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Figure 1: The evolution of zero-shot performance averaged over nine visual instruction tuning tasks
throughout training of various SMoE algorithms using a 5.1B parameters backbone.

ABSTRACT

Sparse mixture of experts (SMoE) offers an appealing solution to scale up the
model complexity beyond the mean of increasing the network’s depth or width.
However, we argue that effective SMoE training remains challenging because of the
suboptimal routing process, which often does not involve the experts computation.
In this work, we propose competition, a novel mechanism to route tokens to experts
with the highest neural response. Theoretically, we show that the competition
mechanism enjoys a better sample efficiency than the traditional softmax routing.
Furthermore, we develop CompeteSMOoE, a simple yet effective algorithm for large
models by deploying a router to learn the competition policy, thus enjoying strong
performances at a low training overhead. Our extensive empirical evaluations on
both the visual instruction tuning and language pre-training tasks demonstrate the
efficacy, robustness, and scalability of CompeteSMoE compared to state-of-the-art
SMOoE strategies. We will publish the implementation upon acceptance.

1 INTRODUCTION

Large language models (LLMs) have emerged as a promising architecture for artificial general
intelligence. In recent years, LLMs have shown remarkable success in solving many cognitive tasks,
ranging from language, vision understanding (Bao et al.,[2022b}; |Gulati et al., 2020; |Dosovitskiy et al.}
2021; Ruiz et al.,[2021; Bao et al.| 2022a} |Li et al., 2022 2023a)), to code generation (Wang et al.,
2021), reinforcement learning (Chow et al., [2023) and life sciences (Rives et al., 2021). Since the
release of the original Transformer model (Vaswani et al., |2017), extensive efforts have been devoted
to scaling the model complexity to take advantage of massive datasets and advanced computing
hardware (Radford et al.l 2019; Brown et al., [2020; |Du et al., |2022). To go beyond simply increasing
the depth and width of the network, Sparse Mixture-of-experts (SMoE) (Fedus et al.l [2022) has
emerged as an appealing solution for scaling LLMs. By modularizing the network and activating
only subsets of experts per input, SMoE offers constant computational costs when increasing the
model complexity and often resulting in improved performance.

Despite the initial success, practical SMoE training has been known to be notoriously challenging in
both engineering and algorithmic aspects. Thus, despite the rapid development of advanced SMoE
research in theory and algorithm (Lee-Thorp & Ainslie, [2022; Riquelme et al., 2021} |Chi et al.|
2022a)), limited progress has been made in leading industrial models such as DeepSeek (DeepSeek-Al
et al., 2024; 2025)) or Phi-MoE (Abdin et al.| 2024) as they still implement variants of the vanilla
routing mechanism since the original SMoE (Shazeer et al.| [2017} |Lepikhin et al.; 2021} [Fedus et al.|
2022). We argue that this discrepancy exists because many state-of-the-art strategies often rely on



Under review as a conference paper at ICLR 2026

intuitive conceptualizations, which can only offer greedy solutions that work training in the limited
training data and small model regimes. Evidently, many of existing works (Le et al., [2025} Do et al.,
2023; [Nguyen et al.| 2025} Dati et al., [2022a)) still follow the in-domain evaluation and ignore the
zero-shot generalization capabilities of pre-train language models, which are their main use cases.

This work makes a step towards a statistically guaranteed SMoE training strategy that can yield
improvements over a wide range of training settings in large-scale models. To this end, we investigate
the core mechanism of routing tokens to experts in SMoE and argue that it could be suboptimal
because the experts performing the calculation do not directly contribute to the routing process.
This limitation has motivated us to develop a radical routing strategy to distribute tokens to experts
more effectively than using the traditional router. To this end, motivated by the Winner-take-all
(WTA) principle (Grossberg & Grossberg] |1982} |Riesenhuber & Poggiol |1999] |Andersen et al., {1969;
Eccles,, |2013), we propose the competition mechanism for SMoE training. The core mechanism of
competition is activating all experts and defining a winning criterion so that tokens are only sent to
the winning experts. Thus, competition addresses the fundamental limitation of traditional routing
schemes by involving experts in the routing process, which we rigorously show to achieve a better
sample efficiency or convergence rate than the traditional softmax routing. Furthermore, we go beyond
statistical analysis by developing the CompeteSMoE algorithm that implements the competition
mechanism into large-scale models at a modest overhead. Specifically, CompeteSMoE improved the
zero-shot performance across 16 common benchmarks in both vision-language finetuning (Figure|[T)
and language pre-training settings.

In summary, our work makes the following contributions. First, we propose a novel competition
mechanism for training SMoE, which enjoys a better convergence rate than softmax routing. Sec-
ond, we develop CompeteSMoE, a scalable and effective training strategy for SMoE training via
competition. Lastly, we conduct extensive experiments to explore the behaviours of CompeteSMoE,
including its performance, scalability, convergence property, and routing efficacy.

2 COMPETESMOE

We first recap the foundation of MoE in Section [2.1] Then, we introduce the competition mechanism
in Section [2.2] discuss the scheduled router training in Section [2.3] and detail the CompeteSMoE
algorithm in Section[2.4] We provide a list of all notations and their meanings in Table[5] Appendix [A]

2.1 BACKGROUND

The traditional SMoE layer (Shazeer et al.,2017) consists of a router R(-, W,.) parameterized by W,
and N experts {g(-, We,)}}\, parameterized by W,,,i € [IN], respectively. The router takes the input
token x as input and produces an affinity score vector on experts as sg = o(TopK___(z " W,)),
where o is a scoring function, often implemented as a softmax or sigmoid function. The TopK_
function keeps the largest K elements in a vector and sets the other elements to negative infinity
(—o00). With this notation, the SMoE layer takes an input token « and calculate the final output by
aggregating the outputs of each expert weighted by their affinity scores as: § = Zfil sh - g(x; We,)
In practice, it is common for K to be smaller than N, i.e. K < N, to improve the model efficiency.

2.2 ROUTING VIA COMPETITION

We now introduce the competition mechanism as an effective routing strategy to facilitate SMoE
training. The key idea of competition is allowing all experts to calculate their outputs, and selection
is performed via the winner-take-all mechanism. Thus, experts will compete with one another and
the best ones are selected to calculate the final output. To implement the competition, we propose
to use the expert’s neural response as its affinity score, i.e. s; = E[k(g(x, We,))], where x(-) is an
activation function over the expert’s neural responses, and [£ denotes the mean over the elements
of the expert’s output vector. In the experiments, we implement « as the softplus function, unless
otherwise stated. However, our competition mechanism and the theoretical analysis thereafter are
general and do not make strong assumptions about x. We will provide the results of other choices of
+ in Appendix [C.3] With this notation, the training of SMoE with competition is formulated via the
following steps:

1. Compute the output of all V experts for a given input x as g(x, W,,), Vi€ [N].
2. Compute the affinity score of each expert: s; = E[log(1 + e9®We:))], Vi € [N].
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3. Select the Top-K experts based on the highest neural response and compute the normalized
affinity scores: 8. = TopK,(s;, K), sb = Nsilc

§.7

Here, TopK|, is similar to the
j=15Cc
traditional TopK _ __ but sets the values outside the K highest values to be 0 instead of —oo.

4. Compute the final output as a weighted sum of the selected experts:
~ N i
g=>i—18c 9@ We,).

Competition starkly contrasts with the standard SMoE implementation discussed in Section[2.T| where
the affinity score is calculated as the dot product between the input  and the columns of the router
W, then only a few selected experts actually perform their calculation. Although efficient, it results
in suboptimal routing policies because the expert selection is detached from the expert’s forward
calculation. In contrast, competition proposes that experts who respond the strongest to an input
are selected to process that input, while suppressing the other experts. We will rigorously show the
theoretical guarantees of routing via competition in Section 3]

2.3 SCHEDULED TRAINING OF THE ROUTER

One drawback of competition-based expert selection is the high computational overhead of activating
all experts, which limits its viability to large-scale models. To make competition applicable to
LLM training, we propose to incorporate it into the standard router in SMoE. Specifically, we
propose a schedule training procedure that periodically trains the router R(-; W,.) to jointly estimate
the competition policy and minimize the task loss. It is important to note that our analysis in
Section 3| will show that using the competition policy alone is theoretically sufficient to achieve a
faster convergence rate than the vanilla SMoE. In practice, CompeteSmoE in modern architectures
stacks many SMoE layers on top of each other, each of which is equipped with a competition
mechanism independently. This deep architecture may require significantly more training samples
for convergence, which could be much larger than the dataset size and makes training infeasible on
our hardware. Therefore, we propose to jointly learn the task loss and match the competition policy
to facilitate the router learning. Particularly, without competition activated, the task loss gradient tells
the router how to adjust the affinity scores for selected experts only (since inactivated experts do not
receive gradients). When competition is active, its gradient tells the router how to adjust the scores
for all experts, including those that are not selected to make final predictions. Thus, CompeteSMoE
router is expected to facilitate the training and improve the performance. In the following, we present
the router loss for effective training and the router schedulers to ensure that training remains efficient.

2.3.1 ROUTER LoSS

The router is trained to learn the competition policy and use it to minimize the task loss. We
propose to learn the competition policy by minimizing a distillation loss, £p, which characterizes
the discrepancy between the competition and router policies. For ease of notation, we use I C [N]
to denote the indices of the experts who won the competition. Then, the distillation loss Lp can be
computed by minimizing the mean squared errors (MSE) between the competition and router policies,
via their affinity scores as:

Lop(sr.sc) = MSE(sg, s0) + 7=+ D (sh = s%)°, ()

j€lc
where o € R™ is a hyperparameter to encourage the router to pay more attention to winning experts.

Diversity Loss One of our main experimental settings is using sparse upcycling (Komatsuzaki
et al.| |2023)) to bypass the expensive pre-training cost, which allows us to test SMoE algorithms
on larger models with a low budget. However, sparse upcycling duplicates the experts and make
them have similar outputs, which results in no competition in the early stages of training and limited
training efficacy. To mitigate this issue, we introduce the Diversity Loss, Lgiy, to promote diverse
representations of the winning experts. Formally, given the output matrix O € RE*P representing
the outputs of K winning experts for an input x, the diversity loss is computed as the mean of the
off-diagonal elements in the correlation matrix constructed from O:

1 K K 0.0

v :7§ g i,js Wh == 2

Liv(0) KK 1) 2= j:1C’J where C e 2)
J#i
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(a) The router learns the competition policy. (b) Normal routing using the router.

Figure 2: An illustrative of the interleaved learning phases in CompeteSMoE: (a) activating all experts
for the router to learn the competition policy; and (b) normal routing using the router.

We apply the Diversity Loss only within the competition mechanism and emphasize the winning
experts as defined in Eq. rather than those selected by the router R(-; W,.). By penalizing winning
experts when they produce similar outputs, L4, promotes a more effective competition outcome
when using the sparse upcycling strategy.

2.3.2 ROUTER TRAINING SCHEDULE

Schedulers are essential to ensure that the routers can effectively learn a good routing policy while
maintaining a limited computational overhead. In the worst case, when all layers of a deep network
perform competition simultaneously, this SMoE becomes dense and could crash the training process.
Thus, we need to carefully design a schedule to manage the competition frequency across layers. To
this end, we employ two schedulers; one is applied per layer independently, while the other monitors
the total competition frequency of all layers. For a layer [ in a deep network, we first employ a
scheduler \;(t) to determine whether competition should be activated at time step ¢ for this layer.
We simply implement \;(¢) by sampling from a Bernoulli distribution with probability w, which is
fixed for all layers. Furthermore, we also employ a global concurrency across layers. Specifically,
we only allow the total number of layers performing competition at any time step to be Ap.x. Any
layers exceeding this threshold are deferred to perform competition in the next step. Appendix [B] will
provide a detailed formulation of the global scheduler. Based on the number of layers in each model,
we set Apax = 9 for vision-language models and Ay.x = 6 for the language model pre-training
setting, in order to achieve an optimal trade-off between performance and computational feasibility.

2.4 THE COMPETESMOE ALGORITHM

We are now ready to describe the CompeteSMoE algorithm to enhance SMoE training of large-scale
models. Before training, we use the schedulers to generate all time steps for which the competition
mechanism is activated at each layer and store them in {A(l)}2,, where A(l,t) = 1 indicating that
the [—layer will perform competition at time ¢. Note that this step is performed offline, only one
time before training starts. Then, according to the schedule A(l, ), the training dynamic involves: (i)
training the activated experts to minimize the task loss, £xr.1,, and (ii) training the activated router to
minimize the task and router losses. We provide an illustration of CompeteSMOoE training in Figure[2]

We now discuss a general guideline to set the hyper-parameters introduced by CompeteSMoE. We
recommend the balancing hyper-parameters «, 3,y to be small values such as 0.01 or 0.005. The
Bernoulli parameter w should also be small (e.g. 0.07) so that competition is not activated too often.
The global scheduler threshold should be set based on the specific backbone architecture, model,
and training infrastructure to ensure stability. We found A« = 9 for vision-language models and
Amax = 6 for language model pre-training to maximize the memory usage of our hardware. Lastly,
we emphasize that the value ranges of these hyper-parameters can be derived by their definition,
which greatly reduces the effort for hyper-parameter searching. As long as they follow this guideline,
we empirically validate the effectiveness of these guidelines through an extensive ablation study in
Appendix [C] showing that they consistently lead to strong and stable performance in all settings.

4
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3 STATISTICAL GUARANTEE OF THE COMPETITION MECHANISM

In this section, we perform a convergence analysis of Gaussian MoE models equipped with the
competition mechanism. Our primary objective is to theoretically justify the effectiveness of the
competition mechanism by investigating its sample efficiency in terms of expert estimation.

