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Abstract

Prior works have found it beneficial to combine provably noise-robust loss functions
e.g., mean absolute error (MAE) with standard categorical loss function e.g. cross
entropy (CE) to improve their learnability. Here, we propose to use Jensen-Shannon
divergence as a noise-robust loss function and show that it interestingly interpolate
between CE and MAE with a controllable mixing parameter. Furthermore, we
make a crucial observation that CE exhibits lower consistency around noisy data
points. Based on this observation, we adopt a generalized version of the Jensen-
Shannon divergence for multiple distributions to encourage consistency around
data points. Using this loss function, we show state-of-the-art results on both
synthetic (CIFAR), and real-world (e.g. WebVision) noise with varying noise rates.

1 Introduction

Labeled datasets, even the systematically annotated ones, contain noisy labels [1]. Therefore,
designing noise-robust learning algorithms are crucial for the real-world tasks. An important avenue
to tackle noisy labels is to devise noise-robust loss functions [2, 3, 4, 5]. Similarly, in this work, we
propose two new noise-robust loss functions based on two central observations as follows.

Observation I: Provably-robust loss functions can underfit the training data [2, 3, 4, 5].
Observation II: Standard networks show low consistency around noisy data points 1, see Figure 1.

We first propose to use Jensen-Shannon divergence (JS) as a loss function, which we crucially show
interpolates between the noise-robust mean absolute error (MAE) and the cross entropy (CE) that
better fits the data through faster convergence. Figure 2 illustrates the CE-MAE interpolation.
Regarding Observation II, we adopt the generalized version of Jensen-Shannon divergence (GJS) to
encourage predictions on perturbed inputs to be consistent, see Figure 3. Notably, Jensen-Shannon
divergence has previously shown promise for test-time robustness to domain shift [6], here we further
argue for its training-time robustness to label noise. The key contributions of this work2 are:

• We make a novel observation that a network predictions’ consistency is reduced for noisy-
labeled data when overfitting to noise, which motivates the use of consistency regularization.

• We propose using Jensen-Shannon divergence (JS) and its multi-distribution generaliza-
tion (GJS) as loss functions for learning with noisy labels. We relate JS to loss functions that
are based on the noise-robustness theory of Ghosh et al. [2]. In particular, we prove that JS
generalizes CE and MAE. Furthermore, we prove that GJS generalizes JS by incorporating
consistency regularization in a single principled loss function.

• We provide an extensive set of empirical evidences on several datasets, noise types and rates.
They show state-of-the-art results and give in-depth studies of the proposed losses.

1we call a network consistent around a sample (x) if it predicts the same class for x and its perturbations (x̃).
2implementation available at https://github.com/ErikEnglesson/GJS
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(a) Validation Accuracy
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Figure 1: Evolution of a trained network’s consistency as it overfits to noise using CE loss. Here
we plot the evolution of the validation accuracy (a) and network’s consistency (as measured by GJS)
on clean (b) and noisy (c) examples of the training set of CIFAR-100 for varying symmetric noise
rates when learning with the cross-entropy loss. The consistency of the learnt function and the
accuracy closely correlate. This suggests that enforcing consistency may help avoid fitting to noise.
Furthermore, the consistency is degraded more significantly for the noisy data points.

2 Generalized Jensen-Shannon Divergence
We propose two loss functions, the Jensen-Shannon divergence (JS) and its multi-distribution
generalization (GJS). In this section, we first provide background and two observations that motivate
our proposed loss functions. This is followed by definition of the losses, and then we show that
JS generalizes CE and MAE similarly to other robust loss functions. Finally, we show how GJS
generalizes JS to incorporate consistency regularization into a single principled loss function. We
provide proofs of all theorems, propositions, and remarks in this section in Appendix C.

2.1 Background & Motivation

Supervised Classification. Assume a general function class3 F where each f ∈ F maps an
input x ∈ X to the probability simplex ∆K−1, i.e. to a categorical distribution over K classes
y ∈ Y = {1, 2, . . . ,K}. We seek f∗ ∈ F that minimizes a risk RL(f) = ED[L(e(y), f(x))], for
some loss function L and joint distribution D over X×Y, where e(y) is a K-vector with one at index
y and zero elsewhere. In practice, D is unknown and, instead, we use S = {(xi, yi)}Ni=1 which are
independently sampled from D to minimize an empirical risk 1

N

∑N
i=1 L(e(yi), f(xi)).

Learning with Noisy Labels. In this work, the goal is to learn from a noisy training distribution
Dη where the labels are changed, with probability η, from their true distribution D. The noise
is called instance-dependent if it depends on the input, asymmetric if it dependents on the true
label, and symmetric if it is independent of both x and y. Let f∗η be the optimizer of the noisy
distribution risk RηL(f). A loss function L is then called robust if f∗η also minimizes RL. The MAE
loss (LMAE(e(y), f(x)) := ‖e(y) − f(x)‖1) is robust but not CE [2].

