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Abstract1

User event modeling plays a central role in many machine learning applica-2

tions, with use cases spanning e-commerce, social media, finance, cybersecurity,3

and other domains. User events can be broadly categorized into personal events,4

which involve individual actions, and relational events, which involve interactions5

between two users. These two types of events are typically modeled separately,6

using sequence-based methods for personal events and graph-based methods for7

relational events. Despite the need to capture both event types in real-world sys-8

tems, prior work has rarely considered them together. This is often due to the con-9

venient simplification that user behavior can be adequately represented by a single10

formalization, either as a sequence or a graph. To address this gap, there is a need11

for public datasets and prediction tasks that explicitly incorporate both personal12

and relational events. In this work, we introduce a collection of such datasets,13

propose a unified formalization, and empirically show that models benefit from in-14

corporating both event types. Our results also indicate that current methods leave15

notable room for improvements. We release these resources1 to support further16

research in unified user event modeling and encourage progress in this direction.17

1 Introduction18

Modeling user events is a central task in machine learning with broad applications across various do-19

mains [1, 2]. In e-commerce, it is used to capture user preferences for personalized ranking and prod-20

uct recommendation [3]. In social media platforms, event modeling supports feed optimization and21

engagement prediction by inferring user interests over time [4]. Financial systems leverage user behav-22

ior data for fraud detection, credit risk assessment, and behavioral profiling [5]. Online services such23

as search and streaming platforms rely on user event sequences for content recommendation under24

real-time constraints [6, 7]. In cybersecurity, modeling user and system events is essential for detecting25

anomalies and preventing intrusions [8, 9]. These applications demonstrate the importance of building26

models that can effectively capture complex, context-dependent user behavior from event sequences.27

User events can be broadly categorized into personal and relational events. Personal events involve28

only a single user and reflect individual actions, such as searching for content, viewing items, or29

posting updates. In contrast, relational events involve interactions between two or more users, such30

as following another user, co-editing a document, or exchanging messages. Traditionally, these31

two types of events are often modeled separately. Relational events are commonly modeled using32

graph-based approaches that capture structural dependencies and interaction patterns among users33

[10, 11]. On the other hand, personal events are typically modeled as sequences using recurrent or34

attention-based architectures to capture temporal dependencies in personal event histories [12–14].35

There have been efforts in the graph area to capture both structural and temporal dependencies36

using temporal graph formalizations (such as CTDG [15–17]) and models built on top of these37

formalizations (such as TGAT [18], TGN [16], DyRep [19], TNCN [20], and others [21–23]).38

However, these approaches primarily focus on the temporal dependencies of relational events while39

1Link to the datasets and prediction tasks. Link to the data construction and experimentation code.
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Figure 1: An illustration of personal and relational events in e-commerce. Personal events involve a
single user, such as login, search, view, or purchase. Relational events involve interaction between
two users, such as sending a gift or commenting on another user’s review.

neglecting personal events. For example, the formalization used in the Temporal Graph Benchmark40

(TGB) papers [24, 25] and recent temporal graph models [20–23] defines a temporal graph as a41

stream of triplets consisting of source, destination, and timestamp. Personal events that involve only42

a single entity cannot be directly represented under this formulation. One workaround is to convert43

all personal events into nodes and define personal events as triplets of user node, event node, and44

timestamp. However, this construction is not as straightforward for capturing temporal dependencies45

in personal event histories compared to sequence-based modeling.46

Going back to the personal and relational event category, in many application domains, the number47

of personal events is typically much larger than that of relational events. For example, in e-commerce48

platforms, as illustrated in Figure 1, users often view products, search for items, or add products49

to their cart, whereas relational interactions, such as referrals, sending gifts, or socially engaged50

reviews, are less frequent. In financial systems, customers routinely perform account queries, check51

balances, or initiate transactions, while peer-to-peer interactions such as money transfers or joint52

account actions are relatively infrequent. In cybersecurity systems, personal events may include53

actions like logging in, accessing files, or executing processes, while relational events, such as remote54

connections to other users, or file sharing between users, occur less frequently. Despite their higher55

volume, personal events are often underrepresented in existing graph-based formulations, which56

tend to prioritize relational structure. In practice, however, both personal and relational events carry57

complementary signals, and many predictive tasks, such as item recommendation, fraud detection,58

customer profiling, and behavior forecasting, benefit from capturing both types of information.59

Even though there is a need to capture both personal and relational events in many application domains,60

prior work has rarely considered them together. Practitioners often simplify the complexity of user61

event modeling by adopting either a graph or a sequence formalization, as most machine learning62

models are developed within one of these frameworks. As a result, one type of event, typically the less63

convenient to represent, is often ignored entirely, leading to an incomplete view of user behavior. To64

build a more comprehensive understanding of user event modeling, there is a need for public datasets65

and benchmark tasks that explicitly incorporate both event types. Such resources would provide a66

foundation for developing and evaluating models that integrate these complementary signals.67

Summary of Contributions. In this work, we aim to support the study of user event modeling that68

incorporates both personal and relational events. Our contributions are as follows:69

• We curate, pre-process, and release a collection of public datasets and prediction tasks that70

explicitly include both personal and relational events.71

• We introduce a new formalization for user event modeling that captures both personal and72

relational events.73

• We empirically demonstrate that incorporating both personal and relational events improves74

performance on a range of prediction tasks.75

• We show that existing models, originally developed for either sequential or relational data only,76

are less well suited for this event modeling setting, leaving room for future improvements.77

• We invite the research community to use these resources and help close the gap in unified user78

event modeling.79
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2 Related Works80

We discuss the most relevant works in this section, while a more comprehensive list of the related81

works can be seen in Appendix D.82

Event sequence modeling, such as temporal point processes [26–28], deals with event stream data83

(e1, t1), (e2, t2), · · · , where each ei is an event type drawn from an event set E = {1, 2, · · · , |E|},84

and 0 ≤ t1 ≤ t2 ≤ · · · are the times of occurrence. In user event sequence modeling, such as85

personalized event prediction tasks [29–31], we have N users, denoted as U = {u1, u2, · · · , uN}.86

Each user has their own sequence of events, denoted Seq(u) = [(e1, t1)
(u), (e2, t2)

(u), · · · ]. In some87

applications, exact timestamps are replaced with discrete time steps, simplifying the definition to88

Seq(u) = [e
(u)
1 , e

(u)
2 , · · · ]. In other variants of sequence modeling, the event space may be restricted89

to a single domain, for example, products consumed by a user in sequential recommendation tasks90

[13, 32, 33]. While these user event sequence models capture the complexity of event sequences91

within a user, they lack the ability to encode user-to-user interactions.92

Graph modeling, on the other hand, explicitly encodes user-to-user interactions through its node and93

edge abstraction, G = (V, E), where V and E denote the node and edge sets, respectively. Temporal94

graph abstractions, such as CTDG [15, 16], incorporate temporal dynamics by representing a graph95

as a sequence of time-stamped events G = {x(t1), x(t2), · · · }. Each event x(t) can be either (1) a96

node-wise event (e.g., node addition or feature update) represented by a feature vector vi(t), where i is97

the node index, or (2) an interaction event between node i and node j represented by a temporal edge98

ei,j(t). Another CTDG formulation by Kazemi et al. [17] describes a temporal graph as a pair consist-99

ing of an initial graph and an observation set (G,O). The observation set describes the evolution of100

the graph, with each observation represented as a tuple (event type, event, timestamp), where the event101

type may include edge addition, edge deletion, node addition, node deletion, node splitting, node102

merging, and so on. In practice, however, many temporal graph models [20–23] omit node-level events103

altogether and instead define a temporal graph as a sequence of interaction events expressed as triplets,104

G = {(u1, v1, t1), (u2, v2, t2), · · · }, where u and v represent the source and destination nodes.105

3 Problem Formalization106

Notations. For our Personal and Relational User Event Sequence (PRES) modeling, we take107

inspiration from the standard user event sequence modeling. We denote the set of users (which can108

also be a customer, account, entity, etc.) as U = {u1, u2, · · · , uN}, where N is the number of users.109

Each user has their own sequence of events that occur over time. For example, the sequence for user ui110

is denoted as Seq(ui) = [(e1, t1), (e2, t2), · · · , (eMi , tMi)], where e describes an event, t describes111

the time at which the event occurs, and Mi denotes the number of events for user ui. Each user may112

have a different number of events in their event sequence. We denote the set of all user sequences113

by S = {Seq(u) | u ∈ U}. An event may come from two different event sets: the personal event114

set and the relational event set. The personal event set contains a set of events that can occur for an115

individual user; p ∈ P ≜ {1, 2, · · · , |P|}. The relational event set contains a set of all possible events116

r ∈ R ≜ {1, 2, · · · , |R|}, which involve a relation from one user to another. Thus, an event can be117

defined by a personal event e = p, or a relational event tuple e = (r, v), where v is another user.118

Difference from temporal graph formulation. Although motivated by a similar goal of integrating119

temporal and relational information, our formulation differs from temporal graphs in several ways:120

• In the temporal graph formulation, events are ordered globally across all users, similar to121

standard (non-user-based) event sequence modeling. In contrast, PRES follows personalized122

user-event sequence modeling, where each user has their own separate sequence of events.123

• The temporal graph formulation places greater emphasis on modeling interaction events between124

two nodes, often neglecting user events that do not involve another user. Many recent temporal125

graph models, such as TNCN [20], NAT [21], DyGFormer [22], and others [23, 34, 35]; recent126

temporal graph benchmarks, such as TGB [24] and TGB 2.0 [25]; as well as popular graph127

frameworks such as PyTorch Geometric [36], even reduce the formulation to a sequence of128

triplets representing interaction events with no support for encoding personal events. By129

contrast, PRES treats personal events as first-class components. This is particularly relevant130

in many areas mentioned in the introduction, where the number of personal events is far larger131

than that of relational events.132
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Table 1: Dataset Statistics

