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Abstract

Regulators and academics are increasingly interested in the causal effect that algo-
rithmic actions of a digital platform have on consumption. We introduce a general
causal inference problem we call the steerability of consumption that abstracts
many settings of interest. Focusing on observational designs, we exhibit a set
of assumptions for identifiability that significantly weakens the often unrealistic
overlap assumptions of standard designs. The key insight behind our assumptions
is to model the dynamics of consumption, viewing the platform as a controller
acting on a dynamical system. From this dynamical systems perspective, we show
that exogenous variation in consumption and appropriately responsive control ac-
tions are sufficient for identifying steerability of consumption. Our results illus-
trate the fruitful interplay of control theory and causal inference, which we corrob-
orate with examples from econometrics, macroeconomics, and machine learning.

1 Introduction

How much does an increase in advertisement decrease screen time? Do algorithmic recommen-
dations increase consumption of inflammatory content? Does exposure to diverse news sources
mitigate political polarization? These are but a few of the questions that firms, researchers, and
regulators alike ask about digital platforms. The answer to any such question requires non-trivial
causal inference, since past consumption influences both future consumption as well as the
algorithmic selection of content. Resolving confounding through randomization in the form of
A/B tests is standard in the industry. However, randomization is often not possible. Experiments
may be ethically fraught as past experience shows [Kramer et al., 2014, PNAS, 2014], technically
challenging to implement, or prohibitively expensive. Moreover, outside investigators may simply
not have the power to experimentally intervene in the practices of a platform. Observational causal
inference presents an intriguing alternative. Unfortunately, standard observational causal designs
would require that the data satisfy an overlap assumption with respect to past consumption. Since
user data on digital platforms is often high-dimensional, overlap is unlikely to hold [D’Amour et al.,
2017] resulting in invalid inferences.

In this work, we introduce and study a general causal inference problem, called steerability of con-
sumption, that unifies numerous questions about the causal effects of algorithmic actions on digital
platforms. In our problem formulation, consumption evolves over time according to an unknown dy-
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Figure 1: Standard model of the problem

namical system. A platform aims to influence consumption through actions performed at each point
in time. Our goal is to identify the effect that the action has on the state of the dynamical system.
Taking this control theoretic perspective of the problem, we’re able to exhibit a significantly weaker
set of assumptions sufficient for identifiability and estimation. Informally speaking, it suffices that
consumption has exogenous variation and that the control action of the platform is non-degenerate.

Our results illustrate the benefits of taking a control-theoretic perspective on causal inference. Rather
than omitting the role that time plays in causal inference, we explicitly keep track of a time index.
This allows for a more precise problem formulation that admits weaker identifiability assumptions.
We illustrate the merits of our problem formulation with examples from econometrics, macroeco-
nomics, and machine learning.

1.1 Our work

At the outset, we’re interested in the causal effect of an action u on a variable x subject to observed
confounding by a variable z. We interpret the action u as an algorithmic intervention of a firm in
a digital platform, while the variable x captures relevant user features, such as what content the
user consumed. Figure 1 presents the standard causal model for the scenario. The confounding
variable captures all available past information that influences both the choice of control action u
and the variable x. To apply observational causal inference machinery in the standard model, the
data generating distribution must assign positive weight to all strata defined by the confounding
variable z. In the common case where z is high-dimensional, this assumption is unlikely to
hold [D’Amour et al., 2017].

The starting point of our work is therefore a departure from the standard model. Instead, we model
a dynamical system where user features x evolves over time. The control action u is a function of
previously collected data and updated repeatedly based on the most recent observations of x. For
example, video recommendations are updated based on recent views, and ads are chosen based on
past clicks. Our model can be seen as postulating that most recent observations are the main driver
of confounding. These assumptions result in the dynamical system illustrated in Figure 2.
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Figure 2: Autoregressive confounding structure

Technically speaking, the graph in Figure 2 could be expressed as an instance of the standard model
in Figure 1 where the confounder z corresponds to the set of all past state and action variables. While
this general model encapsulates our problem without loss of generality, it ignores the salient structure
of the problem, demanding overly strong assumptions. Our main contribution is to instead exploit
this structure to make estimating the steerability of consumption from observational data possible
under more plausible assumptions. Our technical contributions can be summarized as follows:
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1. In Section 2 we discuss our refined structural model for studying the steerability of consumption
in detail. The main feature of our model is that it explicitly models temporal dynamics and posits
a structure on how previous states and actions interact. We provide several concrete examples of
problems that can be approximated by our model.

2. In Section 3, we study identifiability of the steerability of consumption within the context of
our model. We demonstrate that exogenous variation in consumption and sufficient expressivity
in the control response enable causal identification, circumventing direct interventions on the
control action. We also study a linear version of our causal model. In this model, we show that
1) we can weaken the variation in exogenous consumption required for identifiability, and 2)
we can weaken assumptions on the expressivity of the control response so long as the auditor
observes longer roll-outs of the dynamical system.

3. In Section 4, we present an experiment using actual US interest rate and inflation rate data.
Here we provide empirical evidence that overlap assumptions are more likely to be satisfied
in our dynamical system model. In Appendix A, we perform empirical investigations on a
linear dynamical system perturbed by Gaussian noise to show the connection between the
rank condition underlying our theory and identifiability. We find that the conditioning of our
observations improves as more variations are accumulated, making the causal inference problem
“easier” over time.

4. To complement our identifiability results, in Appendix B, we provide a basic treatment of
how practitioners could use our proposed observational model. In particular, we outline
a non-parametric estimator of the steerability of consumption, and provide an associated
convergence result for the general observational setting. We also propose a Double-ML-type
estimator [Chernozhukov et al., 2017] which exploits longer observed roll-outs of the dynamical
system. We provide finite sample guarantees for it in the linear setting.

1.2 Backgound

The fact that digital platforms, their predictions, and their actions non-trivially impact the individuals
that interact with the platform has widely been recognized in diverse applications ranging from
traffic forecasting, content recommendation to social media [c.f., Shmueli and Tafti, 2020, Thai
et al., 2016, Fleder et al., 2010, Adomavicius et al., 2013, Chaney et al., 2018, Krauth et al., 2022].

Recently Hardt et al. [2022] have drawn a formal connection between the extent to which a platform
can steer user behavior and the economic concept of power. Their proposal of performative power
measures the strength of this effect and crucially relies on being able to estimate the steerability of
consumption. From this lens, our work provides a roadmap for sufficient conditions for how perfor-
mative power can be assessed from observational data. More broadly the implications of predictions
impacting populations in the context of machine learning have been studied under the umbrella of
performative prediction [Perdomo et al., 2020]. Related to our work Mendler-Dünner et al. [2022]
focus on estimating the causal effect of predictions on eventual outcomes from observational data.
However their problem statement and the static model does not account for time nor take advantage
of repeated interactions between the predictor and the population.

Our work draws a connection between the causal question of estimating steerability of consumption
and dynamical system theory. The causal model we propose in this paper is reminiscent of dynamical
systems in control theory. Abbasi-Yadkori et al. [2011] and Abbasi-Yadkori and Szepesvari [2011]
propose methods of controlling linear quadratic control systems with unknown dynamics. Their
methods crucially rely on performing system identification—estimating the unknown parameters
which describe the dynamics. While our problem can also be stated as a system identification
problem, their observation model differs from the one we propose, as they focus only on the linear
setting, and they opt to analyze one longer rollout of the dynamical system, instead of shorter, iid
rollouts. While we give [Abbasi-Yadkori et al., 2011, Abbasi-Yadkori and Szepesvari, 2011] special
attention because of the similarity of their model to ours, system identification, described more
generally by Ljung [2010] as the “art and science of building mathematical models of dynamic
systems from observed input-output data” is ubiquitous in control theory.
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Figure 3: System dynamics with independent state perturbations.

2 Model

As we highlighted in the introduction, a feature of our model is that it unrolls time and makes
the temporal dynamics of the problem explicit. Therefore, let xt ∈ Rd and ut ∈ Rp denote the
consumption and control action at time step t respectively. We assume for all t ≥ 0 the dynamics of
the system follow

xt = f(xt−1) + g(ut−1) + ξt
ut = h(xt) + r(ut−1)

(1)

with (u−1, x−1) ∼ P−1 for a given distribution P−1, describing the joint distribution over state and
action pairs at time step t = −1. xt is some measure of consumption, and ξt ∈ Rd will model the
exogenous variation in xt. We do not make any assumption on P−1 and ξt for now, beyond there
existing a density. We focus on time steps t ≥ 0 without loss of generality. We will use the graph
in Figure 3 as a visual representation of our dynamics. The functions f ∶ Rd → Rd, g ∶ Rp → Rd,
h ∶ Rd → Rp, and r ∶ Rp → Rp describe how state and control variables affect one another.

Remark Our model can be generalized beyond addition to more sophisticated aggregation
functions: i.e., xt = Hx(f(xt−1), g(ut−1)) + ξt and ut = Hu(h(xt), r(ut−1)). Such a gen-
eralization could be useful in machine learning settings with strategic behavior. For example,
Hu ∶= argminuL(u,h(xt), r(ut−1)) could model an optimization algorithm which uses the pre-
vious state and control action to decide the action to take in the next time step. In this work, we
focus on the additive setting for expository clarity.

