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Abstract

We introduce missingness-MDPs (miss-MDPs); a subclass of partially observable
Markov decision processes (POMDPs) that incorporates the theory of missing
data. Miss-MDPs capture settings where, at each step, the current state may go
partially missing, that is, the state is not observed. Missingness of observations
occurs dynamically and is caused by a missingness function, which governs the
underlying probabilistic missingness process. Miss-MDPs distinguish the three
types of missingness processes as a restriction on the missingness function: missing
completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR). Our goal is to compute a policy for a miss-MDP with an
unknown missingness function. We propose algorithms that, by using a retrospective
dataset and based on the different types of missingness processes, approximate
the missingness function and, thereby, the true miss-MDP. The algorithms can
approximate a subset of MAR and MNAR missingness functions, and we show
that, for these, the optimal policy in the approximated model is ε-optimal in the
true miss-MDP. The empirical evaluation confirms these findings. Additionally, it
shows that our approach becomes more sample-efficient when exploiting the type
of the underlying missingness process.

1 Introduction

Markov decision processes [MDPs; 1] capture sequential decision-making under uncertainty. This
model assumes that sensors provide precise measurements of state features at all times. However,
sensors may fail, leading to missing state features, which obscures the computation of state-based
policies. Consider a medical doctor, who is provided with sensor measurements of a patient’s state
features (e.g., heart rate and temperature). However, some of these measurements may not be available
when decisions are made.

Partially observable Markov decision processes [POMDPs; 2] extend MDPs by an observation
function that explicitly models uncertainty in state observations. [3]. Yet, solving POMDPs is
notoriously challenging: In particular, inferring the observation function from state-feature observa-
tions alone is generally intractable as the probabilities depend on the past sequences of actions and
observations [4, 5].

Fortunately, specific problems often exhibit a simpler structure in the source of partial observability.
Here, the missingness of state-features may occur according to a specific stochastic function. Such
problems are extensively studied by the theory of missingness [6–8]. As the reasons for missingness to
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Figure 1: The interaction of an agent and a miss-MDP, a subclass of POMDPs. In this doctor-treating-
patient example, the missingness function causes a feature (heart rate) to go missing, indicated as “⊥”
in the observation. The missingness indicator evaluates to 0 for missing features and to 1 otherwise.

occur may vary, Rubin [9] classifies missingness functions into three main types: missing completely
at random (MCAR), missing at random (MAR), and missing not at random (MNAR). MCAR
missingness is independent of observed or unobserved information – e.g., a patient’s temperature
readings are missing due to a loosely attached thermometer. MAR missingness solely depends on
observed information – e.g., a patient’s observed temperature readings influence the missingness of
the heart rate. Missingness functions that are neither MCAR nor MAR are considered MNAR – e.g.,
if a patient’s temperature readings influence its missingness, also known as self-censoring.

While prior work has studied decision making with missing observations, it mostly focuses on
reinforcement learning and treats missing data as an incidental issue rather than modeling it explicitly
[10–13]. Planning methods often overlook the key differences between MCAR, MAR, and MNAR
[14–16], and those that rely on generic imputation often use methods that make implicit assumptions
about the missingness function, which can lead to biased or inconsistent estimates [16] or offer no
clear guarantees on policy performance [15]. To our knowledge, no existing framework (1) explicitly
models and learns the function that governs the probabilities of state features to go missing in the
context of POMDPs and (2) provides guarantees on the belief-based policy computed with the
learned function.

To create a principled understanding of missing state features in MDPs, we introduce missingness-
MDPs (miss-MDPs) as a subclass of POMDPs. Miss-MDPs have an observation function that we refer
to as the missingness function – classified as MCAR/MAR/MNAR – leading to missing state features
in the observation. In Figure 1, we depict a miss-MDP describing the doctor-treating-patient example
inspired by [17]. We consider the setting where we are (1) provided a miss-MDP and a dataset of
trajectories sampled from the miss-MDP, but (2) the missingness function is unknown. The problem
is to find a policy that maximizes the expected reward without knowing the missingness function.

Our approach is based on learning an approximation of the missingness function M from data, which
yields an approximation of the original miss-MDP. For this approximated model, we compute a policy
through off-the-shelf POMDP solvers such as SARSOP [18]. In summary, our contributions are:

1. We introduce miss-MDPs, which integrate and define the semantics of missingness in a
specific subclass of the more general POMDP framework (Section 4).

2. We derive a notion similar to ignorability [8] for the setting of miss-MDPs (Remark 1).

3. We provide algorithms for learning the missingness function if it is MCAR, or of certain
sub-types of MAR or MNAR, yielding probably approximately correct (PAC) guarantees
(Sections 5.1 and 5.2).

4. We prove that we can approximate the optimal policy for the miss-MDP with PAC guarantees
under the correct assumption on the missingness function (Section 5.3).

Our empirical evaluation (Section 6) highlights the practical advantages of our approach: Using
datasets of reasonable size, the performance of policies computed using the learned missingness
function converges to that of the optimal policy.
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2 Related Work

Our work builds on a rich literature in missing data analysis [8, 19]. Classical assumptions such as
MCAR, MAR, and MNAR provide high-level categories. More refined tools, such as missingness
graphs, allow one to encode assumptions about the missingness in a structured way [20, 21], leading
to highly specific learnability results [22, 23]. Our setting departs from the standard missing data
paradigm in several important aspects. In particular, the concept of missingness is embedded within
the broader POMDP setting, which allows for a better and principled understanding of missingness
in the context of sequential decision-making under uncertainty.

As noted previously, most work on decision making with missing data focuses on RL, where either full
observations [24] or individual features may be missing [12, 25, 26]. Some approaches incorporate
missingness into belief updates for RL agents [10], while others adopt model-based methods, often
restricted to simpler settings such as MCAR [16]. Another line of work combines deep learning
with POMDP solvers by learning abstract state representations, but without explicitly modeling
the missingness process [14]. More principled imputation strategies—such as Bayesian multiple
imputation [13] and expectation-maximization [15]—estimate missing values as an intermediate
step in policy computation. In contrast to imputation, our approach directly learns the missingness
function and offers PAC guarantees on the resulting policy.

3 Preliminaries

A function µ : X → [0, 1] is a probability distribution over X when
∑

x∈X µ(x) = 1. The set of such
distributions is ∆(X). The support of distribution µ ∈ ∆(X) is supp(µ) = {x ∈ X | µ(x) ̸= 0}.
Writing µ = {x1 7→ p1, . . . , xk 7→ pk} indicates that µ(x1) = p1 and so on. The random variable x
sampled from µ is denoted by x ∼ µ. Given σ : X → ∆(Y ), we let σ(y | x) := σ(x)(y). Iverson
brackets, [φ], return 1 if predicate φ holds and 0 otherwise.

Definition 1 (POMDPs). A partially observable Markov decision process is a tuple P =
(S,A, T, b0, ϱ, Z,O, γ), with S = ×i=1,...,n Si the finite factored state space (we denote the set
of feature indices by I = {1, . . . , n}), A the finite action space, T : S × A → ∆(S) the tran-
sition function, b0 ∈ ∆(S) the initial state distribution, ϱ : S × A → R the reward function,
Z = ×i=1,...mZi the finite factored observation space, O : S → ∆(Z) the observation function, and
γ ∈ [0, 1) the discount factor.

Without loss of generality, we assume that O is a state-based observation function, all s ∈ S are
reachable, and T is a total function. If each state in the POMDP can be uniquely identified from its
observation, it reduces to an MDP.

A trajectory in a POMDP P is a sequence of states, observations, and actions. A history h =(
z(0), a(0), z(1), a(1), . . .

)
∈ H ⊆ (Z × A)∗ is the observable fragment of a trajectory, i.e., a

sequence of observations and actions. A history can be summarized by a sufficient statistic known
as a belief b ∈ B, with B ⊆ ∆(S); a probability distribution over underlying states induced by
observing a history h ∈ H. The belief update τ : B ×A×Z → B computes a successor belief b′ via
Bayes’ rule [27].

