Basic Reading Distillation

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-
strated remarkable abilities in various natural
language processing areas, but they demand
high computation resources which limits their
deployment in real-world. Distillation is one
technique to solve this problem through either
knowledge distillation or task distillation. Both
distillation approaches train small models to
imitate specific features of LLMs, but they all
neglect basic reading education for small mod-
els on generic texts that are unrelated to down-
stream tasks. In this paper, we propose basic
reading distillation (BRD) which educates a
small model to imitate LLMs basic reading
behaviors, such as named entity recognition,
question raising and answering, on each sen-
tence. After such basic education, we apply
the small model on various tasks including lan-
guage inference benchmarks and BIG-Bench-
Hard tasks. It shows that the small model can
outperform or perform comparable to over 20x
bigger LLMs. Probing analysis reveals that our
small model gains strengthened abilities layer-
wisely, leading to better performances across
various tasks.

1 Introduction

Large language models (LLMs) exhibit consistent
performance gains across various areas (Zhao et al.,
2023; Huang and Chang, 2023; Chang et al., 2023).
Nevertheless, their formidable size and high com-
putational requirements impede their real-world
applications. Distillation is one widespread ap-
proach to tackle this issue by distilling smaller lan-
guage models from LLMs. It is divided into mainly
two categories: knowledge distillation and task dis-
tillation. Both distillation approaches adopt the
teacher-student framework, in which the smaller
language models act as the student models, and are
trained to imitate specific features of LLMs, which
act as the teacher models. Specifically, knowledge
distillation (Hinton et al., 2015) usually trains the
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Figure 1: The illustration of BRD process.

student models to imitate implicit features inside
the teacher models, such as hidden layers (Jiao
et al., 2020), attention maps (Li et al., 2020; Wang
et al., 2021b), and output logits (Liu et al., 2020).
Task distillation usually trains the student models
to imitate explicit task behaviors of LLMs, such
as label prediction (Chen et al., 2020; Wang et al.,
2021a; lliopoulos et al., 2022; Agrawal et al., 2023)
and rationale generation (Hsieh et al., 2023; Wang
et al., 2023; Ho et al., 2023), on various down-
stream tasks.

Different to both distillation approaches, we pro-
pose basic reading distillation (BRD) that teaches a
student model basic reading abilities such as named
entity recognition, question raising, and question
answering, on general sentences. It simulates hu-
man reading education via interactions including
raising questions about parts of a sentence, answer-
ing the questions, extracting important information
such as named entities. We believe that such basic
reading education on every sentence is important
before application on downstream tasks. It can
avoid the hurry of task distillation which rushes
into downstream applications directly without ba-
sic education. BRD also avoids the implicit nature
of knowledge distillation which leads to the defi-
ciency of learning interpretability. BRD demon-
strates explicit reading behaviors that are easy to
interpret. Furthermore, BRD can perform on un-
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limited data resource, breaking the data scale and
diversity limitation criticized by Gudibande et al.
(2023).

Figure 1 illustrates the process of BRD. It starts
by prompting LLMs to generate basic reading be-
haviors on general sentences, then proceeds with
training the student model to imitate these behav-
iors. Experiments on various NLP tasks, including
language inference benchmarks and Big-Bench-
Hard tasks, show that although the student model
is trained on the general imitation data that is irrel-
evant to the downstream tasks, it can inherit LLMs
abilities, leading to excellent zero-shot downstream
performances better than or comparable to those of
LLMs. Furthermore, after this basic education of
the student model on general sentences, we finetune
the student model for downstream tasks, and find
that the basic reading eduction is necessary before
the application on downstream tasks, achieving on
par or better performances when compared to the
over 20x bigger teacher model. To analyze the
effect of BRD, we insert probes to layers of the
student model. The probing result shows that those
distilled layers exhibit better abilities to compre-
hend sentences well, leading to better performances
across various tasks. In summary, the main contri-
butions are:

* We propose BRD that educates the student
model to imitate basic reading behaviors of
the teacher model on general sentences.

* Experiments show that the student model ex-
hibits excellent abilities distilled from the
teacher model on various downstream tasks,
achieving on par or even better performances
against the teacher model.

* The probing analysis reveals that BRD well
trains layers of the student model to be ready
for downstream applications.