As we mentioned earlier, the auditor is interested in estimating the steerability of consumption from
observational data. With respect to the model we outlined, we define it as follows.
Definition 2.1 (Steerability of Consumption). For the dynamical system specified by Equation (1)
and Figure 3, the steerability of consumption with respect to a baseline action u and intervention u′

is defined as follows:

S(u,u′) ∶= E[xt ∣ do(ut−1 ∶= u′)] −E[xt ∣ do(ut−1 ∶= u)].

This quantity captures how platform interventions can alter user behavior. We note that because we
have a repeating structure in our graph, the steerability of consumption computed using xt is the
same as the associated quantity computed using xk (e.g., the relationship between xt and ut−1 is the
same as xk and uk−1 for any k). Thus, a sufficient condition for identifying S(u,u′) is to identify
E[xt ∣ do(ut−1 ∶= u)].

2.1 Running example

Consider an auditor who is interested in estimating the impact of YouTube’s video recommendation
on the consumption patterns of its users. Let yt ∈ Rp be some measure of content consumption
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(number of hours streamed) for p video categories of interest on YouTube during week t for a given
user. Let zt ∈ Rdz comprised of measurements about the platform such as revenue per category,
click-through rate per category, unique weekly users, unique advertisers per category, competitors’
performance, etc. which could be confounders. We can think of the joint vector [yt; zt] ∈ Rd as the
state variable xt for d = p+dz . The control action ut ∈ Rp is a measure of how many videos from the
p categories of interest are recommended to a given user during week t. The controller (YouTube)
interfaces using ut with the goal of maximizing total profits, which is some deterministic function
of xt. The auditor is interested in estimating how the control action ut−1 impacts the average watch
habits yt of users. More specifically, they are interested in the first d coordinates of the steerability
of consumption S(u,u′). Recall that the auditor can ignore the other coordinates because they
correspond to the confounding variables.

Our model postulates that user consumption changes over time based on the recommendations by
the algorithm, as well as external factors (these could be new trends). Formally, taking inspiration
from Jambor et al. [2012], we can model the dynamics of the system as

zt = f1(zt−1, yt−1) + g1(ut−1) + ξ(1)t

yt = f2(zt−1, yt−1) + g2(ut−1) + ξ(2)t .

f1 models how the performance metrics chosen as a target variable by the firm evolve over time, and
g1 models YouTube’s ability to control this metric. f2 models how much interest users retain in each
video category from week to week, as well as the effect of confounders on viewership (e.g., how
many hours of viewing time can a competitors poach). g2, the quantity the auditor wants to estimate,
models how much consumption increases as more recommendations get served. ξ

(1)
t , ξ

(2)
t is the

natural variation in user preferences. For example, the Bitcoin price may increase due to changes in
economic conditions, leading to many more users watching cryptocurrency videos on YouTube; this
change in behavior is independent of past consumption and YouTube’s recommendations. We can
model the controller similarly as

ut = h(zt, yt) + r(ut−1),

where h models Youtube’s algorithm of how viewer statistics and other metrics affect recommenda-
tions in the future. The function r models how YouTube regularizes its recommendations to avoid
overfitting to recent activity. For example, a sudden spike in viewership in the “music video” cat-
egory could be the result of transitive internet trend; overfitting to this viewership spike may be
suboptimal for the future. This example serves to illustrate how our model of user dynamics (1)
applies to a concrete use-case.

Beyond recommender systems. The steerability of consumption is not a term specific to recom-
mender systems; rather, it is a general term referring to the relationship control actions have on
consumption. There are many other settings for which our model is applicable. Microeconomists
are often interested in estimating the effect product prices have on demand, termed the price elastic-
ity of demand. If we model product demand using xt and model product prices using ut, then this
quantity is precisely the steerability of consumption. Confounders like product quality can be ac-
counted for in the state variable xt. A classical problem in macroeconomics is estimating the effect
the Federal Interest Rate has on inflation and unemployment. We can use our framework to estimate
this effect by modeling the Federal Interest Rate as the control action ut and inflation and unemploy-
ment rates as the state xt. In this example, GDP and other measures of the global economy could be
possible confounders to account for. Many digital advertising platforms (and third-party auditors)
are interested in whether personalized advertising increases platform activity. On one hand, adver-
tisements clutter user interfaces, making the user experience less streamlined, but on the other hand,
personalized advertisements provide users with more opportunities to engage, giving the platform
more influence over user lives. Again, we can use our model to estimate the effect advertisements
have on engagement; this time letting xt be some measure of engagement (e.g., clicks, time online)
and ut be some measure of the type and quantity of ads served, while accounting for confounders
like other platform performance measures such as monthly active users.
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3 Identifiability from exogenous state variations

Let us start from the general causal graph in Figure 1 and recall classical results from causal iden-
tifiability in the presence of an observed confounding variable z [Pearl, 2009]. They tell us that a
sufficient condition for identifiability of the causal effect of u on x is admissability and overlap.
Definition 3.1 (Admissibility [Pearl, 2009]). A continuous random variable Z with density pZ is
admissible with respect to treatment U and observation X if it satisfies the adjustment formula:

E[X ∣ do(U ∶= u)] = ∫ E[X ∣ U = u,Z = z]pZ(z)dz. (2)

Definition 3.2 (Overlap). A continuous, Rd-valued random variable W with density p has overlap
if p(w) > 0 for all w ∈ Rd.

Admissability is a property of a set of random variables Z that ensures the adjustment formula (2) is a
valid tool for estimating causal effects by adjusting for confounding. It states that the causal quantity
on the left-hand-side can be expressed as a function of pre-interventional data, and thus can be
estimated from such data without bias. Admissibility coupled together with overlap over treatment,
confounder pairs—that is p(u, z) > 0 for any pair u, z of interest—guarantees that E[X ∣U = u,Z =
z] is well defined for any u, z and thereby allows the auditor to estimate steerability of consumption
in a non-parametric way by adjusting for the confounder z using the adjustment formula (2).

To apply the adjustment formula in the context of our refined causal model (Figure 3) we aim to find
the smallest set of admissible random variables for adjustment and estimation of the steerability of
consumption. Without loss of generality we focus on identifying the steerability of consumption St
for t = 2. Thus, we are interested in the quantity E[x2 ∣ do(u1 ∶= u)] from which we can derive S2.
The proof of the following result is found in Appendix C.1.
Proposition 1 (Admissibility in our model). Given the causal model in Figure 3. The state variable
x1 is admissible with respect to treatment u1 and observation x2.

Given Proposition 1 and the adjustment formula (2) we know that

E[x2 ∣ do(u1 ∶= u)] = ∫
z
E[x2 ∣ u1 = u,x1 = z]px1(z)dz.

Being able to compute the right hand side for any u from observational data is a sufficient condition
for identifiability. The joint density of (x1, u1) being positive everywhere is sufficient for the right
hand side to be well defined; thus, the question of identifiability reduces to a question of overlap.

3.1 Key assumptions

We highlight the two assumptions on the dynamical system in (1) that allow us to establish overlap
over (x1, u1). The first assumption posits the presence of natural perturbations in the state variable
x. In particular, it requires that there is exogenous noise in the system that leads to sufficient variation
in the user attribute variables across time.
Assumption 1 (Overlapping Exogenous Noise). The noise variables in our causal model (Figure 3)
are such that (ξ0, ξ1)∣{x−1 = a, u−1 = b} has overlap for all a ∈ Rd and b ∈ Rp.

We note that the noise variables ξ0, ξ1 do not need to be independent of each other or of the previous
states, all we need is overlap. The second assumption concerns the controller. It needs to be suffi-
ciently sensitive to the variations in the user attribute variable x, so that the variations provided by
Assumption 1 propagate into the control action u.
Assumption 2 (Responsive Control Action). Let qc ∶ Rd → Rp defined as qc(y) ∶= r(h(y) + c)
describe how the current state y affects the next control action given that the previous control action
was c. Assume qc is a surjective, invertible map with an invertible Jacobian for all c ∈ Rp.

To illustrate why one might expect the above two assumptions to hold, consider the YouTube rec-
ommender system example from Section 2.1. Exogenous perturbations ξt can correspond to factors
like new trends or economic conditions which often have a very large effect on viewership statistics
and the other metrics captured in the user attribute variable xt, giving us reason to believe that As-
sumption 1 is satisified in this example. To argue for surjectivity, recall that r describes the effect
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previous control actions have on future recommendations, and h captures the effect the state has on
the control action. First, we don’t expect the control action to vary wildly between time steps, so we
may expect the controller to adopt a simple policy, like discounting the previous action r(u) = αu.
This action happens to be surjective. Furthermore, in general, the dimensionality of the state is
larger than the dimensionality of the control system (the controller has limited actions that it can
take to influence the system and there are an arbitrarily large number of metrics and confounders we
can add to the state variable). We posit that since d ≥ p, there exists some setting of the state that
maps to every possible control response i.e., h is surjective. Finally, because qc is the composition
of h and r, it is also surjective. The invertible Jacobian condition imposes a form of “monotonicity”
on qc which in the YouTube setting corresponds to: more views in category i should lead to more
recommendations in category i.