A policy π : B → ∆(A) ∈ Π maps beliefs to probability distributions over actions. The objective is
to find a policy π∗ ∈ Π that maximizes the infinite-horizon expected cumulative discounted reward:
VP(π) = Eπ

[∑∞
t=0 γ

tϱ(s(t), a(t))
]
. The problem of finding the optimal policy is undecidable [28].

Thus we focus on computing ε-optimal policies [29, 30].

4 Missingness in MDPs

This section introduces missingness-MDPs and the different types of missingness functions in the
context of POMDPs.

Definition 2 (Miss-MDP). A missingness-MDP is a tuple (S,A, T, b0, ϱ, Z,M, γ), where S, A,
T , b0, ϱ, and γ are as in a POMDP, the finite observation space is Z = ×i∈I(Si ∪ {⊥}), with ⊥
denoting missing information, and function M : S → ∆(Z) is the missingness function such that
∀s ∈ S, ∀z ∈ supp(M(s)),∀i ∈ I either zi = si or zi = ⊥.
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Miss-MDPs are a subclass of POMDPs where the state space S and observation space Z share the
feature indices I , and where Z ⊋ S because some features can go missing in Z, being replaced by
the symbol ⊥. This process of “poking holes” is governed by the stochastic missingness function M .

Missingness indicators. Missingness functions can equivalently be described as a map to vectors
of missingness indicators [20]: Such a vector r ∈ R = {0, 1}n has ri = 0 if feature i is missing
(zi = ⊥), and otherwise ri = 1. The function fmiss : Z → R maps observations to their missingness
indicators.
Example 1. Let P be a miss-MDP where S = {a, b}2, Z = {a, b,⊥}2, and the missingness function
is defined as: M((s1, s2)) = {(s1, s2) 7→ 0.5, (s1,⊥) 7→ 0.5}. Then, for instance, visiting state
(b, a) yields either (b, a) or (b,⊥), each with probability of 0.5. We have fmiss((b, a)) = (1, 1) and
fmiss((b,⊥)) = (1, 0).

We aim to compute a near-optimal policy for a miss-MDP P with unknown missingness function
M . For this, we use a dataset D of histories (of length at least |S|), which are collected using a fair
policy (i.e. it has positive probability to visit all reachable states). The resulting policy is probably
approximately correct (PAC) if, with high probability, its value is close to the true optimum. Formally:

Problem statement. We are given a miss-MDP P with an unknown missingness function M ,
a dataset D = (h1, . . . , hk) of k histories hi ∈ H collected from P under an unknown but fair
policy πb, and a precision ε > 0 and confidence threshold δ > 0. The goal is to approximate the
missingness function M̂ ≈ M and use it to compute a policy π∗ ∈ Π such that with probability
at least 1− δ, we have |supπ(VP(π))− VP(π

∗)| ≤ ε.

4.1 Types of Missingness Functions

We formally introduce the three types of missingness functions (MCAR, MAR, and MNAR) in the
context of miss-MDPs. The simplest is MCAR, where the probability of a feature going missing does
not depend on any feature values of the state. The miss-MDP in Example 1 is of this type.
Definition 3 (MCAR). The missingness function M : S → ∆(Z) of a miss-MDP P is MCAR iff
∀r ∈ R, ∃pr ∈ [0, 1], ∀s ∈ S, P (fmiss(z) = r | z ∼ M(s)) = pr.

Admittable and Ialways. To define MAR and MNAR, we require the following notions: An ob-
servation z ∈ Z is admittable by a state s ∈ S, denoted z ⪯ s, iff ∀i ∈ I , zi = ⊥ or zi = si.
In Example 1, we have (b,⊥) ⪯ (b, a) and (b, a) ⪯ (b, a) but (a,⊥) ⪯̸ (b, a). Furthermore,
Ialways = {i ∈ I | ∀s′ ∈ S : P(zi = ⊥ | z ∼ M(s′)) = 0} ⊆ I is the set of indices of features that
never go missing, and Imis = I \ Ialways is its complement.

In the following, we distinguish between a restricted MAR version, which we call simple MAR [31],
and the general MAR definition [9]. For simple MAR, the probability of observation features being
missing is only influenced by the observable features that never go missing, i.e., zi for i ∈ Ialways. For
MAR, a missingness probability is only influenced by the non-missing features of a given observation,
including features that may go missing. Any MCAR missingness function is also (simple) MAR.
Definition 4 ((Simple) MAR). The missingness function M : S → ∆(Z) of a miss-MDP P is:

• Simple MAR iff for all s, s′ ∈S that agree on always-observed features (i.e. ∀i∈ Ialways,
si = s′i), the missingness probability is the same for all missingness indicators r∈R, formally:
P(fmiss(z)=r |z∼M(s))=P(fmiss(z

′)=r |z′∼M(s′)).

• MAR iff for all s, s′ ∈ S and z ∈ Z, if z ⪯ s, s′, the probability of its missingness indicator
r := fmiss(z) is equal for both states, formally: P(fmiss(z

′) = r | z′ ∼ M(s)) = P(fmiss(z
′′) =

r | z′′ ∼ M(s′)).

Example 2. We redefine the missingness function for the miss-MDP from Example 1 to be simple
MAR: M((s1, a)) = {(s1, a) 7→ 1}, and M((s1, b)) = {(s1, b) 7→ 0.5, (⊥, b) 7→ 0.5}. Here, the
missingness probability of feature 1 depends on the (always observed) value of feature 2. As an
example of MAR but not simple MAR, consider: M((s1, a)) = {(s1, a) 7→ 0.5, (⊥,⊥) 7→ 0.5}, and
M((s1, b)) = {(s1, b) 7→ 0.25, (⊥, b) 7→ 0.25, (⊥,⊥) 7→ 0.5}. Now, the missingness probability
of feature 1 depends on the value of feature 2 (only if observed), while feature 2 itself misses with
probability 0.5.
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Figure 2: Exemplary missingness graphs visualizing relations between the elements of a miss-MDP
for the three types of missingness functions. Red arrows indicate the relevant change to the MCAR
graph making the missingness function either simple MAR or MNAR.

Definition 5 (MNAR). The missingness function M of a miss-MDP P is MNAR iff it is not MAR.

In MNAR missingness functions, missingness probabilities may depend on the values of missing
features. In particular, in self-censoring missingness functions, the missingness probability of a
feature depends on its own value.

Example 3. We adapt Example 1 so that the probability of s2 going missing depends on its own
value, making M MNAR: M((s1, a))={(s1, a) 7→ 0.5, (s1,⊥) 7→ 0.5} and M((s1, b))={(s1, b) 7→
0.1, (s1,⊥) 7→ 0.9}.

4.2 Missingness Graphs

Missingness graphs (m-graphs) are a tool for analyzing the characteristics of missingness functions.
We adapt the definition of Mohan and Pearl [31], translating it to our framework of miss-MDPs. An
m-graph is a causal diagram [32] in the form of a directed acyclic graph. The vertices in the graph
correspond to variables, and the directed edges correspond to the causal relationships between the
variables.

The vertices can be grouped into the following categories:1 S -nodes correspond to features of the
state space, Z -nodes correspond to the features of observations and R -nodes correspond to the
missingness indicators. For always observed features, we omit the respective R -node from the
m-graph. Arrows between nodes represent a direct causal relationship: The parent node is a direct
cause of the child node. The absence of an edge intuitively denotes that two variables do not directly
influence each other; formally, it means that they are conditionally independent, given other variables
in the graph according to the d-separation criteria [33].

Visualizing types of missingness. Figure 2 visualizes the conditional independence assumptions of
the types of missingness functions using m-graphs for the miss-MDP from Example 1. For MCAR,
both R -nodes have no incoming arrows. Hence, they do not depend on any feature value, but are
purely stochastic. For (simple) MAR, there are two changes: Feature S2 affects the missingness
indicator R1 (red arrow), and R2 is absent, making feature S2 always observable. For MNAR, S2

can go missing, and thus the missingness indicator R1 depends on information that can go missing.
We remark that m-graphs cannot represent context-specific independence assumptions, which are
needed to, for instance, represent non-simple MAR functions such as the one in Example 2. The
approximated missingness function in this paper can all be represented by m-graphs.