Problem setting. Let (X;,Y7), (X5,Y32),...,(X,,Y,) € X x Y be i.i.d samples drawn from
bounded subsets X C R% and ) C R according to the following conditional density function:
N* *
‘ exp(log(1 + exp(g(X, We))))
=3 2 j=1 exp(log(l + exp(g(X, W¢))))
Here, N* is the number of ground-truth experts denoted by g(X, W/ ), while f(-|u,v) stands for

the Gaussian density with mean g and variance v. In addition, we also define G := Zfil (5(W; )

as a mixing measure with ground-truth parameters (W; , "), where 0 denotes the Dirac measure.
For the sake of theory, we assume that (W}, v7), (W¢,,v3),..., (W) ., vx.) are distinct param-
eters belonging to a compact space © C R?% x R, for some dy € N. Next, we assume that
the expert function g(X, W) is non-zero and differentiable with respect to its parameter W, for

almost surely X . Furthermore, for any parameter W, € R?, if there exists agu), ozg“’), aéw) €ER

d 9 d 22
for 1 < w,v < dy such that ) 72| agu) 6W%“) (X, We) + 32001 ag“”)W;WM(X, We) +

23?1;:1 Oé;(gm) av?/g(u) (X, We)%(X, We) = 0 for almost surely X, then we must have agu) =

agw) = aguv) = 0 forall 1 < u,v < ds. For example, it can be verified that feed-forward
networks (FFNs) of the form g(X, (We,2, We,1,b)) = W, 2Softplus(W,, X + b) we used in Sec-
tion [2.2] satisfy this algebraic independence condition. On the other hand, since linear experts
9(X,(a,b)) = a" X + b does not meet this condition, we will conduct a separate convergence
analysis for them in Appendix

Maximum likelihood estimation. Since the number of ground-truth experts N * is typically unknown
in practice, we fit the model equation (3 with a mixture of N > N* experts. Then, we estimate the

unknown parameters (W, ), for 1 <4 < N, via estimating the ground-truth mixing measure G'

using the maximum likelihood method as follows:

~ 1 <
G, € argmax — Zlog(pg(Yi|Xi)), 4)
Gegn(®) i
where we define Gn (0) = {G = Zf\:l oW, vi) L <N <N, (We,,1;) € OF.

Proposition 3.1. With the MLE defined in equation (), the convergence rate of the density estimation
pg (Y|X) to the ground-truth density pg, (Y | X) is given by:

Ex[V(pg, (1X),pa.(-|X))] = Op(v/1og(n)/n),

Above, we denote V(p1,p2) = 3 [|p1 — p2|dm as the Total Variation distance between two
probability density functions p1, po dominated by the Lebesgue measure m.

The proof of Proposition [3.1] can be found in Appendix The above result indicates that the
density estimation pz converges to its true counterpart pg, at a parametric rate of order Op (n=1/2).

Thus, if we can construct some loss function between two mixing measures @n and G, denoted
by L(G,,Gx), such that Ex [V (pg (-] X),pa, (11X))] 2 L(Gr, G.), then we will obtain parameter
and expert estimation rates via the bound E(@n, G.) = Op(y/log(n)/n). For that purpose, let us
introduce the concept of Voronoi loss proposed in Manole et al. Manole & Ho|(2022).

Voronoi loss. For an arbitrary mixing measure GG, we distribute its atoms to the following Voronoi
cells generated by the support points of the ground-truth mixing measure G'.:

C; =C(G) == {i € [N]: [|0; — 07| < [16: — 07|, V¢ # j}, Q)
where we denote 0; := (We,,v;) and 05 := (W ,v}) forall i € [N] and j € [N*]. Here, the

cardinality of each Voronoi cell C; indicates the number of fitted atoms for the ground-truth atom 67.
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Then, we build a loss function based on these Voronoi cells as follows:

N*
L£1(G,G,) = Z ‘ Z exp(c;) — exp(c;f)‘ + Z Z exp(c;) [||VVe =Wl +[vi - Z/J*|:|
=1 iec, JEINTIC; =1 i€C;

Y YenE@ Wl - Wi+ - ©
JEIN=]:|C5|>11€C;
Given the above Voronoi loss, we are ready to capture the convergence rates of parameter estimation
and expert estimation in Theorem [3.2] whose proof can be found in Appendix

Theorem 3.2. The following lower bound holds for any mixing measure G € Gn(0):
Ex[V(pa(|X),pa. (1X))] 2 L1(G, G.). )
This lower bound and the result of Theorem imply that L4 (ém G.) = Op(y/log(n)/n).

A few remarks regarding Theorem [3.2)are in order.

(i) Expert estimation rates. From the above results and the formulation of the Voronoi loss L1, it

follows that the rates for estimating exact-specified parameters W , v%, i.e., for j € [N*] : |C;] = 1,
VR J

are of parametric order O p(n_l/ 2). Meanwhile, those for over-specified parameters We*] , uj, 1.e.,

for j € [N*] : |C;| > 1, are slightly slower, of order Op(n~1/%). Since the expert function g(X, W,)
is Lipschitz continuous w.r.t its parameter W, we have |g(X, Weﬁ) —g(X, W)l < HWe” - Wl
for almost surely X. As a result, the estimation rates for exact-specified and over-specified experts
g(X, W¢,) are also of orders o p(n~'/?) and 9] p(n~1/%), respectively. Furthermore, we show in
Appendixthat experts of linear form g(X, (a,b)) = a' X + b also admit these estimation rates.

(ii) Sample efficiency of the competition mechanism. Therefore, we need at most O(e~*) data points to
approximate these experts with a given error € > 0. On the other hand, when not using the competition
mechanism Nguyen et al.[(2023al), the convergence rates of expert estimation become significantly
slow and decrease when the number of fitted experts increases. For instance, if an expert g(X, W' ) is

fitted by three experts, i.e., |C;| = 3, then its estimation rate is of order 5p(n_1/12). Thus, we need
much more data points, specifically O(¢~1?), to approximate this expert. Consequently, we conclude
that the competition mechanism improves the sample efficiency in terms of expert estimation.

4 RELATED WORK

4.1 SPARSE MIXTURE OF EXPERTS

Mixture of Experts (MoE) is a fundamental model in machine learning (Jacobs et al.,[1991} Jordan &
Jacobs, |1994) and an instance of the conditional computation framework where different experts are
responsible for different regions of the input space (Yuksel et al.| 2012; |Bengio} 2013; Masoudnia
& Ebrahimpour, [2014} Nguyen & Chamroukhil, 2018; Nguyen, 2021). Extensive efforts have been
devoted to establishing a theoretical foundation for MoE, including the universal approximation
properties (Norets, [2010; Nguyen et al., 2016; 2019; [2020; [2021a}; 2023b)), model selection crite-
rion (Khalili, 2010; Montuelle & Le Pennec| [2014; Nguyen et al., 2021b; {2022 |2023c)), convergence
rate for density estimations (Mendes & Jiang, 2012; Norets & Pelenis, |2021}; [2022)) and the problem
of parameter estimation (Ho et al.| 2022} Nguyen et al., 2023a; 2024bja). SMoE, the sparse variant
of MoE, is more commonly applied to scale large language models (Fedus et al.| [2022). It is often
the architecture of choice in many leading industrial models such as Mixtral (Jiang et al., [2024)
and DeepSeek (Dai et al.| 2024; |DeepSeek-Al et al.| [2024;2025). Within the research community,
developing novel routing strategies has been a major focus. Notable strategies include letting experts
select tokens (Zhou et al.,2022), improving the expert selection process (Lepikhin et al.,[2021; Fedus
et al., 2022} [Zuo et al.| 2022; |Chi et al., 2022at |Dai et al.| |2022b}; |Chen et al.| 2023} Do et al., [2023)),
or a global expert assignment scheme(Lewis et al.,[2021; (Clark et al.,|2022). Despite the promising
progress, many such strategies often do not scale well to LLMs with billions of parameters or the
language pre-training setting. In contrast, our work goes beyond both the pure theoretical or analytical
studies by developing a theoretically-grounded algorithm for effective training of large-scale LLM
models. Orthogonal to the aforementioned papers, GShard (Lepikhin et al.| |2021) developed an
efficient framework to automatically sharding massive SMoE models across many devices. Lastly,
sparse upcycling (Komatsuzaki et al., 2023)) duplicated pre-trained models to build an MoE, which
bypasses the expensive costs of training from scratch.

6
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4.2 COMPETITIVE LEARNING

Competitive learning refers to a framework where computational units compete with one another
for the right to response to an input (McClelland et al., |1987). Its development is closely related
to the biological brain, where only certain cells respond strongly to a particular pattern and send
suppressive signals to the remaining cells (Andersen et al., |1969; [Stefanis, |1969; |[Eccles, |2013)).
Early investigations showed encouraging results in various learning strategies such as action selec-
tion (Feldman & Ballard, |1982), self-organizing maps (Von der Malsburg, [1973; [Kohonen, |1982]),
feature discovery (Rumelhart & Zipser},|1983)), and spiking networks (Oster & Liu, [2005). Recently,
the competition mechanism also motivates the development of various advanced machine learning
methods such as maxout networks (Goodfellow et al., 2013)), compete to compute (Srivastava et al.|
2013), and independent mechanisms (ALIAS PARTH GOYAL et al.|[2021};|Goyal et al.,|2021). Our
study establishes a framework to apply competition to SMoE training and develops an algorithm to
train large scale SMoE with improved performances at a low training overhead.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Tasks. We evaluate all methods on two challenging tasks: (i) visual instruction tuning (VIT)
and (ii) language model pretraining. For VIT, we adopt the CuMo (Li et al.| [2024) and LibMoE
framework (Nguyen et al.,|2024c), which follows a three-stage training pipeline: pre-training (PT),
pre-finetuning (PFT), and visual instruction tuning (VIT). The first two stages are trained with a dense
model. In the final VIT stage, sparse upcycling (Komatsuzaki et al., [2023) is applied by resuming
from the PFT checkpoint and replacing selected MLP layers in the vision encoder and connector with
SMOoE blocks. Since one can easily replace the LLMs by other MoE models, the SMoE components
are only the vision encoder and the vision-language connector. For the language pretraining task,
we adopt the MoEUT (Csordas et al.,2024) framework under the large setting and train the SMoE
models from scratch. While pre-training has been commonly explored for benchmarking SMoE
algorithms (Csordas et al.,[2024), it is expensive to scale to large models. Thus, we include the VIT
task, which is an emerging and challenging setting that take advantage of pre-training checkpoints,
allowing us to evaluate SMoE at a modest cost.

Training. For VIT, we follow [Li et al.| (2024) to use the LLaVA-558K (Liu et al.,[2023a) for PT,
ALLaVA (Chen et al., 20244l for PFT, and LLaVA-665K (Liu et al., 2024a) for VIT. The total
tokens for all stages is over 1B. We use Phi-3.5 Mini (Abdin et al., [2024) as the language model and
SigLIP (Zhai et al.l 2023) as the vision encoder, totaling 5.1B parameters. All MoE algorithms are
applied during the VIT stage. We set N = 4 experts per layer and activate ' = 2 experts per token.
Training default uses both the balancing and z-losses (Fedus et al.,|2022)). For language pre-training,
we follow MoEUT (Csordas et al.,[2024)) and use 13B tokens from the SlimPajama corpus (Soboleva
et al.| 2023)). We implement a 1B-parameter decoder-only model, where each SMoE layer contains
24 experts with K = 8 experts active per token, and the balancing loss (Fedus et al., [2022). All
experiments are conducted on 4xH100 GPUs with a fixed random seed.

Evaluation Benchmarks. All models are evaluated under the zero-shot settings using the well-
established benchmarks from the community. For the VIT task, we consider the following bench-
marks: AI2D (Kembhavi et al., 2016), TextVQA Validation (Singh et al., [2019), GQA (Hudson,
2019), HallusionBench (Guan et al.| 2023)), MathVista (test-mini split) (Lu et al., 2023, MMBench
(English subset, dev version) (Liu et al.,[2023b)), MME RealWorld Lite (Zhang et al.,|2025b), MMMU
Validation (Yue et al., [2023), MMStar (Chen et al., [2024b), POPE (Li et al., [2023b), and OCR-
Bench (Liu et al.l 2024b). For benchmarks requiring GPT-based evaluation, such as MathVista and
HallusionBench, we use GPT-40 (2024-08-06). These benchmarks are selected to cover a wide range
of capabilities of the model, from perception, reasoning, to assessing hallucination. For the language
pretraining task, we evaluate on LAMBADA (Paperno et al.,[2016), BLiMP (Warstadt et al., 2023)),
Children’s Book Test (CBT) (Zhang et al., 2025a)), HellaSwag (Zellers et al., 2019), PIQA (Bisk
et al.,|2019), ARC-Easy (Clark et al.,[2018), RACE (Lai et al.,|2017), and SIQA (Sap et al.,|2019),
which are commonly used for models at this scale.

Baseline. We compare CompeteSMOoE against a suite of state-of-the-art SMoE algorithms. First,
SMOoE (Fedus et al.l 2022), the original SMoE and still stands strong in today’s leading models.
Then, we consider activation-based SMoE such as XMoE (Chi et al., [2022b)), Perturbed Cosine
Router (PCosine) (Nguyen et al., 2025)), and o0-MoE (Csordas et al., |2023), which incorporate
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cosine similarity or sigmoid activation to improve routing efficiency. Furthermore, inspired by the
DeepSeek V2 architecture (DeepSeek-Al et al., 2024}, we also considered the SharedExpert V2
(SharedE-V2) baseline, which enhances SMoE with one shared expert. Similarly, for the language
pretraining task, we also implement the SharedE-V3 baseline, which follows the DeepSeek V3
architecture (DeepSeek-Al et al.,|2025)). SharedE-V3 replaces the softmax routing in SharedE-V2
with the normalized sigmoid. We use the same hyper-parameter configuration as described above to
validate the effectiveness of different SMoE algorithms.

5.2 MAIN RESULTS

Table 1: Performance comparison of SMoE strategies in the ViT sparse upcycling setting with a
5B-parameter model. Bold values denote the best results, while underlined values indicate the second
best. Symbols 1 and | indicate that higher or lower values are better, respectively.

