z WNI;'E(=" Z Vods(6)

7 €I1* () reg[LLJ{(])}

=E | E |Accy(z,m): D Veds(
rvp | w79 () re RU{0}

s€[Lq4]

I]EM ACCV l‘ Tl' Z V@d

m~TO () re RU{0}
SE[Lq]

ACCV(I,?J,(]l,...,aR) : Z VQd:(a))

T
y~Po(z) reRU{0}
(qrvar)§:1 SE[LC‘]

where in the last equality, the probability is over (g, a,.) sampled as in Algorithm 2, and it follows from the definition of
the transcript generator 7 (). O

From a broader perspective, RLVF can be derived by viewing Self-Proving as a reinforcement learning problem in which
the agent (prover) is rewarded when the verifier accepts. Indeed, RLVF is the Policy Gradient method (Sutton et al.,
1999) for a verifier-induced reward. Convergence bounds for Policy Gradient methods are a challenging and active area of
research (e.g. Agarwal et al. 2021), and so we leave it for future work to use Lemma C.1 to obtain convergence bounds on
RLVF (analogous to Theorem B.5).

D. Annotations

We formally capture the modification described in Section 3.1 by introducing a transcript annotator and an answer extrac-
tor incorporated into the training and inference stages, respectively.

Fix a verifier V' in an R-round proof system with question length L, and answer length L,. An annotation system with
annotation length L, consists of a transcript annotator A, and an answer extractor F.

In terms of efficiency, think of the annotator as an algorithm of the same computational resources as an honest prover in the
system (see Definition 2.2, and the answer extractor as an extremely simple algorithm (e.g., trim a fixed amount of tokens
from the annotation).

To use an annotation system the following changes need to be made:

* At training time, an input x and transcript 7 is annotated to obtain 7 := A(x, 7), e.g. before the forwards backwards
pass in TL (line 3 in Algorithm 1).

* At inference time (i.e., during interaction between V and Fjp), the prover keeps track of the annotated transcript, but
in each round passes the model-generated (annotated) answer through the extractor E before it is sent to the verifier.

17

Models That Prove Their Own Correctness

That is, in each round r € [R], the prover samples
é;“ NP@(J?,’IJ,Ql,dvl,...,(];-_/l,qT)-

The prover then extracts an answer a,. := F(a,.) which is sent to the verifier.

E. A simple proof system for the GCD

The Euclidean algorithm for computing the Greatest Common Divisor (GCD) of two integers is possibly the oldest algo-
rithm still in use today (Knuth, 1969). Its extended variant gives a simple proof system.

Before we dive in, let us clarify what we mean by a proof system for the GCD. Paul has two integers 212 and 159; he
claims that GC'D(212,159) = 53. An inefficient way for Veronica to check Paul’s answer is by executing the Euclidean
algorithm on (212, 159) and confirm that the output is 53. In an efficient proof system, Veronica asks Paul for a short string
7* (describing two integers) with which she can easily compute the answer—without having to repeat Paul’s work all over.
On the other hand, if Paul were to claim that “GCD(212,159) = 51” (it does not), then for any alleged proof 7, Veronica
would detect an error and reject Paul’s claim.

The verifier in the proof system relies on the following fact.

Fact E.1 (Bézout’s identity (Bezout, 1779)). Let xg,x1 € N and 2p,21 € Z. If 2 - ¢ + 21 - x1 divides both xy and z,
then zo - xo + 21 - ©1 = GCD(xg, x1).

Any coefficients zo, 21 satisfying the assumption of Fact E.1 are known as Bézout coefficients for (zq,z1). Fact E.1
immediately gives our simple proof system: For input x = (xg, 1) and alleged GCD y, the honest prover sends (alleged)
Bézout coefficients (2o, z1). The Verifier accepts if and only if y = 2o - xg + 21 - 21 and y divides both z¢ and ;.

In this proof system the Verifier does not need to make any query; to fit within Definition 2.2, we can have the verifier
issue a dummy query. Furthermore, by Fact E.1 it is complete and has soundness error s = 0. Lastly, we note that the
Verifier only needs to perform two multiplications, an addition, and two modulus operations; in that sense, verification is
more efficient than computing the GCD in the Euclidean algorithm.