3.2 General identifiability result

Building on the two assumptions discussed in the previous section, we can now provide our general
identifiability results. Proofs can be found in Appendix D.

Theorem 1 (Identifiability from two exogenous state perturbations). Consider the dynamical system
in (1) with any arbitrary P−1 and noise variables (ξ0, ξ1) satisfying Assumption 1. Let the auditor
observe iid samples of (x1, u1, x2). Then, if Assumption 2 holds, (x1, u1) has overlap and the
steerabiltiy of consumption S(u,u′) is identifiable for any u,u′ ∈ Rp.

This theorem is stated for the setting where the overlapping exogenous noise occurs in subsequent
time steps and the auditor observes the system starting the time step of the second overlapping
exogenous noise spike. This result can be generalized further with some additional assumptions.
We can handle overlapping exogenous noise spikes which do not occur in subsequent time steps by
assuming a variation of Assumption 2 which guarantees the function mapping the effect the first
overlapping noise spike on the control action observed is surjective. We can handle settings where
the the auditor observes the system after the second overlapping noise spike occurs by assuming
all other noise spikes operating on states in other times steps are independent (but need not have
overlap). We avoid explicitly detailing these variations for the sake of clarity.

In words, this result states that exogenous perturbations on two of the state variables are sufficient
for the auditor to identify the steerability of consumption from observations. Interestingly, observing
the system after two exogenous perturbations to the state is crucial for identifiability. Observing the
system after only one perturbation is not sufficient. We show this necessity by presenting Theorem 2.

Theorem 2 (Unidentifiabilty of one exogenous state perturbation). Consider the dynamical system
in (1) with initial conditions x−1 = u−1 = 0, and mutually independent noise variables ξ0 and ξ1. Let
the auditor receive iid samples of (x0, u0, x1). Then, for any functions f ∶ Rd → Rd, g ∶ Rp → Rd, h ∶
Rd → Rp, the steerability of consumption is unidentifiable; i.e., there exists (f̂ , ĝ, ĥ) ≠ (f, g, h)
which induces the same distribution of (x0, u0, x1).

Intuitively, a single perturbation is not enough for identifiability because the control action is a
deterministic function of the user attribute variable. Thus, the auditor is only able to see one value
of u0 for any value of x0. The second noise spike impacts the state and control variables differently,
providing enough variation for overlap, making the steerability of consumption identifiable. One
advantage of our approach is that Assumption 2 is an assumption on the design of the controller
(which is typically a deterministic mechanism) and this assumption can be verified with enough
knowledge of the control system, while typical overlap assumptions are not, as they model the
behaviors of users, which could vary wildly for any number of reasons.

3.3 Identifiability in the linear model

Let us outline how additional structural assumptions can be exploited for identification. We study a
linear instantiation of the general model we proposed and show that one noise spike, instead of two,
is sufficient for identifiability as long as the auditor observes the system for enough times steps. We
provide some intuition why this is the case. Because the system is linear, explicit overlap of (xt, ut)
is not needed; instead the auditor just needs overlap over enough directions such that their span
covers all values that (xt, ut) can take on. As we will show, one spike of exogenous state variation
and sufficient expressivity in the linear model ensures that observations of (x0, u0), and (x1, u1)
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provide “one direction” each so that the auditor can use linear combinations of these observations to
recover the steerability of consumption.

In this section, we will assume the functions f, g, h, r are linear and defined as

f(x) ∶= Ax g(x) ∶= Bx

h(x) ∶= Cx r(x) ∶=Dx,
(3)

where A ∈ Rd,d,B ∈ Rd,p,C ∈ Rp,d,D ∈ Rp,p. We note that in the linear setting, it is sufficient
for the auditor to identify the matrix B, as they can readily compute the steerability of consumption
with this information. There are many settings where the dynamical system we want to study is
linear, or modeled as linear. For example, a linear controller, such as a proportional-integral (PI)
controller, controlling a physical system, such as a quadrotor, can be modeled with linear dynamics
[Bouabdallah et al., 2004]. Before we present our results, we begin with an alternative definition of
overlap that we will use in this section, termed “full span”.
Definition 3.3 (Full span). A random vector x ∈ Rd has full span if for all vectors a ∈ Rd such that
a ≠ 0, aTx is almost surely not a constant.

Intuitively, because we are dealing with linear systems, the auditor just needs to be able to see or
reconstruct all the directions the data could span, as opposed to observing the full space. Now we
present our linear identifiability result in Theorem 3; the proof can be found in Appendix D.3.
Theorem 3 (Simple identifiable DAG). Consider the dynamical system in (1) with any arbitrary P−1
and with functions f, g, h, r defined in (3). Let {ξt}t≥0 be a set of mutually independent random vec-
tors, and let ξ0 have full span. Let the auditor observe iid samples of (x0, u0, . . . , xK1 , uK−1, xK)
for any K ≥ 2. If x−1 and u−1 are mutually independent of ξ0 and [DC, . . . ,DK−1C] is full row
rank, then the steerability of consumption S(u,u′) is identifiable for any u,u′ ∈ Rp. If x−1 = 0,
u−1 = 0, and ξt = 0 for t ≥ 1, then [DC, . . . ,DK−1C] being full row rank is necessary for the
identifiabilty of S(u,u′).

Because Theorem 2 still holds even in the linear setting, Theorem 2 and Theorem 3 together fully
characterize the tradeoff between identifiability, number of time steps observed, and rank conditions
on the controller dynamics matrices. Summarizing briefly, the auditor cannot identify the steerabil-
ity of consumption from observations from only observations of (x0, u0, x1), but identification is
possible from observations (x0, u0, . . . , xK1 , uK−1, xK) for K ≥ 2. Moreover, as K gets larger, the
assumptions required on the controller dynamics matrices get weaker. Intuitively this weakening
occurs because as the auditor observes more time steps, they have more opportunities to observe all
of the “directions” (xt, ut) can take on, allowing for more poorly conditioned dynamical systems to
be identifiable. We note that in linear control problems, like the aforementioned quadrotor example,
the controller dynamics are often known, and thus, the rank conditions sufficient for identifiability
are frequently easy to check.

4 Experiments

In this section, we corroborate our theoretical findings with an experiment using actual US interest
rate and inflation rate data. Our empirical results suggest that overlap assumptions are more likely
to be satisfied in our dynamical system model. We also perform additional synthetic experiments on
a linear dynamical system perturbed by Gaussian noise, but we defer these results to Appendix A.

4.1 Federal Interest Rate and Inflation

We apply our model to a time series dataset [Reserve, 2017], containing monthly records of the US
Federal Interest Rate and US Inflation rate from October, 1982 to December, 2008 and estimate the
causal effect of Federal Interest Rate on the Inflation rate. We will compare the estimates obtained by
relying on our modeling assumptions with an estimate obtained from a more naive approach based
on the general model from Figure 1 that does not posit a Markovian assumption on how confounding
variables interact. We will use an adjustment formula estimator, outlined in Appendix B.1, and we
will place a special emphasis on examining how well our overlap assumptions hold as we vary the
number previous time steps K that we account for as a confounding variable. We discretize the
effective interest rate into two buckets ((0.999, 5.25], (5.25, 11.5]) and the inflation rate into three
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buckets ((1.01, 2.5], (2.5, 3.8], (3.8, 5.9]) . The demarcation of the buckets is chosen such that each
bucket marginally contains an equal number of datapoints. For a month t ∈ [T ], ut will corresponds
to the discretized effective interest rate, and xt corresponds the discretized inflation rate.

Before construct our estimator, we first specify K. With this quantity, we look at a sliding win-
dow over the data {(xt, . . . , xt+K , ut, . . . , ut+K−1)}T−Kt=0 . We will treat these samples as the iid
observations the auditor observes. In the context of our adjustment formula estimator, we will use
ut+K−1 as the treatment variable, zt+K−1 ∶= (xt, . . . , xt+K−1) as the confounders, and xt+K as the
outcome. We estimate the steerability of consumption using the adjustment formula estimator from
Appendix B.1 for a given treatment u as follows

x̂(u) ∶= ∑
z

[∑t xt+11{zt = z, ut = u}
∑t 1{zt = z, ut = u}

] ∑t 1{zt = z}
n

,

where n = T − K is the number of observations in our dataset. We now provide our findings in
Table 1. High interest rate corresponds to an interest rate being in the higher valued bucket (5.31,
11.64]; low interest rate corresponds to the (0.159, 5.31] valued bucket.

Interest Rate
(Intervention u)

Estimated Effect
on inflation

Fraction of
undefined terms

Probability mass
of undefined terms

K=1 High 3.29 0 / 3 0.0%
Low 2.98 0 / 3 0.0%

K=2 High 3.29 0 / 7 0.0%
Low 2.99 0 / 7 0.0%

K=3 High N/A 1 / 14 0.3%
Low N/A 2 / 14 1.0%

K=4 High N/A 5 / 23 3.2%
Low N/A 6 / 23 2.9%

K=5 High N/A 8 / 32 4.2%
Low N/A 11 / 32 5.2%

K=6 High N/A 13 / 41 6.8%
Low N/A 16 / 41 7.1%

Table 1: Estimated effects on inflation rate for interest rate interventions.