Issue of Underfitting. Several works propose such robust loss functions and demonstrate their
efficacy in preventing noise fitting [2, 3, 4, 5]. However, all those works have observed slow
convergence of such robust loss functions leading to underfitting. This can be contrasted with CE
that has fast convergence but overfits to noise. Ghosh et al. [2] mentions slow convergence of MAE
and GCE [3] extensively analyzes the undefitting thereof. SCE [4] reports similar problems for the
reverse cross entropy and proposes a linear combination with CE. Finally, Ma et al. [5] observe the
same problem and consider a combination of “active” and “passive” loss functions.

Consistency Regularization. This encourages a network to have consistent predictions for different
perturbations of the same image, which has mainly been used for semi-supervised learning [7].

Motivation. In Figure 1, we show the validation accuracy and a measure of consistency during
training with the CE loss for varying amounts of noise. First, we note that training with CE loss
eventually overfits to noisy labels. Figure 1a, indicates that the higher the noise rate, the more
accuracy drop when it starts to overfit to noise. Figure 1(b-c) shows the consistency of predictions
for correct and noisy labeled examples of the training set, with the consistency measured as the
ratio of examples that have the same class prediction for two perturbations of the same image, see

3e.g. softmax neural network classifiers in this work
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Figure 2: JS loss generalizes CE
and MAE. The Jensen-Shannon
loss (LJS) for different values of
the hyperparameter π1. The JS loss
interpolates between CE and MAE.
For low values of π1, LJS behaves
like CE and for increasing values
of π1 it behaves more like the noise
robust MAE loss.

Figure 3: GJS Dissection for M=K=3: The decomposition
of LGJS (left) into a JS term (middle) and a consistency
term (right) from Proposition 2. Each point in the simplex
correspond to a p(3) ∈ ∆2, where the color represents the
value of the loss at that point. It can be seen that there are two
ways to minimize LGJS, either by making the predictions
similar to the label (middle) or similar to the other predic-
tions (right) to increase consistency. To better highlight the
variations of the losses, each loss has its own range of values.

Appendix B.6 for more details. A clear correlation is observed between the accuracy and consistency
of the noisy examples. This suggests that maximizing consistency of predictions may improve the
robustness to noise. Next, we define simple loss functions that (i) encourage consistency around data
points and (ii) alleviate the “issue of underfitting” by interpolating between CE and MAE.

2.2 Definitions

DJS. Let p(1),p(2) ∈ ∆K−1 have corresponding weights π = [π1, π2]T ∈ ∆. Then, the Jensen-
Shannon divergence between p(1) and p(2) is

DJSπ (p(1),p(2)) := H(m)− π1H(p(1))− π2H(p(2)) = π1DKL(p(1)‖m) + π2DKL(p(2)‖m) (1)

with H the Shannon entropy, and m = π1p
(1) + π2p

(2). Unlike Kullback–Leibler diver-
gence (DKL(p(1)‖p(2))) or cross entropy (CE), JS is symmetric, bounded, does not require absolute
continuity, and has a crucial weighting mechanism (π), as we will see later.

DGJS. Similar to DKL, DJS satisfies DJSπ (p(1),p(2)) ≥ 0, with equality iff p(1) = p(2). For DJS,
this is derived from Jensen’s inequality for the concave Shannon entropy. This property holds for
finite number of distributions and motivates a generalization of DJS to multiple distributions [8]:

DGJSπ (p(1), . . . ,p(M)) := H
( M∑
i=1

πip
(i)
)
−

M∑
i=1

πiH(p(i)) =

M∑
i=1

πiDKL

(
p(i)
∥∥∥ M∑
j=1

πjp
(j)
)

(2)

where M is the number of distributions, and π = [π1, . . . , πM ]T ∈ ∆M−1.

Loss functions. We aim to use DJS and DGJS divergences, to measure deviation of the predictive
distribution(s), f(x), from the target distribution, e(y). Without loss of generality, hereafter, we dedi-
cate p(1) to denote the target distribution. JS loss, therefore, can take the form of DJSπ (e(y), f(x)).
Generalized JS loss is a less straight-forward construction since DGJS can accommodate more
predictive distributions. While various choices can be made for these distributions, in this work,
we consider predictions associated with different random perturbations of a sample, denoted by
A(x). This choice, as shown later, implies an interesting analogy to consistency regularization. The
choice, also entails no distinction between the M − 1 predictive distributions. Therefore, we consider
π2 = · · · = πM = 1−π1

M−1 in all our experiments. Finally, we scale the loss functions by a constant
factor Z = −(1−π1) log(1−π1). As we will see later, the role of this scaling is merely to strengthen
the already existing and desirable behaviors of these losses as π1 approaches zero and one. Formally,
we have JS and GJS losses:

LJS(y, f,x) :=
DJSπ (e(y), f(x̃))

Z
, LGJS(y, f,x) :=

DGJSπ (e(y), f(x̃(2)), . . . , f(x̃(M)))

Z
(3)

with x̃(i) ∼ A(x). Next, we study the connection between JS and losses which are based on the
robustness theory of Ghosh et al. [2].
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2.3 JS’s Connection to Robust Losses