Annotations. To describe how a proof z = (2, 1) is annotated, let us first note how it can be computed. The Bézout
coefficients can be found by an extension of the Euclidean algorithm. It is described in Algorithm 3.'°

Algorithm 3 Extended Euclidean algorithm

1: Input: Nonzero integers xp,x; € N
Output: Integers (y, 2o, z1), such that y = GCD(z, 1) and (zo, z1) are Bézout coefficients for (zq, z1)
Initialize 7o = zg, 71 = 21,80 = 1,51 =0,and ¢ =0
while r; # 0 do
Update ¢ := (ro//r1), where // denotes integer division
Update (ro,71) = (r1,70 — q X 71)
Update (s, s1) == (81,50 — q X 1)
end while
Output GCD y = r(and Bézout coefficients zy := sg and z1 := (rg — so - Zo)/x1

R e R AN b

Referring to Algorithm 3, the annotation of a proof z = (zg, 21) will consist of intermediate steps in its computation.
Suppose that in each iteration of the While-loop (step 4), the algorithm stores each of rg, s¢ and ¢ in an arrays 7, sy and
¢. The annotation Z of z is obtained by concatenating each of these arrays. In practice, to avoid the transformer block
(context) size from growing too large, we fix a cutoff 7" and first trim each array to its first 7" elements.

We formalize this in the terminology of Appendix D by defining a Transcript Annotator and Answer Extractor. Note that,

since our proof system consists only of one “answer” z send from the prover to the verifier, the entire transcript 7 is simply
11

z = (20, 21)-

00ur description is the same as https://en.wikipedia.org/wiki/Extended_FEuclidean_algorithm.
"'Such a proof system is known as an NP-proof system and defines the complexity class NP (Karp, 1972).

18

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Models That Prove Their Own Correctness

e Transcript Annotator A: For a fixed cutoff T and given input © = (xo,x1) and transcript z = (zo, 21), A executes
Algorithm 3 on input = (xo,x1). During the execution, A stores the first T" intermediate values of 7¢, sp and ¢ in
arrays r, $o and ¢. It outputs A(x, z) := (19, $0, G, 2).

* Answer Extractor E: Given an annotated transcript Z = (7, $9, ¢, z), outputs E(Z) := z.

We note that the computational complexity of A is roughly that of the honest prover, i.e., Algorithm 3 (up to additional
space due to storing intermediate values). As for F, it can be implemented in logarithmic space and linear running time in
|Z|, i.e., the length of the description.'?

F. Experiment details

We provide details of how we implemented the experiments in Section 4 and additional figures for each experiment.

Model architecture. We use Karpathy’s nanoGPT.'> We use a 6.7M parameter architecture of 8 layers, 8 attention heads,
and 256 embedding dimensions. We optimized hyperparameters via a random hyperparameter search, arriving at learning
rate 0.0007, AdamW S; = 0.733 and 52 = 0.95, 10% learning rate decay factor, no dropout, gradient clipping at 2.0, no
warmup iterations, and 10% weight decay.

Data. We sample integers from the log;,-uniform distribution over {1,...,10%}. Models in Table 1 and Section 4 are
trained for 100K iterations on a dataset of of ~10M samples. For Section 4 (base ablation) we train for 20K iterations on a
dataset of ~1M samples; this is because this setting required 68 many runs in total, whereas the annotation-cutoff ablation
required 18 longer runs.

Compute. All experiments were run on a machine with an NVIDIA A10G GPU, 64GB of RAM, and 32 CPU cores.
Longer runs (annotation-cutoff ablation) took about 75 minutes each. Shorter runs (base ablation) took about 15 minutes.
The total running time of our experiments was approximately 40 hours, excluding time dedicated to a random hyperparam-
eter search. The overall disk space needed for our models and data (to be made available upon publication) is 4GB.