As K gets larger, there are many z and u pairs where ∑t 1{zt = z, ut = u} = 0; when this happens,
x̂(u) is not well defined. N/A denotes when this occurs. The “Fraction of undefined terms” column
corresponds to the number of z values such that ∑t 1{zt = z, ut = u} = 0 over the total number of
values of z where ∑t 1{zt=z}

n
≠ 0. The entries of “Probability mass of undefined terms” column is

equal to ∑z
∑t 1{zt=z}

n
1{∑t 1{zt = z, ut = u} = 0}. We can see that as K gets larger, the number

of undefined, the relative fraction of undefined values, and the mass of said values gets larger.

This experiment highlights how overlap assumptions become harder to satisfy, the more time steps
we track as confounders, even when the state and control values are binned-one-dimensional-scalars.
We expect these issues get worse if the state (at each time step) is also high dimensional as well,
which is often the case in modern machine learning settings. This experiment highlights the pressing
need to mitigate overlap issues and showcases how our model can be useful to that end.

5 Discussion

In many settings, our model provides a reasonable first-order approximation to the problem of in-
terest. Certainly, there might be aspects of the system, such as unobserved state variables, or more
complex dependencies across time that our model is not able to capture. However, we are interested
in understanding how powerful it is to explicitly model time and interactions among confounding
variables for tackling causal questions. Thereby, we aim to provide a mostly unexplored direction
for designing assumptions for causal inference in data scarce settings and illustrate how to leverage
data across multiple time steps for causal estimation.
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Figure 4: Histograms of eigenvalues of Σt defined in Appendix A

A Synthetic Experiments

We analyze the dynamical system (1) with linear dynamics (3) with independent Gaussian noise on
the states to show how the noise leads to identifiability. In particular we show how the conditioning
of the problem evolves across time steps and how the presence of noise makes the problem easier.

We instantiate the model as follows: We let ξt
d=N(0, I) for all t, starting from x−1 = u−1 = 0. We

consider the symmetric case where d = p. To generate B, we sample a random matrix W in Rd,n for
n≫ d with independent standard Gaussians as its entries, and we set B =WWT /n. We repeat this
process to generated A and D. This way of generating our dynamics matrices ensures the matrices
are well conditioned. We generate C the same except by instead setting W ∈ Rd,r for r < d, making
C rank r instead of rank d. We set d = 100, n = 2000, and r = 80.

For this system, we can explicitly write down how the covariance matrix of (xt, ut), denoted Σt,
evolves. Namely, from the dymanics

[xt

ut
] = J [xt−1

ut−1
] +Mεt where J ∶= [ A B

CA CB +D] M ∶= [ I
C
] .

we can deduce that

Σt = JΣt−1J
T +MMT =

t−1

∑
k=0

(Jk)MMT (Jk)T .

We now plot the histogram of the eigenvalues of Σt for a random system that we generated. The
important quantity to look out for is whether Σt is full rank. Directions in the null space of Σt (i.e.,
with zero eigenvalue) are directions that are unobserved by the auditor. Thus, when Σt becomes full
rank, the system becomes identifiable because (xt, ut) becomes fully-spanning.

We note that in this system, rankDC = 80 = r < d and rankC = 80 = r < d. Even though the
setup of this system is not the same as Theorem 3, we believe linearity gives us a correspondence
between the settings. Assuming for a moment that there is an equivalence, Theorem 3 tells us that
observing (x1, u1) is not sufficient for identifiability. This is consistent with Figure 4 as there are still
eigenvalues with value zero. However, since in this system rank[DC,D2C] = 100 = d, Theorem 3
tells us observing (x2, u2) (i.e., observing three noise spikes) is sufficient for identifiability. This is
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also consistent with Figure 4, as all eigenvalues are bounded away from zero now. Moreover, we
see that the eigenvalues of get larger as more time passes: the eigenvalue mass of Σ6 is further to
the right of the eigenvalue mass of Σ3 in Figure 4.

Our experiments corroborate our theoretical results which say that three noise spikes for this low
rank system is necessary and sufficient for identifiability. Furthermore, our experiment also suggests
that more noise spikes over more time steps make the observations better conditioned, likely making
estimating the steerability of consumption easier for the auditor in practice.

B Estimators

To complement our identifiability results, we provide a basic treatment of how practitioners could
estimate steerability of consumption from observational data under our proposed model. First, we
outline a non-parametric estimator based on the adjustment formula and provide an associated con-
vergence result for the non-parametric setting. This estimator assumes the auditor has iid obser-
vations of triplets (xt, ut, xt+1) and explicitly requires overlap of (xt, ut). Then, we propose a
Double-ML-type estimator [Chernozhukov et al., 2017] that assumes the auditor has iid observa-
tions of (xt, ut, xt+1, ut+1, xt+2) and analyze it in the linear model. This method exploits the longer
roll-outs in the observational data and has the advantage of always being well defined, even when
the overlap conditions needed for theoretical guarantees do not hold. For this section, without loss
of generality, we will assume the dynamical system (1) starts at time index t = −1 and the auditor
observes some subset of the variables (x0, u0, x1, u1, x2), similar to previous sections.

B.1 Adjustment formula estimator

Admissibility of the dynamical system we are studying (Proposition 1) makes estimating the adjust-
ment formula (Definition 3.1) sufficient for estimating the steerability of consumption. In order to
do this, we first discretize a compact subset of the user state X ⊂ Rd and control spaces U ⊂ Rp with
a cover, defined as follows.
Definition B.1 (Cover). For a space X , let N = {Uα ⊂ X ∶ α ∈ A} be an indexed family of sets
Uα. N is a cover of X if X ⊂ ∪U∈NU . N is an ε-cover with respect to ∥⋅∥2 if for all U ∈ N for all
x, y ∈ U , ∥x − y∥2 ≤ ε. N is a disjoint cover if, additionally, for all U,V ∈ N , U ∩ V = ∅.
Definition B.2 (Cover Representatives). For a space X and a disjoint cover N , R ⊂ X is a cover
representative of N if for all A ∈ N , there exists x ∈ R such that x ∈ A and for all y ∈ R where
y ≠ x, y /∈ A.

With this discretization, we can estimate the integral from Definition 3.1 using a finite sum. The
specifics of how the estimator is constructed can be found in Algorithm 1, but we first introduce some
notation. We let y(k) denote the kth sample of the random variable y. For a coverN , we letN(u) ∈
N denote the set where u ∈ N(u). We define nu,x ∶= ∑k∈[n] 1{u

(k)
1 ∈ NU(u), x(k)1 ∈ NX (x)} to

be the number of observations which fall into NU(u) and NX (x).
To summarize, this estimator first discretizes the space of observations and then uses sample aver-
ages to estimate the terms in the adjustment formula Equation (2). We will need some mild assump-
tions to prove a guarantee on the estimator. Our first assumption controls how much previous user
state and control actions affect future state actions. The magnitude of the effect must be bounded in
proportion to the inputs.
Assumption 3. The relationship between x2 and x1, u1 is L-Lipschitz continuous in the sense that
for any z, z′ ∈ X and u,u′ ∈ U it holds that

∥E[x2∣u1 = u,x1 = z] −E[x2∣u1 = u′, x1 = z′]∥ ≤ L∥[
u
z
] − [u

′

z′
]∥ .

We also need to control how far the empirical estimate E[Y n(u,x)] deviates from E[x2∣u1 = u,x1 =
x]. To do this, we impose a regularity condition on the conditional distribution.
Assumption 4. For all w,w′ ∈ X and u,u′ ∈ U , for which

∥[u
w
] − [u

′

w′
]∥ ≤ ε.
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Algorithm 1 Adjustment formula estimator
Require: Cover granularity ε > 0, error tolerance δ ∈ (0,1), γ > 0, failure probability tolerance
ρ ∈ (0,1), compact subset U ⊂ Rp, compact subset X ⊂ Rd, control action u ∈ U of interest.
Step 1. Form a disjoint ε/2-cover of U such that every element has Lebesgue measure greater than
0 and label it NU ; letRU denote its respective cover representative. Form a disjoint ε/2-cover of
X such that every element has Lebesgue measure greater than 0 and label it NX ; let RX denote
its respective cover representative.
Step 2. Collect enough samples such that nu,x ≥ 2dσ2

γ2 log(4∣RX ∣/ρ) for all x ∈ X and the total
number of samples n satisfies n ≥ maxx∈RX

1
2δ2P (x1∈NX (x))2

log(4∣RX ∣/ρ). Take data to form

dataset Dn = {(x(k)1 , u
(k)
1 , x

(k)
2 )}nk=1, u ∈ Rp.

Step 3. Let

Y n(u,x) ∶=
∑k∈[n] x

(k)
2 1{u(k)1 ∈ NU(u), x(k)1 ∈ NX (x)}

∑k∈[n] 1{u
(k)
1 ∈ NU(u), x(k)1 ∈ NX (x)}

Zn(x) ∶= 1

n

n

∑
k=1

1{x(k)1 ∈ NX (x)} .

return the following estimator:

x̂2 ∶= ∑
x∈RX

Y n(u,x)Zn(x).

