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ABSTRACT

Drug-Target Interaction (DTI) prediction is a critical problem in drug discovery,
and machine learning (ML) has shown great potential in feature-based DTI pre-
diction. However, selecting an appropriate ML architecture from the vast number
of available biomolecular representations is challenging. To address this issue, we
propose MoDTI, a modular framework that enables the exploration of three key
inductive biases in DTI prediction: protein representation, multi-view learning,
and modularity. We evaluate the impact of each inductive bias on DTI prediction
performance and compare the performance of MoDTI against existing state-of-
the-art models on multiple benchmarks. Our experiments with MoDTI provide
valuable insights into the role of modularity, capacity, representation redundancy,
and orthogonality in terms of generalization and interpretability. They also enable
the provision of general guidelines for the rapid development of more accurate
DTI models.

1 INTRODUCTION

Characterizing drug-target interactions (DTI) is a critical task in drug discovery with important im-
plications for identifying therapeutic targets, optimizing drug efficacy and selectivity, and uncov-
ering the mechanisms of action of drugs. To achieve this goal, computational methods for DTI
prediction (Sachdev & Gupta, 2019; Xu et al., 2021) have become increasingly available, offering
a fast, flexible, and scalable alternative to costly wet-lab experiments. In particular, feature-based
DTI methods have gained popularity due to the success of machine learning techniques in drug dis-
covery and the growing accessibility of pre-trained protein and molecular representations (Sachdev
& Gupta, 2019).

Despite the advances in feature-based DTI prediction, there remains a significant challenge in se-
lecting the appropriate inductive biases that ensure good modelling and generalization. Although
several works have studied factors such as protein and molecular featurization, pre-training, and
interaction bias, there is still a lack of systematic evaluation of the modeling biases required for
generalization in DTI prediction.

In this paper, we explore the impact of several modeling biases, including protein representation,
multi-view learning, and modularity, on DTI prediction performance through a modular framework.
Our objective is to provide a comprehensive evaluation of the influence of these critical architectural
decisions on the accuracy and robustness of DTI prediction. Our contributions include:

• the development of a modular framework (MoDTI) that enables the investigation of various
modeling biases such as protein representation, multi-view learning, and modularity.
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• an exploration of the effect of these biases on model generalization, with insights into the
importance of both orthogonality and redundancy for good performance.

• the provision of guidelines for the development of new and improved DTI models.

2 RELATED WORK

Feature-based DTI prediction: Feature-based DTI methods for predicting drug-target interac-
tions (DTIs) utilize machine learning (ML) models, and differ primarily in their approach to repre-
senting bio-molecules (drugs and targets) and capturing their interactions. For instance, DeepConv-
DTI (Lee et al., 2019a) uses ECFP to represent molecules and a 1D CNN to process protein se-
quences, then it concatenates the features to predict the interaction using a fully connected neural
network. Similarly, DeepDTI (Wen et al., 2017) uses a deep belief network with protein descrip-
tors and molecular fingerprints, while DeepDTA (Öztürk et al., 2018) learns representations from
SMILES and protein sequences using 1D CNNs before concatenating them for prediction. Other ar-
chitectures were considered to process the SMILES and protein sequences in DeepAffinity (Karimi
et al., 2019) and DrugVQA (Zheng et al., 2020).

In contrast, GNN–CPI (Tsubaki et al., 2019) and GraphDTA (Nguyen et al., 2021) use GNNs on
molecular graphs to learn drug representations. Kim & Shin (2021) proposed a Gated Cross At-
tention that improves interpretability by constructing explicit interactions between the molecule’s
atoms and the target amino-acids.