5 Approximating Missingness-MDPs

Before we explain how to approximate missingness functions in order to compute near-optimal
policies, we present an interesting insight: For certain types of missingness and certain problems, the
missingness function M can in fact be ignored.

1We leave out a set of unobserved variables, U , from the definition of Mohan and Pearl [31], as in our setting M depends on the state S
and therefore U = ∅.
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Remark 1 (Ignorability). Missing data literature defines ignorability as cases where any quantity
of interest can be consistently estimated from observations alone and it is not necessary to model
the missingness process [8]. This holds under MCAR, and also under MAR whenever the quantity
depends only on the observed features.

We identify a similar notion of ignorability for miss-MDPs: If the missingness function M is
MAR (including MCAR), then belief updates τ can be computed without knowledge of the precise
probabilities of M , since these cancel out in Bayes’ rule; see Appendix A for a formal proof. Thus,
MAR missingness is ignorable for maintaining a belief when executing a policy in a miss-MDP.
However, we stress that the missingness function is required to compute belief-based policies, since
probabilities of successor beliefs depend on it.

As our goal is to provide ε-optimal policies of a miss-MDP, we are indeed required to approximate
M . We first compute an approximation M̂ ≈ M of the unknown M from the given dataset D of
histories. This yields an approximated, but fully specified miss-MDP P̂, which can be solved using
any off-the-shelf POMDP solution method.

Missingness types in focus. A necessary condition is that the missingness function can be ap-
proximated solely from observations, a property that missing data literature calls identifiability [22].
Establishing identifiability is not the focus of this paper. Instead, we provide PAC guarantees for two
types that are known to be identifiable. Thus, we focus on: (1) simple MAR (including MCAR), and
(2) non-self-censoring MNAR with independent missingness indicators. Additionally, in Section 6,
we experiment on MNAR with dependencies between the indicators.

Outline. Sections 5.1 and 5.2 describe our algorithms for approximating missingness functions.
Both are structured as follows: After stating their assumptions, they define how to compute M̂ and
prove that the approximation is probably approximately correct. Finally, they explain how to utilize
additional knowledge on the missingness function to further reduce sample complexity. Section 5.3
discusses how we use these algorithms to compute near-optimal policies.

Occurrence counts. Both algorithms utilize the dataset D = (h1, . . . , hk) of k histories hi ∈ H to
extract the number of occurrences of every observation, which we now formally define. For a finite
history hi =

(
z(0), a(0), . . . , z(l), a(l)

)
, we denote the j-th observation z(j) by h

(j)
i . The number

of occurrences of an observation z ∈ Z is: #D(z) =
∑k

i=1

∑|hi|
j=0[h

(j)
i = z]. For a set Z ′ ⊆ Z, we

define #D
(
Z ′) = ∑

z∈Z′ #D(z).

5.1 Approximating MCAR and Simple MAR

If a missingness function is of type simple MAR, we can approximate it using the approximation
for simple MAR algorithm, AsMAR. The modifications to obtain the algorithm for the more restricted
MCAR-type functions, AMCAR, are described at the end of the section.

Always-observable features. Based on D we partition the feature indices I into those that are
always observed and those that can go missing as Îalways = {i ∈ I | #D({z ∈ Z | zi = ⊥}) = 0}
and Îmis = I \ Îalways, respectively. Note, this partitioning is based on empirical data (Îalways ≈ Ialways)
and we might misclassify a feature index to be in Îalways even though it can go missing.

Computing M̂ . We use the fact that M can be seen as a mapping S → ∆(R) (see paragraph
“Missingness indicators”, Section 4). Consequently, for every state, we want to approximate the
probability of a certain vector of missingness indicators. The simple MAR assumption tells us
that the probabilities can only depend on the features in Îalways. Thus, for every combination of the
always-observable features of a state s ∈ S and missingness indicator vector r ∈ R, we can compute
the occurrence count #D(s, r) = #D (Zr

s ) , where

Zr
s =

{
z ∈ Z

∣∣∣∣∀i ∈ I :
(i ∈ Îalways =⇒ zi = si)
and(ri = 0 =⇒ zi = ⊥)

}
.
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Using this, we obtain M̂(z | s) as the fraction of observing (s, fmiss(z)) and the sum of counts for s
and all possible missingness indicators values:

M̂(z | s) = #D(s, fmiss(z))∑
r∈R #D(s, r)

. (1)

Probably approximately correct. With enough data, our approach yields an arbitrarily precise
approximation of the true missingness function. We formalize this in Theorem 1 as a PAC guarantee,
not only proving that it becomes ε-precise for every ε > 0, but that we can also bound the probability
of an error (through unlucky sampling). Additionally, we can adapt the claim to bound the imprecision
of the resulting M̂ for a given dataset. The proof is provided in Appendix B.2.
Theorem 1. Let P be a missingness-MDP where the missingness function is simple MAR. For
every given precision ε and confidence threshold δ, there exists a number n∗ of histories, such that
a dataset D of n∗ histories has the following property: With probability at least δ, M̂ computed on
D according to Equation (1) satisfies that for all reachable states s ∈ S and observations z ∈ Z,
we have M̂(z | s) = M(z | s)± ε. Dually, given a dataset D and confidence threshold δ, we can
compute an ε such that with probability at least δ, for all states s ∈ S and observations z ∈ Z, we
have M̂(z | s) = M(z | s)± ε.

Using additional assumptions on the missingness function. Beyond the necessary simple MAR
assumption, we can exploit additional assumptions to improve the approximation of M for the same
D. Consider a feature i that is always observable, but does not affect the missingness probability of
other features. We can then exclude i from Îalways, thereby effectively merging the occurrence counts
of states that differ only in this feature. Therefore, if we instead assume M to be MCAR, Îalways can
be reduced to an empty set. Consequently, we get that #D(s, r) does not depend on s anymore, and
we effectively only count occurrences of missingness indicators.

We prove the correctness of these improvements in Appendix B.2. In Section 6, we empirically show
that using such knowledge can significantly improve the precision of M̂ estimated from the same D.

5.2 Approximating MNAR with Independent Missingness Indicators

This section presents the approximation for independent missingness indicators algorithm, AIMI. Its
assumptions are:

1. Independence of missingness indicators: The fact that one feature is missing must not in-
fluence the missingness-probability of any other feature. Formally, for s ∈ S and z ∈ Z,
P(z | z ∼ M(s)) = Πi∈IP(zi | z ∼ M(s)).

2. No self-censoring: Intuitively, a feature may not influence its own missingness probabilities.
Formally, for all i ∈ I and every pair of states s, s′ ∈ S that differ only in the i-th feature (si ̸= s′i,
but for all j ̸= i we have sj = s′j) we have P(zi = ⊥ | z ∼ M(s)) = P(zi = ⊥ | z ∼ M(s′)).

3. Positivity: Intuitively, if a feature affects the missingness probabilities of other features, we need
to observe its value to learn the missingness probabilities. However, this is impossible if it always
misses. Therefore, we require a positivity assumption [34]: For all i ∈ I and s ∈ S, we have
P(zi ̸= ⊥ | z ∼ M(s)) > 0.

Computing M̂ . We compute the occurrence count for every state s ∈ S, feature i ∈ I and value of
a corresponding i-th missingness indicator ri ∈ {0, 1} as #D(s, i, ri) = #D(Z

i,ri
s ), where Zi,ri

s is
the following set of observations:

Zi,ri
s =

{
z ∈ Z

∣∣∣∣ ∀j ∈ I \ {i} : (zj=sj) and
(ri=0 ⇐⇒ zi=⊥)

}
.

