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Abstract

Large language models (LLMs) have demon-001
strated remarkable abilities in various natural002
language processing areas, but they demand003
high computation resources which limits their004
deployment in real-world. Distillation is one005
technique to solve this problem through either006
knowledge distillation or task distillation. Both007
distillation approaches train small models to008
imitate specific features of LLMs, but they all009
neglect basic reading education for small mod-010
els on generic texts that are unrelated to down-011
stream tasks. In this paper, we propose basic012
reading distillation (BRD) which educates a013
small model to imitate LLMs basic reading014
behaviors, such as named entity recognition,015
question raising and answering, on each sen-016
tence. After such basic education, we apply017
the small model on various tasks including lan-018
guage inference benchmarks and BIG-Bench-019
Hard tasks. It shows that the small model can020
outperform or perform comparable to over 20x021
bigger LLMs. Probing analysis reveals that our022
small model gains strengthened abilities layer-023
wisely, leading to better performances across024
various tasks.025

1 Introduction026

Large language models (LLMs) exhibit consistent027

performance gains across various areas (Zhao et al.,028

2023; Huang and Chang, 2023; Chang et al., 2023).029

Nevertheless, their formidable size and high com-030

putational requirements impede their real-world031

applications. Distillation is one widespread ap-032

proach to tackle this issue by distilling smaller lan-033

guage models from LLMs. It is divided into mainly034

two categories: knowledge distillation and task dis-035

tillation. Both distillation approaches adopt the036

teacher-student framework, in which the smaller037

language models act as the student models, and are038

trained to imitate specific features of LLMs, which039

act as the teacher models. Specifically, knowledge040

distillation (Hinton et al., 2015) usually trains the041

Figure 1: The illustration of BRD process.

student models to imitate implicit features inside 042

the teacher models, such as hidden layers (Jiao 043

et al., 2020), attention maps (Li et al., 2020; Wang 044

et al., 2021b), and output logits (Liu et al., 2020). 045

Task distillation usually trains the student models 046

to imitate explicit task behaviors of LLMs, such 047

as label prediction (Chen et al., 2020; Wang et al., 048

2021a; Iliopoulos et al., 2022; Agrawal et al., 2023) 049

and rationale generation (Hsieh et al., 2023; Wang 050

et al., 2023; Ho et al., 2023), on various down- 051

stream tasks. 052

Different to both distillation approaches, we pro- 053

pose basic reading distillation (BRD) that teaches a 054

student model basic reading abilities such as named 055

entity recognition, question raising, and question 056

answering, on general sentences. It simulates hu- 057

man reading education via interactions including 058

raising questions about parts of a sentence, answer- 059

ing the questions, extracting important information 060

such as named entities. We believe that such basic 061

reading education on every sentence is important 062

before application on downstream tasks. It can 063

avoid the hurry of task distillation which rushes 064

into downstream applications directly without ba- 065

sic education. BRD also avoids the implicit nature 066

of knowledge distillation which leads to the defi- 067

ciency of learning interpretability. BRD demon- 068

strates explicit reading behaviors that are easy to 069

interpret. Furthermore, BRD can perform on un- 070
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limited data resource, breaking the data scale and071

