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Abstract

In class-incremental learning (class-IL), models must classify all previously seen
classes at test time without task-IDs, leading to task confusion. Despite being
a key challenge, task confusion lacks a theoretical understanding. We present a
novel mathematical framework for class-IL and prove the Infeasibility Theorem,
showing optimal class-IL is impossible with discriminative modeling due to task
confusion. However, we establish the Feasibility Theorem, demonstrating that
generative modeling can achieve optimal class-IL by overcoming task confusion.
We then assess popular class-IL strategies, including regularization, bias-correction,
replay, and generative classifier, using our framework. Our analysis suggests that
adopting generative modeling, either for generative replay or direct classification
(generative classifier), is essential for optimal class-IL.

1 Introduction

Incremental learning (IL) has garnered significant interest in academia and industry [1, 2] due to its
ability to (i) achieve more resource-efficient learning by avoiding retraining models from scratch
with new data, (ii) reduce memory usage by eliminating the need to store raw data, which is vital for
complying with privacy regulations, and (iii) develop a learning system that mirrors human learning
[3]. There are two categories of incremental learning settings in the literature [4]: (i) task-based
[5, 6, 7] and (ii) task-free [8, 9, 10, 11].

Task-based category itself consists of three scenarios [5]: (a) task-incremental learning (task-IL), (b)
domain-incremental learning (domain-IL), and (c) class-incremental learning (class-IL). The three
scenarios differ at the test time, where the task-IL scenario is given with the task-ID, the domain-IL
does not need task-ID to begin with, whereas the class-IL must infer task-ID. The second category,
which is task-free, aims to banish the notion of task (boundary) at all, both at the training and test
time.

This paper focuses on task-based class-IL, currently the most popular regime [12, 13, 14, 15].
However, our theoretical results and proposed scheme are applicable to task-free settings as well
[8, 9]. Progressing towards task-free learning is important because IL, like the brain, should aim to
be less reliant on supervision, eliminating the need for task-IDs.
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For incremental learning including class-IL, the main challenge had been thought to be catastrophic
forgetting (CF), which broadly refers to any performance drop on tasks that are previously learned
after learning a new one [1]. For class-IL, however, we discourage the usage of this language because
it has recently turned out that, in class-IL, not all the performance drop is caused by “forgetting” and
indeed most of the performance drop is inflicted by task confusion (TC) [16]. TC originates from the
fact that in class-IL, the classes residing in distinct tasks are never seen together; nonetheless must
be discriminated among each other at the test time absent task-ID (meaning that task-ID must be
inferred).

(b)(a) (c)

(d) (e) (f)

(b)(a) (c)

(d) (e) (f)

Figure 1: Task Confusion in Discriminative and
Generative Modeling.

Attributing all performance drops to CF in class-
IL is misleading. Using the term “forget” im-
plies that something previously learned is forgot-
ten. However, in class-IL, the model has never
learned how to distinguish among tasks because
it has never seen those tasks together. At test
time, it must infer the task-ID to make these dis-
tinctions. Thus, it does not make sense to say
that “it forgot how to distinguish among those
tasks.” In class-IL, we differentiate between
performance drops caused by TC and CF.

Despite TC being recently discovered as the main obstacle in class-IL [16, 3], it has not yet been
well-understood mathematically/theoretically, and almost all the class-IL works attribute CF, which
used to be the only problem in the task-IL scenario, to the performance drop observed in class-IL
scenario. And, this is the problem. For that, in Fig. 1 we visualize how TC emerges: when a class-IL
model learns tasks 1 and 2 in Figs. 1(a) and 1(b), respectively, it can perform intra-task discrimination
in Fig. 1(c); however, it is still incapable of performing inter-task discrimination, whose absence
is shown in Fig. 1(c) with a dotted line. This incapability is not because the class-IL model has
forgotten the knowledge of task 1 after learning task 2; it is indeed because it has not learned to make
inter-task distinction in the first place. In other words, failure in inter-task discrimination has nothing
to do with CF; it is about TC which stems from the fact that the class-IL model has never seen classes
of different tasks together to be able to make the distinction.

There are two adjacent studies to our work: (i) Kim’s [17] and (ii) Soutif-Cormerais’ [16]. Although
the scope of Kim’s work and ours are similar, there are key differences:

• Kim’s paper does neither define nor discuss TC. There is not any mention of the term TC
throughout the paper, let alone proving its occurrence.

• Kim’s work does not prove that in generative modeling TC does not occur while in dis-
criminative modeling it does. There is no mention of discriminative modeling or generative
modeling throughout Kim’s work.

• Kim’s mathematical framework and ours are very different in the sense that their mathemati-
cal framework does not appreciate the relationship between TC and discriminative/generative
modeling (Comprehensive related work is presented in Appendix).

Also, there are significant contrasts between Soutif-Cormerais’ work and ours:

• Soutif-Cormerais’ work presents empirical results based on black-box experiments in favor
of the importance of cross-task features to mitigate TC. The provided evidence clearly does
not prove any statement; rather, it is suggestive. Whereas, our work adopts a white-box
approach by breaking down the loss of an N-way discriminative classifier into

(
N
2

)
in Lemma

1 and proving that indeed the optimal performance shall not be obtained unless off-diagonal
losses are taken into account. Our approach for studying the role of TC is based on rigorous
mathematical analysis.

• Soutif-Cormerais’ work is silent on the whereabouts of TC in discriminative/generative
modeling. Whereas, our work, by means of rigorous mathematical analysis, proves that
while TC does happen in discriminative modeling, it does not in generative modeling [16].

We believe that the essence of TC and CF as well as their distinction have not yet been well-studied
from a theoretical perspective. This motivated the current study. In this paper, we present three
contributions:
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• We introduce a novel mathematical framework that distinguishes between TC and CF in
class-IL and task-free settings, clarifying their distinct roles. Unlike existing definitions that
often conflate TC and CF based on overall performance, our framework provides a clear
distinction.

• Utilizing this framework, we present the Infeasibility Theorem, demonstrating that achieving
optimal class-IL in discriminative modeling is impossible even with CF prevention, due
to TC. Conversely, we propose the Feasibility Theorem, showing that optimal class-IL is
achievable in generative modeling if CF is prevented.

• We further offer corollaries for various class-IL strategies, such as regularization, bias-
correction, replay-based methods, and generative classifier schemes, allowing us to discuss
their optimality.

In the next section, for discriminative modeling, Lemmas 1 and 2 form the groundwork that leads to
Theorem 1 and its subsequent Corollaries 1 through 5. For generative modeling, Lemma 3 underpins
Theorem 2 and Corollary 6. Furthermore, Hypothesis 1 is derived from the principles outlined in
Lemma 1.

2 Mathematical framework for Class-IL

In any incremental learning including class-IL, the goal is to get close to (ideally achieve) the ultimate
performance of the non-incremental learning without any forgetting of past tasks and any confusion
among tasks, which is obtained when all the data for all tasks are simultaneously available for
training. This is a performance upper bound, which will be later denoted as the joint scheme in
Table 2. To achieve the goal in class-IL, we present our mathematical framework and formulate the
training problems to resolve TC and CF. The formulations of TC and CF problems are in themselves
meaningful contributions.

In this section, after formulations of TC and CF, we present our first theorem (i.e., the Infeasibility
Theorem), where we prove that achieving the optimal class-IL via the implementation of conditional
probability P (Y |X) (equivalent to discriminative modeling, which is the common practice in the
class-IL literature) is essentially infeasible even after preventing CF. Then, in another theorem (i.e.,
Feasibility Theorem), we prove that achieving the optimal class-IL as an implementation of joint
probability P (X,Y ) (i.e., generative modeling) is feasible.

2.1 Discriminative modeling

First, we analyze discriminative modeling: for that, we prove a lemma stating that an implementation
of conditional probability (via discriminative modeling) as an N -way classifier (with N classes)
is equivalent to the implementation of

(
N
2

)
binary classifiers. This lemma will be essential for

formulating and understanding the problems of TC and CF.