Cross Entropy (CE) is the prevalent loss function for deep classifiers with remarkable successes.
However, CE is prone to fitting noise [9]. On the other hand, Mean Absolute Error (MAE) is
theoretically noise-robust [2]. Evidently, standard optimization algorithms struggle to minimize
MAE, especially for more challenging datasets e.g. CIFAR-100 [3, 5]. Therefore, there have been
several proposals that combine CE and MAE, such as Generalized CE (GCE) [3], Symmetric
CE (SCE) [4], and Normalized CE (NCE+MAE) [5]. The rationale is for CE to help with the learning
dynamics of MAE. Next, we show JS has CE and MAE as its asymptotes w.r.t. π1.
Proposition 1. Let p ∈ ∆K−1, then

lim
π1→0

LJS(e(y),p) = H(e(y),p), lim
π1→1

LJS(e(y),p) =
1

2
‖e(y) − p‖1

where H(e(y),p) is the cross entropy of e(y) relative to p.

Figure 2 depicts how JS interpolates between CE and MAE for π1 ∈ (0, 1). The proposition reveals
an interesting connection to state-of-the-art robust loss functions, however, there are important
differences. SCE is not bounded (so it cannot be used in Theorem 1), and GCE is not symmetric,
while JS and MAE are both symmetric and bounded. In Appendix B.3, we perform a dissection to
better understand how these properties affect learning with noisy labels. GCE is most similar to JS
and is compared further in Appendix B.4.

A crucial difference to these other losses is that JS naturally extends to multiple predictive distribu-
tions (GJS). Next, we show how GJS generalizes JS by incorporating consistency regularization.

2.4 GJS’s Connection to Consistency Regularization

In Figure 1, it was shown how the consistency of the noisy labeled examples was reduced when
the network overfitted to noise. The following proposition shows how GJS naturally encourages
consistency in a single principled loss function.

Proposition 2. Let p(2), . . . ,p(M) ∈ ∆K−1 with M ≥ 3 and p̄>1 =
∑M
j=2 πjp

(j)

1−π1
, then

LGJS(e(y),p(2), . . . ,p(M)) = LJSπ′ (e
(y), p̄>1) + (1− π1)LGJSπ′′ (p

(2), . . . ,p(M))

where π′ = [π1, 1− π1]T and π′′ = [π2,...,πM ]T

(1−π1) .

Importantly, Proposition 2 shows that GJS can be decomposed into two terms: 1) a JS term between
the label and the mean prediction p̄>1, and 2) a GJS term, but without the label. Figure 3 illustrates
the effect of this decomposition. The first term, similarly to the standard JS loss, encourages the
predictions’ mean to be closer to the label (Figure 3 middle). However, the second term encourages
all predictions to be similar, that is, consistency regularization (Figure 3 right).

2.5 Noise Robustness

Here, the robustness properties of JS and GJS are analyzed in terms of lower (BL) and upper
bounds (BU ) for the following theorem, which generalizes the results by Zhang et al. [3] to any
bounded loss function, even with multiple predictive distributions.

Theorem 1. Under symmetric noise with η < K−1
K , if BL ≤

∑K
i=1 L(e(i),x, f) ≤ BU , ∀x, f is

satisfied for a loss L, then

0 ≤ RηL(f∗)−RηL(f∗η ) ≤ ηBU −BL
K − 1

, and − η(BU −BL)

K − 1− ηK
≤ RL(f∗)−RL(f∗η ) ≤ 0,

A tighter boundBU−BL, implies a smaller worst case risk difference of the optimal classifiers (robust
when BU = BL). Importantly, while L(e(i),x, f) = L(e(i), f(x)) usually, this subtle distinction is
useful for losses with multiple predictive distributions, see Equation 3. In Theorem 2 in Appendix
C.3, we further prove the robustness of the proposed losses to asymmetric noise.

For losses with multiple predictive distributions, the bounds in Theorem 1 and 2 must hold for any
x and f , i.e., for any combination of M − 1 categorical distributions on K classes. Proposition 3
provides such bounds for GJS.
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Proposition 3. GJS loss withM ≤ K+1 satisfiesBL ≤
∑K
k=1 LGJS(e(k),p(2), . . . ,p(M)) ≤ BU

for all p(2), . . . ,p(M) ∈ ∆K−1, with the following bounds

BL =

K∑
k=1

LGJS(e(k),u, . . . ,u), BU =

K∑
k=1

LGJS(e(k), e(1), . . . , e(M−1))

where u ∈ ∆K−1 is the uniform distribution.
Note the bounds for the JS loss is a special case of Proposition 3 for M = 2.
Remark 1. LJS and LGJS are robust (BL = BU ) in the limit of π1 → 1.

Remark 1 is intuitive from Section 2.3 which showed that LJS is equivalent to the robust MAE in this
limit and that the consistency term in Proposition 2 vanishes.

