
Published as a conference paper at ICLR 2023

MULTI-OBJECTIVE REINFORCEMENT LEARNING:
CONVEXITY, STATIONARITY AND PARETO OPTIMALITY

Haoye Lu, Daniel Herman & Yaoliang Yu
School of Computer Science, University of Waterloo
Vector Institute
{haoye.lu,d2herman,yaoliang.yu}@uwaterloo.ca

ABSTRACT

In recent years, single-objective reinforcement learning (SORL) algorithms have
received a significant amount of attention and seen some strong results. However, it
is generally recognized that many practical problems have intrinsic multi-objective
properties that cannot be easily handled by SORL algorithms. Although there have
been many multi-objective reinforcement learning (MORL) algorithms proposed,
there has been little recent exploration of the fundamental properties of the spaces
we are learning in. In this paper, we perform a rigorous analysis of policy induced
value functions and use the insights to distinguish three views of Pareto optimality.
The results imply the convexity of the induced value function’s range for stationary
policies and suggest that any point of its Pareto front can be achieved by training
a policy using linear scalarization (LS). We show the problem that leads to the
suboptimal performance of LS can be solved by adding strongly concave terms to
the immediate rewards, which motivates us to propose a new vector reward-based
Q-learning algorithm, CAPQL. Combined with an actor-critic formulation, our
algorithm achieves state-of-the-art performance on multiple MuJoCo tasks in the
preference agnostic setting. Furthermore, we empirically show that, in contrast to
other LS-based algorithms, our approach is significantly more stable, achieving
similar results across various random seeds.

1 INTRODUCTION

The past decade has seen the rapid development of reinforcement learning (RL) algorithms. Recent
breakthroughs in RL have made it possible to develop policies that exceed human-level performance:
Atari (Mnih et al., 2015), Dota 2 (OpenAI et al., 2019), etc. Despite their great success, the vast
majority of RL algorithms are single-objective based. Although many practical problems can be
reduced to a SORL task, there is an increasing recognition that many real-world tasks require us
to consider their multi-objective nature (Coello, 2000; Pickett & Barto, 2002; Moffaert & Nowé,
2014; Roijers et al., 2013; Abels et al., 2019; Abdolmaleki et al., 2020; Abdelaziz et al., 2021). There
are many works that discuss how to find optimal policies in a multi-objective RL (MORL) problem
(Gábor et al., 1998; Pickett & Barto, 2002; Moffaert & Nowé, 2014; Roijers et al., 2013; Yang
et al., 2019; Parisi et al., 2016; Mahapatra & Rajan, 2020) or a more general dynamic programming
setting (Sobel, 1975; Corley, 1985), but the relationship among various definitions of Pareto optimal
policies is hardly discussed. Moreover, there is no rigorous analysis of the range of induced value
functions, which has been thought hard to characterize and of irregular shapes (Vamplew et al., 2008;
Roijers et al., 2013; Reymond & Nowe, 2019). (Note, similar work has been done for mixed policies,
but fundamentally differs from the more common stationary policy that is sought in modern RL.)
We hope to give researchers well aligned intuitions about MORL problems that can save effort and
accelerate the rate of research in the field; it is to this end that we introduce this paper.1

Within this paper, we perform a theoretical analysis of MORL problems with an infinite horizon
(rigorous proofs are given in Appx B). After a quick review of the MORL setting and three widely-
adopted definitions of Pareto efficiency (PE), we begin our analysis by characterizing the effects

1Extra literature reviews are given in Appx A.
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of policy alterations on the induced value function. We find that single-state policy alterations are
insufficient to optimize the induced value function in a MORL setting, but show how it can be done by
a multi-state update. We also prove that improving in all states is generally not possible. From here,
we show that the range of value functions is convex, which suggests that linear scalarization (LS) is
not the bottleneck in finding PE policies. We discuss the deficiencies of existing LS-based algorithms
as suggested by our theory and fix them by augmenting the reward function using a strongly convex
term. These insights motivate us to propose a new MORL algorithm (CAPQL) which achieves
state-of-the-art performance on multiple MoJoCo environments in the preference agnostic setting.
An ablation study is performed to understand how augmentation affects the algorithm’s performance.