Properties BRIGHTKITE GOWALLA AMAZON-CLOTHING AMAZON-ELECTRONICS GITHUB

Personal Events check-in check-in product rating product rating github activity
Relational Events friendship friendship co-review co-review collaboration

# Users 58,228 196,591 185,986 254,064 3,669,079
# Events 5,130,866 8,342,943 1,591,947 2,938,178 102,878,895
# Personal Events 4,702,710 6,442,289 1,573,869 2,281,128 95,974,149
# Relational Events 428,156 1,900,654 18,078 657,050 6,904,746

# Unique Events 628,519 1,169,154 846,052 529,198 24
# Unique Timestamps 4,506,822 5,561,957 3,464 5,373 2,675,990

# Users w. pers. events 51,406 107,092 185,986 254,064 3,669,079
# Users w. rel. events 58,228 196,591 5,017 49,852 441,958
# Users w. both events 51,406 107,092 5,017 49,852 441,958

• Even for the temporal graph formulation that accommodate node-wise events, it does so by133

updating node feature vectors. This differs from event sequence modeling (including PRES),134

where each event is drawn from a discrete set of events, a property that may not be easily encoded135

as feature changes. To represent discrete personal events, temporal graph models may convert136

the events into nodes and then build a heterogeneous dynamic graph that encodes the event137

as an interaction between a user node and this newly created event node. In some events, such138

as ‘viewing product’, this approach works fine. However, it does not work well for representing139

personal events that describe intransitive actions (e.g., ‘sign in’, ‘login’, or ‘subscribe’) or status140

changes (e.g., ‘payment successful’, ‘login unsuccessful’, or ’request denied’).141

• In graph models, every entity must be a node. This becomes problematic when the entity has142

a hierarchical structure. For example, in a location-based social network application, when143

modeling a user’s location check-in event, one may want to capture hierarchical information such144

as continent, country, state, city, neighborhood, and block. Representing the location check-in145

as a single node in a graph model loses this hierarchical structure. In contrast, PRES allows146

more flexibility: using a sequence model, events can be freely tokenized. A check-in event147

can be split into multiple tokens, each corresponding to a different level of location granularity.148

When we compare with the CTDG formulation by Kazemi et al. [17], all the concerns above remain.149

While this formulation allows more flexible observations, it is still restricted to events that describe150

the evolution of the graph through changes in nodes or edges, such as edge additions, edge deletions,151

node additions, node deletions, node splitting, or node merging.152

4 Datasets and Prediction Tasks153

4.1 Dataset Information154

We curated user event datasets from multiple domains, following recent graph dataset curation works155

[24, 25, 37–39], and then processed them according to our formalization in Section 3. The data156

is stored in CSV format with the columns: uid, timestamp, event_set, event, and other_uid157

(See Appendix B for details). The uid is a numerical user ID, whereas event_set indicates whether158

the event is personal or relational. For relational events, other_uid refers to the other user involved159

in the relation; for personal events, this column is null. The statistics of each datasets is shown160

in Table 1. More details on collection and dataset license are available in Appendix A. The data161

processing code are open-sourced and descriptions are available in Appendix C.162

PRES-BRIGHTKITE. This dataset contains location check-ins and friendship history of Brightkite163

users, a location-based social networking platform. It was originally collected by Cho et al. [40] and164

published in the SNAP Dataset Repository [41]. Personal events consist of sequences of location165

check-ins. We convert the original latitude and longitude coordinates into Geohash-8 representations166

[42, 43], short alphanumeric strings encoding geographic locations. Nearby locations share similar167

geohash prefixes, while distant ones differ. Example geohashes include 9v6kpmr1, gcpwkeq6, and168

u0yhxgm1. Relational events capture friendship connections among users. The dataset includes169

58,228 users and 5,130,866 events. Only personal events have timestamps; relational events do not.170

PRES-GOWALLA. The dataset also contains the location check-in and friendship history of another171

social network platform, Gowalla. It was also originally collected by Cho et al. [40] and published in172
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the SNAP Repository [41]. We processed and formatted the data following the same approach used173

for PRES-BRIGHTKITE. The dataset contains personal events from geohash check-ins and relational174

events from friendship connections, totaling 8,342,943 events from 196,591 users.175

PRES-AMAZON-CLOTHING. The dataset contains Amazon product reviews and ratings in the Cloth-176

ing, Shoes and Jewelry category, spanning from May 1996 to July 2014. The raw data was originally177

collected by McAuley et al. [44]. In this dataset, we define personal events as sequences of product178

IDs and ratings reviewed by a user, for example: B000MLDCZ2:5 and B001OE3F08:3. Relational179

events represent co-review patterns, where two users have reviewed at least three of the same products.180

The dataset contains event sequences from 185,986 users, with a total of 1,591,947 events.181

PRES-AMAZON-ELECTRONICS. The dataset contains Amazon product reviews and ratings in the182

Electronics category, originally collected by McAuley et al. [44]. As in PRES-AMAZON-CLOTHING,183

personal events are defined as sequences of product IDs and ratings, while relational events capture184

co-review patterns. In total, the dataset contains 2,938,178 events from 254,064 users.185

PRES-GITHUB. This dataset contains GitHub user activity from January 2025, collected from186

the GH Archive. Personal events include actions such as Push, CreateBranch, CreateRepository,187

PullRequestOpened, IssuesOpened, and Fork. Relational events represent project collaboration,188

where two users are linked if both contributed at least five commits or pull requests to the same189

repository. The dataset includes 102,878,895 events from 3,669,079 users. Only personal events190

include timestamps; relational events do not, similar to PRES-BRIGHTKITE and PRES-GOWALLA.191

Variability of the datasets. As shown in Table 1, the PRES datasets vary significantly across192

multiple aspects. The number of users ranges from around 58 thousand in PRES-BRIGHTKITE to193

more than 3.5 million in PRES-GITHUB. The number of events also varies, from approximately 1.5194

million in PRES-BRIGHTKITE to over 100 million in PRES-GITHUB. The ratio between relational and195

personal events ranges from around 1:3 in PRES-GOWALLA to approximately 1:80 in PRES-AMAZON-196

CLOTHING. The number of unique events also differs widely, from just 24 in PRES-GITHUB to more197

than 1 million in PRES-GOWALLA. In addition, we observe variability in the number of users having198

personal events, relational events, and both. Some datasets have more users with relational events than199

with personal events (e.g., PRES-BRIGHTKITE, PRES-GOWALLA), while others show the opposite200

trend (e.g., PRES-AMAZON-CLOTHING, PRES-AMAZON-ELECTRONICS, PRES-GITHUB). These201

differences in dataset properties present distinct challenges for modeling user events in each dataset.202

4.2 Prediction Tasks203

From the PRES datasets, we define two prediction tasks: one for relational events and one for personal204

events. These tasks are designed to enable fair comparisons between graph-based, sequence-based,205

and hybrid models. Relational event prediction focuses on predicting future or held-out subset of206

user-to-user interactions, similar to link prediction. Personal event prediction aims to predict the207

likelihood of future occurrence of personal events without requiring exact timestamps, for example,208

predicting the next 20 personal events given a user’s first 100. In both tasks, observed events are209

compared against negative samples drawn from events not associated with the user. For reproducibility,210

pre-generated negative samples for validation and test sets are provided in the dataset repository.211

Relational event prediction tasks. The corresponding tasks for PRES-BRIGHTKITE and PRES-212

GOWALLA involve friend recommendation. We construct the training data by randomly splitting all213

relational events into 70% training, 10% validation, and 20% test sets. We also generate negative214

samples for the validation and test sets. Following Gastinger et al. [25], we adopt a 1-vs-1000215

negative sampling scheme, in which 1,000 negative events are sampled for each relational event in216

the prediction set. Negative samples are drawn via uniform random sampling of users, excluding217

those who already have relational events with the target user in the training set. For the PRES-GITHUB218

dataset, the relational event prediction task is defined as collaboration prediction, which involves219

predicting which users collaborate with a given user. The train, validation, and test splits follow the220

same procedure as in PRES-BRIGHTKITE, including the sampling method. However, due to the large221

size of the dataset, we adopt a 1-vs-300 negative sampling scheme.222

For the PRES-AMAZON-CLOTHING and PRES-AMAZON-ELECTRONICS datasets, the task is predict-223

ing co-review relationships, i.e., which users share at least three products they reviewed. Co-review224

patterns can reveal how one account may be related to another, which in some cases can help detect225

fraudulent review syndicates. In these datasets, relational events have timestamp information, i.e., the226
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first time the co-review condition is met. As such, the train, validation, and test splits respect event227

timestamps. Specifically, we split each user’s relational events by taking the last 20% for test, the pre-228

vious 10% for validation, and the rest for training. To manage large histories of some users, we cap test229

and val sets at 20 and 10 events per user, respectively. Personal events are also split into ‘observed’ and230

‘unobserved’ sets based on the timestamp cut-off in the relational event split, with only the observed231

set used for training. As in PRES-BRIGHTKITE, we adopt a 1-vs-1000 negative sampling scheme.232