In the aforementioned works, the generalization of DTI models remained limited despite architec-
tural exploration due insufficient training data. In (Nguyen et al., 2022), this cold start problem
was addressed through transfer learning from pretrained protein and molecular language models.
Likewise, Atas Guvenilir & Doğan (2023) investigated the performance of conventional protein
representations versus pretrained ones and found the latter to yield more accurate models. This find-
ing was further confirmed by RapidDTI (Sledzieski et al., 2022) which showed that a low capacity
fully-connected neural network significantly improves accuracy and generalization when using a
pre-trained protein language models (PLMs). The demonstrated impact of PLMs in that work has
inspired our focus on learned protein embeddings as a key modelling factor.

A few recent studies have explored the integration of diverse views of drugs and targets for DTI
prediction(Zhang et al., 2017; Shang et al., 2022; Zhang et al., 2022; Agyemang et al., 2020). Among
them, (Agyemang et al., 2020) stands out, as they use an approach combining the representations
of multiple drugs and targets with a joint view attention mechanism. However, the representations
are only learned from the dataset, which limits the ability to generalize across new protein and drug
classes. To mitigate that, our architecture allows the consideration of pre-trained networks for the
multi-view setting.

Modular architectures: Our proposed modular framework shares similarities with ensemble deep
learning and Mixture-of-Experts (MoE), which have been widely used in drug discovery (Yu et al.,
2022; Pittala & Bailey-Kellogg, 2019; Wu et al., 2022). Ensemble deep learning combines multiple
individual models to achieve better generalization (Ganaie et al., 2022), while MoE models sparsely
gather experts and leverage them through gating (Jordan & Jacobs, 1994). It is also known that
ensembles better exploit orthogonality while MoEs exploits redundancy and by leveraging them
both in MoDTI, we hope to study their importance for DTI modelling and generalization.

Previous studies have investigated the benefits of modularity and sparsity through the lenses of func-
tional specialization in neural networks (Bakhtiari et al., 2021; Mittal et al., 2022), but only a few
has been applied to DTI prediction. Herein, MoDTI seeks to leverage inductive biases arising from
biomolecular representations and model design choices to improve DTI modeling generalization. It
decomposes the problem into specialized sub-tasks and takes advantage of the diversity of biochem-
ical information captured by different protein language representations. The proposed framework
also offers interpretability, as the contribution of each module can be isolated and analyzed.
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3 THE MODTI FRAMEWORK

To investigate the impact of various inductive biases in DTI, we propose the Modular DTI (MoDTI)
framework. Within MoDTI, architectures particular to various inductive biases can be instantiated
with different high-level parameters allowing to easily investigate those biases. In Section 3.1, we
will first define the DTI problem, and then explain the MoDTI template architecture in Section 3.2.

3.1 DTI PREDICTION PROBLEM STATEMENT

DTI prediction consists of learning a function f that predicts the binding affinity from the drug-
target pair. Let D = {(xi, yi)}n be our training dataset of n experimentally tested drug-target pairs
(xi) and their associated binding affinities(yi). In the pair xi = (di, ti), di is the drug and ti the
target or protein). In the multi-view setting, both inputs will be transformed respectively by a set of
molecular descriptors L = {l1, ..., l|L|} and a set of protein featurizers P = {p1, ..., p|P |}. Then,
combinations of these featurizers will be used to define a set of views V = {vk}|V | to learn from.
As such, the k-th view of a given drug-target pair xi is given by vk(xi) = (lk(di), pk(ti)) , where
(lk, pk) ∈ L× P .

From the above, we can infer a single-view learning setting by considering |V | = 1. By changing
the number of views |V |, the MoDTI framework can be used to investigate how this inductive bias
and others contribute to the accuracy and generalization of f . In the following section, we detail the
template architecture that forms the basis of our work.

3.2 TEMPLATE ARCHITECTURE

Figure 1: Illustration of the MoDTI template architecture. By varying the number of modules, the
number of views and whether the modules are trained independently or jointly, this architecture
template allows us to instantiate and investigate several model types.

At the center of this study is the MoDTI architecture template (see Figure 1) which consists of the
following components:

• the input views, i.e. transformations vk ∈ V (⊆ L× P ) that featurize the drug-target pairs.
The considered views are discussed further in Section 4.1.