2 Related Work

There are mainly two streams of distilling ap-
proaches: knowledge distillation and task distil-
lation. Knowledge distillation focuses on teaching
the student model to imitate the implicit features
inside the teacher model, while task distillation
focuses on teaching the student model to imitate
explicit behaviors of the teacher model on down-
stream tasks.

2.1 Knowledge Distillation

The field is pioneered by Bucila et al. (2006); Hin-
ton et al. (2015), followed by works using vari-
ous types of internal information from the teacher
model, including attention maps (Li et al., 2020;
Wang et al., 2021b), output logits (Liu et al., 2020),
hidden layers (Jiao et al., 2020). In the era of LLMs,
GKD uses advanced memory optimization meth-
ods to address the memory constraint problem in
distilling from LLMs (Tan et al., 2023), MiniLLM
uses reverse KL divergence to prevent the student
model from overestimating the void regions of the
teacher distribution (Gu et al., 2023). Agarwal et al.
(2024) use on-policy distillation that trains the stu-
dent model on its self-generated mistakes. In the
case that internal information of LLMs is not ac-
cessible and only decisions of LLLMs are available,
Zhou et al. (2023) estimate logits from the decision
distributions to train the student model.

2.2 Task Distillation

The task predictions or reasoning rationales made
by the teacher model are used to train the student
model in task distillation. Despite the noisy pre-
dictions of the teacher model, the student model
achieves good imitation effects in performing the
tasks (Chen et al., 2020; Wang et al., 2021a; II-
iopoulos et al., 2022; Agrawal et al., 2023). Be-
sides the task predictions, rationales for the answers
generated by the teacher model show efficiency in
training the student model with less data (Hsieh
et al., 2023; Wang et al., 2023; Ho et al., 2023;
Magister et al., 2023). Task distillation is closely
related to model imitation researches (Orekondy
et al., 2019; Wallace et al., 2020), which collect
API outputs of a a proprietary LM for some tasks,
then use the outputs to fine-tune an open-source
LM. Gudibande et al. (2023) criticize the data scale
and limited diversity in model imitation. Mukher-
jee et al. (2023) address this criticism by using
explanation tuning, more task data, and instruc-
tions. In comparison, BRD can perform on every
sentence, leading to unlimited data resource that
breaks the limitation on data scale and diversity.

In summary, task distillation focuses on the data
of specific tasks, while our BRD mainly focuses
on general sentences unrelated to the specific tasks,
and the basic reading behaviors in BRD are ba-
sic education resource not aiming at the specific
applications.



Task Instruction

Perform named entity recognition on a given sentence without recognizing
personal pronouns in the input sentence as human names.

Enter a sentence:
Output result:

a geopolitical entity.
Enter a sentence:
Output result:
Examples
a product name entity.

Enter a sentence:

Output result:

Barack Obama was the 44th President of the United States.

In this sentence, "Barack Obama" is a person name entity, and "United States" is

I just bought a new MacBook Pro from Apple.

In this sentence, "Apple" is an organization name entity, and "MacBook Pro" is

The Eiffel Tower is a famous landmark in Paris, France.

In this sentence, "Eiffel Tower" is a landmark name entity, and "Paris" and
"France" are geopolitical entities.

Enter a sentence:

Model Input
Output result:

Belmont Estate is on the market for $63 million and boasts roughly 22,000
square feet of luxurious finishes and elaborate architecture on 1.28 acres.

Model Output

In this sentence, "Belmont Estate" is a geographic entity, "63 million" is a numer-
ical entity representing the price of the estate, and "1.28 acres" is a geographic
entity representing the size of the estate.

Table 1: The prompt for the teacher model to extract named entity information from an input sentence. Each
example consists of a sentence and its named entity information. The response from the teacher model is listed in

model output.

3 Approach

In BRD, we use a subset of CommonCrawl (CC-
100) corpus, which is usually included in LLMs
pre-training, as the education resource to conduct
the basic reading education. The whole education
process contains two stages. In the first stage, for
each sentence in the corpus, the teacher model is
prompted to perform basic reading. In the second
stage, we collect all basic reading behavior data to
train the student model, and finally test the student
model ability on various tasks.

3.1 Basic Reading Behaviors of the Teacher
Model

We utilize the in-context learning ability of the
teacher model to elicit its basic reading behaviors
including named entity recognition, question rais-
ing and answering. Given the corpus, we set up
a prompt template consisting of task description,
task examples, and input sentence from the corpus.