By positivity, a large enough dataset almost surely contains observations to make the counters non-
zero (i.e. for all s and i, we have #(s, i, 0) +#(s, i, 1) > 0). The probability of a non self-censoring
feature i depends only on the other features j ∈ I \ {i}. Finally, using the independence assumption,
we can infer M̂ by taking the product of the individual missingness probabilities of all features (again
viewing M as a mapping S → ∆(R), see Section 4):
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M̂(z | s) =
∏
i∈I

#D(s, i, fmiss(z)i)

#D(s, i, 0) + #D(s, i, 1)
(2)

Probably approximately correct. In Appendix B.3, we prove Theorem 2 that provides the same
kind of guarantee as in Theorem 1; the only difference are the assumptions on the missingness
function and the approach for calculating M̂ .
Theorem 2 (PAC guarantee for AIMI). Let P be a missingness-MDP where the missingness function
satisfies independence, non-self-censoring, and non-sure missing. Then, the same PAC guarantees
hold as specified for AsMAR in Theorem 1 but with M̂ computed using Equation (2).

Using additional assumptions on the missingness function. In its general form, AIMI maintains
a counter for every possible combination of the feature valuations of other features j ∈ I \ {i}. If
we know that a certain feature j does not affect the missingness probability of i, – there is no edge
between the j-th S -node and the i-th R -node, – we can merge the counters for all values of the j-th
feature. This knowledge can come from (a) an m-graph, (b) assuming simple MAR while observing
feature j can go missing in D, or (c) assuming MCAR. in which case we can completely drop the
dependency on s in the counters. We prove in Appendix B.3 that all these modifications retain the
PAC guarantees.

5.3 Computing a Policy with the Approximations

We show in Appendix B.4 that after finitely many samples, M̂ is accurate enough to yield an ε-optimal
policy. We highlight that learning M̂ to precision ε is insufficient, as the errors in M̂ aggregate when
solving the miss-MDP.
Theorem 3 (Computing ε-optimal Policies). Let P be a miss-MDP with a missingness function
that is simple MAR or that satisfies independence, no self-censoring, and positivity. Assume we can
sample histories collected under a fair policy, and we know a lower bound on the smallest missingness
probability p ≤ mins∈S,z∈Z M(z | s). Then, for every given precision ε and confidence threshold
δ, we can in finite time compute a policy π∗ such that with probability at least δ it is ε-optimal, i.e.
|supπ(VP(π))− VP(π

∗)| ≤ ε.

Practical considerations. The guarantees of Theorem 3 concern asymptotic convergence to an
ε-optimal policy. Thus, they provide the theoretical foundation of our approach. Still, in practice,
the required number of samples is very large, and we work with datasets that are not necessarily
sufficient to provide the ε-optimality guarantees. Thus, we infer M̂ from a given dataset and then
solve the approximated miss-MDP using an off-the-shelf POMDP solver. For datasets of limited size,
we encounter a practical problem: For an observation z with #D(s, fmiss(z)) = 0, for any s ∈ S we
obtain M̂(z | s) = 0, leading to a division by zero for s when performing the belief update τ . We
circumvent this case by setting #D,κ(s, r) = #D(s, r) + κ, i.e. we add a small κ > 0 to every count.
The influence of κ diminishes with an increasing dataset size |D|.

6 Experiments

Our empirical study addresses the following questions:

Q1. Do the proposed methods provide adequate approximations of the missingness function?
Q2. How does the correctness of the assumption on the missingness function affect the approxima-

tion?
Q3. As the amount of data increases, does the value of the policy computed on the approximated

miss-MDP converge to the optimal value of the true miss-MDP?
Q4. How does the value computed from the approximated miss-MDP compare against baselines that

do not estimate the missingness function?

Benchmarks. We consider two environments with varying types of missingness: (1) ICU, a
benchmark that models a doctor treating a patient, whose vital measurements are not always avail-
able [17, 35–37], and (2) Predator, a variant of the Tag benchmark [30], where a predator is chasing a
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Figure 3: Empirical results for the ICU (top) and Predator (bottom) benchmarks, including average/-
worst total variation (ATV/WTV) and normalized values. Policy values are normalized such that 1
and 0 correspond to values of the optimal policy with known M and the uniform baseline with an M̂
that assigns equal probability to each observation, respectively.

partially hidden prey. To answer Q2, we consider for our benchmarks a selection of the following four
missingness functions: (1) MCAR, (2) sMAR, a simple MAR function, (3) MNAR (id.), an identifiable
MNAR function without self-censoring that satisfies the positivity assumption, and (4) MNAR (unid.),
an unidentifiable MNAR function with self-censoring. In the Predator benchmark, for all missing-
ness functions, the (x, y)-coordinates of the prey can only go missing jointly, i.e. the missingness
indicators are dependent; in the ICU benchmark, the missingness indicators are always independent.
The implementation of the proposed algorithm and the benchmarks are publicly available.2 For
details on the benchmarks, see Appendix C.

Protocol, algorithms, and baselines. For a range of dataset sizes |D|, we collect data using
the uniform random policy πrnd where ∀a : πrnd(a | ·) = 1/|A|, and compute the estimate M̂ ≈ M

using our proposed algorithms: AMCAR (○), AsMAR (▲), and AIMI (□) (Section 5). Each M̂ yields an
approximated miss-MDP P̂, for which we compute a policy π̂ using the POMDP solver SARSOP [18].
To assess the efficacy of our approach, we consider the following baselines: (1) optimal: the SARSOP
policy π∗ computed for the true M (the upper bound); (2) uniform M : the SARSOP policy πMu

computed for Mu, a guess of M that is uniform, where every feature independently goes missing
with probability 0.5.

Metrics. For every dataset size and method, we perform 20 independent runs and report the average
together with the interquartile range (shaded area) of the following metrics.

1. To assess the quality of the approximation M̂ compared to M for a miss-MDP P , we
compute the total variation (TV) of the distributions at a state s ∈ S as TV (s) =
1
2

∑
z⪯s

∣∣M̂(z | s)−M(z | s)
∣∣. We aggregate the TV across states by the average

TV (ATV): 1/|S|
∑

s TV (s), and the worst TV (WTV): maxs TV (s).

2https://github.com/ai-fm/missingness-pomdps
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2. We are interested in how the values VP(π̂) on the true miss-MDP P of the various π̂
computed by the algorithms described above compares to the optimum VP(π

∗). All policy
values are normalized s.t. 1 and 0 correspond to the values of the optimal and uniform
baselines, respectively.

Results. Figure 3 presents the experimental evaluation. It shows how the TV of M̂ and the value of
the associated π̂ evolve with dataset size |D|. Next, we discuss the research questions based on these
results.

Q1: With a sufficient amount of data and the correct assumptions, the proposed algorithms
adequately approximate the missingness function. We observe that under the appropriate
assumptions, each algorithm can learn the corresponding missingness function (bringing the TV
to zero): AMCAR learns the exact missingness function in PredatorMCAR with 100 or more observa-
tions. We observe similar results for AsMAR (in ICUsMAR and PredatorsMAR), as well as for AIMI (in
ICUMNAR (id.)).

Q2: The assumptions on the missingness function significantly affect the quality of the approxi-
mation. On the one hand, relaxing the assumptions on the missingness function ensures it can be
learned, though this comes at the cost of reduced sample efficiency. For example, in PredatorMCAR,
we observe that AsMAR and AIMI require orders of magnitude more data to learn the missingness
function than AMCAR. On the other hand, making stronger assumptions can lead to failures: for exam-
ple, AMCAR converges to an incorrect missingness function in all benchmarks except PredatorMCAR.
The results also show that in some cases, the algorithms might approximate the missingness function
even if it does not satisfy the assumptions required for PAC guarantees, as demonstrated from the
results of AIMI on ICUMNAR (unid.).

Q3: The convergence to the optimal policy follows the quality of the approximation, and,
therefore, the convergence of the resulting policy to the optimum. When the approximation is
sufficiently accurate, the value of the policy found by using our methods converges to the optimal
value.

Q4: The baseline is not able to compute a policy with a value that is competitive with the
values of the policies following from our methods. In all cases, the baseline algorithm fails to
approximate the true M and the produced polices πMu significantly lag behind the polices computed
by our algorithms. The only exception is PredatorMNAR (unid.), where our algorithms also fail. This
shows that unidentifiable MNAR processes that violate the independence assumption present the true
challenge for our approach.