Personal event prediction tasks. The task for PRES-BRIGHTKITE and PRES-GOWALLA is to predict233

the likelihood of a user checking in at a given geohash location in the future. We split each user’s234

personal events by taking the last 20% for test, the previous 10% for validation, and the rest for235

training. We also cap the number of events in the test and validation sets to at most 20 and 10236

per user, respectively. Since personal events are more frequent than relational ones, we adopt a237

1-vs-500 negative sampling scheme. As geohash strings encode hierarchical spatial information (e.g.,238

earlier characters represent broader regions), we apply stratified hierarchical sampling. Specifically,239

negatives are stratified by shared geohash prefixes, from matching the first five characters to none,240

ensuring a mix of nearby and distant locations.241

For the PRES-AMAZON datasets, the task is to predict future products a user will review and the corre-242

sponding ratings, as denoted in their personal event data. We adopt the same train/val/test split strategy243

as in PRES-BRIGHTKITE, along with a 1-vs-500 negative sampling scheme. Negative samples for each244

personal event (e.g., B001OE3F08:3) are drawn from three sources: (1) the same product with differ-245

ent ratings (e.g., B001OE3F08:5); (2) other personal events not in the user’s training data; and (3) sam-246

ples from the second set with randomly perturbed ratings. In the PRES-GITHUB dataset, the number of247

unique events in the personal event set is only 24, corresponding to the list of possible GitHub activ-248

ities. Thus, the task construction used in the previous datasets is not applicable to PRES-GITHUB. We249

decided to omit this dataset from the set of datasets used for creating personal event prediction tasks.250

Full event sequence. In addition to the datasets containing prediction tasks described above, we251

also publish a version of each dataset that includes all personal and relational events for all users,252

without any assigned tasks, train/val/test splits, or pre-specified negative samples. This is intended to253

facilitate future works that may wish to generate other prediction tasks not covered in this paper.254

5 Experiments255

5.1 Relational event prediction tasks256

Experiment setup. We perform relational event prediction experiments on all five PRES datasets,257

following the task setup described earlier. We evaluate several sets of baseline methods:258

1. In the first set, we use only relational event data. We construct a user graph where edges represent259

relational events between two users, ignoring timestamp information. We then run static graph260

methods, GCN [45], GAT [46], and Graph Transformer (TConv) [47] on this graph.261

2. In the second set, we use a sequence model, BERT [48], to encode each user’s last 100 personal262

events from the training set. The resulting user embedding is added as input to the GCN, GAT,263

and GT models from the first set, denoted as GCN+S, GAT+S, and TConv+S, respectively.264

3. In the third set, we convert each unique personal event into a node and add it to the user graph265

from the first set, creating edges between users and their personal event nodes. As in the second266

set, we use only the last 100 personal events per user. We then run GCN, GAT, and TConv on267

this graph, denoted as GCN_RP, GAT_RP and TConv_RP.268

4. Lastly, based on the graph containing user and personal event nodes from the third set, we add269

timestamp information to construct a temporal graph. For datasets that lack timestamps for270

relational events, we inject these events randomly into the sequence of personal events. We then271

run temporal graph models, TGN [16], DyRep [19], and TNCN [20] on this graph.272

The sequence model for capturing personal events in the second set is designed as a masked token pre-273

diction task using a BERT model with a masking probability of 0.3. A key benefit of using transformer-274

based models is flexibility in event tokenization. In PRES-BRIGHTKITE and PRES-GOWALLA, personal275

events are 8-character geohash strings (e.g., 9q8yyk8y|9q8vzj5b|9q8vyzwk). Since geohashes encode276

hierarchical geographic information, we apply hierarchical tokenization by splitting each into four277

two-character tokens with added prefixes (e.g., gh12-9q, gh34-8y, gh12-yk, gh12-8y). This roughly278

mimics hierarchical location modeling, such as identifying continent, country, city, and neighborhood.279
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Table 2: Performance results for relational event prediction tasks (all metrics are in percent).

Method PRES-BRIGHTKITE PRES-GOWALLA
Metric MRR Hits@5 Hits@10 Hits@50 Hits@100 MRR Hits@5 Hits@10 Hits@50 Hits@100

Static graph models on relational event graph
GCN 37.3±0.8 50.8±1.0 61.7±0.9 83.2±0.4 89.5±0.3 40.3±0.9 54.5±0.9 65.8±0.8 86.5±0.4 92.0±0.2

GAT 36.2±1.4 48.7±1.4 59.5±1.2 81.4±0.8 88.5±0.6 40.7±1.5 54.1±1.6 64.9±1.5 85.3±1.3 91.1±1.0

TConv 40.2±2.0 53.0±2.4 63.5±2.3 84.1±1.1 90.0±0.6 47.4±1.1 62.0±1.1 72.1±0.8 88.9±0.3 93.1±0.2

Static graph models on relational event graph + sequence embedding from personal event data
GCN+S 43.9±0.7 57.8±0.8 67.8±0.8 86.5±0.3 91.5±0.1 44.9±1.0 59.4±1.1 69.8±1.0 88.1±0.5 92.8±0.3

GAT+S 44.8±1.1 58.5±1.1 68.2±1.1 86.2±0.5 91.5±0.4 44.9±0.9 58.8±0.6 69.0±0.4 87.0±0.4 92.0±0.5

TConv+S 47.4±1.5 61.6±1.7 71.4±1.4 88.2±0.4 92.5±0.2 49.9±1.1 64.6±1.1 74.4±0.9 90.0±0.5 93.8±0.3

Static graph models on relational event graph + personal event nodes
GCN_RP 8.7±0.9 11.0±1.2 15.7±1.7 35.6±3.7 49.8±4.5 17.0±0.9 22.1±1.2 29.8±1.6 56.4±3.0 70.8±2.9

GAT_RP 10.7±1.0 13.5±1.2 18.2±1.4 35.6±2.3 47.8±2.8 14.9±1.4 19.0±1.6 25.8±2.0 50.7±3.1 66.2±3.2

TConv_RP 15.8±1.6 21.3±2.3 29.2±2.7 55.7±3.2 70.4±2.7 21.0±1.5 28.2±2.2 38.1±2.7 67.4±3.0 80.4±2.4

Temporal graph models on relational event graph + personal event nodes
TGN 12.2±0.7 15.9±0.9 23.5±1.0 50.2±1.3 63.5±1.3 15.4±2.6 20.6±3.7 27.8±4.6 51.8±5.6 64.9±5.4

DyRep 7.1±0.4 8.9±0.6 13.7±0.9 36.0±1.7 50.7±2.1 8.8±1.0 11.2±1.3 15.8±1.7 34.8±3.5 48.6±5.1

TNCN 28.5±1.3 34.5±1.6 40.7±1.9 62.6±2.1 72.8±1.8 25.1±1.6 29.2±2.0 33.7±2.4 52.2±2.5 63.4±2.4

Method PRES-AMAZON-CLOTHING PRES-AMAZON-ELECTRONICS
Metric MRR Hits@5 Hits@10 Hits@50 Hits@100 MRR Hits@5 Hits@10 Hits@50 Hits@100

Static graph models on relational event graph
GCN 6.1±1.6 7.4±2.1 10.0±2.5 23.4±3.0 35.3±1.3 13.1±0.6 15.9±0.7 21.5±0.6 45.9±1.3 60.6±1.6

GAT 7.2±2.5 7.8±2.7 10.2±2.9 23.8±3.6 38.4±1.9 13.2±0.7 15.5±0.9 20.7±1.0 45.2±1.2 61.0±1.5

TConv 4.2±0.3 4.8±0.7 7.7±1.0 23.5±1.6 35.5±2.0 17.3±0.3 24.1±0.4 34.3±0.5 63.0±0.6 73.7±0.4

Static graph models on relational event graph + sequence embedding from personal event data
GCN+S 4.5±0.3 5.5±0.6 9.3±0.8 29.0±0.5 40.4±0.4 14.7±0.5 19.1±0.8 27.2±1.5 57.9±1.9 70.6±1.5

GAT+S 7.7±2.1 8.5±2.1 12.0±1.8 31.3±1.3 46.3±0.6 14.4±1.7 16.7±1.8 21.6±1.4 43.6±2.5 58.4±3.4

TConv+S 7.5±0.5 9.6±0.7 14.7±0.9 37.9±0.9 50.6±0.4 22.3±1.6 32.1±2.4 44.5±2.3 70.1±1.1 78.1±0.8

Static graph models on relational event graph + personal event nodes
GCN_RP 8.7±1.4 9.2±1.4 10.5±1.4 18.1±1.2 25.8±2.5 7.5±0.6 8.3±0.6 10.9±0.8 21.8±2.3 29.0±3.2

GAT_RP 6.5±1.0 7.9±1.0 10.9±1.4 25.7±3.2 39.8±3.7 15.5±0.5 17.2±0.4 20.5±0.7 35.5±3.0 46.9±3.6

TConv_RP 4.7±0.3 5.7±0.4 8.4±0.7 22.9±0.9 34.3±0.9 13.7±0.7 18.2±0.9 25.5±1.2 50.8±1.5 64.3±1.1

Temporal graph models on relational event graph + personal event nodes
TGN 3.5±0.5 4.1±1.2 6.9±1.2 23.7±0.8 39.0±1.3 13.8±0.3 19.2±0.6 26.4±0.9 48.8±0.9 61.5±0.7

DyRep 2.9±0.6 3.0±1.1 5.8±1.6 22.8±2.6 39.6±2.4 6.8±0.7 8.9±1.0 13.8±1.3 33.4±2.3 47.5±3.0

TNCN 8.2±1.8 11.5±2.7 16.3±2.6 31.6±3.2 39.3±3.2 25.5±1.8 32.2±1.8 38.4±1.5 56.2±1.7 63.3±2.3

For the PRES-AMAZON datasets, we apply similar tokenization by splitting each event into three280

product tokens and one rating token. We do not apply token splitting for PRES-GITHUB.281

Table 3: Relational event predictions on PRES-GITHUB.