To that end, we start by defining the classifier’s loss function: let Iθ denote the classification error as
follows:

Iθ =

∫
X×Y

v(fθ(x), y)p(x, y) dxdy (1)

where v(fθ(x), y) is a given loss function, x, y ∈ X ,Y are the input data and the label, fθ(·) denotes
the model parameterized by θ, and p(x, y) is the joint probability density function of (x, y). Now,
we present our lemma in the following.

Lemma 1 (Conditional Probability Equivalence Lemma): An N -way discriminative classifier param-
eterized by θ implementing conditional probability P (Y |X) with the loss function defined in Eq. 1 is
equivalent to the implementation of

(
N
2

)
virtual binary classifiers as follows:

Iθ =
1

N − 1

N∑
k=1

N∑
l=1,l ̸=k

∫
Xkl×Ykl

v(fθ(x), y)p(x, y) dxdy (2)

where Xkl = Xk ∪ Xl, Ykl = Yk ∪ Yl, Xk,Xl ⊂ X , Yk,Yl ⊂ Y , Xk ∩ Xl = ∅, Yk ∩ Yl = ∅, for
k ̸= l.
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Proof: See Appendix A. □

Simply put, this lemma says that, for example, a 3-way classifier (N = 3) can be seen as being
made up of 3 underlying binary classifiers (

(
N
2

)
= 3). Imagine a 3-way classifier that is supposed to

discriminate between cat, dog, and rabbit; this classifier, according to our lemma, can be deemed as
having 3 underlying binary classifiers that classify between cat-dog, cat-rabbit, and dog-rabbit.

To understand the implications of Lemma 1, we simplify the notation: we define the loss term of each
individual binary classifier of Eq. 2 as follows:

ρkl(θ) =
1

N − 1

∫
Xkl×Ykl

v(fθ(x), y)p(x, y) dxdy (3)

where ρkl(θ) is the loss corresponding to the virtual binary classifier discriminating between
classes k and l. This enables us to have the overall loss term as simple as follows: Iθ =∑N

k=1

∑N
l=1,k ̸=l ρkl(θ). It is worthwhile to view Iθ as a two-dimensional array (matrix) of binary

classifiers’ loss terms given by

P (θ) =


⊘ ρ12(θ) . . . ρ1N (θ)

ρ21(θ) ⊘ . . . ρ2N (θ)
...

...
. . .

...
ρN1(θ) ρN2(θ) . . . ⊘

 (4)

where ⊘ denotes ‘undefined.’ The diagonal losses are undefined because a given class does not have
a loss term with itself due to the nature of discriminative modeling. In summary, what we have done
in Eq. 4 is that instead of saying that we have a single loss function to minimize, for example, for our
cat-dog-rabbit classifier, we say that there are three binary classifiers, each with its own loss term;
and, then we arranged the losses in the form of a matrix.

Now we consider the task-based (discriminative) class-IL model that sequentially observes T number
of tasks, each at a time, with C classes for each task (i.e., N = T × C). The objective is to achieve
the performance (as measured by the loss function in Eq. 1) that one would have achieved via having
present all T tasks together. We can re-write our loss matrix within our system model of class-IL as
follows:

P (θ) =


P 11(θ) P 12(θ) . . . P 1T (θ)
P 21(θ) P 22(θ) . . . P 2T (θ)

...
...

. . .
...

P T1(θ) P T2(θ) . . . P TT (θ)

 ,P ij(θ) =


ρij11(θ) ρij12(θ) . . . ρij1C(θ)

ρij21(θ) ρij22(θ) . . . ρij2C(θ)
...

...
. . .

...
ρijC1(θ) ρijC2(θ) . . . ρijCC(θ)


(5)

in which P (θ) is rewritten as the task-level loss matrix, of which entry is either an intra-task P ii(θ)
or inter-task P ij(θ) (for i ̸= j) loss matrix; and ρijmn(θ) is the loss term between the mth class of
task i and the nth class of task j. Note that ρijmn(θ) = ⊘ for i = j,m = n (See Appendix B for
more detail). We will provide a definition, Definition 1, which specifies how such a discriminative
class-IL model learns task by task.

Eq. 4 explains that for example if we have four classes, cat, dog, rabbit, and duck, and the first two
are in the first task and the second two in the second task, then we have four task-level matrices. The
first one, first row and first column, concerns the loss term of the binary classifier discriminating
between cat and dog; the second and third loss matrices, the non-diagonal ones, characterize the loss
terms of the binary classifiers discriminating between cat-rabbit, cat-duck, dog-rabbit and dog-duck
(inter-task binary classifiers); and finally, the last one, second row and column, stands for the loss of
the binary classifier discriminating between rabbit and duck.

Definition 1 (Discriminative Class-IL): A discriminative class-IL model ‘sequentially’ trains by
minimizing the losses of the diagonal blocks of the loss matrix P (θ) in Eq. 5. That is, a discriminative
class-IL model first optimizes θ by minimizing |P 11(θ)|, and then re-optimizes θ by minimizing
|P 22(θ)|, etc, where | · | operator sums up all (defined) components of the given matrix.

Definition 1 hints at the critical problem; the ‘diagonal’ is the critical word. The class-IL model only
minimizes the diagonal blocks and ignores non-diagonal ones; which is why the TC problem arises:
the notorious problem that is misunderstood. This paper clears this misunderstanding.
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With Definition 1, now we can also define CF. Properly defining CF is very important since in the
literature, CF has been too broadly defined based on the overall performance, which causes CF to get
conflated with another crucial phenomenon that is TC (will be later defined in Definition 5).

Definition 2 (Catastrophic Forgetting): Consider a class-IL model that minimizes the loss |P ii(θ)|
of task i, achieving the minimal loss |P ii(θ̃i)|, where

θ̃i = argmin
θ

|P ii(θ)|. (6)

Then the model proceeds and minimizes the loss |P (i+1)(i+1)(θ)| of task (i + 1), achieving the
minimal loss |P (i+1)(i+1)(θ̃(i+1))|, where θ̃(i+1) is given by Eq. 6 with i being replaced by i + 1.
We state that the model committed Catastrophic Forgetting if

|P ii(θ̃i)| < |P ii(θ̃(i+1))|. (7)

Definition 2 indicates that after learning the second task, the new weights may not be as effective in
minimizing the loss of the first task as the weights that we derived by only minimizing the first task.
Simply put, our cat-dog binary classifier of the model is no longer working as well as it did prior to
learning the rabbit-duck binary classifier.

Definition 3 (CF-Optimal Class-IL): A class-IL model θ∗ is called CF-optimal if solely CF is
minimized. Specifically, θ∗ is the model minimizing the sum of losses of all diagonal blocks P ii(θ)
ignoring the inter-task losses as follows:

θ∗
1:T = argmin

θ

T∑
i=1

|P ii(θ)|. (8)

CF-optimal means that the classifier can discriminate between cat-dog (task one); and can discriminate
between duck-rabbit (task two), too. Yet, the model does properly classify the classes residing inside
each task one and two (intra-task classification), it may still fail at discriminating between different
tasks (inter-task classification).

Having defined CF in Definition 2, we will prove its occurrence (in Corollary 1) and its consequent
sub-optimality (in Corollary 2), based on Incompatibility Definition and Lemma (Lemma 2). How-
ever, before that, it is worth mentioning that in this paper, we make the assumption that tasks are
incompatible; which is specified in the following. (See Appendix C.)

Definition 4 (Incompatibility): Functions f(x) and g(x) which are non-zero are called incompatible
and denoted as f(x) ∦ g(x), if the followings are satisfied:

df(x)

dx

∣∣∣
x=xf

=
dg(x)

dx

∣∣∣
x=xg

= 0,
df(x)

dx

∣∣∣
x=xg

=
dg(x)

dx

∣∣∣
x=xf

̸= 0,

xf = argmin
x

f(x), xg = argmin
x

g(x) xf ̸= xg (9)

where f(x) and g(x) are differentiable at xf and xg .