Text MM ’ . Math MME | Avg. Avg.
Method AI2D VOA GQA Bench Hallusion Vista MMMU MMStar POPE OCR RWL AccT Rankl
SMOE (Fedus et al.|[2022} 6590 4123 6096 70.88 39.64 3140 4222 40.52 86.56 32.10 31.89 | 4939 455
XMOoE (Chi et al.[[2022a} 65.19 41.14 60.63 7131 41.22 3150 42.89 42.60 86.12 3130 3251 | 49.67 3.50
PCosine (Nguyen et al.|[2025} 6545 41.68 61.38 71.56 40.27 30.80  42.56 41.87 86.90 30.80 32.05 | 49.57 3.42
o-MoE (Csordas et al.||2023} 65.09 4137 6148 71.39 41.01 31.90  41.78 42.10 86.52 3220 3095 | 49.62  3.64
SharedE-VZ (DeepSeek-Al et al.|2024)  64.93 4153 61.15 71.05 41.20 3120 42.56 41.44 86.08 32.40 3236 | 49.63  4.05
CompeteSMoE 6622 4192 6125 7259 41.22 31.70  42.00 4225 86.91 3320 32.52 | 50.16 177

Table 2: Performance comparison of SMoE strategies in the language pretraining setting with a
1B-parameter model. Bold values denote the best results, underlined values indicate the second best.

. Avg. Avg.
Method LAMBADA BLiMP CBT HellaSwag PIQA ARC-E RACE SIQA Acct  Rank|
SMoE (Fedus et al.|[2022) 41.24 80.68  90.63 39.17 65.18  39.66 3453  38.28 | 53.67 3.81
XMoE (Chi et al.|[2022a) 4223 80.40  90.44 38.63 64.04  38.60 3426 3731 | 5324 5.88
PCosine (Nguyen et al.[[2025) 41.90 80.35  90.26 38.70 63.71 39.66 3429 3813 | 5338 531
o-MoE (Csordas et al.|[2023) 42.39 80.64  90.63 39.12 64.96  39.66 33.81 3833 | 53.69 3.88
SharedE-V2 (DeepSeek-Al et al.[[2024) 41.65 80.65  90.63 39.57 65.73 39.15 3471 37.89 | 53715 375
SharedE-V3 (DeepSeek-Al et al.|[2025) 4191 80.23  91.02 39.19 6545  39.53 34.86 3797 | 53.77  3.63
CompeteSMoE 42.66 80.92 9091 39.35 6591  39.20 3491 3843 | 5404 175

5.2.1 PERFORMANCE COMPARISON

We report the results of the VIT and language pre-training settings in Table[T|and Table[2] respectively.
In general, we observe that CompeteSMoE offers significant improvements over many benchmarks. In
addition, CompeteSMoE demonstrated the best performance in many of the challenging and important
capabilities such as real-world visual perception and reasoning (MME RWL), reducing visual
hallucination (Hallusion, POPE), OCR (OCRBench) and commonsense reasoning (PIQA, SIQA).
Furthermore, we report the evolution of zero-shot performances of VIT benchmarks throughout
training in Figure[I] The results showed that CompeteSMOoE consistently achieved better results than
the baselines throughout training. Notably, CompeteSMoE demonstrated a significant improvement
in training efficiency, where the checkpoint at eight hours (8h) already outperformed all baselines at
their final checkpoint of 14 hours. Lastly, we emphasize that the improvements of CompeteSMoE
can be considered significant in the zero-shot evaluation setting because its power law indicates that
reducing (zero-shot) errors requires a substantial increase in data and compute (Hoffmann et al.| 2022}
Cherti et al.| 2023)). Since we fixed the training data, the zero-shot improvements observed purely
came from the advanced CompeteSMoE algorithm. Overall, the results corroborate our theoretical
results that CompeteSMoE achieved a better sample efficiency and better zero-shot generalization.

5.2.2 EXPERT ROUTING BEHAVIOR ANALYSIS

Table 3: Performance of SMoE and CompeteSMoE when changing top-1 expert to top-(K+1).
Numbers in parentheses indicates the changes compared to the original routing results in Tablem

Method Text VQA  MMBench MMMU MMStar POPE OCR Bench Avg. Change
SMoE 41.09 -0.14)  71.39 +052) 43.22 +1.000 42.94 (+242)  86.40 (-0.16) 31.50 (-0.60) 0.51
CompeteSMoE  41.48 045)  71.22 137y 41.67 -033)  40.55 -1.70)  86.10 -0.81) 31.70 (-1.50) -1.03

(a) Evaluating the Effectiveness of Expert Routing. We investigate the experts selection’s quality
of different policies. To this end, during inference, we replace the expert with the highest affinity
score with the expert with the K + 1 highest score, which is equivalent to shifting the selected experts
down by one rank. Table [3|reports the results of this experiment in the VIT setting. The results show
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that the SMoE routing policy is clearly suboptimal since selecting a worse expert led to improvements
on several benchmarks. On the other hand, CompeteSMoE performances drop in all cases when
we deliberately deviate from the router that learned the competition policy. This result shows that
CompeteSMOoE facilitated a more effective routing policy compared to the traditional SMoE.

~e— SMoE —e— CompeteSMoE

0.6 POPE MMStar MMMU MathVista
o 0.

Fnd

2
e
o

]
0.5
v

o
S
o
S

2
@ 0.4
2
[S)
£03

o
w
o
w

&
Fo2

o
9
Expert Change Rate

Expert Change Rate
o
;q

Expert Change Rate

20-40 40°60 60-80 80-100 20-40 40°60 60-80 80-100 20-40 40°60 60-80 80-100 20-40 40°60 60-80 80-100
Data Percentage Data Percentage Data Percentage Data Percentage

Figure 3: Comparison of expert change rates at different training stages. Lower values are better.

(b) Stability of Expert Routing During Training. We now investigate the router’s convergence
rate, showing that CompeteSMOoE can quickly find a good routing policy. To this end, we introduce
Expert Change Rate (ECR) to measure the convergence rate of routers. Specifically, given a dataset
D, we record the expert assignments in all layers for each token in D using two model checkpoints at
time steps 7" and 7”. Then, the ECR of D from T to T” is the number of mismatched assignments
normalized by all assignments. We expect ECR at convergence to be low while high ECR values
indicate that the router’s policy is changing and unstable. Figure [3| reports the ECR throughout
training on four VIT zero-shot benchmarks. We can see that CompeteSMOoE has a lower ECR in all
cases, indicating that its routers have a faster convergence rate. This results further support the faster
convergence rate and better performance of CompeteSMoE observed in Figure [T|and Table[T}

5.3 COMPLEXITY ANALYSIS

We compare the computational complexities of various
methods in Table[d] We report the wall-clock training  Typle 4- Computation complexities of vari-
time, training throughput, inference throughput, and  oy5 SMoE algorithms.

peak GPU memory (excluding cached memory blocks)

in the VIT setting of the 5.1B model. The results show 0
that CompeteSMoE’s training overhead compared to
SMOoE is almost negligible. During inference, Com-

Training Throughput Peak Mem
Time  Train Infer (GB)

peteSMOoE only uses the simple router, which is exactly 3¢ e
the same as SMoE, and is more efficient than cosine o-MoE 12h59m 1423 961  43.93
similarity-based strategies such as XMoE and PCosine ~ PCosine 13h37m 13.57 859  44.12

SharedE-V2 12h2Im  14.95 9.66 42.29

because they introduce additional parameters to the CompeteSMoE  13h01m 1418 9.88 4645

router. CompeteSMOoE also incurs a slightly higher
peak memory usage compared to other baselines (up
to +5%), which was affordable by our hardware. In general, users can adjust the competition’s
concurrency threshold A, to achieve a good trade-off between efficiency and efficacy. In summary,
this result shows that CompeteSMoE can effectively leverage competition to improve the result at a
modest overhead.

6 CONCLUSION

This work proposes competition, a novel strategy to route tokens to experts, and rigorously show
that it enjoys a better sample efficiency than softmax routing. Building upon this foundation, we
develop CompeteSMOoE, an effective algorithm to train large-scale SMoE models with competition at
a low computational overhead. Extensive experiments on the visual instruction tuning and language
pre-training tasks demonstrate that CompeteSMOoE enjoys both a faster convergence rate and final
performance on many common zero-shot benchmarks at a minimal overhead.

Despite achieving encouraging results, CompeteSMoE introduces several hyper-parameters, which
may increase the cost for hyper-parameter search. In Section[2.4] we provided a guideline for hyper-
parameter configuration to alleviate this issue. Algorithmically, CompeteSMoE applies competition
on each SMoE layer independently and does not take into account the interactions among experts
at different layers. An ideal solution is to perform a graph traversal algorithm through the network
depth to determine an optimal expert selection at all layers simultaneously. However, this idea goes
beyond the scope of this work, and we will leave it for future studies.
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REPRODUCIBILITY STATEMENT

We provide full details of our experimental setup in Section[5|and Appendix [F} All necessary code,
configuration files are included in the Supplementary Materials. Formal proofs supporting our
theoretical claims are presented in Appendix [I|
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A SUMMARY OF MAIN NOTATIONS

We summarize the main notations used in the main paper in Table[5] including those introduced later
in the supplementary material.

Table 5: Summary of Main Notations.

Symbol Description
R, W, Router network (function) and its parameter
g, We Expert network (function), and its parameter
T Input
s, SR, Sc Affinity scores, affinity scores from the router, affinity scores from competition
TopK_ Function retaining the K largest vector elements and setting others to —co
TopK, Function retaining the K largest vector elements and setting others to 0
K Number of experts activated per input
N The total number of experts
[M] Set of {1, 2, ..., M} for any positive integer M
7,y Predicted output, ground truth
t Current ¢-th iteration
T Total number of training steps
l The [-th SMoE layer
L Total number of SMoE layers in the model
K Activation function
o Scoring function
E[] Mean of vector elements
e Base of the exponential function
Ic Indices of experts who won in the competition mechanism
o Hyper-parameter prioritizing winning experts in distillation loss
vy Hyper-parameter for distillation loss
B8 Hyper-parameter for diversity loss
w Bernoulli probability for scheduling competition in each layer
Amax Maximum number of layers that can perform competition on a single time step
A(t) A scheduler determining whether to perform competition at the ¢-th step
A(l) A vector storing the results of the scheduler A(t) at all time steps of the I-th layer
LNLL Negative log-likelihood function (task loss)
Lp Distillation loss
Laiv Diversity loss
& Step size
D A benchmark dataset for evaluation
Qprev Cumulative competition activations over layers 1 to [ — 1

an = O(by,) ora, < by
an = QP(bn)
ap = OP(bn)

If a,, < Cb,, forall n € N, where C' > 0 is some universal constant
Ve > 0,3M > 0:P(A,/b, > M) < € for all sufficiently large n

an = Op(by,logt(by,)), for some ¢ > 0.

w®, Wy, The u-th entry of a vector w € R4
w? w? = wi'ws? ... wi, for any vector w € R% and z € N¢
|w] |w| := wy + w2 + ... + wyg, for any vector w € R?
2! 2l = 212! ... 24!, for any vector z € N¢
N* The number of ground-truth experts
fClp,v) Univariate Gaussian density with mean p and variance v
G Ground-truth mixing measure
1 Dirac measure
m Lebesgue measure
(C] Parameter space
dy Dimension of input space
ds Dimension of expert parameter space
én Maximum likelihood estimator for G,
-1, 0 1 {3-norm and ¢;-norm value
|A] Cardinality of any set A
1/2
h(p1,p2) Hellinger distance h(p1,p2) := (% J(/p1 — \/E)Qdm) / for any densities p1, po
V(p1,p2) Total Variation distance V' (py,p2) := % J |p1 — pa|dm for any densities p1, ps
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B ADAPTIVE LAYER-WISE COMPETITION CONTROL

While scheduled training reduces computational overhead, excessive simultaneous competition
activations across multiple SMoE layers can destabilize the training process. To address this, we
propose a dynamic mechanism that regulates the number of active competition layers at each training
step, enhancing training efficiency. This is achieved by enforcing a global constraint on the maximum
number of simultaneously active layers.

For a given layer [, we compute the cumulative competition activations from all preceding layers (i.e.,
layers 1 through [ — 1) as:

-1
Qprev = > A(d), ®)

i=1
where A(i) € RT denotes the activation state vector of layer i over 7" training steps, and Qprey € R”

represents the cumulative competition activations up to layer [ — 1.

A predefined threshold Ay« € R governs the total number of active layers permitted per training step.
If activating layer [ at step ¢ exceeds this threshold i.e., if Qprev (t) + A(l,t) > Amax With A(l,t) =1
we redistribute the activation to an alternative step ¢’ # ¢ satisfying:

Qprev(t') +1 < Apax, ' €{1,...,T}, A(Lt')=0. 9)

Upon identifying ¢, we update the activation schedule by setting A(l,¢') = 1 and A(l,t) = 0.
Empirical results indicate that only 0% to 7% of layers are active at any step, ensuring the availability
of suitable ¢’ satisfying Eq.[9]

In summary, this approach dynamically balances competition activations across layers, substantially
reducing computational overhead while maintaining training stability for CompeteSMoE. Notably,
the value of A, depends on several factors such as model architecture, batch size, and available
GPU memory, and may vary if the experiments are conducted in a different environment.

C ABLATION STUDY

We conducted an ablation study on a 5.1B parameter VLM, evaluating performance across various
configurations. The best performance was observed with the large-scale model.

C.1 EFFECT OF COMPONENT-WISE DESIGN ON MODEL PERFORMANCE.

Table 6: Comprehensive component ablation study of CompeteSMOoE across nine benchmarks.

Competition Diversity Dense

Method Scheduler Mechanism Loss MoE AVG Acc T AVG Rank |
CompeteSMoE v v v X 53.21 1.78
@) 4 4 X X 52.90 3.11
@) 4 X 4 X 52.71 3.89
3) 4 X X 4 52.70 4.11
(€)) 4 X v v 52.79 3.44
SMoE X X X X 52.47 4.67

As shown in Table[6] we conduct a component-wise ablation study of the proposed CompeteSMoE
model across nine benchmark datasets. Both the Competition Mechanism (1) and Diversity Loss
(2) independently yield improvements over the standard SMoE baseline. Specifically, disabling DL
results in a 0.49% drop in average accuracy, while removing CM leads to a smaller degradation of
0.30%. These findings suggest that CM contributes more significantly to overall model performance
than DL when assessed in isolation.