Table 1 lists the named entity recognition prompt
and the response from the teacher model. We can
see that, given the few-shot examples including en-
tities and their types, the teacher model responses
with more detailed contents of the entities, such as
the price or size of the entities, which are beneficial
for educating the student model to grasp the impor-

tant information contained in the input sentence.
Table 2 lists the question raising and answering
prompt and the response from the teacher model.
In the task instruction of the prompt, question is
constrained to be about the content, structure, or
attitude of the input sentence. Its raising and an-
swering embody the teacher model’s reading abil-
ity, which is targeted to be transferred to the student
model.

3.2 Training the Student Model

The student model is initialized by a released
smaller pre-trained language model. We continue
training the student model based on the basic read-
ing behavior data generated by the teacher model.
To stabilize the training process, we mix the basic
reading behavior data with the original sentences
of the corpus to avoid the catastrophic forgetting of
the pre-trained model.

Suppose we have a passage consisting of three
sentences s1, so, and s3, we constitute the named
entity recognition passage: s; <sep> NER(s;)
<sep> s2 <sep> NER(s3) <sep> s3 <sep> NER(s3),
where NER denotes the named entity recognition
result of the teacher model for each sentence, and
<sep> is the delimiter. Similarly, we constitute the
question raising and answering passage: s <sep>
QRA(s71) <sep> s2 <sep> QRA(s2) <sep> s3 <sep>



Task Instruction

Ask a question to the input sentence, you can ask questions about the content,
structure or attitude of the sentence, and then find the answer to the corresponding
question in the original sentence. Output in the format "Question: Answer:".

The sentence:

college.

Example Question:

Answer:

In order to graduate with honors, he needed to maintain a high GPA throughout

What did he need to do in order to graduate with honors?

Maintain a high GPA throughout college.

The sentence:
Model Input

Belmont Estate is on the market for $63 million and boasts roughly 22,000
square feet of luxurious finishes and elaborate architecture on 1.28 acres.

Question:

Model Output |, ..

How much does Belmont Estate cost?

Belmont Estate costs $63 million.

Table 2: The prompt for the teacher model to perform question raising and answering on an input sentence. Question
is limited to be about the input sentence. The response from the teacher model is listed in model output.

QRA(s3), where QRA denotes the question raising
and answering result of the teacher model for each
sentence. The original passage is formatted as s;
<sep> so <sep> s3. We use passage instead of sen-
tence like the usual language model pre-training
conducts to utilize long contexts.

In this way, we build all original passages, de-
noted as Dpry, all named entity recognition pas-
sages, denoted as Dygpg, and all question rais-
ing and answering passages, denoted as Dgpra.
We mix them together to build the training set
Drgrarn, on which we train the student model
to minimize the loss in an autoregressive manner:

1 N
I — - ZZlogP(yt!yq)

i=1t=1

where y is the passage with length 7', and N is the
number of passages in DrrarnN.

3.3 Testing the Student Model

We test the ability of the student model in two
manual-label-free settings: zero-shot test and unsu-
pervised distillation. In zero-shot test, the student
model is directly tested on various downstream
tasks. In unsupervised distillation, we use sen-
tences of the downstream tasks for further BRD,
but the labeled answers for these sentences are not
used in this setting to avoid manual labor.

Zero-shot Test. We evaluate the zero-shot ca-
pability of the student model on a spectrum of
downstream tasks, including natural language in-
ference (XNLI(Conneau et al., 2018), CB(de Marn-
effe et al., 2019), RTE(Wang et al., 2018)) , para-
phrasing (PAWS-X(Zhang et al., 2019)) , Boolean

QA (BOOLQ(Clark et al., 2019)) , sentiment anal-
ysis (SST-2(Socher et al., 2013)), and Big-Bench-
Hard(Suzgun et al., 2022). The prompt templates
for these tasks are listed in table 3. For the multiple
tasks in BIG-Bench-Hard, we utilize the prompt
format provided in Gao et al. (2021)".

For predicting the answers of the tasks, we use
the average of per-token log-probabilities of candi-
date answers as the scoring function for all down-
stream tasks:

P=

S|

n
> " 1og P;(yi|Tprompt)
=1

where Zprompt denotes an input to the student
model, y denotes a candidate answer for Zprompt,
and n is the total number of words in . This aver-
age computation is to cover BIG-Bench-Hard tasks,
whose candidate answers are phrases/sentences
rather than single words.