7 Conclusion

We introduce miss-MDPs to integrate the theory of missing data into decision-making under uncer-
tainty. Given a dataset of trajectories generated from a miss-MDP, we approximate the unknown
missingness function, which—under certain assumptions about the missingness function—enables the
computation of an ε-optimal policy. We demonstrate that incorrect assumptions about the missingness
mechanism can result in misspecified models and suboptimal policies. Interestingly, we show that for
certain missingness functions, belief updates can be computed without knowledge of the missingness
function—mirroring the notion of ignorability from the missing data literature. Our experiments
support the theoretical results and demonstrate the practical benefits of our contributions. Future
work will explore lifting the assumption of a known transition function and extending miss-MDPs to
the more general setting of miss-POMDPs.
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A Proofs for Section 4: Probabilities of the Missingness Function

Lemma 1. If the missingness function M is MAR, then ∀z ∈ Z, ∃p ∈ [0, 1], ∀s ∈ S, M(z | s) =
[z ⪯ s] · p.

Proof. Suppose that M is MAR. The lemma states that ∀z ∈ Z, ∃p ∈ [0, 1], ∀s ∈ S, M(z | s) = p
if z ⪯ s and otherwise M(z | s) = 0. Since z ̸⪯ s ⇒ M(z | s) = 0, we only need to show
∀z ∈ Z,∃p ∈ [0, 1],∀s ∈ S, z ⪯ s ⇒ M(z|s) = p, which directly follows from the MAR
assumption.

Remark 2. Lemma 1 implies that the missingness function can be omitted in the belief update. Let
b ∈ B be a belief, and let s′ ∈ S. Then, for any a ∈ A and z ∈ Z, it holds that

b′(s′) = τ(b, a, z)(s′)

:=
M(z | s′)

∑
s∈S T (s′ | s, a)b(s)∑

s′′∈S M(z | s′′)
∑

s∈S T (s′′ | s, a)b(s)
(By definition of belief update)

=
[z ⪯ s′] · p

∑
s∈S T (s′ | s, a)b(s)∑

s′′∈S [z ⪯ s′′] · p
∑

s∈S T (s′′ | s, a)b(s)
(By Lemma 1)

=
[z ⪯ s′]

∑
s∈S T (s′ | s, a)b(s)∑

s′′∈S [z ⪯ s′′]
∑

s∈S T (s′′ | s, a)b(s)
. (p cancels out)

Therefore, the probabilities of M do not affect the resulting probabilities of the belief update.
In particular, this means that maintaining a belief while executing a miss-MDP does not require
knowledge of M .

Still, we stress again that one needs M to compute an optimal policy because this requires constructing
and solving the belief MDP (see [38, Chapter 16.4.1]), which in turn requires knowing the probability
P(b′ | b, a) of going to a successor belief b′ from a current belief b ∈ B upon playing action a ∈ A.
Concretely, the probability of a successor belief b′ = τ(b, a, z) depends on the probability of z ∈ Z
given b and a, which in turn depends on M ,

P(b′ | b, a) =
∑
z∈Z

P(z | b, a)[b′ = τ(b, a, z)],

P(z | b, a) =
∑
s∈S

b(s)
∑
s′∈S

T (s′ | s, a)M(z | s′).
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Here, no normalization occurs, and the probabilities of M do not cancel out.

B Proofs for Section 5: Probably Approximately Correct

This appendix is about proving that given enough data, we can approximate the missingness function
to arbitrary precision ε, or the other way round: we can prove a certain precision ε for any given
dataset D. In both directions, we provide a probabilistic guarantee, i.e. that the result is correct with
probability at least δ. The reason the guarantee has to be probabilistic is that our knowledge relies on
a sampled dataset, and, intuitively, there always is a chance that we were “unlucky” and received a
very unlikely sequence of samples from which we infer a wrong approximation.

Outline. First, in Appendix B.1 we recall standard notions from statistics literature: Bernoulli
processes and the fact that building on Okamoto’s inequality, we can obtain a size for our dataset D
given precision ε and confidence δ (or, analogously, obtain a precision ε given D and δ). Afterwards,
Appendix B.2 and Appendix B.3 provide the proofs of Theorems 1 and 2, respectively, i.e. the
guarantees for our algorithms. Moreover, they prove the guarantees for the modified algorithms when
using more information about the missingness function. Finally, Appendix B.4 proves Theorem 3,
our main result that ε-policies can be computed.

B.1 Bernoulli processes

Definition 6 (Bernoulli process [39], [40, Chapter 4.3]). A Bernoulli process is a sequence of
binary random variables that are independent and identically distributed. All random variables have
probability p to yield a 1, and probability 1− p to yield a 0.

Throughout this appendix, we write n for the length of the sequence of a Bernoulli process, and k for
the number of successes, i.e. the number of times it yielded a 1. Moreover, we denote by p̂ = k

n the
empirical success probability. Okamoto’s seminal work proves the following property of estimating p
through observing a Bernoulli process:
Theorem 4 (Okamoto’s inequality [41]). For a Bernoulli process with n repetitions and k successes
and a given precision ε, we have

Pr(p̂− p ≥ ε) ≤ e−2·n·ε2 and Pr(p̂− p ≤ ε) ≤ e−2·n·ε2 .

For our guarantees, we want that Pr(|p̂− p| ≥ ε) ≤ 1− δ, i.e. that our estimate p̂ is ε-precise with
probability at least δ. Thus, distributing our confidence symmetrically, we insert 1−δ

2 on the left side
of Okamoto’s inequalities. Then, we can solve the inequation for δ, ε, or n:

1− δ

2
≤ e−2·n·ε2 ⇔ ε ≥

√
ln( 2

1−δ )

2 · n
⇔ n ≥

ln( 2
1−δ )

2 · ε2
. (3)

In other words, given two of precision ε, confidence δ, and number of repetitions n, we can infer the
third. We remark that there exist other inequalities similar to Okamoto’s that yield the same result, but
with tighter bounds; we refer to [42, Section 3] for a discussion. However, as our goal is only to prove
the existence of a bound, we choose the conservative Okamoto bound for its easier accessibility.

B.2 PAC guarantees for AsMAR

Theorem 1. Let P be a missingness-MDP where the missingness function is simple MAR. For
every given precision ε and confidence threshold δ, there exists a number n∗ of histories, such that
a dataset D of n∗ histories has the following property: With probability at least δ, M̂ computed on
D according to Equation (1) satisfies that for all reachable states s ∈ S and observations z ∈ Z,
we have M̂(z | s) = M(z | s)± ε. Dually, given a dataset D and confidence threshold δ, we can
compute an ε such that with probability at least δ, for all states s ∈ S and observations z ∈ Z, we
have M̂(z | s) = M(z | s)± ε.

Proof. Proof outline. We first show that the computation of every M̂(z | s) is related to a Bernoulli
process. Then, using the results of Appendix B.1, we can prove the claims of the theorem for
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individual state-observation pairs. Next, we lift this to all state-observation pairs by distributing the
confidence δ. Finally, we individually explain how this yields the two claims of the theorem.

The Bernoulli process related to M̂(z | s). Fix a state s ∈ S and an observation z ∈ Z. Consider
the following random variable: Sample a state s′ ∈ S and the corresponding observation z′ ∈ Z.
Set the random variable to 1 if ∀i ∈ I : (i ∈ Ialways =⇒ z′i = si) ∧ (fmiss(z)i = 0 =⇒ z′i = ⊥);
set the random variable to 0 if ∀i ∈ I : (i ∈ Ialways =⇒ z′i = si); and ignore the sampled (s′, z′)
otherwise, i.e. if ∃i ∈ I : (i ∈ Ialways ∧ z′i ̸= si). Note that the random variable is 1 exactly when the
sample would be counted by #D(s, fmiss(z)), and the sample is not ignored exactly when it would
be counted by

∑
r∈R #D(s, r).