Method MRR Hits@3 Hits@5 Hits@10 Hits@30

GCN 54.0±7.2 62.9±7.5 69.6±5.1 75.2±2.3 80.1±0.4

GAT 69.3±3.1 73.6±2.2 76.1±1.3 78.1±0.4 80.4±0.3

TConv 54.5±1.9 62.8±2.1 69.2±1.5 74.6±0.7 78.0±0.2

GCN+S 70.8±0.8 75.1±0.2 76.9±0.0 78.5±0.1 80.9±0.4

GAT+S 74.2±0.6 77.0±0.4 78.7±0.3 80.6±0.1 84.5±0.2
TConv+S 62.7±1.0 70.6±0.7 74.7±0.4 77.4±0.2 78.8±0.1

GCN_RP 22.3±2.6 23.3±2.9 28.8±3.1 37.8±3.3 57.5±3.5

GAT_RP 33.1±4.1 35.7±5.4 43.9±5.6 57.2±4.5 76.7±0.7

TConv_RP 33.6±1.5 39.2±2.2 50.1±2.2 64.2±1.4 76.3±0.2

TGN, DyRep, and TNCN: Out of GPU Memory

For performance evaluation, follow-282

ing prior benchmarks [24, 25, 37], we283

use ranking-based metrics: Mean Re-284

ciprocal Rank (MRR) and Hits@k,285

evaluated at various k depending on286

the number of negative samples. Each287

baseline is run five times with differ-288

ent random seeds, and we report the289

mean and standard deviation.290

Experiment results. Table 2 and291

Table 3 show the experiment results,292

with additional results available in293

Appendix F. In each table, bold294

numbers indicate the best-performing model on a given metric, and underlined numbers indicate295

the second best. As each dataset has its own characteristics, the results vary across datasets. However,296

there are some emerging patterns in the results that we highlight below.297

• The graph models with personal event sequence embeddings—GCN+S, GAT+S, and especially298

TConv+S—consistently perform well across all datasets and metrics. On PRES-BRIGHTKITE and299

PRES-GOWALLA, TConv+S outperforms all models across all metrics, often by a wide margin,300

especially compared to methods that encode personal events as nodes. On PRES-GITHUB,301

GAT+S shines, outperforming all methods on all metrics.302
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Table 4: Performance results for personal event prediction tasks (all metrics are in percent).
Method PRES-BRIGHTKITE PRES-GOWALLA
Metric MRR Hits@3 Hits@5 Hits@10 Hits@50 MRR Hits@3 Hits@5 Hits@10 Hits@50

Sequential models
BERT 34.2±0.1 35.6±0.2 37.4±0.2 40.1±0.2 50.1±0.3 15.3±0.2 15.7±0.3 18.6±0.3 23.4±0.3 43.1±0.3

BERT-n2v-p 33.8±0.1 35.1±0.2 36.9±0.2 39.6±0.2 49.8±0.2 14.4±0.2 14.8±0.2 17.7±0.2 22.6±0.2 42.4±0.2

BERT-n2v-i 34.4±0.1 35.9±0.1 37.6±0.1 40.3±0.1 50.3±0.2 15.0±0.3 15.4±0.3 18.3±0.3 23.2±0.3 42.7±0.3

Graph models on personal event only graph
GCN 24.9±1.2 27.1±1.5 31.8±1.7 38.8±1.9 55.8±1.0 28.2±3.2 29.7±3.3 34.2±3.0 41.5±2.3 63.8±0.9

GAT 19.0±1.4 20.3±1.7 24.9±1.9 32.1±2.0 52.3±1.6 15.4±1.2 15.4±1.4 20.0±1.5 28.4±1.6 59.3±1.1

TGN 23.5±0.2 24.5±0.3 28.9±0.4 37.1±0.8 54.5±1.1 10.7±0.4 10.6±0.6 14.4±1.1 21.5±1.8 42.7±4.9

DyRep 19.8±2.9 21.4±3.2 26.5±2.5 35.4±1.6 57.2±1.7 7.4±0.6 6.4±0.8 10.0±1.0 17.8±1.0 42.9±2.1

Graph models on personal and relational event graph
GCN_PR 25.4±1.2 27.5±1.3 31.9±1.5 38.2±1.7 54.7±1.6 30.3±5.1 32.0±5.4 36.8±5.2 44.2±4.4 65.4±1.2
GAT_PR 18.8±0.5 20.3±0.6 25.2±0.6 32.9±0.6 53.3±0.6 16.0±0.6 16.0±0.7 20.5±0.8 28.6±0.9 59.2±0.9

TGN_PR 29.5±2.3 33.5±2.2 35.3±2.2 36.0±2.4 36.1±2.4 14.0±2.0 15.7±2.2 17.0±2.4 17.9±2.5 18.2±2.6

DyRep_PR 23.4±2.7 27.5±3.5 30.5±3.2 32.7±4.2 33.3±4.8 10.5±1.4 11.4±1.8 12.4±2.2 13.1±2.8 13.6±3.4

Method PRES-AMAZON-CLOTHING PRES-AMAZON-ELECTRONICS
Metric MRR Hits@3 Hits@5 Hits@10 Hits@50 MRR Hits@3 Hits@5 Hits@10 Hits@50

Sequential models
BERT 3.3±0.0 2.3±0.0 3.5±0.1 6.1±0.1 22.4±0.2 8.1±0.2 7.7±0.2 10.7±0.3 16.1±0.3 38.1±0.2

BERT+n2v-p 3.4±0.0 2.4±0.0 3.6±0.0 6.2±0.1 22.7±0.2 8.1±0.1 7.7±0.1 10.7±0.2 16.1±0.2 38.2±0.1

BERT+n2v-i 3.3±0.0 2.3±0.0 3.5±0.1 6.1±0.1 22.6±0.2 8.1±0.1 7.8±0.1 10.7±0.0 16.1±0.1 38.0±0.2

Graph models on personal event only graph
GCN 10.8±1.7 11.2±2.0 14.1±1.7 19.0±1.1 32.8±0.5 13.3±2.0 13.3±2.5 18.4±2.9 27.6±3.1 55.6±0.9

GAT 3.5±0.0 2.6±0.0 4.0±0.1 7.1±0.1 22.7±0.2 7.4±0.4 6.4±0.4 9.6±0.5 16.1±0.7 44.0±0.8

TGN 9.3±0.9 8.0±0.8 12.8±2.2 25.4±6.8 44.4±3.4 16.2±1.6 17.4±2.0 22.6±1.8 30.8±1.2 54.2±0.8

DyRep 8.9±1.3 8.1±2.4 13.5±4.1 25.1±6.7 43.5±5.7 11.4±0.4 10.6±0.6 15.3±0.8 25.8±1.0 55.1±0.8

Graph models on personal and relational event graph
GCN_PR 10.9±1.3 11.4±1.5 14.3±1.3 19.1±0.8 32.8±0.6 16.6±1.5 17.3±1.9 22.2±2.1 30.6±2.0 56.3±0.8
GAT_PR 3.5±0.1 2.6±0.1 4.0±0.1 7.1±0.2 22.5±0.2 8.0±0.3 7.2±0.4 10.5±0.5 17.2±0.7 44.8±0.6

TGN_PR 9.3±0.7 7.8±1.1 13.9±3.3 30.4±3.7 41.7±1.9 15.6±0.6 16.8±0.8 22.8±0.8 32.7±0.6 54.0±1.0

DyRep_PR 10.5±0.2 9.7±0.5 17.1±0.6 32.9±0.3 41.3±0.4 14.3±0.5 15.0±0.7 21.2±0.9 32.3±1.4 53.3±2.8

• For the AMAZON datasets, TConv+S remains dominant on Hits@k metrics with larger k, achiev-303

ing the best results at Hits@10, Hits@50, and Hits@100 on PRES-AMAZON-CLOTHING, as well304

as Hits@50 and Hits@100 on PRES-AMAZON-ELECTRONICS, while holding second place at305

other k values. At these lower k, where TConv+S ranks second, the best model is TNCN, a tem-306

poral graph method. TNCN, however, does not perform well on Hits@k metrics with larger k.307

• With the exception of TNCN on the AMAZON datasets with small k metrics, the performance of308

temporal graph methods (TGN, DyRep, and TNCN) using graphs with personal event nodes is309

noticeably lower compared to static graph models with sequence embeddings. For the large PRES-310

GITHUB dataset, they encounter GPU out-of-memory errors, even when using small batch sizes.311

• In nearly all cases, converting personal events into nodes and adding them to the relational312

event graph is less effective than modeling personal events with a sequence model and using313

the user’s sequence embedding as an additional node features to the relational event graph. The314

performance of the “+S” versions of static graph models is lower than that of the corresponding315

“_RP” versions across nearly all datasets and metrics, with a few exceptions on the AMAZON316

datasets for Hits@k metrics with lower k.317

Even though GCN+S, GAT+S, and TConv+S perform relational event prediction in two stages, first318

generating user embeddings from personal event sequences and then incorporating them into the graph319

learning process, they still perform well across datasets. In contrast, TGN, DyRep, and TNCN use a320

single-step approach that directly integrates temporal dynamics but operates on graphs where personal321

events are represented as nodes. These differences highlight an opportunity for future exploration322

of how best to represent the temporal dynamics of personal events within a user while jointly modeling323

the full structure that includes user-to-user relational events, in an end-to-end fashion.324