• the modules that map a drug-target view into a joint representation. Multiple modules
can be used to process a single view and extract different representations. Each module
comprises two subcomponents: the encoders and the feature aggregator. The encoders
take in the featurized drug or target and independently transforms them into two latent-
space embeddings. We use fully-connected neural networks as our encoders throughout
our experiments. The feature aggregator combines the two latent-space representations
into a single vector. Herein, we use a simple Hadamard Product as the feature aggregator.
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• Finally, the predictor combines all latent representations from all modules and predicts the
binding affinity. For this component, we use the attention-based Multi-Instance Learning
(MIL) (Ilse et al., 2018).

Note that the flexibility of the MoDTI architecture allows for alternative choices of encoders, feature
aggregator, and predictor. However, for the sake of simplicity and to focus our investigation on the
inductive biases mentioned earlier, we have fixed these components based on what performed well
in our early experiments.

Using this template, we can easily instantiate various models with the inductive biases we are inter-
ested in investigating. For instance, by denoting M the number of modules, we can retrieve :

• a Mixture-of-Experts (MoE) model when M > 1 and |V | = 1. We refer to this instance of
MoDTI as MoDTI-SV. Likewise, the monolithic case where M = 1 and |V | = 1, will be
referred as MoDTI-SV-Mono.

• a multi-view learning setup when M > 1 and |V | > 1. We will call this version of MoDTI:
MoDTI-MV.

• an ensemble of several single-module MoDTI-SV-Mono allows us to retrieve an ensemble
setup, which we will later refer to as MoDTI-SV-Ens.

4 RESULTS

4.1 EXPERIMENT SETUP

Benchmark Datasets: Throughout our experiments, we use three DTI classification benchmark
datasets, namely BioSNAP, BindingDB (Liu et al., 2007), and DAVIS. Statistics for each dataset as
well as the training, validation, and testing partitions are presented in Appendix A.1. Following pre-
vious studies (Sledzieski et al., 2022), we use both Area under the Precision-Recall curve (AUPR)
and the Area Under the Receiver Operating Characteristic curve (AUROC) for performance evalua-
tion.

Protein Featurization: We considered the following Protein Language Models (PLM): Bepler &
Berger (Bepler & Berger, 2019), ESM (Rives et al., 2021), and ProtBERT (Elnaggar et al., 2021).
They respectively transform the proteins into feature vectors of size 6165, 1280, and 1024. Baseline
featurizations (Word2Vec and One-Hot-Encoding) were also used to better gauge PLMs contribution
to performance in the modular setting. The three PLMs were selected to bring different perspectives
on proteins representations based on their differing architectures, training objectives, and training
datasets. Appendix A.2 provides more details on these differences.

Molecular featurization: Since we are mainly investigating the effect of protein language models,
we use Extended-Connectivity Fingerprints with radius 3 (ECFP6) and 2048 bits (Morgan, 1965)
for molecular representation.

Experimental design: We used the binary cross entropy (BCE) loss and optimized model weights
with the Adam optimizer (lr = 10−4) for a maximum of 50 epochs, with a batch size of 32.

4.2 BENCHMARKING AGAINST THE SOTA

Our experiments start by comparing MoDTI against multiple DTI baselines, namely RapidDTI
(Sledzieski et al., 2022), MolTrans (Huang et al., 2021), GNN-CPI (Tsubaki et al., 2019), and
DeepConv-DTI (Lee et al., 2019b). The performance of MoDTI was obtained from a grid search
over combinations of protein representations, but no module parameter optimization was performed.
Table 1 shows that, for all three datasets, both instances of MoDTI outperform the DTI baselines
including the most recent SOTA model to our knowledge (Sledzieski et al., 2022).