In Proposition 3, the lower bound (BL) is the same for JS and GJS. However, the upper bound (BU )
increases for more distributions, which makes JS have a tighter bound than GJS in Theorem 1 and 2.
In Proposition 4, we show that JS and GJS have the same bound for the risk difference, given an
assumption based on Figure 1 that the optimal classifier on clean data (f∗) is at least as consistent as
the optimal classifier on noisy data (f∗η ).
Proposition 4. LJS and LGJS have the same risk bounds in Theorem 1 and 2 if
Ex[Lf

∗

GJSπ′′
(p(2), . . . ,p(M))] ≤ Ex[Lf

∗
η

GJSπ′′
(p(2), . . . ,p(M))], where LfGJSπ′′

(p(2), . . . ,p(M)) is
the consistency term from Proposition 2.

3 Related Works

Interleaved in the previous sections, we covered most-related works to us, i.e. the avenue of identifica-
tion or construction of theoretically-motivated robust loss functions [2, 3, 4, 5]. These works, similar
to this paper, follow the theoretical construction of Ghosh et al. [2]. Furthermore, Liu&Guo [10] use
“peer prediction” to propose a new family of robust loss functions. Different to these works, here, we
propose loss functions based on DJS which holds various desirable properties of those prior works
while exhibiting novel ties to consistency regularization; a recent important regularization technique.

Next, we briefly cover other lines of work. A more thorough version can be found in Appendix D.

A direction, that similar to us does not alter training, reweights a loss function by confusion matrix [11,
12, 13, 14, 15]. Assuming a class-conditional noise model, loss correction is theoretically motivated
and perfectly orthogonal to noise-robust losses.

Consistency regularization is a recent technique that imposes smoothness in the learnt function for
semi-supervised learning [7] and recently for noisy data [16]. These works use different complex
pipelines for such regularization. GJS encourages consistency in a simple way that exhibits other
desirable properties for learning with noisy labels. Importantly, Jensen-Shannon-based consistency
loss functions have been used to improve test-time robustness to image corruptions [6] and adversarial
examples [17], which further verifies the general usefulness of GJS. In this work, we study such
loss functions for a different goal: training-time label-noise robustness. In this context, our thorough
analytical and empirical results are, to the best of our knowledge, novel.

Recently, loss functions with information-theoretic motivations have been proposed [18, 19]. JS, with
an apparent information-theoretic interpretation, has a strong connection to those. Especially, the latter
is a close concurrent work studying JS and other divergences from the family of f-divergences [20].
However, in this work, we consider a generalization to more than two distributions and study the role
of π1, which they treat as a constant (π1 = 1

2 ). These differences lead to improved performance and
novel theoretical results, e.g., Proposition 1 and 2. Lastly, another generalization of JS was recently
presented by Nielsen [21], where the arithmetic mean is generalized to abstract means.

4 Experiments

This section, first, empirically investigates the effectiveness of the proposed losses for learning
with noisy labels on synthetic (Section 4.1) and real-world noise (Section 4.2). This is followed by
several experiments and ablation studies (Section 4.3) to shed light on the properties of JS and GJS
through empirical substantiation of the theories and claims provided in Section 2. All these additional
experiments are done on the more challenging CIFAR-100 dataset.
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Table 1: Synthetic Noise Benchmark on CIFAR. We reimplement other noise-robust loss functions
into the same learning setup and ResNet-34, including label smoothing (LS), Bootstrap (BS),
Symmetric CE (SCE), Generalized CE (GCE), and Normalized CE (NCE+RCE). We used same
hyperparameter optimization budget and mechanism for all the prior works and ours. Mean test
accuracy and standard deviation are reported from five runs and the statistically-significant top
performers are boldfaced. The thorough analysis is evident from the higher performance of CE in our
setup compared to prior works. GJS achieves state-of-the-art results for different noise rates, types,
and datasets. Generally, GJS’s efficacy is more evident for the more challenging CIFAR-100 dataset.

Dataset Method
No Noise Symmetric Noise Rate Asymmetric Noise Rate

0% 20% 40% 60% 80% 20% 40%

CIFAR-10

CE 95.77 ± 0.11 91.63 ± 0.27 87.74 ± 0.46 81.99 ± 0.56 66.51 ± 1.49 92.77 ± 0.24 87.12 ± 1.21
BS 94.58 ± 0.25 91.68 ± 0.32 89.23 ± 0.16 82.65 ± 0.57 16.97 ± 6.36 93.06 ± 0.25 88.87 ± 1.06
LS 95.64 ± 0.12 93.51 ± 0.20 89.90 ± 0.20 83.96 ± 0.58 67.35 ± 2.71 92.94 ± 0.17 88.10 ± 0.50
SCE 95.75 ± 0.16 94.29 ± 0.14 92.72 ± 0.25 89.26 ± 0.37 80.68 ± 0.42 93.48 ± 0.31 84.98 ± 0.76
GCE 95.75 ± 0.14 94.24 ± 0.18 92.82 ± 0.11 89.37 ± 0.27 79.19 ± 2.04 92.83 ± 0.36 87.00 ± 0.99
NCE+RCE 95.36 ± 0.09 94.27 ± 0.18 92.03 ± 0.31 87.30 ± 0.35 77.89 ± 0.61 93.87 ± 0.03 86.83 ± 0.84
JS 95.89 ± 0.10 94.52 ± 0.21 93.01 ± 0.22 89.64 ± 0.15 76.06 ± 0.85 92.18 ± 0.31 87.99 ± 0.55
GJS 95.91 ± 0.09 95.33 ± 0.18 93.57 ± 0.16 91.64 ± 0.22 79.11 ± 0.31 93.94 ± 0.25 89.65 ± 0.37