diversity limitation criticized by Gudibande et al.072

(2023).073

Figure 1 illustrates the process of BRD. It starts074

by prompting LLMs to generate basic reading be-075

haviors on general sentences, then proceeds with076

training the student model to imitate these behav-077

iors. Experiments on various NLP tasks, including078

language inference benchmarks and Big-Bench-079

Hard tasks, show that although the student model080

is trained on the general imitation data that is irrel-081

evant to the downstream tasks, it can inherit LLMs082

abilities, leading to excellent zero-shot downstream083

performances better than or comparable to those of084

LLMs. Furthermore, after this basic education of085

the student model on general sentences, we finetune086

the student model for downstream tasks, and find087

that the basic reading eduction is necessary before088

the application on downstream tasks, achieving on089

par or better performances when compared to the090

over 20x bigger teacher model. To analyze the091

effect of BRD, we insert probes to layers of the092

student model. The probing result shows that those093

distilled layers exhibit better abilities to compre-094

hend sentences well, leading to better performances095

across various tasks. In summary, the main contri-096

butions are:097

• We propose BRD that educates the student098

model to imitate basic reading behaviors of099

the teacher model on general sentences.100

• Experiments show that the student model ex-101

hibits excellent abilities distilled from the102

teacher model on various downstream tasks,103

achieving on par or even better performances104

against the teacher model.105

• The probing analysis reveals that BRD well106

trains layers of the student model to be ready107

for downstream applications.108

2 Related Work109

There are mainly two streams of distilling ap-110

proaches: knowledge distillation and task distil-111

lation. Knowledge distillation focuses on teaching112

the student model to imitate the implicit features113

inside the teacher model, while task distillation114

focuses on teaching the student model to imitate115

explicit behaviors of the teacher model on down-116

stream tasks.117

2.1 Knowledge Distillation 118

The field is pioneered by Bucila et al. (2006); Hin- 119

ton et al. (2015), followed by works using vari- 120

ous types of internal information from the teacher 121

model, including attention maps (Li et al., 2020; 122

Wang et al., 2021b), output logits (Liu et al., 2020), 123

hidden layers (Jiao et al., 2020). In the era of LLMs, 124

GKD uses advanced memory optimization meth- 125

ods to address the memory constraint problem in 126

distilling from LLMs (Tan et al., 2023), MiniLLM 127

uses reverse KL divergence to prevent the student 128

model from overestimating the void regions of the 129

teacher distribution (Gu et al., 2023). Agarwal et al. 130

(2024) use on-policy distillation that trains the stu- 131

dent model on its self-generated mistakes. In the 132

case that internal information of LLMs is not ac- 133

cessible and only decisions of LLMs are available, 134

Zhou et al. (2023) estimate logits from the decision 135

distributions to train the student model. 136

2.2 Task Distillation 137

The task predictions or reasoning rationales made 138

by the teacher model are used to train the student 139

model in task distillation. Despite the noisy pre- 140

dictions of the teacher model, the student model 141

achieves good imitation effects in performing the 142

tasks (Chen et al., 2020; Wang et al., 2021a; Il- 143

iopoulos et al., 2022; Agrawal et al., 2023). Be- 144

sides the task predictions, rationales for the answers 145

generated by the teacher model show efficiency in 146

training the student model with less data (Hsieh 147

et al., 2023; Wang et al., 2023; Ho et al., 2023; 148

Magister et al., 2023). Task distillation is closely 149

related to model imitation researches (Orekondy 150

et al., 2019; Wallace et al., 2020), which collect 151

API outputs of a a proprietary LM for some tasks, 152

then use the outputs to fine-tune an open-source 153

LM. Gudibande et al. (2023) criticize the data scale 154

and limited diversity in model imitation. Mukher- 155

jee et al. (2023) address this criticism by using 156

explanation tuning, more task data, and instruc- 157

tions. In comparison, BRD can perform on every 158

sentence, leading to unlimited data resource that 159

breaks the limitation on data scale and diversity. 160

In summary, task distillation focuses on the data 161

of specific tasks, while our BRD mainly focuses 162

on general sentences unrelated to the specific tasks, 163

and the basic reading behaviors in BRD are ba- 164

sic education resource not aiming at the specific 165

applications. 166
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Task Instruction
Perform named entity recognition on a given sentence without recognizing
personal pronouns in the input sentence as human names.

Examples

Enter a sentence:
Barack Obama was the 44th President of the United States.
Output result:
In this sentence, "Barack Obama" is a person name entity, and "United States" is
a geopolitical entity.

Enter a sentence:
I just bought a new MacBook Pro from Apple.
Output result:
In this sentence, "Apple" is an organization name entity, and "MacBook Pro" is
a product name entity.

Enter a sentence:
The Eiffel Tower is a famous landmark in Paris, France.
Output result:
In this sentence, "Eiffel Tower" is a landmark name entity, and "Paris" and
"France" are geopolitical entities.