5.2 Personal event prediction tasks325

Experiment setup. We perform personal event prediction experiments on all PRES datasets except326

PRES-GITHUB. In these experiments, we evaluate several sets of baseline methods:327
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1. The first model is a sequential model that uses only personal event data. We use a BERT328

architecture with a prediction head to compute the likelihood of a user having a particular329

personal event in the future. For each user, we use the last 100 personal events in the training set330

to predict the likelihood of future events.331

2. In the second set, we use node2vec [49] to learn the graph structure of relational events and332

generate a graph embedding for each user. We then incorporate the embedding into the BERT333

sequence model. We evaluate two versions of the model: (a) incorporating the graph embedding334

post transformer module and before the prediction head (BERT-N2V-P), and (b) using the335

embedding as a special input token to the transformer module (BERT-N2V-I).336

3. In the third set, we use graph-based models on personal event–only data by creating a bipartite337

graph of user nodes and personal event nodes, based on the last 100 personal events per user.338

We run both static graph models (GCN and GAT) and temporal graph models (TGN and DyRep)339

on this graph.340

4. In the last set, we augment the graph in the third set with relational event data by adding341

relational event edges between users. We then run GCN, GAT, TGN, and DyRep on this graph,342

denoted as GCN_PR, GAT_PR, TGN_PR, and DyRep_PR, respectively.343

Similar to the sequence embedding used in relational event prediction tasks, we apply split tokeniza-344

tion for the BERT model in personal event prediction to allow more flexibility in modeling events.345

We use the same tokenization scheme for each dataset as described earlier. For evaluation, we report346

MRR and Hits@k at various values of k. Each baseline is run five times with different random seeds,347

and we report the mean and standard deviation.348

Experiment results. Table 4 shows the results for the personal event prediction task. As in the349

relational event task, results vary across datasets due to their unique characteristics, with even more350

variations in this setting. We discuss some of the results as follows.351

• The sequence models perform well on PRES-BRIGHTKITE across all metrics. The base BERT352

model, which uses only personal event data, already shows strong performance. Adding353

relational event node2vec embeddings may either improve or degrade performance. In PRES-354

BRIGHTKITE, adding the embedding after the transformer module reduces performance, while355

using it as a special input token improves it. However, the changes are relatively minor but356

sufficient to make BERT-N2V-I the best-performing model on PRES-BRIGHTKITE. Similar357

minimal changes are observed in other datasets.358

• The static graph model, GCN in particular, performs surprisingly well on PRES-GOWALLA. The359

best performance is achieved by the GCN_PR model, which is trained on data containing both360

personal and relational events in a graph with user nodes and personal event nodes. GCN_PR361

also performs relatively well on PRES-AMAZON-CLOTHING and PRES-AMAZON-ELECTRONICS.362

However, the GAT-based models perform noticeably worse than their GCN counterparts.363

• The temporal graph models perform relatively well on the PRES-AMAZON-CLOTHING and364

PRES-AMAZON-ELECTRONICS datasets, particularly on the Hits@5 and Hits@10 metrics. TGN365

and DyRep perform better on graphs that include both personal and relational events. A notable366

exception is the Hits@50 metric.367

The results show that there is no single model that consistently performs best across all datasets.368

Some models work well on certain datasets but not on others. The only consistent pattern is that the369

best-performing models usually use both personal and relational events. This opens up opportunities370

for designing better models that can effectively integrate both types of information.371

6 Conclusions372

In this work, we aim to advance user event modeling by introducing a unified framework that captures373

both personal and relational events. We curate and release a collection of public datasets with374

corresponding prediction tasks, all aligned under a formalization that integrates both event types375

to provide a more complete view of user behavior. Through empirical evaluation, we demonstrate376

that models leveraging both event types consistently outperform those using only one. We also377

show that existing methods, originally developed for either sequential or relational data, even with378

some adaptations to handle both (e.g., temporal graph models), are less effective across many of our379

prediction tasks. These findings highlight the need for further study of unified user event modeling.380
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A Dataset Documentation642

All datasets presented in this paper are intended for academic research purposes, and their corre-643

sponding licenses are listed in this section. They are constructed from publicly available resources644

described below. In all cases, we perform anonymization by removing any personally identifiable645

information. User IDs in the original data are replaced with auto-incremented ID numbers.646

Download links. The datasets and tasks described in this paper are available for download from the647

following links:648

• Datasets and prediction tasks website and documentation: https://kaggle.com/datasets/649

3489123fd09a8812080c74db591a191c0d5b77d585c46979c648cf3bb168a9c0650

• Code for dataset creation and experiment runs: https://anonymous.4open.science/r/personal-651

relational-event-sequence-E40F652

Dataset source and license information. Below, we describe how the source data was obtained653

and provide license information for each dataset:654

• PRES-GITHUB. This dataset is based on GitHub data collected from the GH Archive website655

(https://www.gharchive.org/) using its HTTP JSON download link. It contains GitHub656

user activity from January 2025, and user IDs have been anonymized. Content from GH Archive657

is released under the CC-BY-4.0 license, while the associated code is released under the MIT658

license.659

• PRES-AMAZON-CLOTHING and PRES-AMAZON-ELECTRONICS. These datasets contain Ama-660

zon product reviews and ratings in their respective categories. Both are based on Amazon661

review data collected by McAuley et al. [44] and hosted at: https://cseweb.ucsd.edu/662

~jmcauley/datasets/amazon/links.html. The Amazon review content is licensed under663

the Amazon license:664

By accessing the Amazon Customer Reviews Library ("Reviews Library"), you agree665

that the Reviews Library is an Amazon Service subject to the Amazon.com Conditions666

of Use and you agree to be bound by them, with the following additional conditions:667

In addition to the license rights granted under the Conditions of Use, Amazon or its con-668

tent providers grant you a limited, non-exclusive, non-transferable, non-sublicensable,669

revocable license to access and use the Reviews Library for purposes of academic670

research. You may not resell, republish, or make any commercial use of the Reviews671

Library or its contents, including use of the Reviews Library for commercial research,672

such as research related to a funding or consultancy contract, internship, or other673

relationship in which the results are provided for a fee or delivered to a for-profit674

organization. You may not (a) link or associate content in the Reviews Library with675

any personal information (including Amazon customer accounts), or (b) attempt to676

determine the identity of the author of any content in the Reviews Library. If you677

violate any of the foregoing conditions, your license to access and use the Reviews678

Library will automatically terminate without prejudice to any of the other rights or679

remedies Amazon may have.680

• PRES-GOWALLA. This dataset contains user activity on the (now defunct) social network681

Gowalla. It was originally collected by Cho et al. [40] using the platform’s public API682

and published in the SNAP Dataset Repository [41] (https://snap.stanford.edu/data/683

loc-Gowalla.html). The curator confirmed that SNAP datasets are free to use, but no specific684

license information is available.685

• PRES-BRIGHTKITE. This dataset contains user activity on the (also now defunct) social network686

Brightkite. It was also originally collected by Cho et al. [40] using the platform’s public API687

and published in the SNAP Dataset Repository [41] (https://snap.stanford.edu/data/688

loc-brightkite.html). The curator confirmed that SNAP datasets are free to use, but no689

specific license information is available.690
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B Dataset Contents691

Examples of dataset contents. To illustrate the structure of the curated datasets, we provide692

examples of user event sequences from several PRES datasets. Each table includes both personal and693

relational events, showing how different types of user activity are represented in our format.694

• PRES-BRIGHTKITE and PRES-GOWALLA695

Table 5: Example of user event sequence in PRES-BRIGHTKITE and PRES-GOWALLA.

uid timestamp event_set event other_uid

39 1206596784 personal 9xj6hwkm <NA>
39 1206596838 personal 9xj3fynm <NA>
39 1206596871 personal 9xj3fynm <NA>
39 1235862855 personal 9xj65423 <NA>
39 1250883230 personal 9xj65423 <NA>
39 1254535157 personal 9xj5skbn <NA>
39 1254535193 personal 9xj5sm00 <NA>
39 1283443369 personal 9q8yyyhs <NA>
39 <NA> relational friendship 0
39 <NA> relational friendship 30
39 <NA> relational friendship 105
39 <NA> relational friendship 1190

• PRES-AMAZON-CLOTHING and PRES-AMAZON-ELECTRONICS696

Table 6: Example of user event sequence in PRES-AMAZON-CLOTHING and PRES-AMAZON-
ELECTRONICS.

uid timestamp event_set event other_uid

254057 1375401600 personal B000A6PPOK:3 <NA>
254057 1377302400 personal B003TMPHOU:5 <NA>
254057 1377302400 personal B004A81PJI:4 <NA>
254057 1377302400 personal B0054R4AXW:5 <NA>
254057 1377302400 personal B005CPGHAA:5 <NA>
254057 1377302400 personal B007FNXMEQ:5 <NA>
254057 1377302400 personal B007IV7KRU:5 <NA>
254057 1377302400 personal B007WAWHD4:5 <NA>
254057 1377302400 personal B008AST7R6:5 <NA>
254057 1377302400 personal B008R56H4S:5 <NA>
254057 1404086400 relational co-review_product 107741

• PRES-GITHUB697

Table 7: Example of user event sequence in PRES-GITHUB.

uid timestamp event_set event other_uid

3669059 1738288160 personal PullRequestReviewCreated <NA>
3669059 1738288191 personal PullRequestReviewCreated <NA>
3669059 1738288198 personal PullRequestClosed <NA>
3669059 1738288200 personal Push <NA>
3669059 1738288206 personal PullRequestClosed <NA>
3669059 1738288207 personal Push <NA>
3669059 1738288217 personal DeleteBranch <NA>
3669059 1738288219 personal DeleteBranch <NA>
3669059 <NA> relational collaborate 824409
3669059 <NA> relational collaborate 3126262
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(a) PRES-BRIGHTKITE (b) PRES-GOWALLA

(c) PRES-AMAZON-CLOTHING (d) PRES-AMAZON-ELECTRONICS

Figure 2: Histogram of the number of events per user in each dataset.