CIFAR-100

CE 77.60 ± 0.17 65.74 ± 0.22 55.77 ± 0.83 44.42 ± 0.84 10.74 ± 4.08 66.85 ± 0.32 49.45 ± 0.37
BS 77.65 ± 0.29 72.92 ± 0.50 68.52 ± 0.54 53.80 ± 1.76 13.83 ± 4.41 73.79 ± 0.43 64.67 ± 0.69
LS 78.60 ± 0.04 74.88 ± 0.15 68.41 ± 0.20 54.58 ± 0.47 26.98 ± 1.07 73.17 ± 0.46 57.20 ± 0.85
SCE 78.29 ± 0.24 74.21 ± 0.37 68.23 ± 0.29 59.28 ± 0.58 26.80 ± 1.11 70.86 ± 0.44 51.12 ± 0.37
GCE 77.65 ± 0.17 75.02 ± 0.24 71.54 ± 0.39 65.21 ± 0.16 49.68 ± 0.84 72.13 ± 0.39 51.50 ± 0.71
NCE+RCE 74.66 ± 0.21 72.39 ± 0.24 68.79 ± 0.29 62.18 ± 0.35 31.63 ± 3.59 71.35 ± 0.16 57.80 ± 0.52
JS 77.95 ± 0.39 75.41 ± 0.28 71.12 ± 0.30 64.36 ± 0.34 45.05 ± 0.93 71.70 ± 0.36 49.36 ± 0.25
GJS 79.27 ± 0.29 78.05 ± 0.25 75.71 ± 0.25 70.15 ± 0.30 44.49 ± 0.53 74.60 ± 0.47 63.70 ± 0.22

Experimental Setup. We use ResNet 34 and 50 for experiments on CIFAR and WebVision datasets
respectively and optimize them using SGD with momentum. The complete details of the training
setup can be found in Appendix A. Most importantly, we take three main measures to ensure a fair
and reliable comparison throughout the experiments: 1) we reimplement all the loss functions we
compare with in a single shared learning setup, 2) we use the same hyperparameter optimization
budget and mechanism for all the prior works and ours, and 3) we train and evaluate five networks for
individual results, where in each run the synthetic noise, network initialization, and data-order are
differently randomized. The thorough analysis is evident from the higher performance of CE in our
setup compared to prior works. Where possible, we report mean and standard deviation and denote
the statistically-significant top performers with student t-test.

4.1 Synthetic Noise Benchmarks: CIFAR

Here, we evaluate the proposed loss functions on the CIFAR datasets with two types of synthetic
noise: symmetric and asymmetric. For symmetric noise, the labels are, with probability η, re-
sampled from a uniform distribution over all labels. For asymmetric noise, we follow the standard
setup of Patrini et al. [22]. For CIFAR-10, the labels are modified, with probability η, as follows:
truck→ automobile, bird→ airplane, cat↔ dog, and deer→ horse. For CIFAR-100, labels are,
with probability η, cycled to the next sub-class of the same “super-class”, e.g. the labels of super-class
“vehicles 1” are modified as follows: bicycle→ bus→ motorcycle→ pickup truck→ train→ bicycle.

We compare with other noise-robust loss functions such as label smoothing (LS) [23], Boot-
strap (BS) [24], Symmetric Cross-Entropy (SCE) [4], Generalized Cross-Entropy (GCE) [3], and the
NCE+RCE loss of Ma et al. [5]. Here, we do not compare to methods that propose a full pipeline
since, first, a conclusive comparison would require re-implementation and individual evaluation of
several components and second, robust loss functions can be considered orthogonal to them.

Results. Table 1 shows the results for symmetric and asymmetric noise on CIFAR-10 and CIFAR-
100. GJS performs similarly or better than other methods for different noise rates, noise types, and
data sets. Generally, GJS’s efficacy is more evident for the more challenging CIFAR-100 dataset.
For example, on 60% uniform noise on CIFAR-100, the difference between GJS and the second
best (GCE) is 4.94 percentage points, while our results on 80% noise is lower than GCE. We attribute
this to the high sensitivity of the results to the hyperparameter settings in such a high-noise rate
which are also generally unrealistic (WebVision has ∼20%). The performance of JS is consistently
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Table 2: Real-world Noise Benchmark on WebVision. Mean test accuracy and standard deviation
from five runs are reported for the validation sets of (mini) WebVision and ILSVRC12. GJS with
two networks correspond to the mean prediction of two independently trained GJS networks with
different seeds for data augmentation and weight initialization. Here, GJS uses Z = 1. Results
marked with † are from Zheltonozhskii et al. [26].