Representing integers. We fully describe how integer sequences are encoded. As a running example, we will use base
210. To encode a sequence of integers, each integer is encoded in base 210, a sign is prepended and a delimiter is appended,
with a unique delimiter identifying each component of the sequence. For example, consider the input integers xo = 212
(which is 12 in base 210) and x; = 159. Their GCD is y = 53, with Bézout coefficients zo = 1 and z; = —1. Therefore,
the sequence (212,159, 53,1, —1) is encoded as

+,1,2,x0,+,159,%x1,+,53,y,+,1,20,-,1,z1

where commas are added to distinguish between different tokens. Null tokens are appended to pad all sequences in a
dataset to the same length. Both the input and the padding components are ignored when computing the loss and updating
parameters.

Annotations Annotations are encoded as above, with each component in an intermediate step m; delimited by a unique
token. Since different integer pairs may require a different number of intermediate steps to compute the Bézout coefficients,
we chose to pad all annotaitons to the same length 7" by the last step 7 in the sequence (which consists of the final Bézout
coefficients). This ensures that the final component output by the model in each sequence should be the Bézout coefficient,
and allows us to batch model testing (generation and evaluation) resulting in a 1000x speed-up over sequential testing.

">That is, if integers are represented by n-bits, then F has space complexity O(logn + log T') and running time O(n - T)).
13https ://github.com/karpathy/nanoGPT.

19

https://github.com/karpathy/nanoGPT

Models That Prove Their Own Correctness

As an example, consider the inputs o = 46 and x; = 39. Tracing through the execution of Algorithm 3, we have

Zo |z |y | S0 |70 |q| 20 | &
46 | 39 1 |46 1
0 [39]5
1171
5|41
6 313

1 —111 13

To encode this as an annotated transcript for the transformer, we must specify a base of representation and an annotation
cutoff. Suppose that we wish to encode this instance in base B = 10 and cutoff 7" = 3. Then the input with the annotated

transcript is encoded as

+,4,6,x0,+,3,9,x1,+,1,vy,
+,1,z0",+,4,6,2z1",+,1,9’,
+,0,z0"",+,3,9,z1"",+,5,9""
+,1,20""" ,+,7,2z1""" ,+,1,9""",
-,1,1,20,+,1,3,z1

where commas are used to separate between tokens, and linebreaks are added only for clarity. Notice the three types
of tokens: signs, digits, and delimiters. Notice also that the output y is added immediately after the input, followed by
the annotated transcript (whose six tokens comprise the proof itself). Since the Self-Proving model we train has causal
attention masking, placing the output y before the proof means that the model “commits” to an output and only then proves

1t.

20

Models That Prove Their Own Correctness

G. Additional figures for Section 4

—T=0 == T=3 — =4 — T=5 — T=6 — T=7
2
E
9
B
>
e
0.6
0.4
0.2
Iteration
0
0 20k 40k 60k . =

Figure 3. Verifiability as a function of the number of samples V. Each iteration (X axis) is a batch of 1024 samples from a dataset
of ~10M sequences. Every 10k iterations, Verifiability was evaluated on a held-out dataset of 1k inputs (as described in Section 4). T’
is the number of steps in Annotated Transcript Learning (Section 4), and 7" = 0 is non-annotated Transcript Learning. Each 7" was run
with three seeds, with mean depicted by the curve and standard error by the shaded area.

21

Models That Prove Their Own Correctness

o m < Te] (o] N~

Ic Ic Ic Ic I Ic

:*a :*5. :‘g‘i :*a :*a :*a

I% |8 T=0 |% |8 T=3|% T=4|%$5|6=7
Ic Ic Ic Ic Ic |
g—e— 15 g #ig e
1= 1= 1= .= 1= 1=

1o 10 10 10 10 10

D 0 D 1D D 1D

lI T T I T T l T l T l Il T
20% 30% 40% 50% 60% 70% 80% 90% 100%

Verifiability

Figure 4. Full version of Section 4, with all T € {0, 3,4, 5, 6, 7} possibilities for the annotation cutoff in Annotated Transcript Learning
(T = 0 means no annotation). For a zoom-in of the right end of the axis, see Section 4.