It is worth observing that the Multi-View MoDTI (ModDTI-MV) slightly outperforms the Single-
View MoDTI (MoDTI-SV) in two out of three datasets (DAVIS and BindingDB). The small differ-
ence in performance between MoDTI-SV and MoDTI-MV prompt many questions about the role
of the architecture and the views in the overall performance. Therefore, in the following sections,
we will investigate the contribution of views and modularity to the generalization performance. Our
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aim is to unravel the modelling factors that lead to accurate DTI prediction and provide insights for
future modelling decisions.

DAVIS BioSNAP BindingDB
AUPR AUROC AUPR AUROC AUPR AUROC

RapidDTI 0.481±.001 0.917±.003 0.895±.001 0.885±.001 0.623±.009 0.882±.002
MolTrans 0.335±.017 0.889 ±.007 0.885±.005 0.876±.007 0.598±.013 0.898±.009
GNN-CPI 0.269±.020 0.840±.012 0.890±.004 0.879±.007 0.578±.015 0.900±.004
DeepConv-DTI 0.299±.039 0.937±.004 0.889±.005 0.883±.002 0.611±.015 0.908±.004
MoDTI-SV 0.489±.006 0.936±.000 0.923±.002 0.922±.001 0.663±.007 0.924±.001
MoDTI-MV 0.508±.008 0.940±.001 0.920±.001 0.920±.001 0.663±.003 0.926±.001

Table 1: Benchmarking performance: Modular architectures outperform monolithic single view
models over three random initializations. MoDTI-SV refers to the case where all module uses the
same view/representation as input, and MoDTI-MV refers to the multi-view case which require at
least two different views.

4.3 THE MULTI-VIEW INDUCTIVE BIAS

In this section, we investigate the inductive bias of multiple views for DTI modelling. More pre-
cisely, we examine how the number of views (quantity) and their information content (quality) affect
performance.

4.3.1 EFFECT OF VIEWS REDUNDANCY VS ORTHOGONALITY

Taking the perspective of quality and information content, we measure the differences between
redundant and orthogonal views towards DTI prediction. Recall that for MoDTI-SV models, there
is redundancy (the views are repeated) while for MoDTI-MV models, many views are orthogonal.
In Figure 2, we compare the best MoDTI-SV and MoDTI-MV models across the same number
of modules. Figure 2 shows a clear trend in performance, where we observe that MoDTI-MV
outperforms MoDTI-SV as we gradually increase the number of modules. This increase is up to
10% and 50% for AUROC and AUPR, respectively. These results suggest that as we scale the
number of views, the orthogonality of views becomes essential in improving performance.

Figure 2: Difference in AUPR and AUROC between the best multi-view and single-view model.
For all three datasets, we observe that the MoDTI model increasingly benefits from the orthogonal
views compared to redundant views in MoDTI-SV. The error bars show the 95% confidence interval
over three different seeds.

4.3.2 SCALING ORTHOGONAL VIEWS:

In this section, we investigate the impact of scaling the number of views while maintaining their
orthogonality. Specifically, we aim to measure the performance gain obtained by incorporating a
novel view into a given MoDTI model.

Figure 3 shows an upwards trend in AUPR as the number of orthogonal views increases, indicating
that scaling the number of orthogonal views in our MoDTI framework will improve its performance.
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Figure 3: AUPR performance for best modules trained with unique and multiple-views for datasets,
DAVIS and BindingDB. We observe a positive trend in the average AUPR across both datasets. In
Appendix A.3, we report similar results for the BioSnap Dataset.

However, this also raises questions about the contribution of each PLM and which type of protein
information is crucial for generalization.