Model Input

Enter a sentence:
Belmont Estate is on the market for $63 million and boasts roughly 22,000
square feet of luxurious finishes and elaborate architecture on 1.28 acres.
Output result:

Model Output

In this sentence, "Belmont Estate" is a geographic entity, "63 million" is a numer-
ical entity representing the price of the estate, and "1.28 acres" is a geographic
entity representing the size of the estate.

Table 1: The prompt for the teacher model to extract named entity information from an input sentence. Each
example consists of a sentence and its named entity information. The response from the teacher model is listed in
model output.

3 Approach167

In BRD, we use a subset of CommonCrawl (CC-168

100) corpus, which is usually included in LLMs169

pre-training, as the education resource to conduct170

the basic reading education. The whole education171

process contains two stages. In the first stage, for172

each sentence in the corpus, the teacher model is173

prompted to perform basic reading. In the second174

stage, we collect all basic reading behavior data to175

train the student model, and finally test the student176

model ability on various tasks.177

3.1 Basic Reading Behaviors of the Teacher178

Model179

We utilize the in-context learning ability of the180

teacher model to elicit its basic reading behaviors181

including named entity recognition, question rais-182

ing and answering. Given the corpus, we set up183

a prompt template consisting of task description,184

task examples, and input sentence from the corpus.185

Table 1 lists the named entity recognition prompt186

and the response from the teacher model. We can187

see that, given the few-shot examples including en-188

tities and their types, the teacher model responses189

with more detailed contents of the entities, such as190

the price or size of the entities, which are beneficial191

for educating the student model to grasp the impor-192

tant information contained in the input sentence. 193

Table 2 lists the question raising and answering 194

prompt and the response from the teacher model. 195

In the task instruction of the prompt, question is 196

constrained to be about the content, structure, or 197

attitude of the input sentence. Its raising and an- 198

swering embody the teacher model’s reading abil- 199

ity, which is targeted to be transferred to the student 200

model. 201

3.2 Training the Student Model 202

The student model is initialized by a released 203

smaller pre-trained language model. We continue 204

training the student model based on the basic read- 205

ing behavior data generated by the teacher model. 206

To stabilize the training process, we mix the basic 207

reading behavior data with the original sentences 208

of the corpus to avoid the catastrophic forgetting of 209

the pre-trained model. 210

Suppose we have a passage consisting of three 211

sentences s1, s2, and s3, we constitute the named 212

entity recognition passage: s1 <sep> NER(s1) 213

<sep> s2 <sep> NER(s2) <sep> s3 <sep> NER(s3), 214

where NER denotes the named entity recognition 215

result of the teacher model for each sentence, and 216

<sep> is the delimiter. Similarly, we constitute the 217

question raising and answering passage: s1 <sep> 218

QRA(s1) <sep> s2 <sep> QRA(s2) <sep> s3 <sep> 219
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Task Instruction

Ask a question to the input sentence, you can ask questions about the content,
structure or attitude of the sentence, and then find the answer to the corresponding
question in the original sentence. Output in the format "Question: Answer:".

Example

The sentence:
In order to graduate with honors, he needed to maintain a high GPA throughout
college.
Question:
What did he need to do in order to graduate with honors?
Answer:
Maintain a high GPA throughout college.

Model Input

The sentence:
Belmont Estate is on the market for $63 million and boasts roughly 22,000
square feet of luxurious finishes and elaborate architecture on 1.28 acres.

Model Output

Question:
How much does Belmont Estate cost?
Answer:
Belmont Estate costs $63 million.

Table 2: The prompt for the teacher model to perform question raising and answering on an input sentence. Question
is limited to be about the input sentence. The response from the teacher model is listed in model output.