It could be argued that assuming incompatibility of tasks is unfavorable, as good class-IL and task-free
algorithms aim to maximize both forward and backward transfer, which would not exist in the case
of incompatible tasks. However, the ultimate intent of our paper is to investigate TC and CF in both
discriminative and generative modeling settings. Our assumption is designed to capture TC and CF,
not forward and backward transfer. While forward and backward transfer are important in class-IL
and task-free learning, they are not the focus of our work.

Lemma 2 (Incompatibility Lemma): For incompatible f(x) and g(x), i.e., f(x) ∦ g(x), we can state
the following:

x∗ ̸= xf , xg, x∗ = argmin
x

f(x) + g(x), xf = argmin
x

f(x), xg = argmin
x

g(x). (10)

Proof: See Appendix D. □

In simple terms, two incompatible tasks (functions) have different minimizers. And, the minimizer of
the sum of them is neither of the minimizers of each. This is the case for distinct tasks in practice.
From many empirical results [1, 18], we know that always when new tasks are learned the optimal

5



points of the previous tasks are lost. CF always happens, indicating that incompatibility is always
true. With incompatibility we can prove the occurrence of CF in the following corollary.

Corollary 1 (Catastrophic Forgetting): For the discriminative class-IL model in Definition 1, due to
the sequential diagonal optimization, after optimizing for task (i+ 1) we can state Eq. 7 implying
that CF has occurred for task i when |P ii(θ)| ∦ |P (i+1)(i+1)(θ)|.
Proof: See Appendix E. □

Having proved the occurrence of CF, we also can state, as in the following, that our class-IL model
after learning the second task is not even CF-optimal.

Corollary 2 (Sub-Optimality Corollary): For the discriminative class-IL model defined in Definition
1, due to the sequential diagonal optimization, after optimizing for task (i+ 1) the class-IL model
may not be CF-optimal if

∑i
i′=1 |P i′i′(θ)| ∦ |P (i+1)(i+1)(θ)|.

Proof: See Appendix E. □

Based on our mathematical framework, we now define TC (which is a major contribution of this
paper) and then the optimal class-IL that aims at minimizing TC and CF (which is the ultimate goal
of the class-IL as presented in the very beginning of this paper).

Definition 5 (Task Confusion): Consider a class-IL model that minimizes the loss |P ii(θ)| of task
i, achieving the minimal loss |P ii(θ̃i)|, where θ̃i is given by Eq. 6. Then the model proceeds and
minimizes the loss |P (i+1)(i+1)(θ)| of task (i+1), achieving the minimal loss |P (i+1)(i+1)(θ̃(i+1))|.
This class-IL model never finds a chance to optimize θ by minimizing inter-task loss |P (i)(i+1)|.
Hence, the class-IL model is confused when it comes to distinguishing classes from two distinct tasks
because those loss matrices corresponding to inter-task binary classifiers are not minimized jointly.

Having defined TC, now in the next definition we specify the optimal class-IL model (whose
achievement is the ultimate goal of class-IL).

Definition 6 (Optimal Class-IL): A class-IL model θ∗∗ is called optimal if both TC and CF are jointly
minimized. Specifically, θ∗∗ is the model minimizing the summation of losses of all blocks of the loss
matrix including all the inter-task blocks as follows: θ∗∗

1:T,1:T = argminθ
∑T

i=1

∑T
j=1 |P ij(θ)|.

In the following theorem, we will state our significant discovery that unlike the common belief in the
class-IL community, even if CF is prevented, achieving optimal class-IL might be still impossible,
and particularly is impossible if there is TC due to the failure in minimizing inter-task blocks
(non-diagonal blocks) of the loss matrix Eq. 5.

Task 1

Task 2

Task 3

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Discriminative modeling Generative modeling

Figure 2: Task Confusion in Discriminative and Generative
Modeling.

Theorem 1 (Infeasibility Theorem):
The CF-optimal class-IL model in Def-
inition 3 is not optimal if the entire
loss and the diagonal loss are in-
compatible:

∑T
i=1

∑T
j=1 |P ij(θ)| ∦∑T

i=1 |P ii(θ)|.
Proof: See Appendix E. □

This is interesting because it turns out
that achieving optimal class-IL is in-
feasible even when CF is minimized,
due to existence of TC as shown in
Fig. 2. In Fig. 2, in the left, we show
TC and CF for discriminative class-IL
model that is optimized by ‘sequen-
tially’ minimizing the diagonal blocks of the loss matrix. When optimized for the next block, the
preceding block loss is gradually forgotten, resulting in CF (lighter green), and, the model is not
optimized for inter-task loss matrices, resulting in TC (red). In the right figure, we show CF in
generative modeling. When the class-IL model is optimized by ‘sequentially’ minimizing the diagonal
blocks of the loss matrix, the preceding block loss is forgotten when optimized for the next; however,
there is no longer any inter-task block (gray).
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2.2 Generative modeling

In this section, we focus on generative modeling which is promising: it culminates in what we
call Feasibility Theorem and offers a solution to address TC. First, we present Joint Probability
Equivalence Lemma in the following which helps us to derive the corresponding loss matrix.

Lemma 3 (Joint Probability Equivalence Lemma): An N -way (class) generative model parameterized
by θ, loss function v(fθ(x), y), and data generating process with probability density p(x, y) is equiv-
alent to the implementation of N distinct generative models with the following loss:

∑N
i=1 qrr(θ) =

Iθ =
∫
X×Y v(fθ(x), y)p(x, y) dxdy where qrr(θ) =

∫
Xr×Yr

v(fθ(x), y)p(x, y) dxdy in which
Xr ⊂ X , Yr ⊂ Y , Xr ∩ Xt = ∅, Yr ∩ Yt = ∅, for r ̸= t. Also, qrr(θ) stands for the loss for the rth
class.

A generative class-IL model ‘sequentially’ trains the model by minimizing the losses of the diagonal
blocks of the loss matrix given by

Q(θ) =


Q11(θ) ⊘ . . . ⊘

⊘ Q22(θ) . . . ⊘
...

...
. . .

...
⊘ ⊘ . . . QTT (θ)

 ,Qii(θ) =


qii11(θ) ⊘ . . . ⊘
⊘ qii22(θ) . . . ⊘
...

...
. . .

...
⊘ ⊘ . . . qiiCC(θ)


(11)

in which qiimm stands for the loss of the generative model for the mth class of task i. As we did in the
previous section for discriminative modeling in Definitions 1–6, we can define the same properties
for generative modeling. In the following theorem, we state that tackling TC through implementation
of joint probability P (X,Y ) is feasible—via generative modeling. This makes all the difference.

Theorem 2 (Feasibility Theorem): For the class-IL model adopting generative modeling with
loss matrix in Eq. 11, if CF is prevented, meaning that all diagonal blocks are optimal
[Q∗

11(θ),Q
∗
22(θ), · · · ,Q

∗
NN (θ)], the model is optimal.

Proof: See Appendix E. □

In generative modeling, therefore, optimizing for the diagonals is equivalent to optimizing for all the
loss terms. In other words, the losses associated with different tasks/classes are irrelevant; therefore,
the loss matrix can be only diagonally optimized as shown in Fig. 2. This sums up this section. The
lessons learned so far are: (i) class-IL faces two problems, CF and TC, and (ii) TC is inevitable unless
we use generative modeling (as proved in Infeasibility/Feasibility Theorems). These are widely
applicable lessons for assessing the optimality of the class-IL schemes.