We require that the probability of the random variable being 1 is equal among all sampled state-
observation pairs (s′, z′) that are not ignored by it, and moreover we require this probability to be equal
to M(z | s) = M(fmiss(z) | s) =: p. To prove this, we use the assumption that M is a simple MAR
missingness function; thus, we know that for all s′ that agree with s on all always observable features
(formally: ∀i ∈ I : (i ∈ Ialways =⇒ z′i = si)) , we have p = M(fmiss(z) | s) = M(fmiss(z) | s′).
We have just shown that the random variable we constructed is a Bernoulli process with success
probability p = M(z | s), with the number of repetitions n =

∑
r∈R #D(s, r) and the number of

successes k = #D(s, fmiss(z
′)). Note that the definition of M̂ in Equation (1) is exactly the empirical

success probability p̂ = k
n .

Observe that we do not need a separate Bernoulli process for every state-observation pair: The number
of repetitions

∑
r∈R #D(s, r) is independent of the observation z, since that only affects whether

it is counted as success or not. Further, it suffices to have one random variable per combination
of valuation for the features in Ialways, since all states that agree on the always observable features
yield the same Bernoulli process. Moreover, we do not need to consider every observation z (as this
includes observations that do not admit s), but rather only every missingness indicator vector r ∈ R.
In the following, we still write “Every state-observation pair” instead of “Every pair of set of states
that agree on the always observable features and missingness indicator vector”, as it is also true and
more concise.

Single state-observation pair. Consider the Bernoulli process just described for a fixed state-
observation pair (s, z). We explain how to use the results of Appendix B.1 towards proving the first
and second claim of the theorem:

• First claim: By the third variant of Equation (3), we have that given a precision ε and
confidence threshold δs,z , we can compute a necessary number of samples ns,z such that
we obtain the PAC guarantee for this state-observation pair.

• Second claim: Observe that a given dataset D corresponds to a number of repetitions of
every Bernoulli process. Let ns,z be the number of repetitions for the pair (s, z). Thus, using
the second variant of Equation (3), we have that given D (and thus ns,z) and a confidence
threshold δs,z , we can compute a precision εs,z such that we obtain the PAC guarantee for
this state-observation pair.

All state-observation pairs. We can split the given confidence threshold δ uniformly over all state-
observation pairs, i.e. for every s ∈ S, z ∈ Z, we have δs,z = δ

|S|·|Z| . Then, by the union bound, the
probability of all state-observation pairs being correctly estimated is the sum of all δs,z , which (since
we distributed it uniformly) is δ. By splitting the confidence threshold in this way, we can obtain the
PAC guarantee for all state-observation pairs.

Second claim. We first provide the full argument for the second claim, as it is simpler. Given the
dataset D and confidence threshold δ, we obtain an εs,z for all state-observation pairs. The probability
that all of these are correct is at least δ. We obtain the claim by taking the maximum over these, i.e.
setting ε := maxs∈S,z∈Z εs,z . Then we have that with probability at least δ, for all states s ∈ S and
observations z ∈ Z, we have M̂(z | s) = M(z | s)± ε.
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First claim. We proceed in two steps: We explain the analogous argument to the second claim, based
on an assumption on the dataset. Afterwards, we explain how this assumption on the dataset can be
satisfied.

Assume that for every state-observation pair (s, z), the dataset D contains at least ns,z samples, i.e.
the number computed using Equation (3) inserting ε and δs,z . Then, analogously to the proof of the
second claim, computing M̂ using this dataset satisfies that with probability at least δ, for all states
s ∈ S and observations z ∈ Z, we have M̂(z | s) = M(z | s)± ε.

It remains to show that there exists a number n∗ such that a sampled dataset of n∗ histories has the
required property. For this, we have to spend some of our confidence threshold δ, since we can only
guarantee the property with a certain probability; there is the chance that even upon sampling n∗

histories, we are unlucky and some state-observation pair has not been sampled often enough. Thus,
we split δ as follows: δD is used to guarantee the property of the dataset, and δM̂ is used to guarantee
the consequential property of M̂ . Thus, δs,z above are obtained by uniformly distributing δM̂ , not
all of δ. Then, by the union bound, the probability that D has the desired property and that the PAC
guarantee holds is δD + δM̂ = δ.

We now need to show that there exists an n∗ such that a dataset of this size contains the required
number of samples with probability at least δD. Recall that the dataset is sampled using a fair policy,
which means that every state has a positive probability to be visited; thus (assuming that the length of
every history is at least as large as the number of states in the miss-MDP), there exists a minimum
probability m such that every state is visited with at least probability m in every history. Moreover,
observe that for a state-observation pair (s, z), the number of samples for its Bernoulli process is at
least the number of times s has been visited; this is because a sample is used when it agrees with s on
the always observable features. Thus, for every sampled history, we have a probability of at least
m to obtain at least one sample for (s, z). This lower bound on the number of samples for (s, z) is
binomially distributed with success probability m [40, Chapter 4.3]. Thus, there exists a number of
histories n∗ such that the probability of having at least ns,z samples for (s, z) when sampling at least
nh histories is greater than δD. As before, this argument was for a single state-observation pair; thus,
δD is also uniformly distributed over all state-observation pairs.

Summarizing the above: There exists a number n∗, such that with probability δD, a dataset consisting
of n∗ histories contains at least ns,z samples for every state-observation pair (s, z), where ns,z is
the number computed using Equation (3) inserting ε and δs,z . Consequently, M̂ using this dataset
satisfies that with probability at least δM̂ , for all states s ∈ S and observations z ∈ Z, we have
M̂(z | s) = M(z | s) ± ε. Together, probably (with probability at least δ = δD + δM̂ ), we can
guarantee that M̂ is approximately correct.

Proposition 1. The improvements described in Section 5.1 for using knowledge retain the PAC
guarantees stated in Theorem 1.

Proof. The improvements use the fact that the underlying Bernoulli process in fact does not depend
on all features in Ialways. While it is correct to still split on these variables, obtaining two processes
with the same true success probability, we can also merge them.

More formally, observe that if feature i does not affect the missingness probability of other features,
for all valuations of feature i, the corresponding Bernoulli processes have the same success probability.
MCAR missingness functions are the most extreme case of this, where the given state is completely
irrelevant and it suffices to have one Bernoulli process per missingness indicator vector. As a side
note: Observe that it is indeed necessary to consider every missingness indicator vector and not
individual features, since the missingness probabilities need not be independent.

B.3 PAC guarantees for AIMI (Section 5.2)

Theorem 2 (PAC guarantee for AIMI). Let P be a missingness-MDP where the missingness function
satisfies independence, non-self-censoring, and non-sure missing. Then, the same PAC guarantees
hold as specified for AsMAR in Theorem 1 but with M̂ computed using Equation (2).
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Proof. This proof is analogous to that of Theorem 1: every missingness probability computed by
Equation (2) corresponds to the empirical success probability of a Bernoulli process, which allows
to apply the results from Appendix B.1. This proof differs in the argument why all states grouped
together in the same Bernoulli process have the same success probability, and in the argument why it
feasible to sample a dataset of the necessary size.

By the independence assumption, we know that it suffices to learn every individual P(zi | z ∼ M(s))
for each i ∈ I . By non self-censoring, we know that this probability depends only on features in
I \ {i}. Thus, the counter #(s, i, 0) counts exactly the successes of a Bernoulli process with success
probability P(zi | z ∼ M(s)), and #(s, i, 1) counts the failures.

It only remains to argue that a sufficient dataset can be feasibly obtained. For this, we use the
assumption that no feature is missing surely. In other words, every feature has a positive probability
to be observed. Thus, every reachable states has a positive probability m to be fully observed. Using
this, we can repeat the argument from the proof of Theorem 1.

Proposition 2. The improvements described in Section 5.1 for using knowledge retain the PAC
guarantees stated in Theorem 2.

Proof. (a) If we know from an m-graph that a particular feature i is not influenced by feature j, for
all valuations of j the Bernoulli process has the same success probability. Thus, we can merge these
Bernoulli processes and ignore feature j.

(b) If we know the missingness function is simple MAR and feature j goes missing, we know that it
cannot influence the missingness probability of any other feature by definition [31]. Then, the proof
is the same as in Case (a).