To address this question, we examine the contribution of each view to the AUPR and AUROC
metrics in Figure 5. We do this by fitting a linear regression model on the views (one-hot) and
measuring their impact with respect to the held-out test. From this experiment, we observe that
ESM and ProtBERT are significantly more impactful towards generalization than other views, with
ESM contributing the most and in some instances twice as much as ProtBert. In contrast, Word2Vec
and the One Hot embedding have slightly negative importance measures, which further validates the
empirical benefits of protein language models over traditional word embedding methods. We expand
on the impact of ESM and ProtBert on MoDTI in Figure 4 which shows the AUPR of different multi-
view models that contain ESM, ProtBert, or neither. This analysis highlights the importance of the
richness of information provided by the protein representations in DTI modelling and hints at it may
be of greater importance than the number of views considered.

Figure 4: Impact of ESM and ProtBert on the AUPR and AUROC of multi-views multi-module
models. Each dot represents the AUROC and AUPR of a different multi-view combination and the
colors inform whether the combination include only ESM, only ProtBert, both or none. It confirms
the dominance of both views in this study.

To summarize, our results demonstrate that both the quantity and quality of views are important
for DTI prediction, with the latter being more crucial. We observe that increasing the number of
orthogonal views leads to a performance improvement in MoDTI models, compared to increasing
the number of redundant views. These findings suggest that the use of multiple orthogonal views
provides an advantageous inductive bias for DTI prediction.”.
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Figure 5: Contribution of each view to the test AUPR and AUROC. These values are the weights of
each view in a linear regressor model learned with an intercept. This linear model is trained to predict
a multi-module model performance from a count vector representing which views its received.

4.4 THE MODULARITY INDUCTIVE BIAS

One important distinction between ensemble methods and modularity is that modular networks are
trained end-to-end. In contrast, ensemble methods are composed of base learners combined with
an aggregator (e.g. mean). In this section, we compare the effect of modularity against ensemble
learning to understand the inductive bias of modularity for DTI modelling.

4.4.1 MODULARITY VERSUS ENSEMBLING

To investigate the inductive bias of modularity, we build equivalent ensemble models using our
MoDTI framework. The ensemble models (MoDTI-Ens) are composed of base learners (MoDTI-
SV-Mono) which are trained individually on a specific view. All base-learners contribute equally in
an ensemble, however in a MoDTI-MV, the predictions are determined by an attention mechanism.

DAVIS BioSNAP BindingDB
AUPR AUROC AUPR AUROC AUPR AUROC

MoDTI-SV-Ens (N=2) 0.4936 0.9381 0.9273 0.9241 0.6712 0.9262
MoDTI-MV-Ens (N=2) 0.4901 0.9359 0.9267 0.9223 0.6727 0.9248
MoDTI-SV-Ens (N=3) 0.4984 0.9379 0.9287 0.9252 0.6726 0.9267
MoDTI-MV-Ens (N=3) 0.4933 0.9359 0.9297 0.9209 0.6678 0.9211
MoDTI-SV-Ens (N=4) 0.4956 0.9378 0.9301 0.9259 0.6745 0.9269
MoDTI-MV-Ens (N=4) 0.4493 0.9312 0.9206 0.9082 0.6630 0.9142

Table 2: Ensemble models performance for different number of learners. It shows that SV ensemble
models outperform MV ensemble models in most cases.

We present the performance of the ensemble models in Table 2. We observe that the single-view
ensemble models outperform their multi-view counterparts with largely marginal, yet in some cases,
significant differences.This contrasts with our findings on modularity with multiple views in Figure 2
where MoDTI-MV models are better than their counterpart MoDTI-SV. The contrast suggests that
modular architectures might be better suited for orthogonal views compared to ensemble models
and that might be a consequence of the differences in module contributions towards the predictions.
MoDTI-MV might reduce the contributions of low-quality and thus noisy views.

Further comparison between Table 1 and Table 2 shows that MoDTI-Ens performs better than
MoDTI-MV, except on the DAVIS dataset. The disparity in performance could be attributed to
the end-to-end training of modules in MoDTI-MV, which is less parameter-efficient for training.