In addition, we introduce two extended variants, models (3) and (4), inspired by the DenseMoE
design (Pan et al.| 2024)), which activate all experts to compute the output but only occasionally
during training using the same scheduler configuration. Interestingly, CompeteSMOoE still consistently
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outperforms. While dense activation provides a modest improvement over vanilla SMoE, it remains
inferior to CompeteSMoE. This indicates that the performance gain arises not from dense expert
activation per se, but from the competitive dynamics introduced by CM.

Crucially, in DenseMOoE like variants (3) and (4), all experts are activated during both the forward and
backward passes, leading to significantly increased computational cost. In contrast, CompeteSMoE
activates all experts only to compute affinity scores, and then selects only the top-K winning experts
to contribute to the final output and receive gradients. This hybrid mechanism enables more effective
routing supervision while maintaining the computational efficiency characteristic of sparse MoE
models.

C.2 JOINT OPTIMIZATION OF TASK L0OSS AND COMPETITION POLICY

Table 7: Ablation study showing the impact of task optimization and competition policy matching on
performance across 9 benchmarks.

Model Task Loss Match Competition Policy AVG Acc AVG Rank
CompeteSMoE v v 53.21 1.33
CompeteSMoE — Competition Policy Only X v 52.84 2.11
SMoE v X 52.47 2.56

Our analysis in Sectior3] established that the competition policy alone is theoretically sufficient
to achieve faster convergence compared to vanilla SMoE. However, in practice, CompeteSMoE
stacks multiple SMoE layers, each independently equipped with a competition mechanism. Such a
deep architecture requires significantly more training samples for convergence, often exceeding the
dataset sizes available and making training infeasible under our hardware constraints. Therefore, we
jointly optimize for the task loss and match the competition policy to facilitate practical and efficient
learning.

The two supervision signals play complementary roles. When competition is inactive, the task loss
gradient updates the router by adjusting affinity scores for the selected experts only, since inactive
experts receive no gradients. When competition is active, its gradient provides updates for all experts,
including those not selected in the final prediction. Combining both objectives thus provides more
robust supervision and accelerates learning.

To validate this intuition, we conducted an ablation study on 9 benchmarks, isolating the effect of
each supervision signal. Results are shown in Table|/| Jointly optimizing both signals yields the
best average accuracy and rank. Interestingly, training the router solely to match the competition
policy without any task loss supervision already surpasses the standard SMoE. This demonstrates that
competition driven learning alone is capable of discovering stronger routing policies, even though the
competition policy is active in only 7% of training steps. Despite such sparse updates, the router still
learns significantly better expert selection than SMoE, indicating that the competition policy acts as a
strong inductive bias.

Finally, the key properties of competition remain central in CompeteSMoE. As shown in Figure|[T}
CompeteSMOoE achieves both faster and stronger convergence: after 8 hours of training, it already
outperforms baselines trained for up to 14 hours. Moreover, Section [5.2.2]a) demonstrates that when
deviating from the learned router policy (replacing the Top-1 expert with the Top-(K +1) expert),
SMOoE surprisingly improves, whereas CompeteSMoE degrades. This indicates that the routing policy
learned by SMoE is suboptimal, while CompeteSMoE produces a stronger and more consistent
routing strategy.
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C.3 EFFECTIVENESS OF ACTIVATION FUNCTIONS IN THE COMPETITION MECHANISM
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Figure 4: Performance comparison of different activation functions used within the Competition
Mechanism across 9 benchmarks.

This section investigates how different activation functions influence the effectiveness of the Compe-
tition Mechanism. Specifically, we examine their role in computing expert affinity scores, originally
defined in Eq. To support a broader class of diversity-inducing functions, we generalize the
affinity score formulation as follows:

s; = E[k(g(x,W,))], Vi€ [N], (10)

where k(-) denotes the activation function applied to the expert response. This generalization
allows the Competition Mechanism to flexibly incorporate a variety of activation profiles for expert
selection. As shown in Figure ] we compare several widely used activation functions within
this framework, including Softplus, SiLU, Sigmoid, ReLU, and Softmax. Among them, Softplus
consistently yields the highest average accuracy and ranking across tasks. We attribute this to its
smooth and well behaved response curve, which softly suppresses negative values while preserving
the magnitude of positive inputs. This behavior enables it to retain informative signals across
the activation range, maintaining both representational richness and continuous gradient flow two
properties critical for stable optimization. By contrast, Sigmoid compresses the entire input domain
into the [0, 1] interval, which can lead to vanishing gradients and loss of signal, especially for
inputs with large magnitude. ReLU, although preserving positive values, entirely discards negative
activations, potentially eliminating useful information. SiLU and Softmax lie between these extremes
but still fall short of the balance offered by Softplus. We also explored an alternative formulation
using the exponential function: E[e9(®"We:)], However, this variant led to uncontrolled growth in
output magnitudes, causing numerical instability and NaN values during training. In contrast, Softplus
provides a smooth approximation to the exponential function while mitigating such instability, making
it a more robust choice for this setting.

In summary, activation functions that gently suppress negative activations while maintaining near-
linear behavior on the positive side such as Softplus are better aligned with the needs of the Competi-
tion Mechanism. Their balanced characteristics lead to more stable expert affinity computation and
improved end-task performance.

C.4 EVALUATION OF MEAN AND NORM STRATEGIES FOR COMPETITION MECHANISM
We conduct an empirical investigation to compare the mean-based strategy, as defined in Eq.[2.2]

with a norm-based formulation. Specifically, we compute the affinity score of expert ¢ using the L2
norm of its output vector:

si = |lg(@, We,)

|, VielN], (11)
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As shown in Figure[d] the CompeteSMoE-Norm variant using Equation [IT] yields higher performance
compared to the SMoE standard. However, when we switch to the CompeteSMoE-Softplus configu-
ration that employs a mean based strategy, a substantial improvement is observed in both average
accuracy and ranking. In conclusion, the mean-based strategy proves to be the most effective setting
for expert output aggregation within the Competition Mechanism.

C.5 EVALUATION OF DISTILLATION LOSS EFFECTIVENESS

—— Lp == LDy
1210
1200 /\_\—-
21100 . Table 8: Performance comparison between Lp
£ e T dL 9 benchmark datasets
Sunf Len and Lp,, ., across 9 be .
E /
é 1170 \\\ ,,z’
1160 AN 7 Loss Function Avg. Acc Avg. Rank
1150 \\‘/ ’
4000 6000 8000 10000 12000 14000 16000 L:Dwnd'cg 52'92 l '7 8
umber of Steps
" o Lp 53.21 1.22

Figure 5: Learning performance of L£p and
Lp,,., measured by the Level Learning metric at
every 20% of training steps on the MMBench-EN
benchmark.

In Section 3] we established the theoretical foundation for the competition mechanism and demon-
strated its empirical effectiveness in Table[I} A key challenge in optimizing the router network is
accurately modeling the distribution of competitive routing decisions. We carefully investigated two
objective functions: the distillation loss L£p (see details in Eq. [I)) and a variant distillation loss Lp, .,
without the regularization term, which emphasizes penalizing experts who won the competition. We
define Lp as follows:

wo-Teg

E,Dwo»reg (SR’ SC) = MSE(SR? SC) (] 2)

Figure [5]illustrates the progression of the Level Learning (LL) metric, which measures the average
number of Top- K experts selected by the router network that align with the Top-K experts from the
competition mechanism. A high LL value indicates that the router network effectively learns from
the competition mechanism, whereas a low value suggests poor learning performance. Notably, Lp
consistently enables faster and more stable convergence compared to Lp,, .. In particular, during
the initial 60% of training (up to 9,600 steps), £p maintains a clear advantage, effectively mitigating
the early performance drop observed with Lp,_ ... Moreover, Lp achieves a peak LL score of 1210
by 12,000 steps, surpassing the Lp, .. peak of 1190, and exhibits more stable learning dynamics in
later stages.

Additionally, quantitative results in Table [§] further confirm this trend, with Lo yielding a higher
average accuracy (53.21% vs. 52.92%) and a lower average rank (1.22 vs. 1.78) across nine
benchmarks. These findings underscore the effectiveness of L5 in guiding the router network to
better approximate the competition mechanism. Furthermore, they suggest its potential as a preferred
optimization objective in competitive MoE architectures.

C.6 HYPERPARAMETER SENSITIVITY ANALYSIS

Effect of the Distillation Loss Coefficient a. We investigate the impact of the Distillation Loss
coefficient o, which balances the main objective with an auxiliary regularization term. As shown in
Figure[I0] setting o = 0.1 achieves the best performance, indicating that a moderate regularization
strength provides a useful inductive bias. Increasing « further leads to performance degradation,
suggesting that excessive influence from the auxiliary loss may conflict with the primary learning
signal.
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Table 9: Ablation study on the activation fre- Table 10: Effect of coefficient « in Distillation
quency of the Competition Mechanism (CM) loss.
during training.

o Avg. AccT Avg. Rank |

w  Avg. AccT Avg. Rank |

T oa — 00 5292 2.83
o : : 0.1 53.21 1.78
3% 5292 2.61 02 5298 2.56
7% 5321 1.83 03 g 383
9% 52.82 2.83 : : :

Analysis of Competition Mechanism Activation Frequency. We further investigate how often the
Competition Mechanism (CM) should be activated during training. Table[9|reports model performance
when CM is applied at different w of training steps. We observe that using a small w (e.g., 3%) leads
to suboptimal results, likely due to insufficient competitive pressure. As w increases, performance
improves, with the best accuracy (53.21%) and rank (1.83) achieved at 7%. Notably, increasing
w beyond this point (e.g., 9%) offers no further gain and may introduce instability, suggesting a
saturation effect. These results highlight that a moderate activation schedule (e.g., w in the range of
5-7%) is sufficient to leverage the benefits of competition while maintaining training stability.

D FURTHER ANALYSIS OF ROUTER BEHAVIOR

In this section, we further analyst about router behavior in SMoE and CompeteSMoE.

—e— SMoE —e— CompeteSMoE

MME RW Perception MME RW Reasoning OCRBench MathVista
995

1.990

Entropy
Entropy

ERT) eae) ) ERT] w2 ) ERT) 12 3 IR
1D Layer ID Layer ID Layer 1D Layer

Figure 6: Entropy analysis of expert selection frequency across perception and reasoning tasks. Lower
entropy indicates higher specialization in expert routing.

(a) Experts distribution on Reasoning and Perception. As illustrated in Figure[6] we analyze the
entropy of expert distribution across layers for SMoE and CompeteSMoE algorithms, evaluated on
three benchmarks: MME Real-World Perception and OCR Bench for perception capacity, and MME
Real-World Reasoning and MathVista for reasoning capacity. On perception tasks, CompeteSMoE
exhibits higher entropy in the early layers, indicating exploratory behavior, but significantly reduces
entropy in the middle and final layers. In contrast, on MathVista a benchmark requiring higher-level
reasoning CompeteSMoE maintains low entropy in the early and intermediate layers, approaching
entropy levels similar to SMoE in the final layers. Both models demonstrate increasing entropy
toward the final layers, suggesting more balanced expert allocation as the network deepens, consistent
with typical Transformer-based architectures where later layers aggregate information from multiple
upstream experts. Regarding the representation collapse issue, both SMoE and CompeteSMoE
achieve a high degree of balance in expert distribution, with entropy scores exceeding 1.99 (compared
to the maximum entropy of 2 for four experts).

(b) Effective Expert Aggregation via Weight Distribution. As shown in Figure[/| we analyze the
entropy of expert weight distributions across layers and tasks, which reflects how expert contributions
are aggregated. Lower entropy typically suggests more confident expert selection. Both SMoE and
CompeteSMOoE exhibit decreasing entropy across layers, implying increased decisiveness in expert
routing at deeper layers. While SMoE generally maintains lower entropy, especially on MathVista,
it tends to concentrate weights heavily on a small subset of experts. In contrast, CompeteSMoE
distributes weights more evenly among the selected experts. This balanced aggregation allows
CompeteSMOE to better leverage complementary knowledge from multiple experts. Finally, we
observe a slight difference between the two models, with both showing a trend toward more confident
weight distributions in the final layers.
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Figure 7: Layer-wise entropy of expert weight distributions for CompeteSMoE and SMoE across
three tasks: Real-World Perception, Real-World Reasoning, and Mathematical Reasoning.

E ADDITIONAL EXPERIMENTAL RESULTS

Table 11: Performance comparison of SMoE strategies in the VIT pretraining setting, where only
the MLP connectors are initialized as SMoE layers from scratch, using a ~4B-parameter model.
Bold values indicate the best result, while underlined values denote the second best. 1/ | indicate
higher/lower is better.

Method AI2D 38‘; 6oA ™ Halusion YO MMMU MMStar POPE OCR MO | AVE AVE |
SMoE 5984 3956 5620 06632 4669 2900 3811 3755 8614 3240 3286 | 4772 436
XMoE 6150 3040 5592 6508 4532 2980 3900 3982 8658 3210 3121 | 4788  3.86
PCosine 5600 3961 4998 5241 4059 2700 3878 3738 8620 2270 3022 | 4372 627
o-MoE 6159 3918 5660 06598 4480 3000 3900 3789 8628 3210 3121 | 4769 414
SharedE-V2 6106 3020 5614 6400 4658 2030 3911 3906 8713 3180 3325 | 4788 391
SharedE-V3 6137 3060 5633 6658 4501 2930 3756 3912 8697 3220 3313 | 4792 341

CompeteSMoE  61.76 39.71 56.00 67.61 46.79 29.30 39.56 40.12 86.36 3220 34.18 | 4851  2.05

In Table [T1] we report additional results using a vision-language model where only the MLP
connectors are replaced with SMoE layers consisting of 8 experts, with 4 experts active per token.
The vision encoder and language model (LLM) are kept dense and frozen during training, while the
MLP connectors are unfrozen, following the setup described in Xu et al.|(2024). These SMoE layers
are trained from scratch using the same dataset and training configuration as the VIT stage, enabling
a controlled analysis of sparse upcycling in isolation. Under this setup, CompeteSMoE consistently
outperforms all baseline methods.