Unsupervised Distillation. In this setting, we
use the downstream task data (excluding answers)
to further distill the teacher model into the student
model. It is a common practice that the teacher
model generates the answers given the downstream
task inputs in the training set, and these generated
pseudo answers are used to supervise the student
model. Although it is simple, Wang et al. (2021a);
Iliopoulos et al. (2022) have proved its efficiency
in distilling the downstream task abilities of the
teacher model into the student model.

We add BRD into this distillation process to in-
clude basic reading education for the downstream

1https://github.com/EleutherAI/
1Im-evaluation-harness
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Task Template

Candidate Answers

{premise}

XNLI Yes, no or maybe?

Answer:

Question: Does this imply that "{hypothesis}"?

Yes | No | Maybe

RTE

CB {premise}

Answer:

Question: Can we infer that "{hypothesis}" ?

Yes | No | Maybe

Sentence 1: {sentencel }
Sentence 2: {sentence2}
PAWS-X
the same meaning?
Answer:

Question: Do Sentence 1 and Sentence 2 express

Yes | No

{passage}
Question: {question}
Answer:

BOOLQ

Yes | No

SST-2 Sentence: {sentence}

Answer:

Question: Does the following sentence have a
positive or negative sentiment?

positive | negative

Table 3: The prompt templates for the different tasks in the zero-shot test.

tasks. With the strengthened basic reading abil-
ity, we expect the student model performs better in
the downstream tasks. We choose the downstream
tasks same to the zero-shot test setting except BIG-
Bench-Hard task, which lacks downstream task
training data, and is thus not suitable for the distil-
lation.

In particular, for each sentence in each down-
stream task training set, we prompt the teacher
model to generate NER result and question raising
and answering result, then we concatenate the orig-
inal sentence with the two results respectively to
build the basic reading training data. During distil-
lation, on this basic reading data, the student model
is further trained auto-regressively, but on the orig-
inal data, the student model is further trained to
just predict answers. During testing, the student
model uses the prompts same to those used in the
zero-shot test setting.

4 Experiment

We use the well-known LLM Vicuna-13B ? (Chi-
ang et al., 2023) as our teacher model due to its high
efficiency in generating large volume of texts for
teaching. We use XGLM-564M (Lin et al., 2022)
3, which is the smaller language model of the same
decoder-only family, to initialize our student model.
To compare the student model with larger model
pre-trained on the same data origin, we also include
XGLM-7.5B in comparison. In BRD, we use 5 mil-

2https ://github.com/1lm-sys/FastChat
3h'ctps ://github.com/facebookresearch/fairseq/
tree/main/examples/xglm

lion passages from CC-100 corpus to collect the
basic reading data generated by Vicuna-13B. We
train the student model with learning rate = 0.0003,
batch size = 8, and max input length = 2048, for a
maximum of 40000 steps. We save the model every
1000 steps. We test the student model in the two
settings specified in section 3.3: zero-shot test and
unsupervised distillation. We present the detailed
experimental setup in A.1.

4.1 Zero-shot Test Results

We denote the student model as XGLM-BRD.
Since XGLM-BRD is initialized by XGLM-564M,
and is further trained on both the original passages
and the correspondingly generated basic reading
data, we also further trained XGLM-564M only
on the original passages to check the effect of the
basic reading data. Such further trained model is
denoted as XGLM-564M-FURTHER. To ensure
fair comparison, the number of further training
steps of either XGLM-BRD or XGLM-564M-
FURTHER is set 18,000. Table 4 lists the zero-shot
test results.

BRD effectively enhances the zero-shot perfor-
mance of the smaller model. In comparison to
XGLM-564M, XGLM-BRD shows significant
improvement in zero-shot testing across the
downstream tasks. The most notable increases
are in RTE, CB, BOOLQ, and SST-2, with
the relative improvements of 20.35%, 8.77%,
17.38%, and 23.94%, respectively. Moreover,
XGLM-564M-FURTHER performs much worse
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Tasks

Model XNLI RTE CB PAWS-X BOOLQ SST-2 BBH-Avg Avg
Vicuna-13B 59.1 783 714 62.9 84.3 81.5 35.9 67.6
XGLM-7.5B 36.6 509 60.7 56.8 57.2 69.5 33.9 52.2
XGLM-564M 355 46.2  53.6 51.3 51.2 63.9 31.9 47.7
XGLM-564M-FURTHER  34.9 46.6 51.8 51.6 51.5 59.4 32.2 46.9
XGLM-BRD 36.6 55.6 58.3 51.7 60.1 79.2 334 53.6