3 Optimality analysis of Class-IL strategies

We analyze the behaviors of popular class-IL strategies including (i) regularization, (ii) bias-correction,
(iii) replay, and (iv) generative classifier; among which the first three do discriminative modeling,
whereas the last one does generative modeling. Note that even generative replay counts as discrim-
inative modeling because eventually a discriminator performs classification. Generative classifier,
however, performs classification only/directly via generative modeling. In this section, we study the
optimality of the above class-IL strategies. The following three corollaries (i.e., Corollaries 3, 4, and
5) follow Theorem 1; whereas the last one, Corollary 6, follows Theorem 2 (Table 1 summarizes our
discussions in this section).

3.1 Regularization strategies

We start with regularization. As mentioned, regularization is essentially attempting to preserve the
optimality of intra-task blocks (represented by the diagonal blocks P ii(θ)’s in Eq. 5) via constraining
the proceeding updates to cause as little modifications as possible (e.g., via gradient manipulation),
thereby mitigating CF.

Corollary 3 (Regularization Impotence Corollary): A regularized class-IL model, which does
discriminative modeling, may minimize CF; however, it never achieves optimal class-IL due to
sub-optimal TC.
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Figure 3: In all the six figures, for the task-IL scenario, the schemes merely face CF (because they
are given with the task-ID), and thus, they perform favorably. In the class-IL scenario, however, the
models need to discriminate between different tasks, and they usually fail; this is expected due to not
minimizing the inter-task block losses.

In class-IL/task-free scenarios, discriminative models’ performance can be characterized by a hypoth-
esis. These models, which include regularization schemes like None, LwF, EWC, and SI, prioritize
minimizing confusion within tasks over distinguishing between tasks. They achieve this by focusing
on optimizing for diagonal loss elements and neglecting off-diagonal elements, which makes them
proficient at discriminating classes within tasks but limits their ability to differentiate between tasks.
As a result, their classification accuracy is upper-bounded by 100/T%, where T is the number of
tasks. This limitation suggests that these models are at best CF-optimal, as they prioritize within-task
performance over between-task performance, as observed in our experimental results.

Hypothesis 1 (CF-optimal Model Corollary): The performance (as measured by classification
accuracy) of the CF-optimal class-IL models, which are the None and regularization schemes in
Table 2, is upper-bounded by 100/T% where T stands for the number of tasks.

This can be seen in Table 2 (T = 5 for MNIST, CIFAR-10, CORe50 and T = 10 for CIFAR-100):
when the class-IL schemes only tackle CF not TC such as in the None scheme and the regularization
strategy, the performance never exceeds 100/T%; because TC (inter-task blocks) is left out sub-
optimal2.

Not only that, the results provided in the work by [4] also support such a hypothesis. Nevertheless,
there are few results in Masana’s [3] works suggesting that regularization schemes augmented with
a technique based on entropy demonstrate performances that exceed the 100%/T upper bound
although the performance is still far from the performances of schemes based on generative modeling
counterparts. This is a slight discrepancy between different bodies of studies: on one hand, the
reasoning steps for making such a conclusion seem flawless and there are numerical results to back
that up and on the other hand, we cannot ignore the slightly incongruous empirical results. It remains
to be investigated how to account for that small increase over the upper bound. This will hopefully be
addressed in future works.

So far, we theoretically made it clear what is the distinction between TC and CF; to further empirically
distinguish between TC and CF, in Fig. 3 we contrast the performances of the None scheme as well
as a typical regularization scheme (Elastic Weight Consolidation, EWC [1] with hyperparameter
λ = 5000) in two scenarios: (i) task-IL, where the model merely faces CF and (ii) class-IL, which
the model faces both TC and CF together. The simulations are run with CNN on CIFAR-10 and only
the means are reported after 10 repetitions.

As it can be seen in Fig. 3 (top-left) corresponding to the None scheme, TC causes significantly
more performance drop than CF. This is because TC has far more block losses (T 2 − T red blocks)

2Our simulation configuration for the experiments in Table 2 as well as Figs. 3 and 4 follows that of [4]. For
more information refer to the README.md file in the code and the supplementary material: Appendices F to H.
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Figure 4: Generative classifiers like SLDA and GenC mitigate TC and CF (CIFAR-10).
Table 1: Comparison of different strategies in addressing CF, TC, and Bias-Correction (BC).

Strategies CF TC BC Theoretical Remarks
Regularization ✓ ✗ ✗ see Corollary 3 (Regularization Impotence Corollary) and Hy-

pothesis 1 (CF-optimal Model Corollary)
Distillation ✓ ✗ ✓ since distillation is essentially regularization Corollary 3 (Regu-

larization Impotence Corollary) and Hypothesis 1 (CF-optimal
Model Corollary)

Bias-correction ✗ ✗ ✓ see Corollary 4 (Bias-Correction Impotence Corollary)
Generative replay ✓ ✓ ✓ see Corollary 5 (Generative Replay Corollary)
Generative classifier ✓ ✓ ✓ see Corollary 6 (Generative Classifier Feasibility Corollary)

than CF (T green blocks) to be minimized as it can be seen in Fig. 2 (left). In Fig. 3 (top-middle)
corresponding to the EWC scheme, we observe that although EWC is able to minimize CF, the amount
of TC remains unchanged indicating the ineffectiveness of regularization for TC (see Appendix F).

3.2 Distillation strategies

Knowledge distillation [19] serves as an effective regularization strategy in mitigating catastrophic
forgetting. Unlike approaches such as EWC and SI, which impose constraints on parameter updates,
knowledge distillation focuses on ensuring consistency in the responses of the new and old models.
This distinctive feature provides a broader solution space, enabling the model to explore optimal
parameters that cater to both new and old tasks.

However, because the knowledge distillation strategy inherently operates as a regularization technique,
it is upper-bounded like all other regularization strategies, as outlined in Hypothesis 1. This upper-
boundedness can be observed in Table 2 for Dis scheme [19].

3.3 Bias-correction strategies

Bias-correction specifically attempts to mitigate TC; however, only minutely (see Fig. 3 (top-right)
and Fig. 4 pertaining to the AR1 scheme): it removes the bias from inter-task binary classifiers, slightly
reducing the inter-task block losses. Nonetheless, bias-correction is not enough to achieve optimal
inter-task discrimination, since bias parameters constitute a fringe minority of all the parameters of
models.

Corollary 4 (Bias-Correction Impotence Corollary): For a bias-corrected class-IL model, which does
discriminative modeling, neither the optimality of diagonal blocks P ii(θ) is ensured nor inter-task
blocks P ij(θ) for i ̸= j; therefore it never achieves optimal class-IL.

The slight improvement in CWR [20], CWR+, AR1 [21], and Label [11], via correcting the biases
shows itself in Table 2, where the bias-corrected schemes outperform the schemes of regularization
(and None) by doing as little as only correcting the biases, thereby mitigating TC. This suggests the
priority of the TC problem over CF.

3.4 Generative replay

On the other hand, there exists the generative replay strategy that attempts to minimize the objective
function in Eq. 1 via a surrogate density p̂(x, y), which generates pseudo samples, to mimic the real
density of p(x, y). For generative replay we can present the following corollary.

Corollary 5 (Generative Replay Corollary): A generative replay-based class-IL model, which is
discriminative, possessing a surrogate density p̂(x, y) can achieve optimal class-IL iff p̂(x, y) is
identical to the real density p(x, y).
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Although in principle generative replay can achieve optimality and cope with TC and CF because
when learning each new task all inter-task and intra-task blocks are minimized, in practice, it is
challenging to efficiently train such a surrogate density p̂(x, y), where p̂(x, y) ∼ p(x, y) (unless
by explicitly storing all/exemplars of the dataset); this can be seen in Table 2 where the family of
generative replay, DGR [6], BI-R, and BI-R+SI [18], although does well for toy datasets (MNIST),
it fails for larger datasets in competition with generative classifier. This can also be seen in Fig. 3
(bottom-left) and Fig. 4 where DGR not only fails to cope with TC but also suffers from CF due to
possessing a poor surrogate density p̂(x, y) which cannot capture the real density p(x, y).