QRA(s3), where QRA denotes the question raising220

and answering result of the teacher model for each221

sentence. The original passage is formatted as s1222

<sep> s2 <sep> s3. We use passage instead of sen-223

tence like the usual language model pre-training224

conducts to utilize long contexts.225

In this way, we build all original passages, de-226

noted as DORI , all named entity recognition pas-227

sages, denoted as DNER, and all question rais-228

ing and answering passages, denoted as DQRA.229

We mix them together to build the training set230

DTRAIN , on which we train the student model231

to minimize the loss in an autoregressive manner:232

L = − 1

N

N∑
i=1

T∑
t=1

logP (yt|y<t)233

where y is the passage with length T , and N is the234

number of passages in DTRAIN .235

3.3 Testing the Student Model236

We test the ability of the student model in two237

manual-label-free settings: zero-shot test and unsu-238

pervised distillation. In zero-shot test, the student239

model is directly tested on various downstream240

tasks. In unsupervised distillation, we use sen-241

tences of the downstream tasks for further BRD,242

but the labeled answers for these sentences are not243

used in this setting to avoid manual labor.244

Zero-shot Test. We evaluate the zero-shot ca-245

pability of the student model on a spectrum of246

downstream tasks, including natural language in-247

ference (XNLI(Conneau et al., 2018), CB(de Marn-248

effe et al., 2019), RTE(Wang et al., 2018)) , para-249

phrasing (PAWS-X(Zhang et al., 2019)) , Boolean250

QA (BOOLQ(Clark et al., 2019)) , sentiment anal- 251

ysis (SST-2(Socher et al., 2013)), and Big-Bench- 252

Hard(Suzgun et al., 2022). The prompt templates 253

for these tasks are listed in table 3. For the multiple 254

tasks in BIG-Bench-Hard, we utilize the prompt 255

format provided in Gao et al. (2021)1. 256

For predicting the answers of the tasks, we use 257

the average of per-token log-probabilities of candi- 258

date answers as the scoring function for all down- 259

stream tasks: 260

P̄ =
1

n

n∑
i=1

logPi(yi|xprompt) 261

where xprompt denotes an input to the student 262

model, y denotes a candidate answer for xprompt, 263

and n is the total number of words in y. This aver- 264

age computation is to cover BIG-Bench-Hard tasks, 265

whose candidate answers are phrases/sentences 266

rather than single words. 267

Unsupervised Distillation. In this setting, we 268

use the downstream task data (excluding answers) 269

to further distill the teacher model into the student 270

model. It is a common practice that the teacher 271

model generates the answers given the downstream 272

task inputs in the training set, and these generated 273

pseudo answers are used to supervise the student 274

model. Although it is simple, Wang et al. (2021a); 275

Iliopoulos et al. (2022) have proved its efficiency 276

in distilling the downstream task abilities of the 277

teacher model into the student model. 278

We add BRD into this distillation process to in- 279

clude basic reading education for the downstream 280

1https://github.com/EleutherAI/
lm-evaluation-harness
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Task Template Candidate Answers

XNLI

{premise}

Yes | No | MaybeQuestion: Does this imply that "{hypothesis}"?
Yes, no or maybe?
Answer:

RTE Question: Can we infer that "{hypothesis}" ?

CB {premise}
Yes | No | MaybeAnswer:

PAWS-X

Sentence 1: {sentence1}

Yes | No
Sentence 2: {sentence2}
Question: Do Sentence 1 and Sentence 2 express
the same meaning?
Answer:
{passage}

BOOLQ Question: {question} Yes | No
Answer:

SST-2

Question: Does the following sentence have a
positive or negative sentiment? positive | negativeSentence: {sentence}
Answer:

Table 3: The prompt templates for the different tasks in the zero-shot test.

tasks. With the strengthened basic reading abil-281

ity, we expect the student model performs better in282

the downstream tasks. We choose the downstream283

tasks same to the zero-shot test setting except BIG-284

Bench-Hard task, which lacks downstream task285

training data, and is thus not suitable for the distil-286

lation.287

In particular, for each sentence in each down-288

stream task training set, we prompt the teacher289

model to generate NER result and question raising290

and answering result, then we concatenate the orig-291

inal sentence with the two results respectively to292

build the basic reading training data. During distil-293

lation, on this basic reading data, the student model294

is further trained auto-regressively, but on the orig-295

inal data, the student model is further trained to296

just predict answers. During testing, the student297

model uses the prompts same to those used in the298

zero-shot test setting.299

4 Experiment300

We use the well-known LLM Vicuna-13B 2 (Chi-301

ang et al., 2023) as our teacher model due to its high302

efficiency in generating large volume of texts for303

teaching. We use XGLM-564M (Lin et al., 2022)304
3, which is the smaller language model of the same305