F EXPERIMENTAL SETUP DETAILS

F.1 VISION-LANGUAGE MODEL (VLM)

Training Stages. We adopt a three-stage training pipeline inspired by prior works (Nguyen et al.,
2024c; |Li et al.|, 2024), designed to incrementally adapt and integrate the vision and language
modalities for multimodal instruction tuning. Table [I2] summarizes the training status of each model
component throughout the stages.

Table 12: Component Training States at Each Stage

Stage LLM MLP Connector Vision Encoder
Pre-Training Frozen Trainable Frozen
Pre-Finetuning Trainable Trainable Trainable
Visual Instruction Tuning  Trainable Trainable Trainable

* (1) Pre-Training (PT): In the first stage, only the MLP connector is trained, while the vision
encoder and the language model (LLM) are kept frozen. This stage focuses on aligning visual
features with the language embedding space, establishing a stable initialization without
perturbing the frozen backbones.

* (2) Pre-Finetuning (PFT): All components including the vision encoder, MLP connector,
and LLM are unfrozen and trained jointly using a dense architecture. This warm-up stage
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strengthens the cross-modal representation and stabilizes the model before introducing
sparsity.

* (3) Visual Instruction Tuning (VIT): In the final stage, we apply Sparse Upcycling (Ko-
matsuzaki et al.||2023) by replacing selected MLP layers in both the vision encoder and the
connector with Top-K sparsely gated MoE blocks. As this setup has become the standard
practice in recent vision-language research (Nguyen et al.,[2024c; [Li et al.,[2024; Shu et al.,
2024; Lin et al.| [2024)), evaluating MoE algorithms under this setting offers more meaningful
and practically relevant comparisons. Each expert is initialized from its corresponding
pretrained MLP, while the Top-K router is learned from scratch. To promote balanced
expert utilization, we apply standard auxiliary objectives, including load-balancing loss and
z-loss. All components remain fully trainable during this stage, and all compared methods
are trained and evaluated under this unified VIT setup.

Architecture. We adopt a modular design for the VIT-stage model, composed of a vision encoder,
an MLP-based connector, and a pretrained language model backbone. The detailed architecture and
MOoE configuration are summarized in Table [I3] During this stage, MoE layers are applied to the
vision encoder and connector, while the language model remains dense.

Table 13: Architecture and parameter breakdown for each component in the 5.1B VIT-stage model,
with MoE usage indicated.

Component Version / Variant Parameters SMoE
Vision Encoder SigLIP-SO400M-Patch14-224 1.20B v
MLP Connector - 66M v
Language Model Phi-3.5 Mini Instruct 3.82B X
Total - 5.1B -

Hyperparameters. Table[I4]lists the training hyperparameters for each stage. During VIT, SMoE
layers are introduced by upcycling dense MLPs in the vision encoder and MLP connector. Each
SMOoE block contains Ng = 4 experts, with K = 2 experts selected per token. Given the sensitivity
of large-scale model training to initialization and randomness, we ensure that all baseline models
share identical starting conditions. Specifically, the router networks within MoE blocks are initialized
from scratch using Gaussian noise N (0,0.02), following the scheme used in the official GPT-2
implementation To guarantee reproducibility, we fix the random seed to 42 across all experiments.

Table 14: Hyperparameter configurations for the three training stages of Phi-3.5 Mini.

Hyperparameter PT PFT VIT
Learning rate le-3 2e-6 4e-6
Schedule Cosine Cosine Cosine
Batch size / GPU 64 6 5
GPUs 4xH100 4xHI00 4xHI100
ZeRO stage ZeRO-2  ZeRO-2  ZeRO-3
Optimizer AdamW  AdamW  AdamW
MoE blocks No No Yes
Balance loss coeff. 0.0 0.0 0.01
Z-loss coeft. 0.0 0.0 0.001
Max sequence length 2048 2048 2048

'https://github.com/openai/gpt-2
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Dataset. The full pipeline uses over 1B tokens, spanning: (1) LCS-558K (Liu et al., 2023a)
(pretraining), (2) ALLaVA-Caption (Chen et al.,|2024a) 708K (pre-finetuning), and (3) LLaVA-665K
(instruction tuning) (Liu et al.| 20244a), consistent with LibMoE (Nguyen et al.,|2024c) and CuMo (L1
et al.l [2024).

F.2 LANGUAGE MODEL PRETRAINING

Architecture. We pretrain a 1B-parameter language model following the original Transformer
architecture, where SMoE layers are integrated exclusively within the MLP blocks. Each SMoE
layer consists of Np=24 experts, with K =8 experts activated per token. Our architectural design is
inspired by prior configurations such as SmolLM2-1.7B (Allal et al., 2025 and MoEUT (Csordas
et al.,[2024)). The model specification is summarized in Table

Table 15: Architecture configuration of the pretrained 1B language model.

#Params Nlayers dmodel dexpen H dhead N E K
1B 24 1024 512 32 128 24 8

Hyperparameters. We adopt the training configuration proposed in MoEUT |Csordas et al.| (2024)),
as detailed in Table[I6] All model weights are initialized following the MoEUT initialization scheme,
and a fixed random seed of 42 is set for reproducibility.

Table 16: Pretraining hyperparameters for MoE language model.

Learning Rate  Schedule Batch size GPUs Optimizer Balance Coeff.  Nyamup
0.00025 Cosine 64 4xH100 AdamW 0.01 4000

Dataset. We train our models on 13B tokens sampled from the SlimPajama corpus (Soboleva et al.,
2023)). Training is conducted for 200 steps under this data regime.

F.3 COMPETESMOE CONFIGURATION

Hyperparameters. Table[T7]provides the key hyperparameters for training CompeteSMoE on the
5.1B VLM model. We warm up the MoE layers for 5% of total steps before enabling competition.
The parameter A« limits the number of concurrently active competition layers and is tuned for
training stability. All runs use the same seed for fair comparison. Additional ablations on w and « are
included in Appendix [C]

Table 17: CompeteSMoE hyperparameters on the 5.1B-parameter model.

Warm-up ~ w ol @ B Amax
0.05 0.07 0.01 0.1 0.005 9

G TRAINING CURVES ON VISION-LANGUAGE BENCHMARKS

In Figure[§] we include additional training performance curves for 9 benchmarks, supplementing the
results presented in Figure
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Figure 8: Training curves of CompeteSMoE compared to five advanced MoE algorithms on vision-
language benchmarks.

H ADDITIONAL THEORETICAL RESULTS

In this appendix, we analyze the convergence behavior of Gaussian mixture of linear experts
equipped with the competition mechanism. In particular, we consider experts of the linear form
9(X, (a,b)) := a’ X +b, where a € R% and b € R. Then, the conditional density function p, (Y| X)
in equation equation (3) becomes

*

N
pe. (Y|X) =)

=1

exp(log(1 + exp((af) "X +b})))
>0 exp(log(1 + exp((af) TX +5%)))

Our ultimate goal is to compare the sample efficiency of this model to that without the competition
mechanism (Nguyen et al.,2023a) in terms of expert estimation. For that purpose, we use a Voronoi
loss tailored to the setting of linear experts, which is given by

fY @) TX b, (13)

N*
Lo(G,G) = Z ‘ Z exp(c;) — exp(cj)

i€Cj

S 3 explen[las — afll + b - b1 + v — 5 ]

JEIN*:|C;|=1i€C,

S exolen) [lai — @l + b = B2 + v - vy 2],

JEIN*L:|¢;|=1 i€C;

=1

+

+ (14)

Equipped with the above Voronoi loss, we establish the convergence rate of parameter and expert
estimations in the Gaussian mixture of linear experts with the competition in Theorem [H.1]

Theorem H.1. The following lower bound holds for any mixing measure G € G (©):
Ex[V(pa(1X),pe.(|X))] Z L2(G, Gs).
This lower bound indicates that L(G,,, G,) = Op(1/log(n)/n).

15)
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The proof of Theorem[H.T]can be found in Appendix[[.2] A few remarks regarding the results of this
theorem are in order.

(i) Parameter estimation rates. The bound of the Voronoi loss Eg(@n, G.) in Theorem reveals
that the estimation rates for exact-specified parameters a},b?,v7, ie., for j € [N*] : [C;] = 1,
are of parametric order 1) p(n -1/ 2), whereas those for their over-specified counterparts, i.e., for
j € [N*]:|C;| > 1, are slightly slower, of order Op (n~1/4).

(ii) Expert estimation rates. Note that the input space is bounded, then we have
@)X + 07 — (@)X = bj| S @y — aj + [bF — b,

for almost surely X. Consequently, the estimation rates for exact-specified and over-specified experts
(a;)TX + b are also of orders Op(n=1/2) and Op(n=1/*), respectively.

(iii) Sample efficiency of the competition mechanism. Thus, we need polynomially many data points
O(e™*) to estimate these linear experts with a given error ¢ > 0. By contrast, when not using the
competition mechanism [Nguyen et al.|(2023a), the linear expert estimation rates are substantially
slowed down since they hinge on the solvability of some complex system of polynomial equations and
are decelerated as the number of fitted experts grows For example, if a linear expert (a )TX + b7 is
fitted by two experts (or three experts), that is, |C;| = 3), then the rate for estlmatlng th1s
linear expert is of order Op(n~'/%) (or Op(n_1/12)). Therefore, we need O(e~8) (or O(e~12)), to
estimate this expert. For that reason, we claim that the Gaussian MoE becomes more sample-efficient
when equipped with the competition mechanism.

I PROOF OF THEORETICAL RESULTS

I.1 PROOF OF THEOREM[3.D]

In this proof, we aim to demonstrate that the following lower bound holds for any G € G (©):
Ex[V(pa(1X), pa.(1X))] 2 £1(G, G.). (16)
For that purpose, we first establish the local part of the above bound, that is,

. . Ex[V(pc(-1X),pc. (1X))]
1 f = . 17
=50 GEQN(@)}%JG,G*)SE L1(G,Gy) >0 (an

This local part implies that there exists a positive constant ¢’ that satisfies
, Ex[V (6 (1X), po. (1X))
GEGN(0):L1(G,G)<e’ L1(G,Gy)
Then, it is sufficient to derive the following global part of the bound in equation (L6)):

B Ex[V(pa(-1X),pe. ([X))]
GeGN(O):L1(G,G)>e’ [:l(G, G*)

> 0.

> 0. (18)

Local part: In this part, we will establish the local part in equation equation using the proof by
contradiction method.

Suppose that the local part is not true, then we can find a sequence of mixing measures (G,,) given
by Gy, := Zf\[:l exp(c')d(wr vmy € Gn(O) such that £1(Gy, Gx) — 0 and

Ex[V(pa,(1X), pa. (1X)]/£1(Gn, Gx) = 0

as n — 0o. As we use asymptotic arguments in this proof, we may assume without loss of generality
(WLOG) that the Voronoi cells C} := C;(G},) is independent of the sample size 7. Then, the Voronoi
loss of interest turns into

L£1(G, Gy) Z’Zexp exp(c;)]+ S S el |Iwn - Wil + v - vl

j=1 i€eC; JEIN*]:|C;|=11i€C;

roy Yesld [Iwe —we by =P a9

JEIN*]:|C;|=14€C;
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Since £1(Gr,G+) — 0asn — oo, we have (W2, vj") — (W*

% &,vi)forall j € [N*]andi € C;.
Subsequently, we divide the rest of this proof into three main steps.

Step 1: Taylor expansion. In this step, we aim to decompose the term T, (Y|X) :=
[ZN:1 exp(log(1 + exp(g(z, W:))))} “Ipa, (Y1X) — pa,. (Y]X)] can be decomposed as

T,(Y|X) = Zzexp ) [ expllog(1 + exp(g(X, W) (Y g(X, W), vF)
j=14i€eC;

— exp(log(1 + exp(g(X, W) F(Y]g(X,W7), v7)

- Z > exp(e [GXP log(1 + exp(g(X, W7)))) — exp(log(1 + exp(g(X, W) pa, (Y X)
j=1i€C;

N
+ 30 [ 37 explel) — exp(e)] - explioa(l + explg(X, W) F(Y]g(X, W2), v5) ~ pg, (VX))
j=1 ieC;

1= Tn 1 (Y|X) = T 2(Y[X) + T 3(Y|X).
Next, we continue to decompose the term T, 1 (Y| X) as

Ta(YIX)= > > exp(cf [explog(1+exp< (@, W (Y]g(X, W), v})
FEIN*]:|C5|=114€C;

— exp(log(1 + exp(g(z, WE))) F(V g(X, W), v))|
YD exp(el) [ exp(log(1 + explg(a, W) SV g(X, WE), v7)
GEIN*]:|C;|>1i€C;
— exp(log(1 + exp(gle, W ) (VIg(X, W), v))]
=T 11(Y|X) + Ty 1 2(Y]X).
Let us denote F,(Y|X; W,,v) := exp(log(1+exp(g(X, W))))Saf(YLq(X, W.),v). By applying

the first-order Taylor expansion to the function Fy(Y| ound the point (W7 ,v7), we
rewrite the term T, 1 1 (Y| X) as

ToaaY[X)= > ZTS{ 1y (X F, (Y X, W v)) + Rupa(YX),
JEN*]:|Cj]=1 p=0
where R,, 1.1(Y|X) is the Taylor remainder such that R,, 1,1(Y|X)/L1(Gr,Gx) — 0asn — oo,
and

dg 1
T7 eXp Wen)(U) (X7 W:) : ;
1olX ; z::l 9T aw 77 1+ exp(—g(X, W)
) d2 89
T 12 (X) = D explef) Y (AW )0 —Fs (X, W),
i€C; u=1 8We
1
T2 2(X) = 5 exp(ef)(Avfy),
i€Cy

in which AW2 = W2 — W and Ay} = v* — v}
ij i J J g J

Meanwhile, by means of the second-order Taylor expansion, the term 7, 1 2(Y|X') can be represented
as

Tn,l,Q(YlX)— > Z N p(X)VE(Y5 X, WS v5) + Ry 2(Y]X),
j€[N-]:[C;|>1 p=0
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where R,, 12(Y|X) is the Taylor remainder such that Ry, 1 2(Y|X)/L1(G,Gx) — 0asn — oo,
and

T 50(X) =" exp(c))
iECj

dg ( *)

d2
@ €j
(AW YW W :
uzl ‘”u) 1+ exp(—g(X, W)

N dZQ (AWP’;) “)(AWP”) . 6W<u‘)aw<‘u> (X, W*) 8W(u) (X, W:J)awm (X, W*)
woo—=1 1+ l{u:v} 1+ eXp( (X7 We*])) ’
, d2 dg
T 0 (X) = Y exp(e}) | Y (AWE ) —= (X, W)
i€C; u=1 aW
$h (W) AWz, (2 e X Wqufr X W) | o2 )
+ J ij 4 *
wom1 L+ 1iu=o) 1+ exp(—g(X, W) owow )
d
1 L (AWE)W @) g 99
X) =) exp(c})|5(Av) + e = (X, W) — 5 (X, W)
EZC 2 u,vzzl 14 L=y oW 7 ow) ’

2] *
| e (X
21 +exp(—g(X, W) |’

+ Z (AW ) (Avg) -

u=1

(4) & dg

J n \(u) n *

Tn,1,2,3 Z exp(c Z Q(AWeU) (Ayij)aw(u) (X, Wej)v
i€Cy u=1 e
1

Siz a( Z exp(c )2~

i€C;

Next, we decompose the term 7}, (Y| X) as
T,2(Y|X)

= > ep(d [eXp log(1 + exp(g(X, W")))) — exp(log(1 + exp(g(X, W¢))))lpe, (Y|X)
i€[N*]:|C;|=11€C;

+ 2 >~ exp(c}) | expllog(1 + exp(g(X, W2))) - exp(log(1 + exp(g(X, WE))lpa, (Y]X)
JE[N*]:|C;|>11€C;
= n,2,1(Y|X) + Tn72’2(Y|X).