3.5 Generative classifier

Table 2: The means and ± SEMs of accuracies in class-IL
scenarios with 10 runs on four benchmarks.

Scheme MNIST CIFAR-10 CIFAR-100 CORe50
Lower Bound (None) and Upper Bound (Joint)

None 19.92±0.02 18.74±0.29 7.96±0.11 18.65±0.26

Joint 98.23±0.04 82.07±0.15 54.08±0.27 71.85±0.30

Regularization Strategy
EWC 19.93±0.06 18.77±0.31 8.41±0.09 18.70±0.27

SI 19.88±0.09 18.00±0.33 9.32±0.07 18.61±0.22

Distillation Strategy
Dis 19.87±0.08 18.31±0.44 9.79±0.13 19.35±0.31

Bias-Correction Strategy
CWR 30.96±2.33 18.63±1.44 21.98±0.57 40.11±1.15

CWR+ 39.02±2.88 22.69±1.17 9.29±0.19 40.78±1.05

AR1 49.38±2.36 25.13±1.18 21.01±0.51 44.13±1.06

Label 33.01±2.01 19.21±1.22 23.35±0.31 41.55±1.01

Generative Replay Strategy
DGR 91.12±0.65 18.13±1.85 9.41±0.30 -
BI-R - - 21.41±0.19 61.04±1.01

BI-R+SI - - 34.34±0.23 62.51±0.29

Generative Classifier Strategy
SLDA 87.31±0.02 38.33±0.04 44.49±0.00 70.80±0.00

GenC 93.75±0.09 56.02±0.04 49.53±0.07 70.80±0.10

Eventually, unlike the previous three
strategies (all discriminative model-
ing), the fourth strategy, the genera-
tive classifier (relying on generative
modeling), represented by SLDA [10]
and GenC [4] not only can dispense
with rehearsal without worrying about
TC, but also promises optimal class-
IL as presented in the following corol-
lary.

Corollary 6 (Generative Classifier
Feasibility Corollary): Following Fea-
sibility Theorem, for a generative
class-IL model, which does genera-
tive modeling, when CF is minimized,
the class-IL model is optimal.

We see in Table 2 (and Figs. 3
(bottom-middle) and (bottom-right))
that SLDA [10] and GenC [4] can
best cope with TC. For preventing CF,
however, these two schemes follow a shared approach which is adopting expansion-based architecture:
instead of using the same architecture for all classes, and therefore, forgetting previous classes when
new classes are learned, expansion-based architectures grow their model as new classes are learned.
Therefore, they do not overwrite new knowledge on the previous knowledge. This is why schemes
like SLDA [10] and GenC [4] suffer from no CF in Figs. 3 (bottom-middle) and (bottom-right). Also,
this can be seen in Fig. 4.

4 Big picture and conclusion

Since the advent of AlexNet [22], the neuroscience community has been skeptical of the deep learning
community’s discriminative modeling approach for classification [23, 24]. They argue that humans
do not learn p(y|x) for classification (discriminative modeling); instead, humans learn p(x) which is
generative modeling. The primary issue with discriminative modeling is shortcut learning [24], a
concern that has recently gained more attention within the deep learning community [25]. In this
work, we investigate how shortcut learning can particularly hinder class-incremental learning. We
discuss how shortcut learning in discriminative modeling leads to task confusion and argue that
generative modeling, in principle, addresses this issue.

We proposed a mathematical framework to formalize problems of class-incremental learning and
task-free: task confusion and catastrophic forgetting. We proved that in discriminative modeling the
non-diagonal block losses are not minimized, which causes task confusion resulting in sub-optimal
performance for the class-incremental learning model even though catastrophic forgetting is prevented.
We presented our empirical results confirming that generative modeling does not suffer from task
confusion because there are no non-diagonal blocks that need to be minimized. We observed that
while generative modeling is effective for coping with task confusion, adopting expansion-based
architectures can overcome catastrophic forgetting.
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A Complexity analysis

Appendix A

Conditional Probability Equivalence Lemma (Lemma 1)

The loss function of an N -way classifier is mathematically equivalent to the combined loss functions
of
(
N
2

)
binary classifiers. This approach ensures that we account for each pair of classes only once,

thereby avoiding any overlap. Starting with a simple scenario where N = 2, the loss function is
defined as:

Iθ =

∫
X×{1,2}

v(fθ(x), y)p(x, y) dx dy. (12)

This setup is naturally a binary classifier, focusing solely on one class pair. When considering N = k,
with k ≥ 2, we assume the loss function can be expanded to:

Iθ =
1

k − 1

k∑
i=1

k∑
j=i+1

∫
X×{i,j}

v(fθ(x), y)p(x, y) dx dy. (13)

Here, each class combination (i, j), where i < j, is included once, optimizing the calculation and
removing redundancy. For example, when N = 3, we break it down as follows:

Iθ =
1

2

(∫
X×{1,2}

v(fθ(x), y)p(x, y) dx dy +

∫
X×{1,3}

v(fθ(x), y)p(x, y) dx dy (14)

+

∫
X×{2,3}

v(fθ(x), y)p(x, y) dx dy

)
. (15)

Introducing an additional class, k + 1, results in more binary comparisons:

Iθ =
1

k

 k∑
i=1

k∑
j=i+1

∫
X×{i,j}

v(fθ(x), y)p(x, y) dx dy +

k∑
i=1

∫
X×{i,k+1}

v(fθ(x), y)p(x, y) dx dy

 .

(16)
Conclusively, for any N :

Iθ =
1

N − 1

N∑
i=1

N∑
j=i+1

∫
X×{i,j}

v(fθ(x), y)p(x, y) dx dy. (17)

This equation confirms that the loss function for an N -way classifier replicates that of several binary
classifiers, with each class pair uniquely represented.

Appendix B

Note that in Eq. 5, we applied the result that we derived from Lemma 1 to the class-IL scenario;
however, we modified it with new notations considering the context and nuances of class-IL. The
result is that the loss is now atomized in a hierarchical manner: the ultimate loss, the task-level loss,
and finally each binary classifier’s loss. The ultimate loss is the summation of a combination of
task-level losses that are matrices; the loss of each task is in turn a matrix of losses that are to be
summed, to account for all the binary classifiers inside each task for all classes.

Appendix C

The Incompatibility Assumption and Why It Is a Realistic Assumption. The incompatibility assumption
is realistic due to the following reasons: (i) in class-IL systems, different tasks have their own
modalities due to having unique data distributions and therefore they have their own minimizers. (ii)
At the minimizer of one task where its gradient is zero, the other tasks have non-zero gradients.
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This is tenable from what we know concerning the empirical results in the literature [18] because
if the other tasks’ gradients were also zero, then when learning the other tasks, there would not be
any changes in weights; however, we know that new tasks change the weights as soon as they arrive.
Hence, they must have non-zero gradients. Both these assumptions are realistic and observed in many
works [1]. Simply put, if two distinct tasks did not have different minimizers, there would not be any
CF in practice in the first place.

Appendix D

Explanation and Proof of the Incompatibility Lemma (Lemma 2). In simple terms, two incompatible
tasks (functions) have different minimizers. And, the minimizer of the sum of them is neither of
the minimizers of each. This is the case for distinct tasks in practice. From many empirical results
[1, 18], we know that always when new tasks are learned the optimal point of the previous tasks are
lost. CF always happens, indicating that incompatibility is always true.