Figure 3: Histogram of the number of event per
user in PRES-GITHUB.

Event statistics. To characterize user events,698

we include histograms in Figure 2 and Figure 3699

showing the distribution of event counts per700

user in each dataset. These histograms are con-701

structed by computing the number of events as-702

sociated with each user and aggregating how703

many users fall into each count bucket. The704

y-axis is log-scaled to highlight the long-tailed705

nature of user behavior, where the majority of706

users generate only a small number of events,707

while a much smaller group contributes dispro-708

portionately large volumes of activity. This skew709

is common across datasets and presents both710

challenges and opportunities for modeling.711

C Dataset Construction712

This section provides more details about how all713

of the PRES datasets are created. In short, the data processing files are available in our GitHub repo,714

following the format create_datasets/process_X.ipynb for first generating the processed files,715

and create_datasets/task_X.py for subsequently generating the prediction tasks (including716

negative sampling for test set), where X is the dataset name.717
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C.1 PRES-BRIGHTKITE and PRES-GOWALLA718

The raw data of users’ friendships and check-in histories are stored in text files. We read the friendship719

files into a dataframe and reformat them into our standard format. The check-in history file contains720

the latitude and longitude of check-in locations. After reading the files, we convert the latitude-721

longitude encoding of locations into Geohash-8 string representations and convert the check-in times722

into Unix timestamp format. Relational events denote friendship between two users, and there are no723

timestamps associated with this friendship from the raw data. We combine both event types, sort the724

data by uid and timestamp, and save it into a CSV file (in our dataset repository on Kaggle, this is725

processed/X_all_events.csv).726

Now that we have all events saved in a standardized format, we can create our splits and pre-727

generate negative samples for reproducibility within create_datasets/task_brightkite.py728

and create_datasets/task_gowalla.py. For both tasks, we begin by splitting all events into729

separate dataframes for personal and relational events.730

Relational Task: Friendship Prediction. To generate the relational event prediction task, we per-731

form a random split of 70%/10%/20% on the relational event dataframe to generate the train/eval/test732

datasets, and store them into CSV files. Following Gastinger et al. [25], we adopt a 1-vs-1000733

negative sampling scheme, in which 1,000 negative events are sampled for each relational event in734

the prediction set. Negative samples are drawn via uniform random sampling of users, excluding735

those who already have relational events with the target user in the training set.736

Personal Task: Check-in Prediction. To generate the personal event prediction task, we perform737

timestamp-based splitting on the personal event dataframe into train/val/test sets. We split each738

user’s personal events by taking the last 20% for the test set, the previous 10% for validation, and739

the remaining 70% for training. We cap the number of events in the test and validation sets to at740

most 20 and 10 per user, respectively. Because personal events are more frequent than relational741

ones, we adopt a 1-vs-500 negative sampling scheme. As geohash strings encode hierarchical742

spatial information (e.g., earlier characters represent broader regions), we apply stratified hierarchical743

sampling. Specifically, negatives are stratified by shared geohash prefixes, from matching the first744

five characters to none. Varying the number of matching characters ensures our negatives contain a745

mix of nearby and distant locations.746

C.2 PRES-AMAZON-ELECTRONICS and PRES-AMAZON-CLOTHING747

The input zipped JSON containing the raw data is loaded into a Pandas DataFrame. Each row748

corresponds to a single review by a single user. We drop rows belonging to users with fewer than 5749

product reviews, and create anonymous user IDs from the input ’reviewID’ column.750

Personal events here are simply all the remaining rows; the ’event’ column is created by concatenating751

the product ID with the rating given to it in that review. Relational events are created by finding users752

who have co-reviewed at least 3 of the same products. Timestamps for personal events are naturally753

the time at which the review was posted. For relational events, the timestamp corresponds to when754

this co-review condition is first met.755

The schema for both of these personal and event dataframes are homogenized. At the end of756

process_amazon-X.ipynb, we combine both the relational and personal event data and write it out757

as a single CSV. This is now the input into task_amazon.py for each dataset.758

Both tasks use a 70% train, 10% validation and 20% test split paradigm, where the test events are the759

latest 20% of events (either personal or relational) per user, with the validation events immediately760

preceding the test events. To manage large histories of some users, we cap test and val sets at 20 and761

10 events per user, respectively.762

Relational Task: Co-Review Prediction. We apply the above logic to only the relational events,763

and can now identify the maximum timestamp (aka cut-off time) per user in the training data. This is764

used to split all personal events into ’observed’ (before cut-off time) and ’unobserved’ (after cut-off765

time). Only observed personal events are used for training. Mirroring the logic for PRES-BRIGHTKITE766

and PRES-GOWALLA’s relational task, we adopt a 1-vs-1000 negative sampling scheme. Each negative767

corresponds to a uniform random sampling of user IDs that do not have a true co-review relationship768

with the user ID of interest.769
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Personal Task: Product Prediction. Similarly to the relational task, we apply the splitting logic770

only to personal events. We use the timestamp of the latest train event per user to identify which of771

that user’s relational events are included for training. We adopt a 1-vs-500 negative sampling scheme,772

aligning with PRES-BRIGHTKITE and PRES-GOWALLA’s personal task logic. Negative samples for773

each personal event (e.g., B001OE3F08:3) are drawn from three sources: (1) the same product with774

different ratings (e.g., B001OE3F08:5); (2) other personal events not in the user’s training data; and775

(3) samples from the second set with randomly perturbed ratings.776

C.3 PRES-GITHUB777

The raw data of GitHub users’ activities comes as a compressed JSON. We unpack this into a778

CSV in create_datasets/github_extract.py. We aim to remove bot accounts that could add779

substantial noise by dropping any rows where the user contains [bot] in their name or if that user780

conducted 100,000 or more actions in the dataset.781

Next, in create_datasets/process_github.ipynb we additionally remove users with fewer782

than 3 actions. Relational events connect users who have pushed or opened pull requests at least783

5 times in the same repository; predicting relational events in this context is about predicting784

collaborators. Personal events correspond to the rows in the original dataset, which represent only 24785

unique GitHub activities. Thus, the personal event task construction used in the previous datasets is786

not applicable to PRES-GITHUB. We decided to omit this dataset from the set of datasets used for787

creating personal event prediction tasks. These personal and relational events have their schemas788

homogenized and are concatenated. The result is saved as processed/github_all_events.csv789

on Kaggle datasets.790

Finally, create_datasets/task_github.py is used to create train/validation/test splits and nega-791

tives for the relational event prediction task. The logic here follows PRES-BRIGHTKITE, including792

the split proportions and limitations on the maximum number of events withheld for validation and793

test. The notable difference is that we adopt a 1-vs-300 negative sampling scheme due to the large794

size of the dataset.795

D Additional Related Works796

D.1 Event sequence.797

Event sequence modeling is a broad topic that covers many different domains which share a similar798

goal of understanding and potentially predicting future events given past history. In healthcare,799

being able to predicting patient’s upcoming medical visits enables proactive care and better resource800

allocation for healthcare providers. In manufacturing and industrial setting, modeling sequences of801

equipment sensor readings or machine states allow for early detection of faults, enabling predictive802

maintenance and reducing downtime. These problems share common challenges such as modeling803

temporal dependencies, handling irregular and asynchronous observations.804

Temporal point processes (TPPs) provide a powerful tool for modeling discrete events as stochastic805

processes in continuous time. Classical models like the Poison process and the Hawkes process806

[50] allow for explicit modeling of event dynamics, including self-excitation and mutual inhibition,807

through parameterized intensity functions that govern the likelihood of future events. Recent work808

has introduced neural extensions such as Neural Hawkes Process [26] [27] and the Self-Attentive809

Hawkes Process [28], which integrate RNNs or attention mechanisms into the intensity function.810

These models are particularly well suited for fine-grained timestamp prediction and have found811

applications in finance, healthcare, and user behavior modeling. However, TPPs typically assume a812

simple structure over events and focus solely on the temporal dimension, making them less suitable813

for capturing structured dependencies across users or networks.814

Sequential recommendation. A closely related application domain is sequential recommendation,815

where the goal is to predict the next item a user will interact with based on their historical behavior.816

Early methods employed Markov chains or matrix factorization over time-slided data [51], while more817

recent models use deep sequence encoders such as GRU4Rec [32], SASRec [33], and BERT4Rec818

[13], which apply Transformer-based architectures to item sequences. These models have shown819

strong performance by capturing user preferences over time. However, they typically model each820

user independently and do not account for interactions among users.821
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D.2 Graph models.822

In parallel, there has been significant progress in graph-based modeling of user interaction, especially823

through Graph Neural Networks (GNN). While static graphs lack explicit timestamps and do not824

capture the order of interactions, they can still represent temporal data through careful graph construc-825

tion, such as building graphs over specific time windows or pruning outdated edges [52]. This setup826

allows for framing personal and relational event prediction tasks as link prediction (e.g. forecasting827

probability of user-item interactions) or node classification (e.g. fraud detection). Early GNNs like828

