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Abstract

In many areas, such as the physical sciences, life sciences, and finance, control
approaches are used to achieve a desired goal in complex dynamical systems
governed by differential equations. In this work we formulate the problem of
controlling stochastic partial differential equations (SPDE) as a reinforcement
learning problem. We present a learning-based, distributed control approach for
online control of a system of SPDEs with high dimensional state-action space
using deep deterministic policy gradient method. We tested the performance of our
method on the problem of controlling the stochastic Burgers’ equation, describing
a turbulent fluid flow in an infinitely large domain.

1 Introduction

Partial differential equations (PDE) are commonly used to explain complex dynamical systems
such as fluid dynamics, electromagnetism, etc. While PDEs successfully describe a wide range of
dynamical systems, random perturbations require further modelling in the governing equations of
some dynamical systems, e.g., turbulent flows. Stochastic partial differential equations (SPDEs) are
used to model the inherent stochasticities in dynamical systems (Walsh [1986]). Drawing by recent
advances in design and control of the dynamical systems in engineering applications, PDE control
has attracted a lot of attention (Krstić [2008], Ahuja et al. [2011], Brunton and Noack [2015], Burns
and Hu [2013]); whereas control of SPDEs remains scarce. PDE control methods are incorporated
successfully in many engineering applications; however, the majority of them require far too much
knowledge of the system, including a complete model of the PDE and the design of a customized
controller, both of which are computationally expensive and not robust to environmental changes.

Reinforcement learning (RL) was recently used for PDE control with the application of heating,
ventilating, air conditioning (HVAC) control design in a room as an example(Farahmand et al. [2016,
2017], Pan et al. [2018]). In these works, the heat transfer equation with a pre-determined flow field
velocity was formulated as an MDP, and RL algorithms used to control the state of the ventilator.
Unlike PDE control, there have been few studies on controlling SPDEs. Due to the nonlinearity and
randomness of the system, such a problem is extremely challenging for traditional control methods to
address (Rosseel and Wells [2012], Øksendal [2005]). In this work, we present an RL framework
for online control of stochastic dynamical systems. Inspired by the promising performance of recent
RL algorithms in PDE control, we formulate the problem of controlling a SPDE as an MDP with
an infinite dimensional state-action space, and use Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al. [2016]) to train our agent. We evaluate our framework to control the stochastic
Burgers’ equation, by damping the shock wave induced by inherent perturbations.
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2 Methodology

We consider a (controlled) stochastic dynamical system governed by
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where u (x, t) denotes the state variable of the dynamical system which depends on spatial free
variables x = (x1,· · · , xn), within an n-dimensional domain Ω, x1:n ∈ Ω ⊂ Rn, and time t ∈ R+,
and its derivatives with respect to the free variables. F(.) is a nonlinear general function of the
derivatives parameterized by p. In the above equation ξ (x, t) is a multidimensional noise that is
white in time and correlated in space, and f(x, t) is a control input forcing function, which will be
further discussed later.

The above SPDE is solved, either numerically or analytically, on domain Ω bounded to the boundary
∂Ω = Γ, with boundary condition uΓ. An example of the control problem here can be defined as
setting the state variable to a desirable value u = u∗, within an arbitrary controlled sub-domain of Ωc
bounded to the boundary ∂Ωc = Γc, at all time t. A realistic example of this sort of control problem
is an HVAC unit system where we attempt to set the temperature to a comfortable value, in a specific
part of a building, in the presence of an air flow. The desired control problem can be formally defined
as the following optimal control problem:
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To solve this (optimal) control problem, we propose using an RL approach. To this end, the continuous
space-time SPDE is discretized in both space and time by a numerical solver, and the discretized SPDE
is formulated as a discrete space-time, continuous state-action space, discounted MDP (S,A,P,R, γ)
(Sutton and Barto [2018], Szepesvári [2010]), where state space S and action space A are vector
functions depending on the function space of SPDE F(Z), defined over the domain Z of SPDE. The
current value of the target variable, within Ωc at each discrete time t, is the current state st = u(x, t).
Assuming that the system is equipped with a number of actuators, a localized control input function
is the continuous action at = f(x, t), within the controlled domain Ωc. A scalar reward function is
defined to penalize the RL agent when the target variable deviates from the desired value, given by:

rt = −
[

1

2

∫
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(u(x, t)− u∗(x, t))
2
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2
λ ‖f(x, t)‖2

]
, (3)

which is negative of the cost function, regularized by the cost of choosing an action (which is small or
zero for cheap controls and large for expensive controls). A new state given the chosen action and the
previous state is sampled as st+1 ∼ P(· | st, at), where the transition probability kernel P depends
on the SPDE.