Table 4: The results of the zero-shot testing. The top part lists the LLMs results, and the bottom part lists the results

of the smaller models that have 564M parameters each.

than XGLM-BRD, revealing that only using the
original passages for further training does not yield
enhancements and may even leads to decreases in
some tasks. It is the basic reading data for further
training that advance the student model via basic
reading education. Note that the basic reading data
are not related to the downstream tasks. They come
from the general domain CC-100 corpus. The
basic reading abilities of NER, question raising
and answering, which are acquired via BRD, DO
help the student model to perform well in unseen
tasks.

BRD narrows the performance gap between
the smaller model and LLMs. The zero-shot
performance of XGLM-BRD approaches or
even surpasses that of XGLM-7.5B, which is
15x bigger, in the downstream tasks. On the
XNLI task, XGLM-BRD performs comparably to
XGLM-7.5B. In RTE, BOOLQ, and SST-2 tasks,
XGLM-BRD achieves relative improvements of
9.23%, 5.07%, and 13.96% respectively. Although
in CB and PAWS-X tasks, XGLM-BRD does not
reach the anticipated performance, the gap has
been narrowed. There is still a gap between the
student model XGLM-BRD and the teacher model
Vicuna-13B, but this gap is significantly reduced
or disappeared when we conduct unsupervised
distillation for XGLM-BRD on the downstream
tasks as shown in the experiment section 4.2.

BRD is effective on the Big-Bench-Hard tasks.
Table 4 only lists the average performance on Big-
Bench-Hard subtasks. The full results on Big-
Bench-Hard all subtasks are listed in the appendix
Table 10 due to space limit. It is evident that BRD
significantly improves the overall performance of
the smaller model. In particular, in the tasks of
"Geometric Shapes" and "Reasoning About Col-
ored Objects", XGLM-BRD achieves substantial
increases of 83.25% and 59.64%, respectively, over
XGLM-564M. In many tasks, XGLM-BRD ap-

Tasks

Model XNLI RTE CB PAWS-X BOOLQ SST-2 Avg
Vicuna-13B 59.1 783 714 62.9 84.3 815 729
XGLM-7.5B 36.6 509 607 56.8 572 69.5 553
XGLM-564M 355 462 536 51.3 51.2 639 503
XGLM-UTD 57.1 58.1  60.7 64.8 74.8 772 655
XGLM-BRD 36.6 55.6 583 51.7 60.1 792 569
XGLM-BRD?  59.2 62.5 821 64.8 75.0 819 709

Table 5: The results of the Unsupervised Distillation.
The top part lists the LLMs results, and the bottom part
lists the results of the models whose parameter size is
564M.

proaches or surpasses LLLMs. This finding under-
scores the potential of BRD in enhancing model
performance, especially in complex tasks. How-
ever, in certain tasks such as "Date Understanding",
Vicuna-13B still maintains a significant lead. This
indicates that the student model still needs to im-
prove its time concepts in training.

4.2 Unsupervised Distillation Results

In the unsupervised distillation setting, the baseline
is the task distillation approach, which uses the
pseudo answers generated by the teacher model
on the downstream tasks to supervise the student
model. We denote the student model in this
baseline XGLM-UTD, which is initialized by
XGLM-564M. Our approach in this setting uses
BRD twice, that is, on the general data we conduct
BRD to obtain the student model XGLM-BRD,
then on the downstream task data, we conduct
BRD again to obtain the new student model,
denoted as XGLM-BRD?. Table 5 lists the results
on the downstream tasks.

BRD outperforms the task distillation approach
XGLM-UTD. XGLM-UTD establishes a strong
baseline that significantly outperforms XGLM-
564M. This demonstrates that even pseudo answers
can supervise the student model to perform well on
the downstream tasks. When BRD is introduced
into this process, the improvement is even
more pronounced. In comparison to the strong



XNLI RTE CB PAWS-X BOOLQ SST-2
XGLM-564M-FBRD  58.1 61.0 714 63.1 74.4 81.1
XGLM-BRD? 59.2 625 821 64.8 75.0 81.9

Table 6: The comparison between basing on XGLM-
BRD and basing on XGLM-564M for further BRD on
the downstream tasks.