decoder-only family, to initialize our student model.306

To compare the student model with larger model307

pre-trained on the same data origin, we also include308

XGLM-7.5B in comparison. In BRD, we use 5 mil-309

2https://github.com/lm-sys/FastChat
3https://github.com/facebookresearch/fairseq/

tree/main/examples/xglm

lion passages from CC-100 corpus to collect the 310

basic reading data generated by Vicuna-13B. We 311

train the student model with learning rate = 0.0003, 312

batch size = 8, and max input length = 2048, for a 313

maximum of 40000 steps. We save the model every 314

1000 steps. We test the student model in the two 315

settings specified in section 3.3: zero-shot test and 316

unsupervised distillation. We present the detailed 317

experimental setup in A.1. 318

4.1 Zero-shot Test Results 319

We denote the student model as XGLM-BRD. 320

Since XGLM-BRD is initialized by XGLM-564M, 321

and is further trained on both the original passages 322

and the correspondingly generated basic reading 323

data, we also further trained XGLM-564M only 324

on the original passages to check the effect of the 325

basic reading data. Such further trained model is 326

denoted as XGLM-564M-FURTHER. To ensure 327

fair comparison, the number of further training 328

steps of either XGLM-BRD or XGLM-564M- 329

FURTHER is set 18,000. Table 4 lists the zero-shot 330

test results. 331

332

BRD effectively enhances the zero-shot perfor- 333

mance of the smaller model. In comparison to 334

XGLM-564M, XGLM-BRD shows significant 335

improvement in zero-shot testing across the 336

downstream tasks. The most notable increases 337

are in RTE, CB, BOOLQ, and SST-2, with 338

the relative improvements of 20.35%, 8.77%, 339

17.38%, and 23.94%, respectively. Moreover, 340

XGLM-564M-FURTHER performs much worse 341
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Tasks

Model XNLI RTE CB PAWS-X BOOLQ SST-2 BBH-Avg Avg

Vicuna-13B 59.1 78.3 71.4 62.9 84.3 81.5 35.9 67.6
XGLM-7.5B 36.6 50.9 60.7 56.8 57.2 69.5 33.9 52.2
XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 31.9 47.7
XGLM-564M-FURTHER 34.9 46.6 51.8 51.6 51.5 59.4 32.2 46.9
XGLM-BRD 36.6 55.6 58.3 51.7 60.1 79.2 33.4 53.6

Table 4: The results of the zero-shot testing. The top part lists the LLMs results, and the bottom part lists the results
of the smaller models that have 564M parameters each.