(c) If the missingness function is MCAR, we know that no feature influences the missingness
probability of any other feature. Thus, we can repeatedly apply the argument of Case (a) to merge all
Bernoulli processes until we have one for every feature.

B.4 Computing ε-optimal Policies (Section 5.3)

Theorem 3 (Computing ε-optimal Policies). Let P be a miss-MDP with a missingness function
that is simple MAR or that satisfies independence, no self-censoring, and positivity. Assume we can
sample histories collected under a fair policy, and we know a lower bound on the smallest missingness
probability p ≤ mins∈S,z∈Z M(z | s). Then, for every given precision ε and confidence threshold
δ, we can in finite time compute a policy π∗ such that with probability at least δ it is ε-optimal, i.e.
|supπ(VP(π))− VP(π

∗)| ≤ ε.

Proof. Sampling the dataset. We have sampling access with a fair policy, so every state has positive
probability to be visited. Thus, for any finite number n, we can almost surely obtain n samples of
every state s in finite time. For the Bernoulli process underlying Equation (1), and if the missingness
function is simple MAR, this suffices to guarantee that for every state-observation pair, we can obtain
the number of samples ns,z required for achieving precision ε with confidence δs,z . Similarly, for the
Bernoulli process underlying Equation (2), and if the missingness function satisfies positivity, we
can also obtain the required number of samples for every state-observation pair. Overall, under the
assumptions of the theorem, we can almost surely obtain a dataset in finite time such that it suffices
to give PAC guarantees on every state-observation pair.

We remark that this does not even require spending confidence budget as we did in the proofs of
Theorems 1 and 2, since there we required to get this dataset within a certain number of histories n∗.
Here, we only claim that we can get a sufficient dataset in finite time almost surely.

Obtaining M̂ . The assumptions on the missingness function in the statement of the theorem match
those in Theorem 1 or Theorem 2. Hence, given the dataset described in the previous paragraph, we
can approximate M̂ in a way such that with probability δ, it is εM -precise. Note that here we do not
employ the full allowed imprecision ε, but rather a smaller εM < ε, since there will be other sources
of error.

M and M̂ qualitatively agree. For our technical reasoning, we require that M(z | s) = 0 if and
only if M̂(z | s) = 0. We prove both directions separately: If M(z | s) = 0, then we never observe a
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sample for z when given s, and thus M̂(z | s) = 0, as it uses an empirical average (Equations (1)
and (2)). If M(z | s) > 0, as we use a fair sampling process, we almost surely eventually observe z

when given s, and consequently the empirical average is positive, i.e. M̂(z | s) > 0.

It remains to prove that we can in finite time conclude that M and M̂ qualitatively agree. This means
that we need to be sufficiently certain that if M̂(z | s) = 0, this is because indeed M(z | s) = 0
and not just because we haven’t sampled enough yet. For this, we use a proof technique employed
in, e.g., [43]: We utilize knowledge of (a lower bound on) the smallest missingness probability
p. Further, recall that the confidence threshold δ is distributed over all Bernoulli processes (see
Appendices B.2 and B.3). Thus, for each Bernoulli process, we have a confidence threshold δs,z .
Okamoto’s inequality (see Appendix B.1) provides an upper bound on the missingness probability
that is correct with probability at least δs,z . Thus, when this upper bound is less than p, we can
conclude with sufficient confidence that M̂(z | s) = 0.

Utilizing Lemma 2. Let P̂ be the approximated missingness-MDP that is exactly P except for the
missingness function, which is M̂ instead of M . We have just proven that in finite time we know
that with probability δ, M̂ is εM -precise and qualitatively agrees with M . Thus, it satisfies the
assumptions specified in Lemma 2, which is proven below. This key technical lemma shows that
the values obtained when following a policy π in either the original P or the approximated P̂ have a
bounded difference.3 Formally, for every policy π, we have |VP(π)− VP̂(π)| ≤ f(εM ), where f is a
monotonically increasing function that depends on εM , the precision of M̂ .

From this, we obtain two facts: Firstly, since this holds for all policies, it also holds for the supremum
over all policies, and thus we can bound the difference in the values of the two missingness-MDPs:

|sup
π

VP(π)− sup
π

VP̂(π)| ≤ f(εM ). (4)

Secondly, we can apply the same reasoning to a near-optimal policy in P̂. For this, let επ < ε be a
precision smaller than our overall error tolerance, and let π∗ be an επ-optimal policy in P̂, i.e.

sup
π
(VP̂(π))− VP̂(π

∗) ≤ επ. (5)

We remark that P̂ is a fully specified missingness-MDP, and thus a fully specified POMDP, for which
solver computing ε-optimal policies such as SARSOP [18] exist. Using Lemma 2, we obtain the
following inequality:

|VP(π
∗)− VP̂(π

∗)| ≤ f(εM ). (6)

Combining the inequalities. To conclude the proof, we use a chain of inequalities. Whenever we
write ±, this indicates that for one way of resolving the symbol, the inequality holds; this shorthand
allows to argue concisely about absolute differences.

sup
π

VP(π) ≤ sup
π

VP̂(π)± f(εM ) (By Equation (4))

≤ VP̂(π
∗) + επ ± f(εM ) (By Equation (5))

≤ VP(π
∗)± f(εM ) + επ ± f(εM ) (By Equation (6))

By reordering, we obtain

|sup
π

VP(π)− VP(π
∗)| ≤ επ ± 2 · f(εM ).

Hence, since f is a monotonically increasing function, there exists a choice of εM and επ so that
επ ± 2 · f(εM ) ≤ ε. Intuitively, while the errors incurred by approximating M̂ and by using an
approximately optimal policy add up, we can bound the overall maximum error. Thus, we can choose
the two precisions so that the overall error criterion is met, and the policy π∗ is ε-optimal in the
original missingness-MDP (with probability δ; with the remaining probability, our sampling was
unlucky and M̂ can differ by more than εM ). This concludes the proof.

Lemma 2 (Bounding the Value-Difference between P and P̂). Let P be a missingness-MDP and P̂
be a missingness-MDP that differs from P only in its missingness function, where it uses M̂ instead

3We highlight that every policy is applicable in both missingness-MDPs, as they only differ in their missing-
ness probabilities, but agree on states, observations, and actions.
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of M . Further, assume that for all states s ∈ S and observations z ∈ Z, we have M(z | s) = 0 if and
only if M̂(z | s) = 0, and moreover M(z | s) = M̂(z | s)± εM . Then, for every policy π we have
|VP(π)− VP̂(π)| ≤ f(εM ), where f is a monotonically increasing function.

Proof. To uncountable MDPs. Note that both P and P̂ are missingness-MDPs, and thus POMDPs.
Thus, for each of them, we can construct an uncountable belief MDP with the same value, called
B or B̂, respectively. Intuitively, this is achieved by unrolling step-by-step the observation function
and all possible beliefs that the agent can have after an action; the transition probabilities in these
uncountable MDPs depend on the missingness functions. For a more extensive description, see
[38, Chapter 16.4.1].

To finite MDPs. We consider discounted expected reward, with γ the discount factor and ϱmax :=
max(s,a)∈S×A ϱ(s, a) the maximum state reward. As the expected reward is a geometric series, we
can bound the reward that can be obtained after n steps from above as follows:

∞∑
i=n

γi · ϱmax = γn · ϱmax ·
∞∑
i=0

γi =
γn · ϱmax

1− γ
.

For every arbitrarily small precision εγ > 0, we can thus obtain an n such that the reward after n
steps is less than εγ . Let Bεγ be the finite MDP obtained from B by only considering states that are
reachable within n steps, and analogously define B̂εγ . (Note that n is the same for both, since it only
depends on γ and ϱmax, which is the same for both of them.) The value of these finite belief MDPs
differs from the value of the uncountable belief MDPs and thus the original missingness-MDPs by at
most εγ .