XGLM-UTD, our XGLM-BRD? achieves further
improvements on XNLI, RTE, CB, BOOLQ, and
SST-2, with the relative increases of 3.68%, 7.57%,
35.26%, 0.27%, and 6.09%, respectively.

BRD enhances the smaller model to perform
better than or comparable to the teacher model.
When compare the student model XGLM-BRD?
with the teacher model Vicuna-13B, XGLM-BRD?
outperforms in four tasks: XNLI, CB, PAWS-X,
and SST-2. In RTE and BoolQ, the performance
gap is significantly reduced. This comparison
shows that BRD can fully develop the potential
of the student model via strengthening its basic
reading abilities, leading to comparable or superior
performance to the 26x bigger teacher model.

Basing on XGLM-BRD is better than basing
on XGLM-564M. In the above results, further
BRD in training XGLM-BRD? on the downstream
tasks is based on XGLM-BRD. We also test fur-
ther BRD based on XGLM-564M, which is de-
noted as XGLM-564M-FBRD. Table 6 lists the
comparison result. It shows that XGLM-BRD?
generally outperforms XGLM-564M-FBRD across
various downstream tasks, highlighting that basing
on XGLM-BRD is more effective. These results
emphasize the importance of BRD as a prerequisite
step in improving the adaptability and efficacy of
models in downstream applications.

5 Analysis
5.1 Layer-wise Probing

Inserting probes can reveal the interpretable aspects
hidden in the neural networks (Belinkov, 2022).
We insert probes layer-wisely to check the effi-
cacy of the distilled student model. In particular,
for each downstream task, we extract the repre-
sentation by averaging vectors per layer for each
sentence in the training set, and train the probing
classifier per layer based on the representation. The
training loss is the regularized cross-entropy loss
of the task prediction against the true label of the
sentence. Through inserting probes layer-wisely,

Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-BRD? 592 625 82.1 64.8 75.0 819 709
—NER 580 614 714 64.1 74.3 814 684
—QRA 583 61.0 679 63.9 74.9 80.5 67.8

Table 7: The effects of deleting different basic reading
behaviors for XGLM-BRD? in the unsupervised distil-
lation test.

Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-564M 355 462 53.6 51.3 51.2 639 503
XGLM-BRD 36,6 55.6 58.3 51.7 60.1 792 569
—SentData  39.2 545 57.1 51.5 59.1 742 559

Table 8: The result of training XGLM-BRD based on
the data excluding the sentiment-related questions and
answers, denoted by —SentData, in the zero-shot test.

we can check how well each layer prepares for the
downstream tasks.

Figure 2 presents the results of probing XGLM-
564M and XGLM-BRD in the zero-shot test setting.
It is clear that XGLM-BRD outperforms XGLM-
564M on almost all layers for all downstream tasks.
Although XGLM-BRD is trained on the general
corpus that is not related to the downstream tasks,
basic reading education influences deep layers of
the model, empowering each layer with enhanced
downstream task prediction ability.

5.2 Ablation Study

The impact of different basic reading behaviors.
We test the contribution of the different basic
reading behaviors by deleting either NER or
QRA data of the downstream tasks in training
XGLM-BRD?. Table 7 lists the ablation results
in the unsupervised distillation test. It shows that
deleting the QRA data impacts the performance
more significantly than deleting the NER data in
most tasks.

The impact of sentiment-related questions and
answers. Since our QRA data include questions
and answers about the attitude of a sentence, which
are related to the SST-2 task, we exclude such data
for training XGLM-BRD by deleting the questions
about the attitude or the answers containing words
of positive/negative/neutral. The objective is to
check whether the performance improvement is
due to the presence of such data.

Table 8 shows the result in the zero-shot test
setting. Excluding the sentiment-related data
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does influence SST-2 performance significantly,
resulting in a decrease of 5 points compared to
training XGLM-BRD on full data. Thanks to the
remaining data for training XGLM-BRD, it still
performs significantly better than XGLM-564M by
a large margin on SST-2 task. On the other tasks
unrelated to the sentiment analysis, the influence
is not so significant, indicating that the remaining
data is also effective for BRD across the tasks.
On XNLI task, excluding the sentiment-related
data obtains a significant improvement over
XGLM-BRD trained on full data. This indicates
that the sentiment-related data is not fit for the
language inference task.