than XGLM-BRD, revealing that only using the342

original passages for further training does not yield343

enhancements and may even leads to decreases in344

some tasks. It is the basic reading data for further345

training that advance the student model via basic346

reading education. Note that the basic reading data347

are not related to the downstream tasks. They come348

from the general domain CC-100 corpus. The349

basic reading abilities of NER, question raising350

and answering, which are acquired via BRD, DO351

help the student model to perform well in unseen352

tasks.353

354

BRD narrows the performance gap between355

the smaller model and LLMs. The zero-shot356

performance of XGLM-BRD approaches or357

even surpasses that of XGLM-7.5B, which is358

15x bigger, in the downstream tasks. On the359

XNLI task, XGLM-BRD performs comparably to360

XGLM-7.5B. In RTE, BOOLQ, and SST-2 tasks,361

XGLM-BRD achieves relative improvements of362

9.23%, 5.07%, and 13.96% respectively. Although363

in CB and PAWS-X tasks, XGLM-BRD does not364

reach the anticipated performance, the gap has365

been narrowed. There is still a gap between the366

student model XGLM-BRD and the teacher model367

Vicuna-13B, but this gap is significantly reduced368

or disappeared when we conduct unsupervised369

distillation for XGLM-BRD on the downstream370

tasks as shown in the experiment section 4.2.371

372

BRD is effective on the Big-Bench-Hard tasks.373

Table 4 only lists the average performance on Big-374

Bench-Hard subtasks. The full results on Big-375

Bench-Hard all subtasks are listed in the appendix376

Table 10 due to space limit. It is evident that BRD377

significantly improves the overall performance of378

the smaller model. In particular, in the tasks of379

"Geometric Shapes" and "Reasoning About Col-380

ored Objects", XGLM-BRD achieves substantial381

increases of 83.25% and 59.64%, respectively, over382

XGLM-564M. In many tasks, XGLM-BRD ap-383

Tasks

Model XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

Vicuna-13B 59.1 78.3 71.4 62.9 84.3 81.5 72.9
XGLM-7.5B 36.6 50.9 60.7 56.8 57.2 69.5 55.3
XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 50.3
XGLM-UTD 57.1 58.1 60.7 64.8 74.8 77.2 65.5
XGLM-BRD 36.6 55.6 58.3 51.7 60.1 79.2 56.9
XGLM-BRD2 59.2 62.5 82.1 64.8 75.0 81.9 70.9

Table 5: The results of the Unsupervised Distillation.
The top part lists the LLMs results, and the bottom part
lists the results of the models whose parameter size is
564M.

proaches or surpasses LLMs. This finding under- 384

scores the potential of BRD in enhancing model 385

performance, especially in complex tasks. How- 386

ever, in certain tasks such as "Date Understanding", 387

Vicuna-13B still maintains a significant lead. This 388

indicates that the student model still needs to im- 389

prove its time concepts in training. 390

4.2 Unsupervised Distillation Results 391

In the unsupervised distillation setting, the baseline 392

is the task distillation approach, which uses the 393

pseudo answers generated by the teacher model 394

on the downstream tasks to supervise the student 395

model. We denote the student model in this 396

baseline XGLM-UTD, which is initialized by 397

XGLM-564M. Our approach in this setting uses 398

BRD twice, that is, on the general data we conduct 399

BRD to obtain the student model XGLM-BRD, 400

then on the downstream task data, we conduct 401

BRD again to obtain the new student model, 402

denoted as XGLM-BRD2. Table 5 lists the results 403

on the downstream tasks. 404

405

BRD outperforms the task distillation approach 406

XGLM-UTD. XGLM-UTD establishes a strong 407

baseline that significantly outperforms XGLM- 408

564M. This demonstrates that even pseudo answers 409

can supervise the student model to perform well on 410

the downstream tasks. When BRD is introduced 411

into this process, the improvement is even 412

more pronounced. In comparison to the strong 413
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XNLI RTE CB PAWS-X BOOLQ SST-2

XGLM-564M-FBRD 58.1 61.0 71.4 63.1 74.4 81.1
XGLM-BRD2 59.2 62.5 82.1 64.8 75.0 81.9

Table 6: The comparison between basing on XGLM-
BRD and basing on XGLM-564M for further BRD on
the downstream tasks.