2 MULTI-OBJECTIVE RL PROBLEM

To begin, we will do a quick review of MORL problems and the notation we will be using, as well as
introduce our definitions of Pareto optimality. Like SORL problems, we consider an agent interacting
with an environment. At each step, the agent performs an action based on the current state and the
environment returns a reward and the next state. Our setting assumes a vector reward in Rd and is
reduced to a SORL problem if d = 1. We model the interaction as a Markov Decision Process (MDP)
(S,A, R, P, γ). As usual, S and A are the sets of states and actions, and γ ∈ (0, 1) is the discount
factor. Our discussion considers finite A and S.When the agent takes action a ∈ A in state s ∈ S,
the environment gives reward R(a, s) ∈ Rd and moves to the next state following the transition
probability P (a, s) ∈ ∆|S|. In this paper, we consider an infinite-horizon MORL problem and assume
bounded rewards. Let R(s) = [R(a, s)|a ∈ A] ∈ Rd×|A| and P(s) = [P (a, s)|a ∈ A] ∈ R|S|×|A|,
Π the set of all stationary policies, where π ∈ Π maps a state to a distribution over actions. Following
the work of Roijers et al. (2013), given π ∈ Π, the induced value function V π(s) ∈ Rd returns the
expected sum of discounted reward over the interaction trajectory with the initial state s,2

V π(s) := E
[∑∞

t=0
γtR(at, st)

]
with st ∼P (at−1, st−1), at−1∼π(st−1), s0 = s. (1)

Let µ : S → [0, 1] be the probability distribution over initial states. The expected value function is:

V πµ := E
[∑∞

t=0
γtR(at, st)

]
with st ∼ P (at−1, st−1), at−1 ∼ π(st−1) and s0 ∼ µ . (2)

That is, V πµ = Es0∼µV π(s0). Let Vπ = [V π(s)|s ∈ S] ∈ Rd×|S|, V(s) = {V π(s)|π ∈ Π},
Vµ={V πµ |π ∈ Π} and V={Vπ|π ∈ Π}. The Bellman equation (Bellman, 2003) can be written as:

V π(s) =
(
R(s) + γVπP(s)

)
π(s) for s ∈ S. (3)

In RL, we are interested in finding a π that maximizes V π(s). When d = 1, the regular order
defined on R is adopted, and the optimal policy gives the greatest V π(s). For d > 1, we con-
sider the Pareto order (PO): for real-valued tensors u,v of the same shape, u � v if every entry
of u is not less than its counterpart in v.3 For a set of tensors C of the same shape, v ∈ C is
Pareto efficient (PE) if for all u ∈ C, either v � u or v � u. (A set may have multiple PE
elements.) In this paper, we are interested in three types of PE policies that are not carefully distin-
guished in the existing literature (Roijers et al., 2013; Song et al., 2020; Abdolmaleki et al., 2020).

APE

approach
as γ → 1

SPE ≡ DPE

Figure 1: The relationship among
three types of PE in Defn 1.

Definition 1 (Pareto efficient policies) For s ∈ S and initial
state distribution µ, π ∈ Π is single-state PE (SPE) if V π(s) is
PE in V(s), and it is distributed initial state PE (DPE) if V πµ is
PE in Vµ. Likewise, π ∈ Π is aggregate PE (APE) if Vπ is PE
in V. Let Π∗s , Π∗µ and Π∗ denote the sets of policies that are SPE,
DPE and APE, respectively.

In Sec 4.2, assuming the Markov chain is ergodic, we show that SPE and DPE are equivalent and have
the relationship with APE demonstrated in Fig. 1. Since we prove that for all s ∈ S , Π∗s coincide, we
may not specify to which state we are referring to when discussing SPE.