Method Architecture Augmentation Networks
WebVision ILSVRC12

Top 1 Top 5 Top 1 Top 5

ELR+ [27]† Inception-ResNet-V2 Mixup 2 77.78 91.68 70.29 89.76
DivideMix [16]† Inception-ResNet-V2 Mixup 2 77.32 91.64 75.20 90.84
DivideMix [16]† ResNet-50 Mixup 2 76.32± 0.36 90.65± 0.16 74.42± 0.29 91.21 ± 0.12

CE ResNet-50 ColorJitter 1 70.69± 0.66 88.64± 0.17 67.32± 0.57 88.00± 0.49
JS ResNet-50 ColorJitter 1 74.56± 0.32 91.09± 0.08 70.36± 0.12 90.60± 0.09
GJS ResNet-50 ColorJitter 1 77.99± 0.35 90.62± 0.28 74.33± 0.46 90.33± 0.20
GJS ResNet-50 ColorJitter 2 79.28 ± 0.24 91.22± 0.30 75.50 ± 0.17 91.27 ± 0.26

similar to the top performance of the prior works across different noise rates, types and datasets. In
Section 4.3, we substantiate the importance of the consistency term, identified in Proposition 2, when
going from JS to GJS that helps with the learning dynamics and reduce the susceptibility to noise.
In Appendix B.1, we provide results for GJS on instance-dependent synthetic noise [25]. Next, we
test the proposed losses on a naturally-noisy dataset to see their efficacy in a real-world scenario.

4.2 Real-World Noise Benchmark: WebVision

WebVision v1 is a large-scale image dataset collected by crawling Flickr and Google, which resulted
in an estimated 20% of noisy labels [28]. There are 2.4 million images of the same thousand classes
as ILSVRC12. Here, we use a smaller version called mini WebVision [29] consisting of the first
50 classes of the Google subset. We compare CE, JS, and GJS on WebVision following the same
rigorous procedure as for the synthetic noise. However, upon request by the reviewers, we also
compare with the reported results of some state-of-the-art elaborate techniques. This comparison
deviates from our otherwise systematic analysis.

Results. Table 2, as the common practice, reports the performances on the validation sets of
WebVision and ILSVRC12 (first 50 classes). Both JS and GJS exhibit large margins with standard CE,
especially for top-1 accuracy. Top-5 accuracy, due to its admissibility of wrong top predictions, can
obscure the susceptibility to noise-fitting and thus indicates smaller but still significant improvements.

The two state-of-the-art methods on this dataset were DivideMix [16] and ELR+ [27]. Compared to
our setup, both these methods use a stronger network (Inception-ResNet-V2 vs ResNet-50), stronger
augmentations (Mixup vs color jittering) and co-train two networks. Furthermore, ELR+ uses an
exponential moving average of weights and DivideMix treats clean and noisy labeled examples
differently after separating them using Gaussian mixture models. Despite these differences, GJS
performs as good or better in terms of top-1 accuracy on WebVision and significantly outperforms
ELR+ on ILSVRC12 (70.29 vs 74.33). The importance of these differences becomes apparent as 1)
the top-1 accuracy for DivideMix degrades when using ResNet-50, and 2) the performance of GJS
improves by adding one of their components, i.e. the use of two networks. We train an ensemble of
two independent networks with the GJS loss and average their predictions (last row of Table 2). This
simple extension, which requires no change in the training code, gives significant improvements. To
the best of our knowledge, this is the highest reported top-1 accuracy on WebVision and ILSVRC12
when no pre-training is used.

In Appendix B.2, we show state-of-the-art results when using GJS on two other real-world noisy
datasets: ANIMAL-10N [30] and Food-101N [31].

So far, the experiments demonstrated the robustness of the proposed loss function (regarding Propo-
sition 3) via the significant improvement of the final accuracy on noisy datasets. While this was
central and informative, it is also important to investigate whether this improvement comes from
the theoretical properties that were argued for JS and GJS. In what follows, we devise several such
experiments, in an effort to substantiate the theoretical claims and conjectures.
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(a) JS, η = 20%
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(b) JS, η = 60%
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(c) GJS, η = 20%
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(d) GJS, η = 60%

Figure 4: Effect of π1. Validation accuracy
of JS and GJS during training with symmetric
noise on CIFAR100. From Proposition 1, JS be-
haves like CE and MAE for low and high values
of π1, respectively. The signs of noise-fitting for
π1 = 0.1 on 60% noise (b), and slow learning of
π1 = 0.9 (a-b), show this in practice. The GJS
loss does not exhibit overfitting for low values of
π1 and learns quickly for large values of π1 (c-d).
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Figure 5: Effect of M. Validation accuracy for
increasing number of distributions (M ) and dif-
ferent symmetric noise rates on CIFAR-100 with
π1 = 1

2 . For all noise rates, using three instead
of two distributions results in a higher accuracy.
Going beyond three distributions is only help-
ful for lower noise rates. For simplicity we use
M = 3 (corresponding to two augmentations)
for all of our experiments.