Figure 1: Schematic of the RL control agent interacting with an environment that is a 2D domain Ω
governed by an SPDE, and the control sub-domain Ωc, where a desired condition is enforced.
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3 Experiments

The potential benefits of SPDE control is known to be significant in controlling turbulent flows that
occur in various engineering applications (Naseri and Malek [2014]). Attempts to control turbulent
flows in engineering applications have focused on the manipulation of coherent structures, such as a
shock wave. A shock wave is a region within the fluid flow where physical conditions undergo an
abrupt change because of high flow variable gradients, and this damages structures as it propagates.
1D Stochastic Burgers’ equation (SBE) is a simple model that best describes this phenomenon:
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+
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∂Ẇ

∂x
, W ∼ N

(
0, σ2

)
, (4)

where ηt(x) is a space-time white noise with the intensity of ε, and it is realized as the generalized
derivative of the Brownian sheet, i.e. ηt(x) = ∂t∂xWt(x), where Wt(x) is a Gaussian process. Due
to the presence of nonlinear convective terms, solution of the 1D Burgers’ equation is prone to exhibit
a chaotic behaviour. Here, we test our proposed RL framework to control the fluid flow governed
by the SBE to damp the developed shock wave and stabilize the system in an online manner, and
compare it against previous non-RL approaches (Choi et al. [1993], Munteanu [2019]). A distributed
control method is used by introducing an external forcing term, f(x, t), as a control input of the
system. The control problem here is formalized to find the proper f(x, t) applied to the fluid flow in
the solution domain to squash the shock wave at each time. Squashing in our terminology means
inff E[
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control problem above can be expressed as the following inverse problem:
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3.1 Training Procedure

SPDE solver: A uniform computational grid of nx = 151 points is used for spatial discretization.
A Crank-Nicolson method (Crank et al. [1947]) in time and second-order centred differences in
space are used to discretize the equation, an explicit iterative method is used to solve the discretized
nonlinear equation. Instantaneous velocity field for evolution of a shock wave is shown in Figure 2.
It is observed that the shock wave energy dissipates over time by the structural diffusivity of system.

Figure 2: Instantaneous velocity field for evolution of a shock wave in space and time in four different
times.

RL: Given the continuous state-action nature of the SPDE, we use a deep deterministic policy
gradient (DDPG) approach to train the RL agent. We implemented an actor/critic DDPG framework
according to Lillicrap et al. [2016]. The DDPG states and actions are u(.; t) and f(.; t), respectively.
To facilitate this algorithm implementation in the real world, the action space is limited to a set of
4-interval piecewise constant functions. Similar fully connected 2-layer networks are used as the
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actor and critic networks architecture, that consist of hidden layers of ReLU units, and a linear output
layer. Network parameters are initialized using Xavier initialization (Glorot and Bengio [2010]),
and Adam optimizer(Kingma and Ba [2015]) is used for optimization. An experience replay with
the buffer size of 1000000 is used. Details on the hyperparameters used for training is provided in
Appendix A.

3.2 Results

Here we show some preliminary results on controlling the SBE, and compare them against bench-
marks. Figure 3(a) and Figure 3(b) show the free evolution of the shock wave (black line), evolution
under online control of the RL agent (red dotted-line), and the input control function at t = 0.8 and
averaged over N = 20 runs with 90% confidence interval, respectively. It can be seen that the control
input function damps the shock wave and reduces the gradients throughout the domain. We compare
the average return for Neps = 100 episodes obtained by the RL against uncontrolled system, and the
suboptimal control approach used by Choi et al. [1993], given the same form of piecewise constant
functions as the action space in Figure 3(c). Finally, the average return for three gradually more
expressive action functions are compared in Figure 3(d).

Figure 3: (a) Velocity fields u(.; t = 0.8) (state) for uncontrolled (black) and controlled (red) evolution
of the shock wave described by the SBE. (b) Calculated control input f(.; t = 0.8). Average return
for (c) the RL agent (blue), the controller of Choi et al. [1993] (red), and the uncontrolled environment
(black); and (d) different form of action functions with 4, 7, and 10 dimensional actions space.
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4 Conclusion

In this work, we presented a learning-based approach, based on reinforcement learning, to control
behaviour of a SPDE that describes a noisy dynamical system. Preliminary results for online control
of the 1D SBE showed promising results in damping the shock wave and reducing sharp gradients.
Although boundary control approaches are more practical in fluid mechanics, we adopted a distributed
control approach for the case of 1D SBE because it is defined in an infinitely large domain, represented
by periodic boundary conditions on a 2π length cell. Our proposed RL control approach is easily
extendable to a boundary control strategy to control bounded systems. We will extend this work to
more realistic higher dimensional SPDEs in our future work.
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A Hyperparameters

Table 1: Parameter values for 1D SBE equation training

Parameter Value Description

tstart 0 Initial time
tend 2 Finishing time
δt 2 Episode length
nx 151 Number of spatial grids
x [0, 2π] Lower and upper bounds of x
u [-8, 8] Lower and upper bounds of u
f [-10,10] Lower and upper bounds of f
ν 0.01, 1, 10 Diffusion coefficient
ε 0.01 Magnitude of the Gaussian noise
λ 0.2 Regularizer weight
α 2.5e-5 Actor network learning rate
β 2.5e-4 Critic network learning rate

layer1− size 400 First layer dimension for both Actor/Critic
layer2− size 300 Second layer dimension for both Actor/Critic

τ 0.1 Target network update parameter
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