4.4.2 MODULARITY AND INTERPRETABILITY

Despite the disparity between ensemble models and modularity, we would like to investigate whether
modularity lends itself naturally to interpretability. To study the interplay between modularity and
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Figure 6: Cluster of the attention weights for models trained on BioSNAP and BindingDB. Each
cluster is represented by a cardinal and the corresponding radii indicates the attention weight towards
a particular module (i.e ESM). The metrics for each cluster are reported as ”(AUPR/AUROC)”.. The
top caption on each plot is the overall performance of the model. (Left) We observe that instances
from the largest cluster (N = 3057) in the BioSNAP model are highly attended to by the ESM
module. (Right) Similarly, we observe for the BindingDB model, that its largest cluster (N = 6964)
is also highly attended to by the ESM module.

interpretability within MoDTI (see Section 3.2), we measure the attention weights in MoDTI mod-
els. We cluster the attention weights using a density-based clustering algorithm and analyze the
weights of each cluster to observe if specialization emerges and how this correlates with perfor-
mance.

Our results (see Figure 6 & Appendix A.4), show that the clusters with high AUPR or high AUROC
often have more weights on important features while views such as Word2Vec contribute negligibly
to the predictions. These observations further demonstrate that MoDTI primarily leverages the most
informative views for its predictions. They also suggest a weak specialization that emerges at the
representation level. It is worth further investigating, in future work, if there are factors like protein
and scaffold families that the network is specializing to.

5 CONCLUSION AND FUTURE WORK

In this study, we examined three modelling biases that affect DTI model performance: protein fea-
turization, multi-view learning, and modularity. Our MoDTI allowed to demonstrate that multi-view
DTI learning is sensitive to architectural inductive biases. Specifically, we found that Modular archi-
tectures are better at leveraging orthogonal views than ensemble models, which excel at exploiting
redundant views. Our findings suggests that modular architectures that exploit the orthogonality of
different views to improve performance could be more advantageous for DTI. Improving the mech-
anism for leveraging multiple perspectives could also significantly enhance overall performance. In
future work, we will focus on how to maintain the right balance of orthogonality and redundancy in
multi-view DTI learning with end-to-end training of modular architectures. Overall, our study high-
lights the importance of considering the underlying biases of different DTI models and architectures,
and provides a foundation for further research into improving the performance and interpretability
of these models.
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A APPENDIX

A.1 DATASET STATISTICS

Table 3 presents the statistics for each dataset as well as the training, validation, and testing parti-
tions. Following (Sledzieski et al., 2022), it shows an effort to keep the training set balanced even if
it results in unbalanced testing and validation sets.

Dataset Unique Drugs Unique Proteins Training Pairs Validation Pairs Test Pairs
BioSNAP 4510 2181 9619/9619 1374/1374 2748/2748

BindingDB 10665 1413 6334/6334 927/5717 1905/11384
DAVIS 68 379 1043/1043 160/2846 303/5708

Table 3: Benchmark Datasets. Pairs are distinguished as (positive/negative) binding pairs.

A.2 DIFFERENCE IN INFORMATION CAPTURED BY THE PROTEIN LANGUAGE MODELS

We assessed the difference in information captured by each PLMs by computing the correlation
between pairwise similarity for any protein pair given each PLM representation (Figure 7). The low
Pearson correlation (less than 0.37), is indicative that these different protein views encode orthogonal
information.

Figure 7: Similarity analysis of protein views. Each point represents a pair of proteins and the axes
show the cosine distance between those proteins in different protein view spaces. If protein pairs are
equally (dis)similar according to two different views, we consider the views to be similar. We argue
that the different views encode orthogonal information about the protein.

A.3 ORTHOGONAL VIEWS:

Figure 8: AUPR performance for best modules trained with unique and multiple-views for the BioS-
nap dataset. Here, we only run experiments for up to three unique representations.
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A.4 ATTENTION WEIGHTS

(a) BindingDB

(b) BioSNAP

(c) DAVIS

Figure 9: Average attention weights per cluster across three benchmark datasets.
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