2The entries of V π(s) are induced value functions in SORL and is known to exist. Thus, V π(s) also exists.
3If every entry in u is strictly greater than its counterpart in v, we write u � v. In general, not all tensors

are comparable. For example, given u =
(
1
0

)
and v =

(
0
1

)
, u 6� v and u 6� v. We write u � v ⇐⇒ (u 6�

v) ∧ (u 6� v). For single-entry tensors, PO is reduced to the regular order defined on R.
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Optimizing MORL using linear scalarization (LS). It is common to convert MORL problems
to SORL problems by LS (White, 1993). To do so, take a nonzero vector w ∈ Rd and take the
dot product of the reward vector via w>R(a, s). In fact, for any π, we can left multiply Eq (3) by
w> to see that w>Vπ is the induced value function of the associated SORL problem. We refer the
associated SORL problem with weight w as SORL(w).

In this paper, we rely on the intimate relationship between MORL and the associated SORL problems
to characterize the properties of PE policies (of both types). Our characterization shows that LS does
not necessarily inhibit agents from finding desired PE policies, and sheds light on the challenges that
modern MORL algorithms face when searching for PE policies.

3 FINE-GRAINED CONTROL OF INDUCED VALUE FUNCTIONS
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Figure 2: The induced value functions of selected
policies in Ex 1. Here, π0: λ0 = λ1 = 0.5; π̃:
λ0 = 0.7, λ1 = 0.5. The pink line segments are
the value function range for π ∈ Φ(s0, π0), and
the light blue patch is the value function range V.
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Figure 3: The induced value functions of selected
policies in a two-state MORL problem with the
configuration given in Ex 1. Here, π0: λ0 = λ1 =
0.5; πa: λ0 = 0.7, λ1 = 0.5; πb: λ0 = 0.5,
λ1 = 0.7. Starting from π0, the pink area cor-
responds to the value functions of π obtained by
adjusting π0(s0) (i.e., λ0), the green area is the one
by adjusting π0(s1) (i.e., λ1) and the grey area is
the one by adjusting both. The red vector indicates
the shifting direction when increasing λ0 and λ1 at
the same rate.

In this section, we study the dynamics of the
induced value functions resultant from policy
alterations in MORL problems. Our discussion
starts by characterizing the effects of single-state
policy adjustments. We will show that, unlike
SORL, it is not always possible to optimize the
value function by optimizing single-state actions.
This suggests that the popular Bellman operator,
optimizing policies on a single-state basis, does
not sufficiently improve a policy’s performance
in the MORL setting.

The difficulties faced by single-state based op-
timization techniques reveal the intrinsic differ-
ence between the SORL and MORL optimiza-
tions, which motivates us to investigate how to
adjust multiple states’ actions to jointly improve
the induced function values.

To make our theoretical results intuitive, we will
use the following example throughout this paper.

Example 1 Consider a two-objective problem
with S = {s0, s1} and A = {a0, a1}. For
each state s, the chance of staying in s is 50%
for both actions. Let R(a0, s0) = [1, 5]>,
R(a1, s0) = [5, 1]>, R(a0, s1) = [10, 1]>,
R(a1, s1) = [5, 2]>, and γ = 0.5. The induced
value function of π satisfies:

V π(s0) =
( [

1 5
5 1

]
+ γVπ

[
0.5 0.5
0.5 0.5

])
π(s0),

V π(s1) =
( [

10 5
1 2

]
+ γVπ

[
0.5 0.5
0.5 0.5

])
π(s1)

Since |A| = 2, λi := Pr(taking a0 in si), i ∈
{0, 1} is sufficient to specify a policy because
Pr(taking a1 in si) = 1− λi.