Incompatibility Lemma (Lemma 2)

For Incompatibility Lemma, which addresses the relationship between the minimizers of two incom-
patible functions f(x) and g(x), denoted as f(x) ∦ g(x). This lemma posits that the minimizer of
the sum f(x) + g(x) is distinct from the minimizers of f(x) and g(x) individually, indicated by:

x∗ ̸= xf , xg, x∗ = argmin
x

f(x) + g(x), xf = argmin
x

f(x), xg = argmin
x

g(x). (18)

To begin, we define two functions as incompatible if the minimization of one does not necessarily
imply the minimization of the other. In other words, their minimizers do not coincide. Suppose,
for contradiction, that the minimizer xf of f(x), is also the minimizer of the combined function
f(x) + g(x). This would imply:

xf = argmin
x

f(x) = argmin
x

(f(x) + g(x)) . (19)

Given that at xf , the derivative of f(x) with respect to x must equal zero, we also assume:

df(x)

dx

∣∣∣∣∣
x=xf

= 0. (20)

If xf were also a minimizer of f(x) + g(x), the derivative of the sum at xf would similarly vanish:

d

dx
(f(x) + g(x))

∣∣∣∣∣
x=xf

= 0. (21)

This would suggest that the derivative of g(x) at xf must also equal zero, leading to:

dg(x)

dx

∣∣∣∣∣
x=xf

= 0. (22)

However, given that f(x) and g(x) are incompatible, dg(x)
dx

∣∣∣∣∣
x=xf

̸= 0, indicating that there exists

a direction opposite to the gradient of g(x) at xf which can further decrease f(x) + g(x). This
contradiction shows that xf cannot be the minimizer of f(x) + g(x).

Applying a symmetric argument for xg , suppose xg is both the minimizer of g(x) and f(x) + g(x):

xg = argmin
x

g(x) = argmin
x

(f(x) + g(x)) . (23)

Following the same logic as before, we derive that the derivative of f(x) at xg should be zero, leading
to:

df(x)

dx

∣∣∣∣∣
x=xg

= 0. (24)
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Yet, since the functions are incompatible, df(x)
dx

∣∣∣∣∣
x=xg

̸= 0, reinforcing our contradiction and showing

that xg is not the minimizer of the combined function either.

In conclusion, x∗, the minimizer of f(x) + g(x), is distinct from both xf and xg, illustrating that
when functions f(x) and g(x) are incompatible, their individual minimizers cannot optimize the
combined function.

Appendix E

Catastrophic Forgetting Corollary (Corollary 1)

To address the phenomenon of Catastrophic Forgetting (CF) in discriminative class-incremental
learning (class-IL) models, we must consider how sequential optimization impacts task performance.
When a class-IL model trains on a specific task i, it aims to optimize parameters θi to achieve minimal
loss for that task:

θ̃i = argmin
θ

|P ii(θ)|, (25)

ensuring optimal performance for task i.

As the model proceeds to train on a subsequent task i+ 1, it again seeks to optimize its parameters,
but this time for the new task-specific loss:

θ̃(i+1) = argmin
θ

|P (i+1)(i+1)(θ)|. (26)

This optimization results in a new set of parameters θ̃(i+1), ideally suited to minimize the loss for
task i+ 1. However, these two tasks are incompatible:

|P ii(θ)| ∦ |P (i+1)(i+1)(θ)|, (27)

indicating that the optimal parameters for task i + 1 do not coincide with those for task i. This
misalignment implies that the gradient of the loss function for task i evaluated at the parameters
optimized for task i+ 1 is non-zero:

▽θ|P ii(θ)|
∣∣
θ=θ̃(i+1)

̸= 0. (28)

This non-zero gradient underscores that the parameters θ̃(i+1) are not at a local minimum for task
i, revealing that there are still directions in parameter space that could reduce the loss for task i if
adjustments were made.

Consequently, the application of these parameters to task i results in increased loss:

|P ii(θ̃i)| < |P ii(θ̃(i+1))|. (29)

This increase in loss is a direct manifestation of Catastrophic Forgetting, highlighting that performance
on task i deteriorates as the model is sequentially optimized for task i+ 1.

Sub-Optimality Corollary (Corollary 2)

To address the sub-optimality issue in discriminative class-incremental learning (class-IL) models
due to sequential optimization, we need to consider how the model is optimized across multiple tasks.
For tasks up to task i, the optimization can be collectively represented as

i∑
i′=1

|P i′i′(θ)|, (30)

where θ reflects the parameters that have been adapted and optimized through task i.

As the training progresses to the next task, i+ 1, the parameters are further optimized to minimize
the loss specific to this new task, represented by

θ̃(i+1) = argmin
θ

|P (i+1)(i+1)(θ)|. (31)
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This optimization yields a new set of parameters ideally suited for minimizing the loss for task i+ 1.

However, the inherent incompatibility of the optimization objectives for the accumulated previous
tasks and the new task becomes apparent through the expression

i∑
i′=1

|P i′i′(θ)| ∦ |P (i+1)(i+1)(θ)|. (32)

This notation indicates a fundamental misalignment between the cumulative optimization goals for
earlier tasks and the optimization for the new task. It implies that the parameters optimized for task
i+ 1 do not coincide with minimizing the cumulative loss of the earlier tasks.

When these parameters θ̃(i+1) are applied to evaluate the cumulative loss from previous tasks, the
gradient of this cumulative loss function evaluated at the new parameters is not minimized, as shown
by

▽θ

(
i∑

i′=1

|P i′i′(θ)|

)∣∣
θ=θ̃(i+1)

̸= 0. (33)

This non-zero gradient indicates that there are still directions in which the parameters can be adjusted
to further reduce the loss for previous tasks, underscoring that θ̃(i+1) is not at a minimum for the
accumulated task losses.

The practical implication of this analysis is that using the parameters optimized for task i+ 1 on the
cumulative tasks results in an increase in the overall loss for tasks 1 through i:

i∑
i′=1

|P i′i′(θ̃i)| <
i∑

i′=1

|P i′i′(θ̃(i+1))|.

This increase in cumulative loss for the earlier tasks when parameters are optimized for a subsequent
task underlines the sub-optimal performance of the model for those earlier tasks. This finding
highlights the necessity for strategies that can effectively manage the incompatibility between tasks,
such as those involving holistic optimization approaches that consider all tasks simultaneously or
mechanisms that introduce less forgetful learning dynamics to ensure more uniform performance
across all tasks.

Infeasibility Theorem (Theorem 1)

To formally establish that the CF-optimal class-incremental learning (class-IL) model does not
achieve optimal performance when the overall loss and the diagonal loss are incompatible, we need
to delve into the distinctions and relationships between these two loss frameworks. The total loss
for a class-IL model accounts for all interactions between class pairs across T tasks, capturing both
intra-task (diagonal elements) and inter-task (off-diagonal elements) dynamics. Mathematically, this
can be represented as:

Total Loss =
T∑

i=1

T∑
j=1

|P ij(θ)|, (34)

which sums the losses for all class pairings, reflecting the complexity and interconnectedness of all
tasks.

Conversely, the diagonal loss focuses solely on the intra-task interactions, optimizing to minimize the
forgetting of previously learned tasks as new ones are introduced. This is quantified by:

Diagonal Loss =
T∑

i=1

|P ii(θ)|, (35)

where the loss is accumulated solely from the diagonal components corresponding to each task-
specific loss.
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The proof’s critical aspect is demonstrating the incompatibility between these two optimization
targets, which is highlighted when we find that the minimization of the diagonal loss does not
necessarily coincide with the minimization of the total loss:

T∑
i=1

T∑
j=1

|P ij(θ)| ∦
T∑

i=1

|P ii(θ)|. (36)

This expression ∦ explicitly denotes that the optimal solutions for these two objectives do not align.

If we assume that the CF-optimal parameters, θ̃CF , are those that have been tuned to specifically
minimize the diagonal loss:

θ̃CF = argmin
θ

T∑
i=1

|P ii(θ)|, (37)

and then apply these parameters to evaluate the total loss, they do not minimize it, indicating a
misalignment:

θ̃CF ̸= argmin
θ

T∑
i=1

T∑
j=1

|P ij(θ)|. (38)

This leads us to the observation that because these optimization goals are not aligned, the gradient of
the total loss evaluated at θ̃CF is non-zero:

∇θ

 T∑
i=1

T∑
j=1

|P ij(θ)|

∣∣∣∣
θ=θ̃CF

̸= 0. (39)

Such a gradient indicates that the parameters that are optimal for minimizing the diagonal loss
do not provide a minimum for the total loss landscape, confirming the sub-optimality of the CF-
optimal model when considering the broader spectrum of tasks. This illustrates the critical need for
optimization strategies in class-IL models that take into account not just the task-specific losses but
also the interdependencies between different tasks to achieve truly optimal performance.