XGLM-UTD, our XGLM-BRD2 achieves further414

improvements on XNLI, RTE, CB, BOOLQ, and415

SST-2, with the relative increases of 3.68%, 7.57%,416

35.26%, 0.27%, and 6.09%, respectively.417

418

BRD enhances the smaller model to perform419

better than or comparable to the teacher model.420

When compare the student model XGLM-BRD2421

with the teacher model Vicuna-13B, XGLM-BRD2422

outperforms in four tasks: XNLI, CB, PAWS-X,423

and SST-2. In RTE and BoolQ, the performance424

gap is significantly reduced. This comparison425

shows that BRD can fully develop the potential426

of the student model via strengthening its basic427

reading abilities, leading to comparable or superior428

performance to the 26x bigger teacher model.429

430

Basing on XGLM-BRD is better than basing431

on XGLM-564M. In the above results, further432

BRD in training XGLM-BRD2 on the downstream433

tasks is based on XGLM-BRD. We also test fur-434

ther BRD based on XGLM-564M, which is de-435

noted as XGLM-564M-FBRD. Table 6 lists the436

comparison result. It shows that XGLM-BRD2437

generally outperforms XGLM-564M-FBRD across438

various downstream tasks, highlighting that basing439

on XGLM-BRD is more effective. These results440

emphasize the importance of BRD as a prerequisite441

step in improving the adaptability and efficacy of442

models in downstream applications.443

5 Analysis444

5.1 Layer-wise Probing445

Inserting probes can reveal the interpretable aspects446

hidden in the neural networks (Belinkov, 2022).447

We insert probes layer-wisely to check the effi-448

cacy of the distilled student model. In particular,449

for each downstream task, we extract the repre-450

sentation by averaging vectors per layer for each451

sentence in the training set, and train the probing452

classifier per layer based on the representation. The453

training loss is the regularized cross-entropy loss454

of the task prediction against the true label of the455

sentence. Through inserting probes layer-wisely,456

Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-BRD2 59.2 62.5 82.1 64.8 75.0 81.9 70.9
−NER 58.0 61.4 71.4 64.1 74.3 81.4 68.4
−QRA 58.3 61.0 67.9 63.9 74.9 80.5 67.8

Table 7: The effects of deleting different basic reading
behaviors for XGLM-BRD2 in the unsupervised distil-
lation test.

Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 50.3

XGLM-BRD 36.6 55.6 58.3 51.7 60.1 79.2 56.9
−SentData 39.2 54.5 57.1 51.5 59.1 74.2 55.9

Table 8: The result of training XGLM-BRD based on
the data excluding the sentiment-related questions and
answers, denoted by −SentData, in the zero-shot test.

we can check how well each layer prepares for the 457

downstream tasks. 458

Figure 2 presents the results of probing XGLM- 459

564M and XGLM-BRD in the zero-shot test setting. 460

It is clear that XGLM-BRD outperforms XGLM- 461

564M on almost all layers for all downstream tasks. 462

Although XGLM-BRD is trained on the general 463

corpus that is not related to the downstream tasks, 464

basic reading education influences deep layers of 465

the model, empowering each layer with enhanced 466

downstream task prediction ability. 467

5.2 Ablation Study 468

The impact of different basic reading behaviors. 469

We test the contribution of the different basic 470

reading behaviors by deleting either NER or 471

QRA data of the downstream tasks in training 472

XGLM-BRD2. Table 7 lists the ablation results 473

in the unsupervised distillation test. It shows that 474

deleting the QRA data impacts the performance 475

more significantly than deleting the NER data in 476

most tasks. 477

478

The impact of sentiment-related questions and 479

answers. Since our QRA data include questions 480

and answers about the attitude of a sentence, which 481

are related to the SST-2 task, we exclude such data 482

for training XGLM-BRD by deleting the questions 483

about the attitude or the answers containing words 484

of positive/negative/neutral. The objective is to 485

check whether the performance improvement is 486

due to the presence of such data. 487

Table 8 shows the result in the zero-shot test 488

setting. Excluding the sentiment-related data 489

7



Figure 2: The results of probing XGLM-564M and XGLM-BRD layer-wisely on the downstream tasks in the
zero-shot test setting. The horizontal axis represents the specific layer in the model, and the vertical axis is the
prediction accuracy (%) for each task.

does influence SST-2 performance significantly,490

resulting in a decrease of 5 points compared to491

training XGLM-BRD on full data. Thanks to the492

remaining data for training XGLM-BRD, it still493

performs significantly better than XGLM-564M by494

a large margin on SST-2 task. On the other tasks495

unrelated to the sentiment analysis, the influence496

is not so significant, indicating that the remaining497

data is also effective for BRD across the tasks.498

On XNLI task, excluding the sentiment-related499

data obtains a significant improvement over500

XGLM-BRD trained on full data. This indicates501

that the sentiment-related data is not fit for the502

language inference task.503

504

The impact of BRD data size. We investigate505

how performance varies along with different BRD506

data sizes in the zero-shot test. Figure 3 shows the507

curve. Most tasks exhibit a steady improvement as508

BRD data gets bigger, but the improvement gets509

saturated when BRD data size arrives at more than510

one million passages.511

6 Conclusion512

In this paper, we propose to distill the basic reading513

abilities of LLMs into small models. In particular,514

Figure 3: The performance curve along with different
BRD data sizes (in million passages).