For any x ∈ X , the following condition on the density p holds for some η(ε) ∈ (0,1) such that
limε→0 η(ε) = 0:

1 − η(ε) ≤ p(u1 = u,x1 = w∣x2 = x)
p(u1 = u′, x1 = w′∣x2 = x)

≤ 1 + η(ε).

This assumption ensures that the conditional distribution is “stable” in any ε-neighborhood. We
present our convergence result now in Theorem 4.
Theorem 4. Consider the dynamical system in (1) with any arbitrary P−1. Let the auditor observe
iid samples of (x1, u1, x2). Suppose x2 is σ2-subgaussian conditioned on u1 and x1. Let E[ξ2∣x1 =
x,u1 = w] = 0, E[∥ξ2∥ ∣ x1 = x,u1 = w] ≤ c1 for all x ∈ Rd and w ∈ Rp. Let f and g be continuous
functions, and define D such that supx∈X ,w∈U max (∥f(x)∥ , ∥g(w)∥) ≤ D. Let the conditions of
Theorem 1 hold, Assumption 3 hold with L and Assumption 4 hold with η. For any compact subset
X ⊂ Rd and U ⊂ Rp, for any specified u ∈ U , for n large enough, Algorithm 1 executed with
parameters ε, δ, γ, ρ,U ,X , u returns x̂2 which has the following guarantee with probability at least
1 − ρ:

∥x̂2 −E[x2∣do(u1 ∶= u)]∥ ≤ δγ + 2δD + γ +
2η(ε)
1 − η(ε) (2D + c1)

+Lε +E[∥f(x1)∥1{x1 /∈ X}] + (1 − Px1(X))D.

The proof of Theorem 4 can be found in Appendix E.1. We quickly go through all the terms in the
bound, and verify that they can all be made arbitrarily small (with sufficient samples). δ and γ can
be made smaller, so long as the auditor receives proportionally enough samples. The auditor can
create a finer discretization to make ε smaller and therefore η smaller as well. If we assume that
E[∥f(x1)∥] ≤ ∞, then the last two terms tend to zero as the auditor’s approximation of Rd—i.e.,
X—becomes larger.

B.2 Double-ML-type estimator for separable model

Now we present an estimator which leverages the structure of the data generation procedure and
performs a regression between residuals, reminiscent of Double Machine Learning [Chernozhukov
et al., 2017]. The procedure requires hypotheses (i.e., sets of functions Fd→p, Fd→d, and Fp→d) of
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Algorithm 2 Double ML estimator

Require: Loss functions ℓ1, ℓ2, ℓ3, Hypothesis classes Fd→p ⊂ {f ∣ f ∶ Rd → Rp}, Fd→d ⊂ {f ∣ f ∶
Rd → Rd}, and Fp→d ⊂ {f ∣ f ∶ Rp → Rd}, Dataset Dn = {(x(k)2 , u

(k)
1 , x

(k)
1 )}nk=1

Step 1.

ĥ = argmin
h∈Fd→p

1

n

n

∑
k=1

ℓ1(u(k)0 , h(x(k)0 ))

Step 2.

ŝ = argmin
s∈Fd→d

1

n

n

∑
k=1

ℓ2(x(k)1 , s(x(k)0 ))

Step 3.

ĝ = argmin
g∈Fp→d

1

n

n

∑
k=1

ℓ3(x(k)2 − ŝ(x(k)1 ), g(u
(k)
1 − ĥ(x(k)1 )))

return ĝ ∶ Rp → Rd

what the relationships between control and state are. The details of the estimator are presented in
Algorithm 2.

We now present some intuition about the estimator by analyzing it in the linear setting from Sec-
tion 3.3. Our results can be generalized further, but we feel these generalizations only obfuscate
the main message; thus, we focus on this simplified setting. In particular, for the remainder for
the section, assume data is generated according to the dynamical system Equation (1) with functions
f, g, h, r defined in Equation (3). Accordingly, in the context of Algorithm 2, we will consider linear
function classes i.e., Fd→p = Rp,d, Fd→d = Rd,d, and Fp→d = Rd,p. And we will assume ℓ1, ℓ2, ℓ2
corresponds to square loss i.e., ℓj(a, b) = 1

2
∥a − b∥22. Our results can be generalized further, but we

feel these generalizations only obfuscate the main message; thus, we focus on this simplified setting.
Our result will need the following assumption to hold.

Observe that the following relationship holds between control and state variables in the linear setting.

x2 − (A +BC)x1 = B(u1 −Cx1).
Thus, if we had good estimates of H ∶= (A + BC) and C denoted by Ĥ and Ĉ respectively, we
could regress x2 − Ĥx1 against u1 − Ĉx1 to get an estimate of the steerability of consumption B. In
fact, this is exactly what Algorithm 2 is doing in the linear setting. Let x(k)t , u

(k)
t , ξ(k)t denote the

kth observations of xt, ut, and ξt respectively. Let Xt ∈ Rd,n, Ut ∈ Rp,n, and Et ∈ Rd,n be matrices
that comprise n samples of xt, ut, and ξt respectively. Algorithm 2 in the linear setting corresponds
to first estimating H and C with the values Ĥ and Ĉ respectively before computing an estimate of
the steerability of consumption B̂. Explicitly, Algorithm 2 is performing these three computations

Ĉ = argmin
C∈Rp,d

1

2n
∥U0 −CX0∥2Fr = U0X

T
0 (X0X

T
0 )−1

Ĥ = argmin
H∈Rd,d

1

2n
∥X1 −HX0∥2Fr =X1X

T
0 (X0X

T
0 )−1

B̂ = argmin
B∈Rd,p

1

2n
∥X2 − ĤX1 −B(U1 − ĈX1)∥

2

Fr

= (X2 − ĤX1)(U1 − ĈX1)T ((U1 − ĈX1)(U1 − ĈX1)T )−1.

Before we present our convergence result, we will need the following assumption to be satisfied.
Assumption 5 (ρ-Bounded System Dynamics). The linear dynamical system specified by (1) and
(3) has ρ-Bounded System Dynamics if

∣∣∣A +BC ∣∣∣op
σmin (DC) ≤ ρ.
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Let’s investigate the consequences of this assumption. First, consider the quantity
∥x1 − ξ1∥2 / ∥u1∥2; this is the ratio between the magnitude of the state and control action af-
ter one time step of dynamics ignoring noise and assuming the system starts from equilibrium
x−1 = u−1 = 0. Because ∥x1 − ξ1∥2 / ∥u1∥2 ≤

∣∣∣A+BC∣∣∣op∥x0∥2

λmin (DC)∥x0∥2
, having Bounded System Dynam-

ics ensures that we have a bound on the relative magnitude between state and control action. We
will also use the notation κA ∶= σmax(A)/σmin(A) to denote the condition number of a matrix A

and Σ̂0 ∶= 1
n ∑

n
k=1 ξ

(k)
0 (ξ

(k)
0 )T to denote the sample covariance of the first noise spike. We now

provide our convergence result for the Double ML-type estimator in Theorem 5; the proof can be
found in Appendix E.2.

Theorem 5. Consider the dynamical system in (1) with x−1 = u−1 = 0 and with functions f, g, h, r
defined in (3). Let the auditor observe n iid samples of (x0, u0, x1, u1, x2) and let DC be full
column rank. Suppose that E ∥ξ1∥22 = σ2

1d, and the data generation model has ρ-Bounded System

Dynamics. Let G denote the event where X0X
T
0 is invertable. If E [

κ2
Σ̂0

λmin (Σ̂0)
] ≤ τ0, then

1

pd
E [∥B̂ −B∥2

Fr
∣ G] ≤ σ2

1ρ
2κ2

DCτ0

n
.

In the case where p = d, if ∣∣∣E [Σ̂−10 ]∣∣∣op ≤ τ1 we have that

1

d2
E [∥B̂ −B∥2

Fr
∣ G] ≤ σ2

1ρ
2τ1
n

.

We note that rank condition on DC in this result is consistent with the rank condition from the
identifiability result in the linear setting (Theorem 3); both results require DC to be full rank for
identifiability. The τ0, τ1 conditions are a bit technical, but they essentially just require ξ0 to be well
behaved. We provide a simple Gaussian noise example to better illustrate.

Example 1 (Gaussian noise): Suppose ξ0 and ξ1 are drawn iid from N(0, σ2
0Id) and p = d. We have

E ∥ξ1∥22 = σ2
1d. For n ≥ d, Σ̂0 is almost surely invertible. (X0X

T
0 /σ2

0)−1 has an inverse Wishart
distribution and thus, E[Σ̂−10 ] = n

(n−d−1)σ2
0
Id for n > d + 1. Theorem 5 gives us

1

d2
E ∥B̂ −B∥2

Fr
≤ σ2

1ρ
2

(n − d − 1)σ2
0

.

◇

C Proofs of Section 2

C.1 Proof of Proposition 1

Recall that the do action alters the data generation model by deleting incoming edges into u1.