The impact of BRD data size. We investigate
how performance varies along with different BRD
data sizes in the zero-shot test. Figure 3 shows the
curve. Most tasks exhibit a steady improvement as
BRD data gets bigger, but the improvement gets
saturated when BRD data size arrives at more than
one million passages.

6 Conclusion

In this paper, we propose to distill the basic reading
abilities of LLMs into small models. In particular,

Data Size (million)

XNLI -*- CB RTE PAWSX -¢- BOOLQ -¢- SST-2

Figure 3: The performance curve along with different
BRD data sizes (in million passages).

we collect basic reading behaviors of LLMs such
as NER or question raising and answering about
parts of an input text at first, then we train small
models based on the collected behaviors. Through
such basic education for the small models using
general texts, the small models are well educated
to perform better on the downstream tasks. Exper-
iments on various tasks including language infer-
ence benchmarks and Big-Bench-Hard tasks show
that the small models after such distillation can sur-
pass or perform comparable to LLMs that are 20x
bigger.



Limitations

There is a limitation on the coverage of language
models and languages. LLMs such as GPT4 are
not included as the teacher model due to the speed
of calling API, and some smaller language models
such as BLOOM-560M are not included to ini-
tialize the student model for the study. The basic
reading behavior data and downstream task data
are in English only.

Ethics Statement

The code and language models used in this pa-
per are freely downloadable from web. The cor-
pus for generating basic reading behaviors by the
teacher model is commonly used in most LLMs pre-
training, and is freely released. The downstream
task data are also freely downloadable from web.
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A Appendix
A.1 Model Configuration

Our models are implemented based on Transform-
ers* Library. For zero-shot testing, we report re-
sults on the development set of all the tasks to be
consistent with the work of (Lin et al., 2022).

For probing analysis, we separately add a 4096 x
4096 linear layer after the output of each layer of
the model, and then train it on the data of various
tasks. We train the linear layer with learning rate
=0.0003,and max input length = 512. We save the
linear layer every 1000 steps.

For unsupervised distillation, the experimental
setup is shown in Table 9. In the training process,
we set various hyperparameters to balance the loss
on multiple types of data. We select the best com-
bination of hyperparameters based on the accuracy
on the validation set.

Tasks  Batch_Size Eval Steps Patience Maximum_Steps

CB 8 50 20 10000
BOOLQ 64 200 10 10000
RTE 32 100 10 10000
SST-2 64 500 5 20000
PAWS-X 128 500 5 20000
XNLI 128 500 5 20000

Table 9: Experimental setup for unsupervised distilla-
tion.

A.2 The Results in Big-Bench-Hard

The zero-shot test results of all subtasks in Big-
Bench-Hard are reported in Table 10.

*https://github.com/huggingface/transformers
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Tasks XGLM-564M | XGLM-BRD || XGLM-7.5B | Vicuna-13B
Causal Judgement 51.1 521 479 53.2
Date Understanding 30.1 323 38.5 64.2
Disambiguation QA 33.0 35.3 37.2 33.0
Dyck Languages 19.3 23.0 16.7 11.4
Formal Fallacies 50.4 50.3 50.2 50.2
Geometric Shapes 10.0 18.4 19.5 11.1
Hyperbaton 50.0 50.0 49.9 57.6
Logical Deduction (5 objects) 20.6 20.6 21.6 22.8
Logical Deduction (7 objects) 14.7 17.0 15.6 17.4
Logical Deduction (3 objects) 353 37.7 38.0 39.7
Movie Recommendation 34.8 322 37.2 27.8
Navigate 50.0 50.0 49.7 51.9
Reasoning About Colored Objects 16.6 26.5 25.9 46.2
Ruin Names 2991 31.0 27.2 30.4
Salient Translation Error Detection 25.7 25.0 18.9 27.7
Snarks 51.9 50.8 51.4 55.8
Sports Understanding 49.1 50.5 50.3 49.7
Temporal Sequences 294 26.6 26.3 29.1
Tracking Shuffled Objects (5 objects) 18.8 19.8 19.1 21.0
Tracking Shuffled Objects (7 objects) 13.7 14.3 14.4 14.7
Tracking Shuffled Objects (3 objects) 353 37.7 38.0 39.7
Average 31.9 334 33.9 35.9

Table 10: The zero-shot results on the subtasks in Big-Bench-Hard.
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