4.3 Towards a Better Understanding of the Jensen-Shannon-based Loss Functions
Here, we study the behavior of the losses for different distribution weights π1, number of distributions
M , and epochs. We also provide insights on why GJS performs better than JS.

How does π1 control the trade-off of robustness and learnability? In Figure 4, we plot the
validation accuracy during training for both JS and GJS at different values of π1 and noise rates η.
From Proposition 1, we expect JS to behave as CE for low values of π1 and as MAE for larger values
of π1. Figure 4 (a-b) confirms this. Specifically, π1 = 0.1 learns quickly and performs well for low
noise but overfits for η = 0.6 (characteristic of non-robust CE), on the other hand, π1 = 0.9 learns
slowly but is robust to high noise rates (characteristic of noise-robust MAE).

In Figure 4 (c-d), we observe three qualitative improvements of GJS over JS: 1) no signs of overfitting
to noise for large noise rates with low values of π1, 2) better learning dynamics for large values of π1

that otherwise learns slowly, and 3) converges to a higher validation accuracy.

How many distributions to use? Figure 5 depicts validation accuracy for varying number of
distributions M . For all noise rates, we observe a performance increase going from M = 2 to M = 3.
However, the performance of M > 3 depends on the noise rate. For lower noise rates, having more
than three distributions can improve the performance. For higher noise rates e.g. 60%, having M > 3
degrades the performance. We hypothesise this is due to: 1) at high noise rates, there are only a few
correctly labeled examples that can help guide the learning, and 2) going from M = 2 to M = 3 adds
a consistency term, while M > 3 increases the importance of the consistency term in Proposition 2.
Therefore, for a large enough M, the loss will find it easier to keep the consistency term low (keep
predictions close to uniform as at the initialization), instead of generalizing based on the few clean
examples. For simplicity, we have used M = 3 for all experiments with GJS.

Is the improvements of GJS over JS due to mean prediction or consistency? Proposition 2
decomposed GJS into a JS term with a mean prediction (p̄>1) and a consistency term operating
on all distributions but the target. In Table 3, we compare the performance of JS and GJS to GJS
without the consistency term, i.e., LJSπ′ (e

(y), p̄>1). The results suggest that the improvement of
GJS over JS can be attributed to the consistency term.

Figure 4 (a-b) showed that JS improves the learning dynamics of MAE by blending it with CE,
controlled by π1. Similarly, we see here that the consistency term also improves the learning
dynamics (underfitting and convergence speed) of MAE. Interestingly, Figure 4 (c-d), shows the
higher values of π1 (closer to MAE) work best for GJS, hinting that, the consistency term improves
the learning dynamics of MAE so much so that the role of CE becomes less important.
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Table 3: Effect of Consistency. Validation ac-
curacy for JS, GJS w/o the consistency term in
Proposition 2, and GJS for 40% noise on the
CIFAR-100 dataset. Using the mean of two pre-
dictions in the JS loss does not improve perfor-
mance. On the other hand, adding the consis-
tency term significantly helps.

Method Accuracy

LJS(e(y),p(2)) 71.0
LJS

π′
(e(y), p̄>1) 68.7

LGJS(e(y),p(2),p(3)) 74.3

Table 4: Effect of GJS. Validation accuracy
when using different loss functions for clean and
noisy examples of the CIFAR-100 training set
with 40% symmetric noise. Noisy examples ben-
efit significantly more from GJS than clean ex-
amples (74.1 vs 72.9).

Method π1

Clean Noisy 0.1 0.5 0.9

JS JS 70.0 71.5 55.3
GJS JS 72.6 72.9 70.2
JS GJS 71.0 74.1 68.0

GJS GJS 71.3 74.7 73.8

Is GJS mostly helping the clean or noisy examples? To better understand the improvements
of GJS over JS, we perform an ablation with different losses for clean and noisy examples, see
Table 4. We observe that using GJS instead of JS improves performance in all cases. Importantly,
using GJS only for the noisy examples performs significantly better than only using it for the clean
examples (74.1 vs 72.9). The best result is achieved when using GJS for both clean and noisy
examples but still close to the noisy-only case (74.7 vs 74.1).

How is different choices of perturbations affecting GJS? In this work, we use stochastic augmen-
tations for A, see Appendix A.1 for details. Table 5 reports validation results on 40% symmetric and
asymmetric noise on CIFAR-100 for varying types of augmentation. We observe that all methods
improve their performance with stronger augmentation and that GJS achieves the best results in
all cases. Also, note that we use weak augmentation for all naturally-noisy datasets (WebVision,
ANIMAL-10N, and Food-101N) and still get state-of-the-art results.

How fast is the convergence? We found that some baselines (especially the robust NCE+RCE)
had slow convergence. Therefore, we used 400 epochs for all methods to make sure all had time to
converge properly. Table 6 shows results on 40% symmetric and asymmetric noise on CIFAR-100
when the number of epochs has been reduced by half.