we collect basic reading behaviors of LLMs such 515

as NER or question raising and answering about 516

parts of an input text at first, then we train small 517

models based on the collected behaviors. Through 518

such basic education for the small models using 519

general texts, the small models are well educated 520

to perform better on the downstream tasks. Exper- 521

iments on various tasks including language infer- 522

ence benchmarks and Big-Bench-Hard tasks show 523

that the small models after such distillation can sur- 524

pass or perform comparable to LLMs that are 20x 525

bigger. 526
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Limitations527

There is a limitation on the coverage of language528

models and languages. LLMs such as GPT4 are529

not included as the teacher model due to the speed530

of calling API, and some smaller language models531

such as BLOOM-560M are not included to ini-532

tialize the student model for the study. The basic533

reading behavior data and downstream task data534

are in English only.535

Ethics Statement536

The code and language models used in this pa-537

per are freely downloadable from web. The cor-538

pus for generating basic reading behaviors by the539

teacher model is commonly used in most LLMs pre-540

training, and is freely released. The downstream541

task data are also freely downloadable from web.542
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A Appendix758

A.1 Model Configuration759

Our models are implemented based on Transform-760

ers4 Library. For zero-shot testing, we report re-761

sults on the development set of all the tasks to be762

consistent with the work of (Lin et al., 2022).763

For probing analysis, we separately add a 4096×764

4096 linear layer after the output of each layer of765

the model, and then train it on the data of various766

tasks. We train the linear layer with learning rate767

= 0.0003,and max input length = 512. We save the768

linear layer every 1000 steps.769

For unsupervised distillation, the experimental770

setup is shown in Table 9. In the training process,771

we set various hyperparameters to balance the loss772

on multiple types of data. We select the best com-773

bination of hyperparameters based on the accuracy774

on the validation set.775

Tasks Batch_Size Eval_Steps Patience Maximum_Steps

CB 8 50 20 10000
BOOLQ 64 200 10 10000

RTE 32 100 10 10000
SST-2 64 500 5 20000

PAWS-X 128 500 5 20000
XNLI 128 500 5 20000

Table 9: Experimental setup for unsupervised distilla-
tion.

A.2 The Results in Big-Bench-Hard776

The zero-shot test results of all subtasks in Big-777

Bench-Hard are reported in Table 10.778

4https://github.com/huggingface/transformers

11

http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
https://doi.org/10.18653/v1/2023.acl-long.738
https://doi.org/10.18653/v1/2023.acl-long.738
https://doi.org/10.18653/v1/2023.acl-long.738
https://doi.org/10.18653/v1/2023.acl-long.738
https://doi.org/10.18653/v1/2023.acl-long.738
https://github.com/huggingface/transformers


Tasks XGLM-564M XGLM-BRD XGLM-7.5B Vicuna-13B
Causal Judgement 51.1 52.1 47.9 53.2
Date Understanding 30.1 32.3 38.5 64.2
Disambiguation QA 33.0 35.3 37.2 33.0
Dyck Languages 19.3 23.0 16.7 11.4
Formal Fallacies 50.4 50.3 50.2 50.2
Geometric Shapes 10.0 18.4 19.5 11.1
Hyperbaton 50.0 50.0 49.9 57.6
Logical Deduction (5 objects) 20.6 20.6 21.6 22.8
Logical Deduction (7 objects) 14.7 17.0 15.6 17.4
Logical Deduction (3 objects) 35.3 37.7 38.0 39.7
Movie Recommendation 34.8 32.2 37.2 27.8
Navigate 50.0 50.0 49.7 51.9
Reasoning About Colored Objects 16.6 26.5 25.9 46.2
Ruin Names 29.91 31.0 27.2 30.4
Salient Translation Error Detection 25.7 25.0 18.9 27.7
Snarks 51.9 50.8 51.4 55.8
Sports Understanding 49.1 50.5 50.3 49.7
Temporal Sequences 29.4 26.6 26.3 29.1
Tracking Shuffled Objects (5 objects) 18.8 19.8 19.1 21.0
Tracking Shuffled Objects (7 objects) 13.7 14.3 14.4 14.7
Tracking Shuffled Objects (3 objects) 35.3 37.7 38.0 39.7
Average 31.9 33.4 33.9 35.9

Table 10: The zero-shot results on the subtasks in Big-Bench-Hard.
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