Joint Probability Equivalence Lemma (Lemma 3)

To rigorously establish that an N -way generative model operating on the entire dataset is equivalent
to operating N separate class-specific models, we start by defining the model and its operational
components. The overall model applies a loss function v(fθ(x), y) across the joint data set X × Y ,
parameterized by θ. This setup calculates the total loss as:

Iθ =

∫
X×Y

v(fθ(x), y)p(x, y) dx dy, (40)

encompassing all interactions within the dataset. In contrast, we define N distinct generative models,
each tailored to a specific class. These models focus on subsets Xr and Yr that are exclusive to each
class, ensuring no overlap in data across these models. The loss for each class-specific model is given
by:

qrr(θ) =

∫
Xr×Yr

v(fθ(x), y)p(x, y) dx dy, (41)

where qrr(θ) calculates the loss within the confines of each class’s data subset.

The crux of the proof lies in demonstrating that the sum of the losses from each individual class-
specific model is equivalent to the total loss computed across the entire dataset. Given that the subsets
Xr and Yr are mutually exclusive and collectively exhaustive, the union of all these subsets covers the
full data space X × Y . Hence, the aggregate of all class-specific losses matches the overall model’s
loss:

N∑
r=1

qrr(θ) =

N∑
r=1

∫
Xr×Yr

v(fθ(x), y)p(x, y) dx dy =

∫
X×Y

v(fθ(x), y)p(x, y) dx dy = Iθ. (42)

This equivalence solidifies the understanding that dividing a complex, multi-class generative model
into simpler, class-specific models does not compromise the integrity of loss computation.
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Feasibility Theorem (Theorem 2)

In a generative class-incremental learning (class-IL) model, the structure of the loss matrix Q(θ)
is such that it isolates each task’s performance in its own diagonal block, Qii(θ), and eliminates
inter-task loss contributions through null off-diagonal blocks. Here, CF optimality is not merely
about achieving minimal loss for each individual task, but rather about reducing the sum of these
diagonal losses to the lowest possible level across the entire model:

min
θ

N∑
i=1

Qii(θ). (43)

This ensures that all tasks are optimized simultaneously under a unified parameter set, θ.

The proof of the system’s overall optimality, then, is directly tied to this approach. Since the
off-diagonal elements are zero—indicating no cross-task interference—the total loss of the model
simplifies to the sum of its diagonal blocks:

N∑
i=1

N∑
j=1

Qij(θ) =

N∑
i=1

Qii(θ). (44)

This relationship underscores that minimizing the diagonal is essentially minimizing the entire matrix.

By achieving CF optimality—where the total diagonal loss is minimized—the model not only secures
the lowest possible loss for each task but also assures that learning new tasks doesn’t degrade the
performance on any of the previously learned tasks. This makes the entire generative class-IL model
optimal:

θ∗ = argmin
θ

N∑
i=1

Qii(θ) = argmin
θ

N∑
i=1

N∑
j=1

Qij(θ). (45)

Appendix F

Comprehensive Explanations of Simulation Results for Class-IL and Task-IL. Table 2 provided only
the final brief results of performances for different schemes merely in the class-IL scenario. However,
in order to fully appreciate the challenge of class-IL, it is imperative to distinguish between TC
and CF; this entails to contrast the performances of schemes in class-IL and task-IL regimes. This
comparison reveals an important distinction: even if CF is somehow tackled, TC is still the bottleneck
in class-IL.

Indeed, the schemes delivering the best results not only solve CF but also are the most effective at
tackling TC. We present our results only for CIFAR-10 [26] and these results with their consequent
insights carry over to other datasets; therefore, we refrain from reporting figures pertaining to all
other datasets.

In Fig. 3 (top-left) no scheme is used to tackle TC or CF; here this is denoted by None consistent
with the notation used in Table 2. In this figure, we progressively demonstrate the performances of
the model on task one, two, three, four, and five shown with blue, orange, green, red, and purple,
respectively. The brown color stands for the average of the aforementioned task performances (the
average task-IL performance).

Meanwhile, the pink color is used for the performance of the model over all the tasks that it has been
trained so far without providing the task-ID (the class-IL performance). When the model learns the
first task the values of task-IL and class-IL performance are the same. However, they diverge as new
tasks are learned.

Observing the deterioration of each individual task’s accuracy as well as the average accuracy in
task-IL scenario in Fig. 3 (top-left), it can be seen that this case suffers from CF: learning new tasks
causes old ones to be forgotten. However, when TC is considered, which is when we switch to the
class-IL scenario, the deterioration is much worse because now not only the model suffers from
forgetting but also it is confused among new tasks when they are learned.
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Figure F.1: In this figure, Synaptic Intelligence (SI) [2] with λ = 1 is adopted. It is clear that SI is
almost effective at mitigating CF; however, ineffective for TC.

SI [2] is surprisingly successful at tackling CF and unsurprisingly ineffective for TC. The latter
surprise is because as it can be seen in Fig. F.1 the accuracy drop inflicted by CF is considerably
mitigated. This is surprising because in the regularization strategy the model has to update the
parameters of the previous tasks to learn a new task; hence, forgetting intuitively seems inevitable
given the constant weight overwriting; thus, ameliorating forgetting as much as it is achieved by SI
deserves admiration (it is surprising).

Nonetheless, the model still unsurprisingly suffers from severe confusion and seemingly the reg-
ularization had no impact on tackling TC at all, which is what we predicted in the Regularization
Impotence Corollary. Because regularization does absolutely nothing to remedy the problem of
sub-optimal inter-task blocks. Ergo, the ineffectiveness is totally predicted and unsurprising.

AR1 [21] by correcting the biases slightly enhances the accuracy of the class-IL scenario (see Fig. 3
(top-right)); it may slightly mitigate TC. However, the model still suffers from TC and CF.

SLDA [10] in Fig. 3 (bottom-middle) is another exemplar scheme of the generative classifier strategy
similar to [4]. Again, we observe what is expected thanks to our theoretical framework: generative
classifier has no problem with TC. Also, we see that via model isolation SLDA manages to tackle CF.

Appendix G

Source Code Availability and Reproducibility. To produce our results, we used the code attached.
We made some adjustments to suit the code for our purposes, mostly for visualizations. Our data is
available. Also, the code to generate the data which was used to generate all the figures and tables are
available in the supplementary material. All the code pertaining to the visualizations (figures) are
also available.

As mentioned above, we adopted and adapted the source code of the work in [4]. The reason for
choosing this repository among all other alternatives is the success of this repository in ensuring a
standardized training regime across many popular class-incremental learning algorithms. Because
one of the critical issues in the literature on class-incremental learning (which reflects itself in the
source codes) is that there are many different regimes with which schemes are evaluated. This makes
a fair comparison impossible. For example, as we mentioned in the main text, there are two categories
of incremental learning: task-based and task-free:

The task-based strategies assume the task-ID is present at training and/or test while task-free strategies
banish the notion of task. These two strategies have different simulation regimes and are hard to
compare. The task-based strategy itself consists of three scenarios: task-incremental, domain-
incremental, and class-incremental. All with their own simulation regimes.
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Then in how the benchmarks are defined, there are differences in the literature: for example, some
strategies assume that the training dataset for each task is available all at once whereas others prefer to
feed the neural networks with a stream of data. As a result, it is often hard to make fair comparisons.