Bounding the difference. Recall that B or B̂ are the same except for their transition functions, which
depend on M and M̂ , respectively. Still, by assumption of the theorem M and M̂ qualitatively agree,
i.e. M(z | s) = 0 if and only if M̂(z | s) = 0. Hence, the graph structure of B or B̂ is the same.
Thus, the only difference are small perturbations of individual transition probabilities by at most εM .

It remains to show the following: Given two finite MDPs that are the same except for small pertur-
bations of the transition probabilities, but where the supports of the the transition functions are the
same, provide a bound on the difference in their value. Such a result exists in the literature, namely
in [44], or more precisely in the extended version of that paper [45, Lemma 5]. It remains to show
that our setting indeed satisfies the assumptions of [45, Lemma 5].

• “For every closed constant-support RMDP”: Their claim applies to robust MDPs that are closed
constant-support. A robust MDP is an MDP whose transitions are not probability distributions,
but rather sets of possible values, see [44, Section 2]. In our case, instead of considering the
concrete MDPs Bεγ and B̂εγ , we consider the robust MDP that arises when considering an
εM -interval around every missingness probability M(z | s). This robust MDP contains both
Bεγ and B̂εγ as instantiations.

• “For every pair of agent and environment policy”: An agent policy in this setting is exactly
the agent policy in ours, so [45, Lemma 5] applies to all policies. An environment policy is
the policy that chooses the instantiation of the transition function, i.e. the exact missingness
probabilities from the set of all that differ by at most εM in our setting.

• “Total-reward objectives:” [45, Lemma 5] concerns undiscounted total-reward or mean payoff
objectives. Undiscounted total-reward generalizes discounted expected reward, using the stan-
dard construction which adds an edge transitioning with probability γ to a dedicated sink state
to every transition. Thus, the lemma is applicable to the objective in our setting.

• “The value function is continuous w.r.t. the environment policy”: This is the claim of [45,
Lemma 5]. More formally, if the environment chooses missingness probabilities differently with
some deviation εM , then the deviation in the value between the two instantiations is bounded by
some monotonically increasing function g(εM ). This is exactly the claim we require, since it
means that for all agent policies π and all missingness functions M̂ that are εM -close to M , we
have |VBεγ

(π)− VB̂εγ
(π)| ≤ g(εM ).

We also argue that g can be effectively computed, as it depends on the size of the state space, the
reward function, and the minimum occurring transition probability, all of which are known to
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us (recall that Theorem 3 assumes knowledge of a lower bound on the minimum missingness
probabilities). The concrete way of deriving the distance is provided on [45, page 17].

Putting it all together. Our goal is to show that we can compute an f such that for all policies π we
have: |VP(π)− VP̂(π)| ≤ f(εM ). The following chain of equations proves our goal:

|VP(π)− VP̂(π)| = |VB(π)− VB̂(π)|
(Using the uncountable belief MDPs)
≤ |Bεγ (π)− VB̂εγ

(π)|+ εγ

(Using the finite MDPs; decreasing both values by
at most εγ increases the difference by at most εγ)
≤ g(εM ) + εγ

(By bounding the difference).

For simplicity of presentation, we choose εγ = εM , and thus setting f(εM ) := g(εM ) + εM
concludes the proof.

C Benchmarks

Here we describe our benchmarks. We provide a detailed description of the benchmarks as well as
the parameters for running the experiments.

C.1 Description

ICU. This benchmark, inspired by prior clinical decision-making models [17, 35–37], simulates a
doctor treating a patient with an infection that progresses stochastically over time. The state of the
patient consists of the infection severity, the temperature, and the heart rate. The infection causally
influences both the heart rate and the temperature.

The doctor has an option to wait, to administer costly antibiotics that reduce the infection severity, or
to order a test, which is a measuring action that may reveal the infection severity. The reward function
penalizes high infection levels as well as costly interventions (ordering a test and administering
antibiotics). Thus, the doctor’s objective is to maintain the patient’s infection severity at low levels by
administering antibiotics only when necessary. For ease of modeling, the state space also includes
the value of the last test ordered.

We evaluate three different missingness functions M , corresponding to distinct missingness functions,
illustrated in the m-graph in Figure 5. In all cases, the heart rate and the infection severity may be

(a) (b)

Figure 4: (a) The Predator benchmark, where the predator (lion) is the agent trying to catch its prey
(boar). Predator and prey can move in all four cardinal directions, where prey chooses an action
that increases the distance to the predator (red arrows). (b) The m-graphs for the predator and prey
benchmark describing missingness functions of types simple MAR (gray), identifiable MNAR (gray +
blue). Causal dependencies between the state features were omitted for clarity.
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Figure 5: The m-graphs for the ICU benchmark describing missingness functions of types simple
MAR (gray + blue), identifiable MNAR (gray + red) and unidentifiable MNAR (gray + red + orange).
Causal dependencies between the state features were omitted for clarity.

missing, whereas temperature and the last test ordered are always observed. The success rate of the
test that reveals the infection severity may depend on different features, resulting in the following
missingness functions. (1) Simple MAR, where the success rate only depends on the (always
observed) temperature. (2) MNAR (id.), where the success rate only depends on the (not always
observed) heart rate, resulting in an identifiable MNAR function without self-censoring and satisfying
the positivity assumption. (3) MNAR (unid.) is an extension of MNAR (id.), where the infection
severity influences the test success rate, introducing self-censoring and thus making the function
unidentifiable.

Predator. This benchmark is a variant of the Tag benchmark from [30], where an agent (in our case,
a predator) is tasked with chasing a partially hidden target (a prey) in a 2D grid environment. The prey
senses the predator and usually moves away from it; in case multiple directions lead away from the
predator, the prey chooses uniformly at random. The predator’s movement is deterministic (dictated
by the policy), but moving in an intended direction may randomly fail due to terrain conditions.
Predator obtains a flat reward upon catching the prey, and thus the discounting incentivizes catching
the prey as soon as possible.

The environment may feature three distinct biomes – plains, mountains, or jungles – that influence
the predator’s observability of the prey, see Figure 4, and thus define the missingness function. We
investigate the following three variants thereof. (1) MCAR, which features only one type of terrain,
i.e., the prey is observed with constant probability. (2) simple MAR, where the environment features
plains as well as mountains from which the predator has a higher chance of observing its target. (3)
MNAR (unid.), where the prey has an option to hide in jungle cells, introducing self-censoring of its
position. We stress that when the predator loses track of the prey, both features corresponding to x &
y coordinates of the prey go missing simultaneously, modeled by dependencies between missingness
indicators Rx & Ry. The dependence between the missingness indicators is a key difference from
the ICU benchmark.

C.2 Experimental Setup

Technical Setup. For all experiments, we used high-performance workstations equipped with an
AMD Ryzen ThreadRipper PRO 5965WX (24-core, 3.8GHz) CPU, 512 GB ECC DDR4 RAM, and
a 2 TB PCIe 4.0 NVMe SSD.

Simulating trajectories. For both benchmarks, we used a discount factor of γ = 0.95. We con-
sidered dataset sizes |D| ∈ {10, 50, 100, 500, 1E3, 5E3, 1E4, 1E5, 1E6, 1E7}. To obtain a dataset
containing |D| samples, we simulated finite trajectories until their lengths summed up to |D|. A trajec-
tory is terminated when it reaches a terminal state (only for the Predator bechmark, when the predator
catches the prey) or if its length exceeds L =

⌈
logγ

(1−γ)·1E−3
ϱmax

⌉
, where ϱmax := maxs,a ϱ(s, a).

Here, L denotes the smallest integer satisfying
∑∞

k=L γk · ϱmax < 1E− 3, i.e. a time step after
which the maximum discounted cumulative reward cannot exceed 1E− 3. For each dataset size |D|,
we generated 20 independent datasets of this size.
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Timeouts & precision. For the baselines, we used the timeout of 5 minutes when solving the
POMDP (to obtain π∗ and πMu) and the same timeout to evaluate the resulting policy (or πrnd). To
obtain a policy π̂ by solving the corresponding P̂, we used a timeout of 3 minutes and evaluated π̂
for 2 minutes. In all cases, solving was additionally allowed to terminate upon reaching the relative
precision of 1E-3.
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