Note that we can rewrite the term 7}, 1 2 (Y| X) using the first-order Taylor expansion to the function
exp(log(1 + exp(g(W¢})))) around the point W as

9 (X, W;)
(u) e
Topa(YIX) = > > exp(er Z AW ). O —H,(Y|X; W)
JEINTIC, |=14i€C; u=1 1+ exp(—g(X, W¢)))
+Rn72,1(Y|X)a

where we denote H,, (Y| X;W.) = exp(log(1 + exp(g(X, We))))pa, (Y|X) and R, 2.1 (Y| X) is
the Taylor remainder such that R,, 2 1 (Y'|X)/L1(Gp,G+) — 0 as n — oo.

On the other hand, by means of the second-order Taylor expansion, we have

DS f: %UQ W)
Th22Y|X) = exp(cy') AW(:]) ) < "
JEIN-T:IC;|>1 i€C; u=1 T exp(—g(X, W)
d n u n v # * * *
. 22: AWSij)( )(AWEU)( ) . awc(u)awc(v) (X7 We]‘) + W(u) (X WSJ)BW(U) ( Wej) H (Y|X W* )
o 1+ 1u=0y 1+ exp(—g(X, W;j)) " e

+ R, 22(YX),

33



Under review as a conference paper at ICLR 2026

where R, 21(Y|X) is the Taylor remainder such that R,, 2 2(Y|X)/L1(Gp, Gs) — 0 as n — oo.

From the above equation, [T,,11(Y|X) — Rp11(Y|X)], [Tn12Y|X) — Ry12(Y]X)],
Tn21(Y|X) = Ru21(Y|X)], [Tho22Y]X) — n2_y2(Y\X)] and [T, 3(Y|X)] can be seen as a

combination of elements of the set S := U;VZI U =0 Sp,j» Where we define

Jg * azg *
L { awé“) (X7 Wej) « awé“)awév) (X’ Wej')
0,

1+ exp(—g(X, W) Fo(Y X We, i), 1+ exp(—g(X, W)

Fo(Y X5 W2, v7),

aW“”(X W*)aw(”’(X W) YIX; W vh), Fo(YIX;Wr,vi):1< <d
1+ exp(— (Xan';)) Fo(Y|X; ej,Vj)a o(Y|X; ej,l/j). <wu,v<dsp,
_9g * dg * %
81 _ BWC(“) (X7 Wej) (Y|X *) BWC(“') (X W ) W(v) (X We]_) (Y‘X *
7 1+ exp(—g(X, W) eV 1+ exp(—g(X, W¢))) e
79 . -
—— (X, W R (Y|X; WS vi) i1 <u,v<dyyp,
oW ow” ’ i
S B(Y|X; WE vt w7 X W) B(Y|X; W, vt
2,5 ¢ 2( | 7]) 1+6Xp(—g(X,We*l)) 2( ‘ ; ejan)a
(X, W})) (X, W VFR(Y|X;We ,v)) 1 <wu,v<dsy,
ow ow ’ i
9g . .
S3,j = (u)XW)F3Y|X )il <u<dy g,
Sy, = { YX; W, 7V;)},
W* __ %9 (x W
S aW(u 67) (Y|X *) 5W.3(7L)8Wév)( ! ej) H (Y‘XW* *)
M el XW*)) e T exp(—g(X, W) 0 e
aw(u) W* )aw(v) ( :J)

Trop(gx ey VW), Ha(YIXGWE 1) LS v < dz}
Step 2: Non-vanishing coefficients. In this step, we will show that at least one among
the coefficients in the representations of [T5,11(Y|X) — Ry 1,1(Y|X)]/L1(Gr,Gy),
Tra2(Y|X) = Rppo(Y|X)]/L1(Gr,Gy),  [Th2a(Y[X) — Rn21(Y[X)]/L1(Gr, Gy,
[Tn22(Y|X) = Ry 220Y|X)]/L1(Gr,Gy) and [T), 3(Y|X)]/L1(Gy, G.) does not approach zero
when n goes to infinity. Assume by contrary that all of them vanish as n — co. Then, by considering
the coefficients of the term

« Fo(Y[X; W, vp) for j € [N*], we have

G G Z ’ Z exp(ci') — exp(c;)| — 0.

j=1 1i€eC;

005 (X, W)
o

() * * . *
° WM (Y|X;Wej,yj)f0r]E[N}:|C]“:1,Wehave

1
_— AW” — 0.
El(G'ruG*) Z Zexp || ||1
JEIN*]:|C;|=14€C;
Due to the equivalence between the ¢;-norm and the /5-norm, we obtain

1 n
s M) S IN*T| ey =1 i€C;
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« By (YIX; W vp) for j € [N*] 1 |C;] = 1, we have

ﬁl(Gi G*) ) Z Zexp |Au | — 0.

€[N*]:|c;|=1 ieC;

(u) ( 7W* ) (’lb) ( W* )

. Ew (X W* ) Fo(Y|X5 W, v7) for j € [N*] :|Cj] > 1, we have

1

JEINTTIC,|>1 i€C;

« Fu(Y[X; W, vp) for j € [N*] :|C;] > 1, we have

1
m . Z Zexp |A1/ — 0.

FEIN*J:|C;|=1¢€C;

By taking the sum of the above limits, we obtain 1 = % — 0 as

n — oo, which is a contradiction. Thus, not all the coefficients in the representa-
tions of [Tn71}1(Y|X) — Rn 1,1 Y|X)]/£1(Gn,G ) [ n,1,2 Y|X) Rn,172(Y|X)]/E1(Gn7G*),
[T20(Y[X) = Rooa1(Y[X))/L1(Gn,Go). [Ta22(Y1X) = Ru2a(Y]X))/£1(Gy,Gs) and
[T.,3(Y]X)]/L1(Gyr, G+) converge to zero as n — 00.

Stage 3 - Fatou’s argument: In this stage, we use the Fatou’s lemma to show
a contradiction to the result of Step 2. For that purpose, let us denote m,
as the maximum of the absolute values of the coefficients in the representations
of [T11(Y|X) — Rp1a(Y[X)]/L1(Gr,Gs), [Tna2(Y[X) = Rp12(Y[X)]/L1(Gn, G),
Tn21(Y[X) = Rn21(Y|X)|/L1(Gn,Gs), [Ta22(Y[X) = Rn22(Y|X)]/L1(Grn,Gs) and
[T0,3(Y]X)]/L1(Gr,Gy). It follows from the result of Step 2 that 1/m,, 4 oo asn — oo.
In addition, we also denote

Sice, pE)AWZ)® S exp(el)(Avg)

mn‘cl(Gna G*) - al’j ’ mn‘cl(Gnv G ) - 517%
Ysce, OPIENAWE AW | gy e, DS
L1 (Cos G 2, mnLl1(Gn, Gy 2
2ice, exp(ci) (AW, D (Avs) u > ice, exp(c}) — exp(cj)
mn‘cl(Gnv G*) 7 mn‘cl (Gna G*) 7

asn — oo forany j € [N*] and u, v € [d2] with a note that at least one among ag“j), B, ag“f)7 Ba.js

fyj(-u) and ; is non-zero.

By applying the Fatou’s lemma, we have

BV o006 LHON _ L f 1y s V0 —pe (1)
2

n—oo mnﬁl(GnaG*)

0= lim

d(X,Y
n—00 mnﬁl(GruG*) ( ) )7

which implies that [pg, (Y]X) — pG (Y| X)]/[mnL1(Gn,Gx)] — 0 as n — oo for almost
surely (X,Y). Since the term Z —1 exp(log(1 + exp(g(z,W?)))) is bounded, we also have
T.(Y|X)/[mnL1(Gpn, G+)] = 0 as n — oo. Then, it follows that

. TV X))+ Th12(Y]X) . Taa1(YNX)+ Th22(Y]X) T,3(Y|X)
S e ~ lim -2 2 lim S
O T (G, G T L (GG T £1(C G
(20)
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for almost surely (X,Y) € X x ), where we have

ds A( *)
. Tn 1 1<Y|X) (u) aw(u) e;
lim —=———~— = oy Fy;(Y]X)
n=o0 mn L (G, G) jE[N;:lcj_l 1; 1+ exp(—g(X, W) "
& () dg 1
+ Z Qq j ETR) (X, W) F;(Y[X) + §ﬂ1,jF2,j(Y|X) ,
u=1 e
da 99 *
o Do) 5 [ o e T
n=re0 M Ly(Gn, Gu) JEIN-J:Ic;>1 L\ u=1 M1 exp(—g(X, W)
( v) _ 99 * * *
n Z y Cowiow” (X, W) + oW, (“ 7 (X W ) W<") (X, W¢) Foy (Y]X)
o 11+1{u v} 1+ exp(—g(X, W¢)) 7
d d uv) * *
+ ia(“) 99 (X W*) i (;J c')W“‘> (X, WCJ)OW(”) (X, W )
— Y gy S T L=y 1+ exp(—g(X, W¢,))
&g w 1 BW(“) (X, W*)
+——— (X, W) | | F1,;(Y|X)+ ﬁ ity vz
awi ow” >> v Y Z 721+ exp(—g(X, W)
e3 e 9w ), )
w,v=1 L+ l{u v} aI/Veu) Y aWe(v) T i

1 N
+Z “ 9 X, W) F35(Y]X) + 627JF4,]<Y|X>

and

dg *
T, 21(Y|X oy (X, W)
i 21(Y[X) Z Z (u) aw! j

— . H;(Y|X
n%oomn,cl(Gn,G*) L.j 1+eXp(_g<X7ng)) J( ‘ ),

JEIN*]:IC;|=1 u=1

d 99 *
lim Ta22(YX) Z lia(u) o ow (X, W)
n oo - 11.7 — *
=00 My L1(Gp, Gy) JeINTIC; 51 Lu=t 1+ exp(—g(X, W)
(92 * o * *
(uv) W{‘;}VVSJ)(X’ Wej) + anu) (X W )aW(u)( e]') T.(VIX
5> ' i S(V]%),
u,v= 11+1{“ =v} 1+6Xp( g(X,Wej))
and
Ts(YX)
. n,3
lim ' = &[Fo;(YX) - H;(Y]X)].

n—oo mnﬁl(Gn, G*) = =1

It is worth noting that for almost every X, the set

{Fp,j(Y|X)7 Hi(Y[X):0<p<d,je [N*]}

is linearly independent w.r.t Y. Therefore, it follows that the coefficients of those terms in the limit in
equation equation (20) become zero.

For j € [N*] such that |C;| = 1, by considering the coefficients of

(X,w7)

e

99
« Fy,;(Y]X), we have & + 3% 0413) : % = 0 for almost surely X. Since

the expert function g is strongly identifiable, we deduce &; = ag, J) = 0forall u € [da];
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b FQJ(Y|X), we have Bl,j =0.
For j € [N*] such that |C;| > 1, by considering the coefficients of
* Fy;(Y]X), we have

9g *
+ Z aVv(u) (X7 Wej)
S 1Jl+exp 9(X, W)

9 we dg W
&2 (uv) 8W(”)69W(”) (X, )+ W(”) (X EJ)
+ > L oW OWe

+1{u v} 1+eXp( (Xa We*J))

aw(v ( 7We*j) _ 0

u,v=1

for almost surely X. Since the expert function g is strongly identifiable, we deduce &; =
a(luj) = a(“”) = 0 for all u, v € [da];

 F,(Y]X), we have Y% 27](11,) av?/g(” (X, W) = 0 for almost surely X. Since the

expert function g is strongly identifiable, we deduce fyj(.“) =0 forall u € [da];
* F, ;(Y]X), we have 85 ; = 0.

Putting the above results together, we have (ii) §; = al ] =5, = a2 ] = fa; = fyj = 0 for

all j € [N*] and u, v € [d]. This contradicts to the fact that at least one among them is non-zero.
Consequently, we achieve the local part in equation (I7).

Global part: Now, it suffices to demonstrate that

- Ex [V (pa(|X), po. (1))
GEGN(0):L1(G,Gy)>e’ L1(G,G,)

>0,
for some positive constant €. Given the above result, it is sufficient to derive the global part
in equation (T8§), that is,

inf | X | X X
oo ExV (6 (X).p6. (1X)/£1(G.C.) >0

Assume by contrary that the global part does not hold true, then we can find a sequence C~¥n €Gn(O)
such that £, (G, Gx) > €' and Ex [V (ps (-|X),pa. (-|X))] = 0asn — oco. Since © is a compact

set, we are able to replace G, with its subsequence which converges to some mixing measure
G € GN(O). Recall that £1(G,,, G,) > €', then we also get that £, (G, G.) > &’

On the other hand, by means of the Fatou’s lemma, we have

0= Jim Ex[2V(pg, (1), pe. (1)) = [ liminf g (V1) = pe (YOO Y),

n—oQ

which follows that pG(Y|X) pa. (Y]X) = 0 for almost surely (X,Y"). Thus, we achieve that
G = G, or equivalently Ll(G G,) = 0. This contradicts to the fact that £; (G, G,) > & > 0.