For example, Elastic Weight Consolidation (EWC) [1] assumes that when learning each task, besides
the task-ID, the entire task is available at once for the learner to look at; whereas Synaptic Intelligence
(SI) [2], Deep Generative Replay [6], BI-R, BI-R+SI [18], and Labels Trick [11] take data in a stream
fashion although they still suppose the task-ID is given like EWC.

There is another category of works who imposes a more restricted training regime that entirely does
away with Task-ID; not only that, this category also only reveals the data to the learner in a stream
fashion. Schemes like CWR, CWR+ [20], AR1 [21], SLDA [10], and Generative Classifier [4] are of
this sort.

The chosen code repository always stays clear on all these differences in order to let the reader make
a more informed comparison/judgment.

Appendix H

Hyperparameter Specification. We run our experiments with the same hyperparameters as in [4] for
consistency as well as reproducibility of the previous findings. In our experiments concerning the
MNIST benchmark the 10 classes are sorted out in 5 tasks where each task contains two classes;
for example, the first task has digits zero and one. And so on it goes for the second, third, fourth,
and fifth task. CIFAR-10 and CORe50 with 10 classes also has two classes in each task. In contrast,
CIFAR-100 offers ten tasks with each presenting ten classes.

Concerning the training regime of the MNIST, CIFAR-10, CIFAR-100, and CORe50 benchmarks,
we ran the experiments for 2000, 5000, 5000, single-pass iterations, respectively, with mini-batch
sizes of 128, 256, 256, and 1, via the learning rates of 0.001, 0.001, 0.001, and 0.0001. Following the
simulation scenario of [4] for the CIFAR-100 dataset there is a pretrained model being used which is
trained on CIFAR-10 as also specified, programmed, and open-sourced in [18]. The pretrained model
is a modified version of the ResNet18 architecture. For CORe50, however, the pretrained model is
trained on ImageNet.

Different incremental learning schemes of course come with their own hyperparameters; and being
specific about the choice of hyperparameters is essential for upholding the scientific explicity and
integrity. In the following, we therefore explicate the hyperparameters used for each of the schemes
in our experiments:

EWC uses the values of 106, 10, 100, and 10 for MNIST, CIFAR-10, CIFAR-100, and CORe50
respectively as the values of λ after grid-searching over

[10−1, 10−2, · · · , 107].

Meanwhile, SI for λ uses 103, 1, 1, and 10 for four datasets after searching over

[10−3, 10−2, · · · , 109].

Following the simulation convention in [4] via grid search in [0, 10, · · · , 90] the parameter X for
BI-R is selected which is 70 and 0 for CIFAR-100 and CORe50, respectively. While concerning
BI-R+SI scheme for X and λ in [0, 20, · · · , 90] and [10−3, 10−2, · · · , 109] values of 108 and 0.01
were chosen.

AR1 [21] uses 10, 100, 103, and 1 for four datasets after grid-searching over [10−3, 10−2, · · · , 109]
for λ whereas Ωmax is set to 0.01, 0.1, 10, and 0.1 for four datasets after grid-searching over

[10−4, 10−3, · · · , 102].

B Related Work

Class-IL strategies, according to what we presented in the previous section, ideally have to tackle
the two challenges, TC [16] and CF [1]; these strategies can be divided into four categories: (i)
regularization, (ii) bias-correction, (iii) replay, and (iv) generative classifier.
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B.1 Regularization strategy

Regularization is a popular class-IL strategy effective for CF: in order to tackle CF, regularization aims
to minimize modifications to parameters lest they cause the model to forget previously learned tasks
[27]. The example schemes of this strategy are Elastic Weight Consolidation (EWC) [1], Synaptic
Intelligence (SI) [2], and Bayesian inference [28, 29, 1]. Regularization has shown promising results
when paired with the rehearsal strategy or with other schemes such as attention [30, 31, 32]. However,
for class-IL, they are ineffective alone because they only mitigate CF not TC [33, 34, 35].

B.2 Bias-correction strategy

Bias-correction strategies are inspired by the observation that when a model is trained in the class-IL
setting, it tends to predict only the most recently seen tasks [12, 36]. It is stated that such phenomenon
is because the final layer of the neural networks becomes biased towards the latest classes. For
that, there have been proposed few class-IL schemes that attempt to remedy this bias by equalizing
the values of the final layer’s biases of all classes [37]. The exemplar schemes of this strategy are
CopyWeights with Re-init (CWR) [20] and its improved version CWR+ [21]. In order to tackle the
issues of CWR and CWR+ pertaining to the freezing of the parameters of all hidden layers after
the first task and therefore enabling representation learning, the scheme AR1 [11] was proposed,
which follows the approach of CWR+. However, AR1 refuses to freeze the hidden layers. Instead,
AR1 regularizes the hidden layers following an enhanced version of SI [38]. Bias-correction slightly
ameliorates TC; while it does not help with CF.

B.3 Replay strategy

The replay strategy is based on re-visiting previous data samples. There are two types of replay
strategies: (a) coreset/exemplar replay [39, 37, 40] and (b) generative replay [8, 41]. Coreset replay
[42, 38] is adopted when it is feasible to store data corresponding to the previous tasks. These
stored data samples, i.e., coreset data, are used during training of the new tasks to replay previous
tasks, thereby mitigating TC/CF [43, 44]. iCaRL [7] leverages coreset replay: this scheme adopts a
neural network for representation learning of the features while does classification via computing the
distances of data samples to the centroids pertaining to different classes in the latent space, where the
class centroids are computed thanks to the stored data. To prevent the feature extractor network from
forgetting the previously learned tasks, iCaRL adopts replay: it replays not only the stored data with
the current task but also augments it with a modified form of distillation loss [45, 46].

The second type of the replay strategy, generative replay, is employed if it is not possible to store raw
data [47, 6]; alternatively, it replays generated pseudo-data via generative models instead of raw data
[18, 5]. This category has been shown to be effective for toy datasets with small input dimensions
and unconvoluted patterns; nevertheless, it struggles with problems having more sophisticated input
patterns and high-dimensions, which is the case for natural images, unfortunately [18]. Recent
generative replay works relying on pre-trained feature extractors which benefit from a long non-
incremental initialization training sessions [13, 48] have shown improvements in performance on
class-IL scenario with natural images.

B.4 Generative classifier strategy

We categorize the entire class-IL strategies into two types: discriminative and generative. All
the schemes (including generative replay) in the above three categories explained so far count as
discriminative classifiers because eventually a discriminator performs the classification—despite
using generators for replay. However, the last (the fourth) category of class-IL strategies, generative
classifier, performs classification only and directly using generative modeling. In [4], authors proposed
a novel rehearsal-free generative classifier strategy for tackling TC/CF (delivering state-of-the-art
performance); the scheme does energy-based modeling [36] via generative modeling using Variational
AutoEncoders (VAEs) [49] and importance sampling [50]. Generative classifier is a unique treatment
of class-IL problem: it entirely prevents CF via model isolation, but its strength is in using generative
modeling (for classification), which turns out to be immune to the TC problem unlike discriminative
modeling as we will prove.
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There are three other advantages for generative classifier [4]: (i) it is capable of operating in the
task-free setting [8, 9] where task-ID is unavailable at both training/test time. (ii) It enables single-
class-learning: learning in scenarios where only one class is available to be learned [4]. (iii) Another
advantage of generative classifier over generative replay [18] is that the former is half as simple as
the latter: in generative classifier a dataset is used to train generative models only and directly for
classification. By contrast, generative replay uses the data to train an intermediary generative model
which is used to train a discriminative model in order for classification. Thus, generative classifier has
to train once at each session, requiring two times less computation than generative replay. SLDA [10]
(popular in data mining [51, 52]) is thought to be another form of generative classifier [4]; however,
it prevents representation learning.
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Table 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All Sections.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Standard models/datasets are used.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Experimental results.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: Used standard models/datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Used standard models/datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Used standard models/datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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