GCN [45] introduced neighborhood aggregation but were limited by their transductive nature and the829

requirement of full graph knowledge during training. GraphSAGE [53] addressed these issues by830

introducing inductive learning via stochastic sampling, while PinSAGE [54] scaled GNNs to billions831

of nodes via relaxing memory constraints. GAT [46] incorporated attention mechanisms and later832

HGT [55] extends GAT to heterogeneous graphs. These developments have established GNNs as a833

powerful tools for relational modeling [10].834

Temporal graph. As described in Gastinger et al. [25], temporal graph methods fall into two broad835

categories: discrete-time and continuous-time. Discrete-time methods exist for both homogeneous836

[56] and heterogeneous datasets [57–59]. Continuous-time methods arguably preserve more infor-837

mation and can be converted into discrete graphs, but the reverse is not possible [17]. TGN [16]838

introduces a general framework for modeling continuous-time dynamic graphs, categorizing DyRep839

[19] as a special case, followed by several other models such as DyGFormer [22], NAT [21], TNCN840

[20], and CTAN [23]. Other temporal graph models such as HTGN-BTW [60] and STHN [61]841

propose different extensions of TGN to handle heterogeneous data. Beyond the standard temporal842

graphs, several methods have also been proposed for modeling temporal knowledge graphs [62–64].843

D.3 Benchmark datasets.844

Several benchmark efforts have been proposed across related areas. The temporal graph benchmarks845

include the TGB [24], its heterogeneous and knowledge graph extension (TGB 2.0) [25], and TGB-846

Seq [37], which include a more complex sequence of edge dynamics. For static graph learning,847

OGB [38] and its large-scale extension OGB-LSC [39] provide widely used benchmarks. In the848

recommendation domain, large-scale user-item interaction datasets have been released through849

benchmarks such as MIND [65], TenRec [66], NineRec [67], and BARS [68]. For event sequence850

modeling and temporal point processes (TPP), recent benchmarks include EBES [69], EasyTPP [70],851

and HOTPP [71].852

The closest dataset or benchmark work from our paper is the temporal graph benchmark (TGB)853

by Huang et al. [24]. It contains several datasets that model user behaviors. These datasets can854

be roughly divided into two categories: (1) user-to-user interaction datasets, such as TGBL-COIN,855

TGBL-COMMENT, and TGBN-TRADE; (2) user-to-item bipartite interaction datasets, such as856

TGBL-WIKI, TGBL-REVIEW, TGBN-GENRE, TGBN-REDDIT, and TGBN-TOKEN. The first category857

of user-to-user interaction datasets are similar to the relational event part of our datasets; however858

our datasets also contain personal event sequences, in addition to relational events, which are not859

present in the TGB dataset.860

The second category of TGB datasets are bipartite temporal graphs. In our PRES formulation, the861

interaction of a user to an item can be encoded as a personal event, where an item is represented as an862

event or a token. However, the personal event abstraction in the PRES formulation can also encode863

other types of events. An example is illustrated in Figure 1, where User A has both user-item events864

(product views) and other types of events such as ‘Add to cart’ and ‘Purchase’. Our formulation also865

contains relational events that model use-to-user interactions.866

In addition, formulating an item as a personal event instead of a node enables the flexibility of867

encoding items that have hierarchical information such as Geohash in our Brightkite dataset. Each868

character in the geohash encodes increasingly detailed location information. When we encode an869

8-letter geohash as a node, we lose the hierarchical information encoded in the geohash. In contrast, if870

we are not forced to represent an event as a node, we have more flexibility to encode the hierarchical871

structure of the geohash. For example, in a sequence model, one could tokenize the event freely. A872

single event could be encoded into multiple tokens.873

In terms of the size, the TGB dataset ranges from a small size of 255 node graph (TGBN-TRADE)874

to nearly a million node graph (TGBL-COMMENT). Our PRES dataset also ranges from a small-to-875
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Table 8: Hyperparameter configurations for personal event prediction tasks

Model Name
Learning

Rate
Batch
Size Epochs

Emb
Dim Heads Layers Channels

Max
Events

Max
Examples

Num Neg
Samples

Num
Neighbors

BERT 3e-4 1024 10 64 4 4 – 100 50 10 –
BERT-n2v-p 3e-4 1024 10 64 4 4 – 100 50 10 –
BERT-n2v-i 3e-4 1024 10 64 4 4 – 100 50 10 –

GCN 1e-3 1024 10 128 – 2 128 100 – 5 10
GCN_PR 1e-3 1024 10 128 – 2 128 100 – 5 10

GAT 1e-3 1024 10 128 2 2 64 100 – 5 10
GAT_PR 1e-3 1024 10 128 2 2 64 100 – 5 10

TGN 1e-3 4096 10 16/32 – – – 100 – 5 10
TGN_PR 1e-3 4096 10 16/32 – – – 100 – 5 10

DyRep 1e-3 4096 10 32/64 – – – 100 – 5 10
DyRep_PR 1e-3 4096 10 32/64 – – – 100 – 5 10

medium size of 58 thousand users (PRES-BRIGHTKITE) to a relatively large dataset of PRES-GITHUB876

with 3.6 million users. In terms of the number of events (or number of edges in TGB dataset) our877

PRES datasets are comparable with TGB datasets, and in some cases larger than TGB datasets. The878

number of edges in TGB datasets range from around 150 thousands edges (TGBL-WIKI) to 44 million879

edges (TGBL-COMMENT); whereas the number of events in our datasets range from 1.5 million880

(PRES-AMAZON-CLOTHING) to more than 100 million events (PRES-GITHUB).881

D.4 Other research on graph and sequence.882

Several studies have been conducted on different settings on temporal and structural dynamics. Some883

models focus on modeling graph and time series data using spatio-temporal graph [72–75]. Other884

model combine graph model output and sequence model output in various application areas [76–78].885

A recent study focus on tokenizing graph and applying transformers or state space models (SSMs)886

for graph learning [79–85]. Another studies works on incorporating knowledge graph into language887

model. [86–88], as well as performing graph-augmented language generation [89, 90].888

E Experiment Details889

E.1 Hyperparameters890

Personal event prediction task. In Table 8, we present the hyperparameters used during the training891

of various models for personal event prediction tasks. We use the following notations: Emb Dim892

denotes the dimensionality of token embeddings; Heads is the number of attention heads; Layers893

refers to the number of hidden layers; Channels indicates the number of hidden channels per layer in894

GAT and GCN models; Max Examples is the maximum number of training samples generated per895

user; Num Neg Samples represents the number of negative samples for each (positive) sample; and896

Num Neighbors is the number of neighbors sampled per layer for GNN models. Additionally, due to897

GPU memory limitations, we reduce the embedding dimensions for the TGN and DyRep models to898

16 and 32, respectively, for the PRES-BRIGHTKITE and PRES-GOWALLA datasets, and to 32 and 64899

for PRES-AMAZON-CLOTHING and PRES-AMAZON-ELECTRONICS.900

Relational event prediction task. In Table 9, we present the hyperparameters used across all901

models for relational event prediction tasks. Due to memory and time constraints, batch size, number902

of epochs, and embedding dimensions were adjusted per dataset. All datasets used a batch size of903

4096, except for PRES-GITHUB, which used 512. The number of training epochs was set to 5 for904

PRES-GITHUB, 20 for PRES-GOWALLA and PRES-AMAZON-ELECTRONICS, 100 for PRES-AMAZON-905

CLOTHING, and 1000 for PRES-BRIGHTKITE. The model checkpoint with the best validation MRR906

was saved and used for testing. As shown in our results, TGN, DyRep and TNCN could not be run907

on PRES-GITHUB. For the remaining datasets, the embedding dimension for TGN and DyRep was908

128, except for PRES-GOWALLA, which used 64 to avoid GPU out-of-memory errors. TNCN used909

‘NCN_mode‘ of 1, an embedding dimension of 64 and a smaller batch size (1024) for all datasets.910
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Table 9: Hyperparameter configurations for relational event prediction tasks

Model Name
Learning

Rate
Batch
Size Epochs

Emb
Dim Heads Layers Channels

Num Neg
Samples

Num
Neighbors

GCN 1e-3 512/4096 5-1000 128 – 2 128 5 10
GCN_PR 1e-3 512/4096 5-1000 128 – 2 128 5 10
GCN+S 1e-3 512/4096 5-1000 128 – 2 128 5 10

GAT 1e-3 512/4096 5-1000 128 2 2 128 5 10
GAT_PR 1e-3 512/4096 5-1000 128 2 2 128 5 10
GAT+S 1e-3 512/4096 5-1000 128 2 2 128 5 10

TConv 1e-3 512/4096 5-1000 128 2 2 128 5 10
TConv_PR 1e-3 512/4096 5-1000 128 2 2 128 5 10
TConv+S 1e-3 512/4096 5-1000 128 2 2 128 5 10

TGN 1e-3 4096 20-1000 64/128 – – 128 5 10
DyRep 1e-3 4096 20-1000 64/128 – – 128 5 10
TNCN 1e-3 1024 20-1000 64 – – 128 5 10

Table 10: Computational Time (in hours) for Different Models and Datasets

Method Time (h)