Hence, we reach the conclusion in equation (I8)), and the proof is completed.

1.2 PROOF OF THEOREM [H. 1]

As in Appendix we also start with establishing the local part

L Ex [V (p6(1X).pc. (1X)]
=0 GEGN (0©):L2(G, G )<e Lo(G,Gy)

> 0. 2n

Assume by contrary that the local part is not true, then we can find a sequence of mixing measures
(Gp) given by G, := vazl exp(c})d(an pr vn) € GN(O) such that Lo(Gy,, Gi) — 0 and

Ex[V(pa,(1X), pa. (1X))]/£2(Gn, Gx) = 0
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as n — oo. Recall that the Voronoi loss £o(G,,, G ) is given by

2(Gn, G.) Z]Zexp —e(@)|+ 3 Y el [IWE =Wl 4 b - v

j=1 1ieC; JE[N*]:|C;]=11€C;
+ Z Zexp [ W:,-”Z"' 1%8 —V;‘\Q}. (22)
JEIN*]|C;|=1i€C;

Since L2(Gr,Gx) — 0asn — oo, we obtain (a7, b}, v}') — (aj,b},v;) forall j € [N*] and
iECj.

Next, we divide the rest of this proof into three main steps.

Step 1: Taylor expansion. In this step, we aim to decompose the term T, (Y|X) :=
[Zj L exp(log(1 + exp((a}) "X + b*)))] - [pa, (Y)X) — pa. (Y|X)] can be decomposed as

Tu(Y1X) = ZZexp )| expllog(1 + exp((a) TX +B)))F(Y(@) X + 07,7
j=11i€C;

— exp(log(1+exp((a}) X + b)) (Y |(5)TX +5;,07)]

J’J

— Z > exp(c [eXP log(1 + exp((af) "X +b7"))) — exp(log(1 + exp((a}) "X +b})))pe, (Y]X)
j=14i€eC;

+ 30 [ D exp(el) — exp())] - expllog(1 + exp((}) "X + b))V (@)X +b5,v)) = pe, (V|X)]
j=1 i€eC;

=T, 1(YX) - T, 2(Y|X) + T, 3(Y]X).
Next, we continue to decompose the term 7}, 1 (Y] X) as

TaIX) = S explel) [expllos(1 +exp((af)TX + b)) F(V](@)TX + b7, )
FEIN*]:|C;|=14€C;

— exp(log(1 +exp((a}) "X + b)) (V](@})TX +b5,v)]
Y S e [exp log(1 + exp((a®) T X + b)) F(Y](@) T X + b7, v
JEIN*J:|C;|>14€C;
— exp(log(1 + exp((a;) " X + 7)) f(Y](a}) " X + b5, J*)]
= n’l,l(Y|X)+Tn’1,2(Y|X).

Let us denote F,(Y|X;a,b,v) := exp(log(1 + exp(a’ X + b))) g;{f (Y]a" X +b,v). By applying
the first-order Taylor expansion to the function Fo(Y'|.X;a,b,v) around the point (a}, b7, v;), we
rewrite the term T}, 1 1 (Y| X) as

Taa 0 = Y STUL OB XG0, + Ruaa(Y 1),
JEIN*]:|Cj|=1 p=0
where R,, 1.1(Y|X) is the Taylor remainder such that R,, 1,1(Y|X)/L2(Gr,Gx) — 0asn — oo,

and
d
) S (Aak (w) x (w) 1 (AP
qu]i N O(X) = exp(c? . u_l( ’LJ) — ( . 71_])’
1,1, izecj 1+exp(—(aj) X - bj)

d
a2 (X) = Y exp(ef) | Do (Aaf) X + (Ab)],

i€Cy u=1
1
T 12(X) = 3 J exp(ef)(Av)),
i€C;
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3 1 n o .__ n * n . pn * n . n *
in which Aaj; == af — aj, Ab}; == b7 — b and Avjj == v — v},

J

Meanwhile, by means of the second-order Taylor expansion, the term T;, 1 2(Y'|X') can be represented
as

4
Toia(Y|X)= > ZT&{,QI)X W(Y5 X, a3, b5, 7)) + Ry o (Y]X),
JEINJIC;1>1p=0

where R, 12(Y|X) is the Taylor remainder such that R,, 1 2(Y|X)/L2(Gp,G.) = 0asn — oo,
and

4 (A A
L (Aaz) WX (ABE) Yemr g XWX

1 +oxp(—(a a;)TX —b}) 1+ exp(—(aj) "X = b7)

T 50(X) =Y explc
iECj

d n u T u '3
> (Aaij)( )(Abij)X( )+ %(Abij)Q

+ u=1
1 +exp(—(a}) "X —0¥)

)

a™ )W (Aa™ )™
‘ d 224 » (A 1{) 1 (2ai) ™ 5 (u) x(v)
TY) 5 1(X) == " exp(ef) | D (Aal) WX 4 (A + ——= L)
n,L,4, ? 2 _(a*\T Bk
= = 1+ exp(—(aj)' X —b)
n d n u n u
(Abij)z +2Zu:1(Aaij)( )(Abij)X( )
L+ exp(—(a) "X — b7) ’
d P
) N (Aan)(u)(Aa )(v)X(u)X(v) 1 .
Titea(X) =3 explel) |5 (Av)) + 3 g0 + 5 (Ab)”
1€C; u,v=1 u=v

s m o L0 (AG) W (AVE) X ) (A (A
+;(Aaij)( )(Abij)X()‘i“i ! 1—|—eXp( (j)TX—b;)

d
1 n u u 1 7 n
n,1,2,3 Z exp(c lz §(Aaij)( )(AV )X( )+ Q(Abij)(AVij)]’
i€Cy u=1
; 1
Tgi,z a( Z exp(c Z )2~
i€Cj

Next, we decompose the term T, »(Y'| X) as
T2 (Y]X)

= > D explel)| expllog(1+ exp((a) TX + b)) — exp(log(1 + exp((a}) T X +b)))lp, (V]X)
JEINTTIC;|=14€C;

Y Y exp(el) | expllog(1 + exp((a}) TX + b)) — exp(log(1 + exp((a})TX + b5)))pa, (Y |X)
JE[N*]:|Cj|>11i€C;
= n7271(Y|X) + Tn7272(Y|X).

Note that we can rewrite the term T, 1 2 (Y| .X') using the first-order Taylor expansion to the function
exp(log(1 + exp((al') " X + b1"))) around the point (aj,b}) as

Y, (Aap) WX 4+ (Aby)

LX) = 50 3 ewld) = e Ha (Y 1X558)
JEIN*T:IC; =1 i€C; 1+ exp(—(a}) "X —b%)

+R, 21 (Y|X),

where we denote H,,(Y|X;a,b) = exp(log(1 + exp(a' X + b)))pg,, (Y|X) and R, 21 (Y| X) is
the Taylor remainder such that R,, 5 1 (Y'|X)/L2(Gp, G+) — 0 asn — oo.
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On the other hand, by means of the second-order Taylor expansion, we have

S0 (Aa) WX 4 (Ab)

Too2(YX)= > > exp(c]) = — -
JEIN*]:|C;|>14€C; 1+eXp(_(a’j) X_bj)
d (Aa, )(u)(Aa )(U u v d n\(u n u mn
Pt ey XX S (Bap) (A X O 4 A
1 exp(—(a) X~ B5) T+ exp(—(a;) X — ;) Hn(YIXG W,
+ Ry22(Y]X),

where R,, 2 1(Y|X) is the Taylor remainder such that R,, 2 2(Y|X)/L2(G,, Gs) — 0 as n — oo.

From the above equation, [T,,11(Y|X) — Rp11(Y|X)], [Th12(Y|X) — Rp12(Y|X)],
[Th21Y|X) = Ru21(Y|X)], [The2Y]X) — Rn)g’g(Y\X)] and [T}, 3(Y|X)] can be seen as a

combination of elements of the set S := J;_, U =0 Sp,j» Where we define

- Fo;(Y1X Fo i (Y]X
" {HGXP(—( x5y ol T T ey e )
1
Fo i (Y|X), Fo(Y|X):1<uuv<d
1+eXp(_(a;)TX—b;f) 0,]( | )a 0,]( ‘ ) <wu,v < }’
1,7 «— 1,j( | )? 17j( | )7 1—|—exp(—( )TX b ) 1,]( | )
() x () 1

F,(Y]X),

i 1< <
1+ exp(—(a’ )TX b) F;(Y|X) 1_u,’l}_d},

1+ exp(—(a}) "X — b%)
Sy j = {FQJ(Y|X), X, (V]X), XWX R (Y]X),

X (w) 1
1+ exp(—(a)TX — b)F2’”(Y|X)’ 1+ exp(—(a)TX — b))

B (Y[X):1<u,v< dz},
Sz = {Fg,j(Y|X) XWE(VIX):1<u< d},

Sy = {F4,j(Y|X)}»

X (w) X () x(v)
_(n*\T _ h* Hna](Y|X)7 . T
1+ exp( (aj) X bj) 1+ exp(—(a ) X - b)
1
1 +exp(—(a}) "X — %)

85,j = n](Y|X)

,J(Y|X) nJ(Y|X) ISUaUSd}-

Step 2: Non-vanishing coefficients. In this step, we will show that at least one among
the coefficients in the representations of [T,,11(Y|X) — Ry 1,1(Y|X)]/L2(Gr,Gy),
[T012(Y|X) = Ru1a(Y|X))/L2(Gn,Go).  [Tn21(Y[X) — Rua1(Y[X)]/L2(Gn,Ga),
[Th22(Y|X) = Ry 220Y|X)]/L2(Gy, Gy) and [T, 3(Y|X)]/£2(Gn7 G. ) does not approach zero
when n goes to infinity. Assume by contrary that all of them vanish as n — co. Then, by considering
the coefficients of the term

* Fy;(Y|X) for j € [N*], we have

m Z ’ Z exp(ci') — exp(c;)| — 0.

j=1 1i€eC;
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() . "
. 1+exp(_)((a;)TX_b;_)FO,J—(Y|X) for j € [N*] : |C;| = 1, we have

1

€[N*]:|c;|=1 ieC;

. 1+exp(—(al;)Tx_b;)FOJ(Y|X) for j € [N*] : |C;j| = 1, we have

1 T
GG ST S el Ak - 0.
2N S e INHT ey =18€C;
* 5 ;(Y|X)forj € [N*] : |C;| = 1, we have

1
GGy 2 2 ewld)iavo0
2N M) e N ey =14€C;

() x () ‘ .
. 1+exp()<—(a;§TX—b;))Fo’j(Y|X) for j € [N*] : |C;| > 1, we have

1 7L n
m' Z Zexp HAG H2—>0

E[N*]:|c;|>1i€C;

. 1+exp(7(a1]*.)TX7b;))Fl,j(Y|X) for j € [N*] : |C;| > 1, we have

1 n n|2
(G Gl - Z Z exp(c;')|AbY[* — 0.
JEIN*]:IC;|>1ieC;

* Fy ;(Y|X)forj € [N*] : |C;] > 1, we have

1
m . Z Zexp |A1/ — 0.

FEIN*]:|C;|=1¢€C;

By taking the sum of the above limits, we obtain 1 = % — 0 as

n — oo, which is a contradiction. Thus, not all the coefficients in the representa-
tions of [Tnylﬁl(Y|X) — Rn 1,1 Y|X)]/£2(Gn,G ) [ n,1,2 Y|X) Rn’172(Y|X>]/E2(Gn7G*),
(T2 (YX) — Ruo1(Y1X)]/L2(Gny Ga)y [Tr22(Y[X) = Rpoa(Y[X)]/L2(Gr,G.) and
[1.3(Y|X)]/L2(Gy, G+) converge to zero as n — 00.

Stage 3 - Fatou’s argument: In this stage, we use the Fatou’s lemma to show
a contradiction to the result of Step 2. For that purpose, let us denote m,,
as the maximum of the absolute values of the coefficients in the representations
of [T11(Y|X) — Rp1a(Y[X)]/Lo(Gr,Gs), [Tna2(Y[X) — Rp12(Y[X)]/Lo(Grn, G),
[Tn21(Y[X) = Rn21(Y|X)|/L2(Gn,Gs), [Tn22(Y[X) = Rn22(Y|X)]/L2(Grn,Gs) and
[T0.3(Y|X)]/L2(Gr, Gy). It follows from the result of Step 2 that 1/m,, 4 oo asn — oo.
In addition, we also denote

ZzEC exp(c; )(Aa ) (w) ZzGC exp(c; )(AV )
— Qq g, — Bl,ja
mnLa(Gn, Gy) I mnL2(Gn, Gy)
Zzec exp(cj')(Aag ) )(AGZ‘)(U) RN ) ZzEC exp(c}’) (Avj; )? By
Lo (G, G 2. mnL2(Grr G a0
> icc, exp(ci) (Ab};) (w) Dicc, exp(c})(AbY)?
— 1,5 — ¢2,j7
mnL2(Gy, Gy) ML (Gn, G.)
Yice, exp(ef) (Aafy) ™ (Avg) ) Pice, exp(ef)(Aagy) ) (ADY) o
mnLa(Gr, Gr) T MnLa (G, G) 250
ice, D) (AL (Av) Yiec, xp(c}) — exp(c))
—>’Y3,j, _>€]7
mn»CZ (Gna G*) mn£2 (Gnv G*)
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asn — oo forany j € [N*] and u, v € [d2] with a note that at least one among ag“j), B, ag“f)7 Ba.js

(u) () :
1,5, D2,5s M50 V2,50 V3,5 and &; is non-zero.