E[x2∣do(u1 ∶= u)] = E[f(x1) + g(u) + ξt]

= ∫ E[f(z) + g(u) + ξt]px1(z)dz

= ∫ E[f(x1) + g(u1) + ξt∣u1 = u,x1 = z]px1(z)dz

= ∫ E[x2∣u1 = u,x1 = z]px1(z)dz

D Proofs of Section 3

Lemma D.1 (Multivariate change of variables). Let X be a random variable with density pX and let
Y = g(X) where g is an invertible mapping with Jacobian Jg , then pY (a) = pX(g−1(a))∣Jg(a)∣−1.
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Proof

P (Y ∈ A) = P (X ∈ g−1(A)) = ∫
g−1(A)

pX(x)dx = ∫
A
pX(g−1(x))∣Jg−1(x)∣dx = ∫

A
pX(g−1(x))∣Jg(x)∣−1dx

The definition of density gives the result.

D.1 Proof of Theorem 1

Overlap We will first show that (x1, u1) has joint overlap. Let z−1 ∶= (u−1, x−1). Because

pu1,x1(u,x) = ∫ pu1,x1∣z−1=z(u,x)pz−1(z)dz,

it suffices to show that pu1,x1∣z−1=z has overlap for any z ∈ Rp+d. For this reason, in this proof, we fix
z−1—i.e., u−1 and x−1 will be treated like constants—and for notional simplicity, we omit explicitly
conditioning on the event z−1 = z. Let c ∶= r(u−1), d ∶= g(u−1) + f(x−1), and ξ′0 ∶= ξ0 + d. Observe
that (ξ′0, ξ1) still has overlap. Using this modified notation, we have

x0 = ξ′0
u0 = h(ξ′0) + c
x1 = f(ξ′0) + g(h(ξ′0) + c) + ξ1
u1 = h(x1) + r(h(ξ′0) + c)

We first show that x1 has overlap. Recall ξ1 has positive density over Rd. Because addition by a
constant is an invertible, differentiable function, Lemma D.1 implies that f(ξ′0)+g(h(ξ′0)+c)+ξ1∣ξ′0
has positive density over Rd. Since ξ′0 also has positive density over Rd, integration tells us that
x1 = f(ξ′0) + g(h(ξ′0) + c) + ξ1 has positive density over Rd.

Because px1,u1 = pu1∣x1
px1 and x1 has overlap, it suffices to show that u1∣x1 has overlap over

Rp × Rd. It is sufficient to show that pqc(ξ′0)∣x1
is positive everywhere. To see this, observe that

u1∣x1 = h(x1) + qc(ξ′0)∣x1. Because addition by a constant is an invertible, differentiable function,
if qc(ξ′0)∣x1 had positive density everywhere, then Lemma D.1 tells us that u1∣x1 would have positive
density everywhere. Furthermore, because qc satisfies Assumption 2, the conditions of Lemma D.1
hold, and thus, it suffices to show ξ′0∣x1 has positive density everywhere. We observe that

pξ′0∣x1
(a, b) =

px1∣ξ′0(b, a)pξ′0(a)
px1(b)

.

Since x1 has overlap, the denominator is positive. Since ξ′0 has overlap, pξ′0(a) > 0 as well. Finally,
we had already shown earlier in the proof that x1∣ξ′0 (i.e., f(ξ′0) + g(h(ξ′0) + c) + ξ1∣ξ′0) has positive
density everywhere as well.

Identifiability Because pu1,x1 is positive everywhere, E[x2 ∣ u1 = u,x1 = z] is well defined.
Additionally, because x1 has density, ∫z E[x2 ∣ u1 = u,x1 = z]px1(z)dz is well defined as well.
Finally because our model is admissible as stated in Proposition 1, E[x2 ∣ do(u1 ∶= u)] = ∫z E[x2 ∣
u1 = u,x1 = z]px1(z)dz. The right hand side of this relationship is well defined and can be
computed from knowledge of the distribution of (x1, u1, x2); thus, E[x2 ∣ do(u1 ∶= u)] can be
computed from the distribution of observations (x1, u1, x2). Because this quantity identifiable, the
steerability of consumption S(u,u′) is also identifiable for any u,u′ ∈ Rd.

D.2 Proof of Theorem 2

Proof Define a measurable function ∆ ∶ Rp → Rd such that ∆ ≠ 0. For any functions f, g, h,
define, f̂(a) ∶= f(a)+∆(h(a)), ĝ(b) ∶= g(b)−∆(b), and ĥ(c) = h(c). For noise variables (ξ0, ξ1),
let (ξ̂0, ξ̂1) an identically distributed copy. Let x1, x0, u0 be sampled according to the dynamics
specified by (1) using the functions f, g, h and noise variables (ξ0, ξ1). Let x̂1, x̂0, û0 be sampled
according to the dynamics specified by (1) using the functions f̂ , ĝ, ĥ in place of f, g, h and noise
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variables (ξ̂0, ξ̂1) in place of (ξ0, ξ1). We see that

x0
d= ξ0 d= x̂0

u0
d=h(ξ0) d= ĥ(ξ0) d= û0

x1
d= f(ξ0) + g(h(ξ0)) + ξ1
d= f(ξ0) +∆(h(ξ0)) + g(h(ξ0)) −∆(h(ξ0)) + ξ1
d= f̂(ξ0) + ĝ(ĥ(ξ0)) + ξ1 d= x̂1.

D.3 Proof of Theorem 3

We first outline a series of helpful supporting lemmas. This first lemma draws an equivalence be-
tween matrices and the probability distributions induced by these matrices, allowing us to reason
about one by reasoning about the other.

Lemma D.2. Let {ξi}ni=1 be a set of mutually independent random vectors in Rd with full span. Let
{Ai}ni=1 be a set of deterministic matrices in Rd,p. Let v ∈ Rd be a random vector in Rd mutually
independent of {ξi}ni=1. Ai = 0 for all i ∈ [n] and v

a.s.= 0 if and only if v +∑n
i=1Aiξi

a.s.= 0.

Proof The left to right direction is obvious. We now prove the right to left direction by
cases. Suppose v is almost surely a constant vector. Suppose that only one j ∈ [n] such that
Aj ≠ 0, then its not possible that Ajξj

a.s.= −v by definition of full span. Suppose there exists
j, k ∈ [n] such that Aj ≠ 0 and Ak ≠ 0. This means that Ajξj is almost surely not a constant.
We also know that conditioned on {Aiξi}i≠j , Ajξj is almost surely a constant. This implies that
PAjξj ≠ PAjξj ∣{Aiξi}i≠j which contradicts the assumption of mutual independence. Suppose v is
almost surely not a constant vector. Then Pv ≠ Pv∣{Aiξi}i∈[n] as v is almost surely a constant vector
conditioned on {Aiξi}i∈[n]. This contradicts mutual independence.

For our next lemma and for the rest of the proof, we need to define some notation. Consider the
following variables:

Θx ∶= [
AT

BT ] Θu ∶= [
CT

DT ] ξx ∶=
⎡⎢⎢⎢⎢⎣

ξT0
⋮
0

⎤⎥⎥⎥⎥⎦
ξu ∶= 0

Let Θ̂x, Θ̂u be defined with respect to Â, B̂, Ĉ, D̂. Let ξ̂x
d= ξx and ξ̂u

d= ξu. Let (A,B,C,D) and
ξx, ξu induce PK and let (Â, B̂, Ĉ, D̂) and ξ̂x, ξ̂u induce P̂K . Let x ∶= [x0, . . . , xK]T and u ∶=
[u0, . . . , uK−1]T be observations from PK and let x̂ and û defined with hat variables be observations
from P̂K . Finally let z ∶= (x,u) and ẑ ∶= (x̂, û). Finally, we define matrices Qx, Qu, Q̂x, and Q̂u

such that the following relationships hold

x − ξx d=QxΘx u − ξu d=QuΘu

x̂ − ξ̂x d= Q̂xΘ̂x û − ξ̂u d= Q̂uΘ̂u

Our next lemma translates relationships about one set of dynamics matrices into relationships about
the other set of dynamics relationships.

Lemma D.3. If x − ξx d=QxΘ̂x, then x − ξx d=QxΘ̂x
d= Q̂xΘ̂x

d= x̂ − ξ̂x. Similarly, if u − ξu d=QuΘ̂u,
then u − ξu d=QuΘ̂u

d= Q̂uΘ̂u
d= û − ξ̂u.

Proof Recall that the random variables in the vector z corresponds to nodes in the causal directed
acyclic graph shwon in Figure 3. Define σ ∶ Z → Z such that zσ(i) is in sorted DAG order with
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respect to the DAG in Figure 3 (i.e, the parents of zσ(i) have σ indices smaller than σ(i) and its

children have σ indices larger than σ(i)). We proceed inductively to show that zσ(i)
d= ẑσ(i).

Base case: zσ(1)
d=L(ξ, Θ̂x, Θ̂u), where L is some function, linear in each of its inputs. Since ξ

d= ξ̂,

we have that zσ(1)
d=L(ξ̂, Θ̂x, Θ̂u) = ẑσ(1); the last equality follows from definition.

Inductive step: suppose zσ(j)
d= ẑσ(j) jointly over all j. We know that

zσ(j+1)
d=L({zσ(i)}i<j , ξ, Θ̂x, Θ̂u) where L is linear in {zσ(i)}i<j , linear in ξ, linear

with respect to Θ̂x, and linear in Θ̂u. By the inductive hypothesis we know that
zσ(j+1)

d=L({zσ(i)}i<j , ξ, Θ̂x, Θ̂u) d=L({ẑσ(i)}i<j , ξ̂, Θ̂x, Θ̂u) d= ẑσ(j+1), as all the inputs to the
function are equal in distribution. .