AMAZON-CLOTHING AMAZON-ELECTRONICS BRIGHTKITE GOWALLA GITHUB

Relational event prediction tasks

GCN 0.06±0.00 0.05±0.00 0.60±0.00 0.26±0.00 8.38±0.11
GCN_RP 0.10±0.01 0.17±0.00 0.40±0.00 1.98±0.03 7.39±0.06
GCN+S 0.07±0.00 0.05±0.00 0.61±0.00 0.29±0.00 8.58±0.12
GAT 0.07±0.01 0.08±0.02 0.61±0.00 0.29±0.00 8.41±0.12
GAT_RP 0.15±0.03 0.18±0.01 0.49±0.06 2.07±0.02 7.40±0.06
GAT+S 0.09±0.02 0.05±0.00 0.62±0.00 0.32±0.00 2.52±0.20
TConv 0.05±0.00 0.04±0.00 0.31±0.00 0.50±0.00 19.8±5.38
TConv_PR 0.10±0.00 0.21±0.00 1.86±0.00 2.98±0.04 12.5±6.83
TConv+S 0.05±0.00 0.04±0.00 0.33±0.00 0.57±0.00 20.2±8.79
TGN 0.49±0.03 0.32±0.00 1.06±0.01 4.62±0.10 –
DyRep 0.49±0.02 0.31±0.00 1.03±0.01 4.43±0.07 –
TNCN 0.63±0.01 0.52±0.00 1.37±0.02 2.04±0.05 –

Personal event prediction tasks

GCN 5.81±0.10 7.14±0.29 1.73±0.02 8.01±0.71 –
GCN_PR 5.80±0.11 7.21±0.29 1.73±0.03 7.45±1.82 –
GAT 5.83±0.10 7.17±0.28 1.73±0.03 7.33±1.82 –
GAT_PR 5.82±0.10 7.24±0.30 1.76±0.02 7.51±1.79 –
TGN 3.94±0.40 4.10±0.10 0.33±0.01 3.12±0.75 –
TGN_PR 4.38±0.39 5.75±0.19 0.81±0.03 7.89±1.78 –
DyRep 2.03±0.38 3.23±0.34 0.38±0.01 4.11±1.03 –
DyRep_PR 4.88±0.10 5.96±0.20 0.78±0.03 7.85±1.86 –
BERT 4.67±0.06 6.30±0.15 2.65±0.02 9.21±1.11 –
BERT+n2v-i 3.41±0.14 4.43±0.19 2.54±0.01 6.40±0.19 –
BERT+n2v-p 3.60±0.22 4.78±0.14 2.52±0.01 6.38±0.20 –

E.2 Computing Resources911

We conducted all experiments on a server equipped with 8 NVIDIA Ampere A10G GPUs (24912

GB each), 16 CPU cores, and a RAM upper limit of 512 GB. To fully leverage all resources, we913

parallelized the training runs so that each experiment used a single GPU. Each experiment is designed914

to be run on a single-GPU machine. Table 10 summarizes the average training time (in hours) and915

standard deviation for each model across five datasets, categorized by task type. For relational916

event prediction tasks, lightweight GCN and GAT variants exhibit minimal computational overhead,917

with training times generally under one hour except on the GitHub dataset. In contrast, temporally918

expressive models such as TGN and DyRep incur significantly higher costs, especially on large-scale919

datasets like Gowalla. In personal event prediction tasks, training times increase across the board,920

with most models exceeding 7 hours on larger datasets, again highlighting the computational demands921

of modeling fine-grained temporal dynamics.922
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Figure 4: Comparison of relational event predictions across different datasets.

F Additional Experimental Results923

Experiment Figures. In Figures 4 and 5, we present the results from the main paper in a more924

visual format to facilitate comparison across methods. In the relational event prediction tasks, across925

all datasets and metrics, static GNNs augmented with personal event sequence embeddings (GCN+S,926

GAT+S, and especially TConv+S) consistently perform well, achieving the best or second-best results.927

This highlights the benefit of integrating both personal and relational signals. For temporal graph928

methods, the TGN and DyRep under-perform in most of datasets and most metrics. TNCN perform929

well on amazon datasets on MRR and Hits@k with lower k, but under-perform on other metrics or930

other datasets. For personal event prediction tasks, BERT+n2v-i offers slight improvements over931

regular BERT. In particular, BERT-based models exhibit competitive performance in some cases,932

most prominently on the Brightkite dataset, where they outperform GNN-based counterparts at MMR933

and lower hit rate thresholds such as Hits@3, Hits@5, and Hits@10.934

Additional analysis. One of the main takeaways of the paper is that models leveraging both935

personal and relational events outperform those using only one type in either relational or personal936

event prediction tasks. For example, in relational event prediction, the "+S" models (GCN+S, GAT+S,937

and TConv+S) incorporate sequence embeddings of personal event data into the relational event938

graph, boosting performance over models that rely solely on relational events (GCN, GAT, or TConv).939

This highlights the need for models that jointly account for both signals.940

We then compare the "+S" strategy to the "_RP" models, which convert each unique personal event941

into a node and add it to the user-to-user graph used by the GCN model, creating edges between users942

and their personal event nodes. In most cases, "+S" models outperform "_RP" models, with very943

few exceptions. In some datasets, such as pres-brightkite, pres-gowalla, and pres-github,944

adding personal event nodes to the graph even reduces performance. These results may be explained945

as follows:946
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Figure 5: Comparison of personal event predictions across different datasets.

• When we exclude personal events (standard GCN, GAT, and TConv), the model is still able to947

extract and learn some predictive information from the user-to-user relational events alone to948

some degree.949

• When we include personal events as nodes (GCN_RP, GAT_RP, TConv_RP), this adds more950

noise than benefit to the system, as the number of personal event nodes is much larger than the951

number of user nodes. As a result, model performance decreases.952

• When we encode personal events as sequence embeddings (GCN+S, GAT+S, and TConv+S),953

this produces meaningful features without introducing excessive noise. The models are able954

to capture additional signals from these personal event embeddings, leading to performance955

improvements.956

• In addition, when modeling personal events using a sequence model (BERT) in the "+S" strategy,957

we retain the hierarchical information of the personal events (such as geohash check-in events958

in pres-brightkite and pres-gowalla). In contrast, when we convert personal events into959

nodes as in the "_RP" strategy, we lose the hierarchical information present in the events.960

However, this pattern does not always generalize to every dataset, as we see in961

pres-amazon-clothing, where "_RP" models perform relatively well on MRR and Hits@5, but962

not on Hits@k metrics with larger k. This suggests that in this dataset, personal event nodes may963

not merely act as noise in the graphs. Instead, they help the model improve precision on the top964

candidates (i.e., fewer but more accurate suggestions), at the expense of lower recall coverage for965

larger k. In addition, the encoded hierarchical information in the product-rating nodes may be less966

important in this dataset. This observation may influence the architecture design of future models967

aiming to leverage both personal and relational event signals.968
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G Limitations and Broader Impacts969

Limitations. A key challenge in this work is dataset curation, as many public datasets have already970

been collapsed into either graph-only or sequence-only formats, often discarding personal or relational971

events in the process. While we were able to gather and unify a set of datasets that include both event972

types, they may not fully capture the diversity and complexity of user event modeling across domains.973

Another limitation is that our current formulation does not support event-level or user-level features,974

presenting an opportunity for future work to extend the framework toward feature-aware modeling.975

Broader impact. The datasets and prediction tasks we release may support future research on user976

event modeling, particularly in settings that involve both personal and relational events. Researchers977

can build models on top of these resources and evaluate them in a consistent way. This can help978

accelerate empirical progress and facilitate more comparable results. This has potential impact in a979

range of industry applications where modeling user behavior is critical, such as recommendation,980

fraud detection, and user interaction analysis.981

Potential negative impact. The datasets we release may not cover all use cases of user event982

modeling, and may reflect only a subset of real-world scenarios. This could introduce bias in model983

development or evaluation, especially if models are tuned specifically for the structure or properties of984

our datasets. As a result, there is a risk that future methods may overfit to our datasets and generalize985

less effectively to other domains or applications.986
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Changes made987

We have made several changes to our paper to accommodate the feedback from the NeurIPS 2025988

reviews and to improve the clarity, readability, and quality of the paper. Among the changes we989

made are:990

1. Problem Formalization. We revised the related works (Section 2) and problem formulation991

(Section 3) to clarify how our formulation (PRES) relates to previous formulations in sequence992

and graph modeling. We also highlight the differences between PRES and dynamic/temporal993

graph formulations, particularly in the setting described in the introduction, where the number994

of personal events is far larger than that of relational events.995

2. Baseline Models. We added more recent baselines to our experiments. From the static graph996

models, we include Graph Transformer (TConv) [47], in addition to GCN and GAT. Similar to997

GCN and GAT, we run three versions of Graph Transformer under slightly different settings:998

TConv, TConv+S, and TConv_RP. From the temporal graph models, we added the Temporal999

Neural Common Neighbor (TNCN) [20] to our experiments.1000

3. Comparison with Previous Benchmark Papers. We expanded our survey of related works1001

with an additional section in Appendix D. We also added a discussion on how our datasets1002

relate to previous benchmark dataset papers in Appendix D.3, in particular the Temporal Graph1003

Benchmark (TGB) by Huang et al. [24], which we consider closely related to our work.1004

4. Dataset Processing Details. We previously open-sourced the code for creating the PRES1005

datasets in our code repository and provided a high-level description of the processing steps.1006

In this revision, we expanded the description with more detail in Appendix C, which provides1007

additional context and clarity on our data processing stages.1008

5. More Analysis on the Results. We added further discussion of the experimental results in1009

Appendix F. In particular, we examine possible reasons why the strategy of converting personal1010

events into nodes and connecting them to user nodes is suboptimal.1011

6. Metadata/Documentation Update in Our Kaggle Dataset. We updated the metadata and1012

descriptions in our Kaggle datasets so that every CSV file includes attached metadata. This is in1013

addition to the dataset description we previously provided, which specifies that all files in the1014

datasets follow the same conventions described in Section 4.1015
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