By applying the Fatou’s lemma, we have
_ Ex[V(pe(|X),pe. ([X))] 1 / e 06, (YIX) = pe, (Y]X))
0=1 . =— /1 f—= - d(X,Y
T Lol G) 2 ) T n@nay (Y
which implies that [pg, (Y]X) — Pa. Y|X)]/[mnL2(Grn,Gx)] — 0 as n — oo for almost
surely (X,Y). Since the term Zj p exp(log(1 + exp((a}) " X 4 b7))) is bounded, we also have
T,(Y|X)/[mnL2(Gyp,G)] — 0asn — oo. Then, it follows that

0 i Do VX) + Toaa(V1X) o Tooa (VX) + Topa(V1X) | L Tua(YIX)
n—00 mnEQ(Gnv G*) n—00 mn£2(Gn7 G*) n—00 My Lo (Grm G*) ’
(23)
for almost surely (X,Y) € X x Y, where we have
d u
h T77,71,1 Y|X) L Z Zu 1Of§ )X +¢1] 0 (Y|X)
noo My Lo(Gr, Gy) NI =1 1+ exp(— (]) X—b;) 7
¢ 1
(X alX ) 461, Ry (V1X) + 51 (V1X),
u=1
d (u
i, 12000 5 ( i of) X 0,
n—00 T )T X — b*
— mnEQ(GnvG*) jE[N*]ilcj‘>1 1+6Xp( (]) X bj)
d a(UJU) u v d u
Dot Ty XX S sy X0 4 36a5 1 (Y[X)
L+exp(—(a?)TX —b5) ' 1+exp(—(af)TX —b7) )"
d de "27JX(u)X(v)
(u) v (u) ] u,0=1 14+11y—0}
+ o X\ 415+ "
<uz:1 " T T exp(=(a))TX b))
¢2J+22u 172;X(u) d (uv)X(u)X(v) 1
+— — | F1;(Y[X) + 5,+ + 592,
1+ exp(—(aj) T X = b7) 11X Y W,Zl It lgumgy 27
d d (u) ( ) )
(u) v (u) 1 Z =1 ,Yl,] + V3,5 )
+ XM 4~ i (Y|X
;”ZJ 2 1+exp(—(a;)TX —b%) 25 (Y1X)
1
+ (; 5 u)X(U) + 273 J)F37J(Y|X) + ,32 JF4,J(Y|X)
and
T (Y|X S el X M 4oy
lim n,2,1(Y]X) L Z u=1 %15 1,5 H;(Y|X)
SRR SR SO S
d (u
i Ln22(Y1X) Yo X 4 gy
n—o00 mHEQ(Gn,G*) EINTIC;|> 1+€Xp( (J) X — b;)
d o J u v d u w
T ep(—(@) X <5 T 1 ren@ X -5 | )
and

lim —n3(1X)

N
n_mm 257 Fo;(Y[X) — H;(Y]X)].
J
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It is worth noting that for almost every X, the set

{Fp,j(Y|X)7 H;(Y[X):0<p<d,je [N*}}

is linearly independent w.r.t Y. Therefore, it follows that the coefficients of those terms in the limit in
equation equation (23) become zero.

For j € [N*] such that |C;| = 1, by considering the coefficients of

* F1;(Y]X), we have 23:1 ozg’fj)X(“) + ¢1,; = 0 for almost surely X, indicating that
aguj) ¢1,; = 0forall u € [d];

" (u)
* Fy,;(Y|X), we have §; + Zu 14 g) " Texp( )((a HTX=b) T Trexp(— (a*)TX ) = 0 for

almost surely X. Since 0‘1 J = ¢1, = 0forall u € [d], we also get £; = 0.
* I, ;(Y|X), we have 81 ; = 0.

For j € [N*] such that |C;| > 1, by considering the coefficients of
* F1;(Y]X), we have

d Al .
Sl X0 4 gy, st g XX oy 250 1y X
u=1 " " 1 +exp(—(a}) "X —b¥) 1+ exp(—(a;) "X - b3)

for almost surely X. Since the set

:O,

1 X ()
17 X(U)7 ) ?
1 +exp(—(af)TX —b%)" 1+ exp(—(aj)TX — b))
X (u) x(v) y
1+ exp(—(a7)T X fb*») tu,v € [d]

is linearly independent w.r.t X, we deduce a( W =

u,v € [d].
* [y ;(Y]X), we have
Yo ol X gy
1 +exp(—(a}) "X —bF)

= ¢1,5 7a2j = ¢, = ,yéuj) = 0 for all

&+

(uv)
d Y25 u v d u
D=1 THL (o V}X( XO sl X 4 L,

u12]

1+exp(—( TX —bY) 1 +exp(—(a}) "X — )

:0)

for almost surely X. Since a\" ] =¢1, = ag“ﬂ v) = =g, = 75’3) =0 forall u,v € [d], we
get&; = 0.

* I3 ;(Y]X), we have e
'Vi,j) =3, = 0forall u € [d];

* F5;(Y]X), we have

P iuj)X @) 4 13,5 = 0 for almost surely X, indicating that

d (“”)X( ) x (v) 1 3¢ (w) .
u= 71 + 3,
2B+ + 30+ x4 L Zum 15X 5 =0
J Zl 1+ 1{u v} I Z 21+ exp(—(a )TX — bj)
for almost surely X. Since agyj = (o = vé,j) = 7{1]-) =3, = 0forall u,v € [d], we

also get 31 ; = 0.
* Fy ;(Y|X), we have 85 ; = 0.

Putting the above results together, we have §; = al ] =¢1; =Py = a2 G =02 =Ba; =

%UJ) = 75 W = =3, = 0forall j € [N*] and u,v € [d]. This contradicts the fact that at least one

among them is different from zero. Consequently, we achieve the local part in equation (21).
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1.3 PROOF OF PROPOSITION[3.1]

In this proof, we first present some fundamental results on the density estimation problem for M-
estimators in[van de Geer|(2000) in Appendix[[.3.1] and then provide the main proof in Appendix[[.3.2]

1.3.1 PRELIMINARIES

To streamline our discussion, let us introduce some necessary concepts from the empirical process
theory. In particular, let Pj(©) be the set of all conditional densities with respect to mixing measures

inGn(0©), ie.
PN(@) = {pg(Y|X) :G e QN(@)}

Additionally, we also consider two following variants of the set Py (0O):

Pr(©) = {p@+c.)2(YIX) : G € Gn(O)},
BL/2 1/2
Py (0) = {p&rc. 2 Y1X) : G €an(O)}
Next, we define for each § > 0 a Hellinger ball centered around the true conditional density pg, (Y| X)
and intersect with the set 5%2 (©) as below

—1/2

P —1/2

(©,8) :={p'*(Y|X) € Py (O) : hipg,pc.) < 6}.

Moreover, the size of this Hellinger ball is quantified by the following term:

—1/2

é
Tp(6,PN"(©.,6)) = /52/213 HY2(t,PN7(0,0), | - [2)dt v o, (24)

where Hp(t, 73}\,/2(@, t), || - |l2) stands for the bracketing entropy of 5%2(9, t) under the L?-norm,

and ¢t V 0 := max{t, d}. Now, we are ready to recall the results in|van de Geer|(2000).

Lemma I.1 (Theorem 7.4,van de Geer|(2000)). Take ¥(6) > Jp(4, P1/2 (©,6)) such that ¥(5)/5?
is a non-increasing function of 0. Then, for a universal constant c and f 52 > cV(6,), we achieve
that

P(Ex[h(pg, (1X),pc. (1X))] > §) < cexp(~ns?/c?),
forany 6 > 6,.

Proof of Lemma E] is available in van de Geer| (2000). Apart from this result, we also need to
introduce the upper bounds of the covering number N (¢, Pn(0), || - |l ) and the bracketing entropy
Hgp(e,Pn(©), || - ||2) as follows:

Lemma L2. Suppose that © is a bounded set, then we have for any € € (0,1/2) that
(a) log N(g,Pn(0), ]| - lloc) < log(1/e);
(b) Hp(e,Pn(O), ]| - [l2) < log(1/e).

Proof of Lemma@] Part (a). Recall that © is a compact set, then there exists an e-cover, which
we denote as ©.. Moreover, it can be verified that |0, < O(e~(%2+1N) Next, for each mixing

measure G = SN Sw. L) € Gn(©), we consider another one G = S | O, ;> Where

(We.,,7;) € O is the closest point to (W, v;) in this set for any i € [N]. Subsequently, we
demonstrate that the set

Q= {pa(Y|X): (We,,7) € 6.,V € [N]}

is an e-cover of the metric space (Py(0), || - |ls). In other words, we need to show that for any
pe(Y|X) € Pn(0©), there exists some density p=(Y'|X) € Q such that ||pg — pgllec S
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Next, we decompose the term T, (Y| X) := [Z;\f:l exp(log(1 +exp(g(X, We7))))} pe(Y|X) —
pe(Y]X)] as

N
T,(¥1X) = 3 expllog(l + expla(X. We ) [S(V 92X, We,). ) = F(Y lo(X. W), 7)]
i=1
N
£ [expllog(1 + exp(g(X, W2,))) — exp(lo(l + exp(g(X. 7., )] - [F(V1g(X. W), ) — pe(¥1X)].
i=1
As © and X are bounded, we may assume that exp(log(l + exp(g(X,W,,)))) < Bj and
l[f(Y|g(X,W.,),7;) — pc(Y|X)| < By for some positive constants By, By. Thus, we obtain
that
N —
i =7l + 3 Ba - [We, = W,

i=1

N
T, (Y|X)] Z i, -,

Additionally, since the term Z;K:1 exp(|g(X,We,)|) is bounded, we obtain |pg(Y|X) —
pa(Y|X)| < € for almost surely (X,Y), or equivalently,

lpe =pgllee = sup  |pa(Y|X) —pa(YIX)| Se.
(X,Y)EX XY
This result indicates that Q is an e-cover of the metric space (Py(0), || - || ). Therefore, we get

N(e,Pn(©). ]| o) < [c] < O(e™(=HDN),
or equivalently,
log N(e,Pn(0), ]  llos) < [Oc] < log(1/e).

Part (b). Firstly, we will derive an upper bound for the Gaussian experts f(Y|g(X, W,),v). Since
© is a compact set, we have |g(X, W, )| < M; and My < v < M3 forany X € X and (W,,v) € ©.
Then, it follows that f (Y |g(X, W,),v) < B(Y|X), where

1
——— exp(—Y?2/(8M2)), for |Y'| > 2M,
B(Y|X) = { V2TM:
_— for |Y| < 2M;,
vV 27TM2 | | !
for any X € X. Next, let n < € be some positive constant that we choose later, then we denote
{m1,m2,...,mn} as an n-cover over Py (O). Based on this cover, we build the following brackets

L;(Y|X) = max{m(Y|X) — 0,0} and U;(Y|X) := max{m;(Y|X) + n, B(Y|X)}, for any
i € [IN]. We can validate that Py (Y| X) C Uf\il[Li(Y|X), Ui(Y|X)]and U;(X,Y) — L;(X,Y) <
min{2n, B(Y|X)}. As a result, we have

1/2
[0 = Lille = ( [0V - Ly 0P y)) - < 2,
The above result implies that

Hp (20, Pn(©), [ - [l2) < log N (1, Pn(©), || - lso) S log(1/n).
Then, by setting n = £/2, we arrive at

Hp(e, Pn(©), - [l1) < log(1/e).
Hence, the proof is completed. O

[.3.2 MAIN PROOF
Since 5}\;/2(@, t) C 51/2 (©) for any ¢ > 0, we have

(9)7H ’ H2) :HB(t/\/iﬁN(e)ah)’ (25)

—1/2

Hy(t, Py P

(©,), - ll2) < Hp(t, Py
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where the last equality is due to the relationship between the Hellinger distance h and the L2-norm.
Note that for any two mixing measure G and G’, Lemma 4.2 in|van de Geer|(2000) indicates that

1 1 1 1 1
h? (527@ + 5PG. 5Pa! + §pG*) < §h2(pc,pc;')7

which yields Hg(t/v/2,Pn(©),h) < Hp(t, Fi, .1, (©), h). This result together with equation equa-
tion (23) implies that

—1/2

Hp(t, Py (0,1), - ll2) < Hp(t, Pn(©), h).
From equation (24) and part (b) of Lemma|[.2] we have that

)
T5(6,Py"(0,8)) = / B2 PN (0,0), ] - l2)dt v 6
52/213

4
< / 721, PN 0,1), h)dt v §
52 /213

é
< / log(1/£)dt v/ 6.
)

2/913
Next, let ¥(5) = §+/log(1/3), then it can be verified that ¥ () /42 is a non-increasing function of 4.
Furthermore, the above result indicates that U(5) > J5(d, .}N',il/ ?kQ(@, ), - l|2)- By considering the
sequence (6, ) defined as 6,, := /log(n)/n, we have \/nd2 > c¥(J,,) for some universal constant
¢ > 0. It follows from Lemma [[.1] that

P(Ex[h(pg, (1X), pa. (1X))] > CVlog(n)/n) S exp(~clog(n)),

for some universal constant C' > 0 depending only on ©. Since the Total Variation distance is upper
bounded by the Hellinger distance, we deduce

P(Ex[V(pg, (1X). pe. (1X))] > Cv/log(n)/n) S exp(~clog(n)),

or equivalently,

Ex[V(pg, (1X),pc. (1X))] = Op(1og(n)/n).

Hence, the proof is completed.

J LLM USAGE

We affirm that LLMs did not play a significant role in the development of this work, to the extent that
they could be regarded as an author. No content generation, ideation, or technical writing assistance
was delegated to LLMs.

K BROADER IMPACT

Although our work mostly contributes to the machine learning literature, it also draws inspiration from
biology and neuroscience. Specifically, the competition mechanism is rooted in biology, has been
studied in neuroscience, and has motivated a few machine learning algorithms. Our work contributed
a theoretically grounded algorithm to train large-scale SMoE models, which could potentially push
the frontier of the next LLM generation. Lastly, working with large models requires rather costly
resources. We took serious precautions during the development of this work, including providing a
guideline for hyper-parameter selection, and conducting a single experiment using the same random
seed to ensure the results are reliable at a low cost.
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