Because the entries of Q (Q̂ respectively) are comprised of entries of z (ẑ respectively), we have
that Q̂ d=Q. This proves the desired result.

Now that we have established our supporting lemmas, we can now prove our desired result.

Claim 1: Necessity and sufficiency when x−1 = u−1 = ξt = 0 for t ≥ 1. Let Xt ∈ Rd,d and
Ut ∈ Rp,d be defined such that xt = Xtε0 and ut = Utε0. Further define the following random
matrix:

Qx ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xT
−1 uT

−1

xT
0 uT

0
⋮ ⋮

xT
K−1 uT

K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Define hat versions of all variables accordingly. We have that x − ξx d= x̂ − ξ̂x and u − ξu d= û − ξ̂u.
Moreover, Qx is comprised of entries of x and u, Qx

d= Q̂x (jointly). Thus,

x − ξx d= x̂ − ξx d= Q̂xΘ̂x
d=QxΘ̂x

u − ξu d= û − ξu d= Q̂uΘ̂u
d=QuΘ̂u.

(4)

Finally, defining the fixed matrices X ∶= [X0, . . . ,XK]T , U ∶= [U0, . . . , UK−1]T , and

QX ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

XT
−1 UT

−1

XT
0 UT

0
⋮ ⋮

XT
K−1 UT

K−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

we can rewrite (4) as

⎡⎢⎢⎢⎢⎣

ξT0
⋮
ξT0

⎤⎥⎥⎥⎥⎦
⊙X =

⎡⎢⎢⎢⎢⎣

ξT0
⋮
ξT0

⎤⎥⎥⎥⎥⎦
⊙QXΘ̂x. (5)

Using Lemma D.2 we know the above equality holds if and only if the following holds

X = QXΘ̂x. (6)

Lemma D.3 tells us B is identifiable if and only if the entries of Θx corresponding to B is unique
(6). Indeed, if there exists two solutions (Θ̂x, Θ̂u) ≠ (Θx,Θu) such that B ≠ B̂, we can use
Lemma D.3 to show that P̂K = PK ; i.e., the system is not identifiable. The other direction is trivial,
as B being identifiable implies that B is unique.

We now give equivalent conditions for when B is unique. Let S ∶= {ej}d+pj=d+1 where ej is the jth

standard basis vector in Rd+p. B is unique (i.e., B̂ = B) if an only if null(QX) ⊥ span(S). Indeed
suppose v ∈ (QX) is such that v is not orthogonal to span(S), then Θ̂x = Θx + v1T is also a
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solution to (6); moreover, B̂ ≠ B because v is not orthogonal to span(S). Conversely suppose for
all v ∈ (QX), v is orthogonal to span(S). Then, any alternative solution Θ̂x ≠ Θx must satisfy
C(Θ̂x −Θx) ⊥ span(S), where C denotes the column span, which implies that B̂ = B.

Note that if M is a full rank matrix, MQ has the same null space as Q. Further observe that by
using elementary row operations, we know that there exists full rank square matrices M1 and M2

such that

QX =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I CT

XT
1 (CX1 +DU0)T
⋮ ⋮

XT
K−1 (CXK−1 +DUT−2)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=M1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I CT

0 (DU0)T
⋮ ⋮
0 (DUT−2)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=M2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I CT

0 (DC)T
⋮ ⋮
0 (DK−1C)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

M1 and M2 are products of full rank matrices corresponding to elementary row operations. M2 is
constructed by repeatedly applying the fact Ut = CXt +DUt−1. Thus, B is unique if and only if
null(Q̃X) ⊥ span(S) where

Q̃X ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I CT

0 (DC)T
⋮ ⋮
0 (DK−1C)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This is equivalent to span(S) ⊂ R(Q̃X), where R denotes row span, which is then equivalent to
[DC, . . . ,DK−1C] being full row rank. Tracing back all the if and only if statements gives the
result.

Claim 2: Sufficiency even when x−1 ≠ 0 and u−1 ≠ 0. In this setting, the proof for Claim 1 holds
up to Equation (5). Equation (5) changes to the following

⎡⎢⎢⎢⎢⎣

ξT0
⋮
ξT0

⎤⎥⎥⎥⎥⎦
⊙X +w1(x−1, u−1, ξ1, ξ2) =

⎡⎢⎢⎢⎢⎣

ξT0
⋮
ξT0

⎤⎥⎥⎥⎥⎦
⊙QXΘ̂x +w2(x−1, u−1, ξ1, ξ2).

By Lemma D.2, we know that these equalities hold if and only if Equation (6) holds,
w1(x−1, u−1, ξ1, ξ2) = w2(x−1, u−1, ξ1, ξ2) holds. null(QX) ⊥ span(S) suffices (but is no longer
necessary as there is one other relationships we are not accounting for) in showing there is a unique
B in any solution of the linear system in Equation (6). The rest of the argument in Claim 1 follows
identically.

E Proofs of Appendix B

E.1 Proof of Theorem 4

The proof proceeds by bounding each of the following terms.
XXXXXXXXXXX
∑

x∈RX
Y n(u,x)Zn(x) −E[x2∣do(u1 ∶= u)]

XXXXXXXXXXX
≤

XXXXXXXXXXX
∑

x∈RX
Y n(u,x)Zn(x) − ∑

x∈RX
Y n(u,x)P (x1 ∈ NX (x))

XXXXXXXXXXX

+
XXXXXXXXXXX
∑

x∈RX
Y n(u,x)P (x1 ∈ NX (x)) − ∑

x∈RX
E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)]P (x1 ∈ NX (x))

XXXXXXXXXXX

+
XXXXXXXXXXX
∑

x∈RX
E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)]P (x1 ∈ NX (x)) − ∑

x∈RX
E[x2∣u1 = u,x1 = x]P (x1 ∈ NX (x))

XXXXXXXXXXX

+
XXXXXXXXXXX
∑

x∈RX
E[x2∣u1 = u,x1 = x]P (x1 ∈ NX (x)) −E[x2∣do(u1 ∶= u)]

XXXXXXXXXXX
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E.1.1 Supporting lemmas

We begin with a series of supporting lemmas that will aid us in bounding these terms.
Lemma E.1. Let the conditions of Theorem 1 hold and let λ denote the Lebesgue measure for Rd+p.
Let NX be a cover of X and NU be a cover of U . If for all A ∈ NX and B ∈ NU , λ(A ×B) > 0,
then P (x1 ∈ A,u1 ∈ B) > 0 for all A ∈ NX ,B ∈ NU .

Proof

P (x1 ∈ A,u1 ∈ B) = ∫
B
∫
A
px1,u1(x,u)dxdu > 0

We know the RHS is positive because the function being integrated is positive by Theorem 1 and
the set it’s being integrated over has measure greater than 0.

Lemma E.2. Let X ⊂ Rd and Y ⊂ Rp, and let f ∶ X → Y be a L-Lipschitz function. Let N be any
ε-cover of X for ε > 0. Then for all U ∈ N , for all x, y ∈ U , ∥f(x) − f(y)∥ ≤ Lε.

Proof Follows directly from definitions of cover and Lipschitz Continuity.

Lemma E.3. Consider the data generation model of (1). Let Assumption 3 hold. Let x1 have
overlap. LetRX denote the ε-cover representatives of X ⊂ Rd. Then,

XXXXXXXXXXX
E[x2∣do(u1 ∶= u)] − ∑

r∈RX
E[x2 ∣ u1 = u,x1 = r]P (x1 ∈ NX (r))

XXXXXXXXXXX
≤ Lε + ∥∫

Rd∖X
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

Proof

Let B ∶= Rd ∖ ∪A∈NXA denote the set of points not covered by the epsilon cover.
XXXXXXXXXXX
E[x2∣do(u1 ∶= u)] − ∑

r∈RX
E[x2 ∣ u1 = u,x1 = r]P (x1 ∈ NX (r))

XXXXXXXXXXX

≤
XXXXXXXXXXX
∑

r∈RX
∫
NX (r)

E[x2 ∣ u1 = u,x1 = z]px1(z)dz − ∑
r∈RX

E[x2 ∣ u1 = u,x1 = r]P (x1 ∈ NX (r))
XXXXXXXXXXX

+ ∥∫
B
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

≤ ∑
r∈RX

∥∫
NX (r)

E[x2 ∣ u1 = u,x1 = z]px1(z)dz −E[x2 ∣ u1 = u,x1 = r]P (x1 ∈ NX (r))∥

+ ∥∫
B
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

≤ ∑
r∈RX

∫
NX (r)

∥E[x2 ∣ u1 = u,x1 = z] −E[x2 ∣ u1 = u,x1 = r]∥px1(z)dz

+ ∥∫
B
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

≤ Lε + ∥∫
Rd∖X

E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

The first and second inequality is from triangle inequality. The third comes from Jensen’s inequality.
The fourth inequality comes Assumption 3, Lemma E.2, and the fact that X ⊂ ∪A∈NXA.