Is training with the proposed losses leading to more consistent networks? Our motivation for
investigating losses based on Jensen-Shannon divergence was partly due to the observation in Figure 1
that consistency and accuracy correlate when learning with CE loss. In Figure 6, we compare CE, JS,
and GJS losses in terms of validation accuracy and consistency during training on CIFAR-100 with
40% symmetric noise. We find that the networks trained with JS and GJS losses are more consistent
and has higher accuracy. In Appendix B.7, we report the consistency of the networks in Table 1.

Summary of experiments in the appendix. Due to space limitations, we report several important
experiments in the appendix. We evaluate the effectiveness of GJS on 1) instance-dependent synthetic
noise (Section B.1), and 2) real-world noisy datasets ANIMAL-10N and Food-101N (Section B.2).
We also investigate the importance of 1) losses being symmetric and bounded for learning with noisy
labels (Section B.3), and 2) a clean vs noisy validation set for hyperparameter selection and the effect
of a single set of parameters for all noise rates (Section B.5).

Table 5: Effect of Augmentation Strategy. Val-
idation accuracy for training w/o CutOut(-CO) or
w/o RandAug(-RA) or w/o both(weak) on 40%
symmetric and asymmetric noise on CIFAR-100.
All methods improves by stronger augmentations.
GJS performs best for all types of augmentations.

Method
Symmetric Asymmetric

Full -CO -RA Weak Full -CO -RA Weak

GCE 70.8 64.2 64.1 58.0 51.7 44.9 46.6 42.9
NCE+RCE 68.5 66.6 68.3 61.7 57.5 52.1 49.5 44.4
GJS 74.8 71.3 70.6 66.5 62.6 56.8 52.2 44.9

Table 6: Effect of Number of Epochs. Vali-
dation accuracy for training with 200 and 400
epochs for 40% symmetric and asymmetric
noise on CIFAR-100. GJS still outperforms
the baselines and NCE+RCE’s performance
is reduced heavily by the decrease in epochs.

Method
Symmetric Asymmetric

200 400 200 400

GCE 70.3 70.8 39.1 51.7
NCE+RCE 60.0 68.5 35.0 57.5
GJS 72.9 74.8 43.2 62.6
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Figure 6: Evolution of a trained network’s consistency for the CE, JS, and GJS losses. We plot
the evolution of the validation accuracy (a) and network’s consistency on clean (b) and noisy (c)
examples of the training set of CIFAR-100 when learning with 40% symmetric noise. All losses use
the same learning rate and weight decay and both JS and GJS use π1 = 0.5. The consistency of
the learnt function and the accuracy closely correlate. The accuracy and consistency of JS and GJS
improve during training, while both degrade when learning with CE loss.

5 Limitations & Future Directions

We empirically showed that the consistency of the network around noisy data degrades as it fits noise
and accordingly proposed a loss based on generalized Jensen-Shannon divergence (GJS). While we
empirically verified the significant role of consistency regularization in robustness to noise, we only
theoretically showed the robustness (BL = BU ) of GJS at its limit (π1 → 1) where the consistency
term gradually vanishes. Therefore, the main limitation is the lack of a theoretical proof of the
robustness of the consistency term in Proposition 2. This is, in general, an important but understudied
area, also for the literature of self- or semi-supervised learning and thus is of utmost importance for
future works.

Secondly, we had an important observation that GJS with M > 3 might not perform well under high
noise rates. While we have some initial conjectures, this phenomenon deserves a systematic analysis
both empirically and theoretically.

Finally, a minor practical limitation is the added computations for GJS forward passes, however this
applies to training time only and in all our experiments, we only use one extra prediction (M = 3).

6 Final Remarks

We first made two central observations that (i) robust loss functions have an underfitting issue and (ii)
consistency of noise-fitting networks is significantly lower around noisy data points. Correspondingly,
we proposed two loss functions, JS and GJS, based on Jensen-Shannon divergence that (i) interpolates
between noise-robust MAE and fast-converging CE, and (ii) encourages consistency around training
data points. This simple proposal led to state-of-the-art performance on both synthetic and real-world
noise datasets even when compared to the more elaborate pipelines such as DivideMix or ELR+.
Furthermore, we discussed their robustness within the theoretical construction of Ghosh et al. [2]. By
drawing further connections to other seminal loss functions such as CE, MAE, GCE, and consistency
regularization, we uncovered other desirable or informative properties. We further empirically studied
different aspects of the losses that corroborate various theoretical properties.

Overall, we believe the paper provides informative theoretical and empirical evidence for the useful-
ness of two simple and novel JS divergence-based loss functions for learning under noisy data that
achieve state-of-the-art results. At the same time, it opens interesting future directions.

Ethical Considerations. Considerable resources are needed to create labeled data sets due to the
burden of manual labeling process. Thus, the creators of large annotated datasets are mostly limited
to well-funded companies and academic institutions. In that sense, developing robust methods against
label noise enables less affluent organizations or individuals to benefit from labeled datasets since
imperfect or automatic labeling can be used instead. On the other hand, proliferation of such harvested
datasets can increase privacy concerns arising from redistribution and malicious use.

Acknowledgement. This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
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