Lemma E.3 tells us that it suffices to create an estimator that estimates ∑r∈RX E[x2 ∣ u1 = u,x1 =
r]P (x1 ∈ NX (r))—supposing that X is a good approximation of Rd with respect to x1.
Lemma E.4. Consider the data generating process from (1). Let x1, u1 have overlap. Let Assump-
tion 4 hold, then

∥E[Y n(u,x)] −E[x2∣u1 = u,x1 = x]∥ ≤
2η(ε)
1 − η(ε)E[∥x2∥ ∣u1 = u,x1 = x].
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Proof Fix any u ∈ U , x ∈ X . Let Z ∶= (x1, u1), z ∶= (x,u), and A ∶= NX (x) × NU(u). Observe
that E[Y n(u,x)] = E[x2 ∣ Z ∈ A]. Note that these conditional expectations exist because Z has
overlap and by construction A has positive Lebesgue measure.

∥E[x2 ∣ Z ∈ A] −E[x2 ∣ Z = z]∥ = ∥∫
Rd

x [P (Z ∈ A∣x2 = x)
P (Z ∈ A) − p(Z = z∣x2 = x)

p(Z = z) ]p(x2 = x)dx∥

≤ ∫
Rd
∥x∥ ∣P (Z ∈ A∣x2 = x)

P (Z ∈ A) − p(Z = z∣x2 = x)
p(Z = z) ∣p(x2 = x)dx

= ∫
Rd
∥x∥ ∣∫A

p(Z = a∣x2 = x)da
∫A p(Z = a)da − p(Z = z∣x2 = x)

p(Z = z) ∣p(x2 = x)dx

≤ 2η(ε)
1 − η(ε) ∫Rd

∥x∥ p(Z = z∣x2 = x)
p(Z = z) p(x2 = x)dx

= 2η(ε)
1 − η(ε)E[∥x2∥ ∣Z = z].

The first inequality is an application of Jensen’s inequality. The second inequality is an application
of Assumption 4 and the fact that the diameter of A is no more than ε.

E.1.2 Applying lemmas to bound terms

Armed with these lemmas we can proceed with bounding each of the aforementioned terms.

First term: Recall that the following holds for a τ2-subgaussian random variable X .

P (∣X −E[X]∣ > δ∣E[X]∣) ≤ 2 exp(−δ
2E[X]2
2τ2

)

Zn(x) is 1
4n

subgaussian. This means we need n = 1
2δ2P (x1∈NX (x))2

log(4∣RX ∣/ρ) samples to get
Zn(x) within error of δP (x1 ∈ NX (x)) of P (x1 ∈ NX (x)) with probability ρ/(2∣RX ∣). Using
union bound, we have that with probability with at least 1 − ρ/2,

XXXXXXXXXXX
∑

x∈RX
Y n(u,x)Zn(x) − ∑

x∈RX
Y n(u,x)P (x1 ∈ NX (x))

XXXXXXXXXXX
≤ ∑

x∈RX
∥Y n(u,x)∥ ∣Zn(x) − P (x1 ∈ NX (x))∣

≤ δ ∑
x∈RX

∥Y n(u,x)∥P (x1 ∈ NX (x))

≤ δ ∑
x∈RX

∥Y n(u,x) −E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)]∥P (x1 ∈ NX (x))

+ δ ∑
x∈RX

∥E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)]∥P (x1 ∈ NX (x))

≤ δγ + δ ∑
x∈RX

∥E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)]∥P (x1 ∈ NX (x))

≤ δγ + δD + δE[∥g(u1)∥ ∣ u1 ∈ NU(u), x1 ∈ NX (x)]
≤ δγ + 2δD

where the first inequality comes from triangle inequality. The second inequality comes from
subgaussianity. The third inequality is from triangle inequality. The fourth inequality is from the
bound of the Second term below. The fifth and sixth inequalities are from triangle inequality,
compactness, and from the fact E[ξt] = 0.

Second term: Y n(u,x) is σ2

nu,x
subgaussian, which means its dσ2

nu,x
norm-subgaussian by

Lemma 1 from Jin et al. [2019]. Thus, the following inequality holds

P (∥Y n(u,x) −E[Y n(u,x)]∥ ≥ t) ≤ 2 exp(− t
2nu,x

2dσ2
)
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This means we need nu,x = 2dσ2

γ2 log(4∣RX ∣/ρ) samples to get Y n(u,x) with error γ of
E[Y n(u,x)] with probability ρ/(2∣RX ∣). Moreover, because the conditions of Lemma E.1 are
met, we know these requirements will hold for all nu,x for large enough n. Using union bound, we
have that with probability with at least 1 − ρ/2,

XXXXXXXXXXX
∑

x∈RX
Y n(u,x)P (x1 ∈ NX (x)) − ∑

x∈RX
E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)]P (x1 ∈ NX (x))

XXXXXXXXXXX
≤ ∑

x∈RX
∥Y n(u,x) −E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)]∥P (x1 ∈ NX (x))

≤ γ

The first inequality comes from Jensen’s inequality. The second comes from subgaussianity.

Third term:
XXXXXXXXXXX
∑

x∈RX
E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)]P (x1 ∈ NX (x)) − ∑

x∈RX
E[x2∣u1 = u,x1 = x]P (x1 ∈ NX (x))

XXXXXXXXXXX
≤ ∑

x∈RX
∥E[x2∣u1 ∈ NU(u), x1 ∈ NX (x)] −E[x2∣u1 = u,x1 = x])∥P (x1 ∈ NX (x))

≤ 2η

1 − η ∑x∈RX
E[∥x2∥ ∣u1 = u,x1 = x]P (x1 ∈ NX (x))

≤ 2η

1 − η (2D + c1)

The first inequality comes from Jensen’s inequality. The second comes from Lemma E.4. The third
inequality comes from triangle inequality.

Fourth term:
XXXXXXXXXXX
∑

x∈RX
E[x2∣u1 = u,x1 = x]P (x1 ∈ NX (x)) −E[x2∣do(u1 ∶= u)]

XXXXXXXXXXX
≤ Lε + ∥∫

B
E[x2 ∣ u1 = u,x1 = z]px1(z)dz∥

≤ Lε +E[∥f(x1)∥1{x1 ∈ B}] + Px1(B)D.

The first inequality comes from Lemma E.3. The second inequality comes from Eξ2 = 0, triangle
inequality, Jensen’s inequality, and the definition of D.

Union bounding over the two events in bounding the first and second terms and combining all the
inequalities gives the result.

E.2 Proof of Theorem 5

We first introduce a helpful supporting lemma.

Lemma E.5. Suppose n samples are drawn iid from P2. If X0X
T
0 is invertable, then Ĉ = C and

Ĥ = A +BC +E1X
T
0 (X0X

T
0 )−1. If X0X

T
0 is invertable and DCX0X

T
0 C

TDT is invertable, then
B̂ = B −E1X

T
0 (X0X

T
0 )−1X1(DCX0)T (DCX0X

T
0 C

TDT )−1.

Proof Substituting U0 = CX0 and X1 = (A +BC)X0 +E1 into the closed form solutions of Ĉ
and Ĥ respectively gives the first result.

To get the second result, we use the fact that Ĉ = C and Ĥ = A + BC + E1X
T
0 (X0X

T
0 )−1

by the first result. We observe that U1 = CX1 + DU0 = CX1 + DCX0 to get that
B̂ = (X2 − ĤX1)(DCX0)T (DCX0X

T
0 C

TDT )−1. Then we use the fact that sub-
tracting BCX1 from both sides of the relationship X2 − AX1 = BU1 gives us that
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X2 − (A + BC)X1 = B(U1 − CX1). Using our invertability assumptions, this gives us
B̂ = B −E1X

T
0 (X0X

T
0 )−1X1(DCX0)T (DCX0X

T
0 C

TDT )−1.

With this, we can analyze the quantities of interest. Let Σ̂0 = 1
n
X0X

T
0 . Let Q ∶=DCΣ̂0C

TDT .

E [∥B̂ −B∥2
Fr
∣ G] = 1

n2
tr(E[Q−1DCX0X

T
1 (X0X

T
0 )−1X0E

T
1 E1X

T
0 (X0X

T
0 )−1X1X

T
0 C

TDTQ−1])

= σ2
1d

n
tr(E[Q−1DCΣ̂0(A +BC)T Σ̂−10 (A +BC)Σ̂0C

TDTQ−1])

≤ σ2
1pd

n
κ2
DC (

∣∣∣A +BC ∣∣∣op
σmin (DC) )

2

E
⎡⎢⎢⎢⎢⎣

κ2
Σ̂0

λmin (Σ̂0)

⎤⎥⎥⎥⎥⎦
.

Rearranging and using the definition of τ0 gives the result.

If p = d, then DC is a square, invertible matrix,

E [∥B̂ −B∥2
Fr
∣ G] = σ2

1d

n
tr[(CTDT )−1(A +BC)TE [Σ̂−10 ] (A +BC)(DC)−1]

≤ σ2
1d

2

n
(
∣∣∣A +BC ∣∣∣op
λmin (DC) )

2

∣∣∣E [Σ̂−10 ]∣∣∣op .

Rearranging and using the definition of τ1 gives the result.
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