3.1 ADJUSTING THE POLICY IN A SINGLE STATE

In this section, we discuss the properties of the induced value functions when the policy is modified
in a single state. In particular, given s0 ∈ S and π0 ∈ Π, we temporarily restrict our attention to the
policies equal to π0 in all states except s0; this is the set:

Φ(s0, π0) := {π ∈ Π : π(s) = π0(s) for s 6= s0}. (4)

Fig 2 plots the value function’s range with π0 in Ex 1: λ0 = λ1 = 0.5. The plot shows, when π(s0)
is changed (i.e. π ∈ Φ(s0, π0)), its induced value function moves along a line segment in both states
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with the same moving direction but at different rates. For instance, in Fig 2, we mark the value
function of π̃ by green dots, where π̃ : λ0 = 0.7, λ1 = 0.5. In comparison to π0 (blue dots), V π̃
moves faster in s0 than in s1, which is intuitive because the adjustment is made in s0 and should
change its value function by the greatest magnitude. Our observations here indeed hold in general:

Proposition 1 For π0, π1 ∈ Φ(s0, π0), let πα = (1− α)π0 + απ1. Then

∂V πα(s)

∂α
=
∂V πα(s0)

∂α
E
[
γX̃(s;s0)

]
, (5)

where the random variable X̃(s; s0) is the number of steps to reach s0 starting from s; its distribution
is identical for π0, π1, and α. Moreover,

Vπα=(1−β(α; s0))Vπ0+β(α; s0)Vπ1 , (6)

where β(α; s0) = αφ1

(1−α)φ0+αφ1
and φi ∈ [1− γ, 1] is a scalar depending on πi and the RL problem

settings but independent from α.4

In Prop 1, Eq (5) says when πα(s0) moves from π0(s0) to π1(s0), the value functions in all states
move along the same direction ∂V πα (s0)

∂α , while the moving rate is scaled by E
[
γX̃(s;s0)

]
for state

s ∈ S. We note that X̃(s0; s0) = 0 and X̃(s; s0) ≥ 1 for all s 6= s0. Therefore, the induced value
function always changes the most drastically in s0, which is what we observed in Fig 2.

Eq (6) shows that, if we modify the policy in s0 by letting πα(s0) be a convex combination of π0(s0)
and π1(s0) ∈ Φ(s0, π0), then V πα(s0) is a convex combination of V π0(s0) and V π1(s0). Consider
the example presented in Fig 2: every policy π′ ∈ Φ(s0, π0) can be seen as a convex combination
between π0 and some policy π1 ∈ Φ(s0, π0) with V π1(s0) on the boundary (where π1 depends π′).
Moreover, every point between V π0(s0) and V π1(s0) corresponds to a policy in Φ(s0, π0).

Single-state optimization is not sufficient to improve policies in MORL. It is known that, in
SORL problems, a single-state action optimization is sufficient to increase the value function in all
states (Sutton & Barto, 2018, p78). Unfortunately, this does not generally hold in MORL problems.

To give a counterexample, consider the setting in Ex 1. Given π0 : λ0 = λ1 = 0.5, we plot the
induced values of π obtained by modifying exactly one state’s policy in Fig 3. Here, the pink line
segment is the set of value functions obtained by modifying π0(s0). Similarly, the green line segment
is obtained by changing π0(s1). As we can observe, when updating a single state’s policy, one
objective must be traded off to optimize the other one. This can be clarified by considering the policy
optimization of s0: taking actions a0 and a1 gives the rewards [1, 5]> and [5, 1]> respectively, so
the immediate expected reward for this state is [−4λ0 + 5, 4λ0 + 1]. Thus, no single-state policy
adjustment will improve both objectives.

3.2 ADJUSTING THE POLICY IN MULTIPLE STATES
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Figure 4: Left: γ = 0.5. The feasible changes on π0 in Ex 1
that increase (decrease) the value function in two states (under
the PO). Middle: γ = 0.7. Right: γ = 0.9.

The insufficiency of optimizing
single-state actions motivates us to
combine policy adjustments in mul-
tiple states to jointly improve the
value functions. In Fig 3, the vectors
in red give the induced value func-
tion’s moving directions when we in-
crease λ0 and λ1 at the same rate.
We observe that both objectives are
improved in s1, but not in s0. This
suggests that we can adjust multiple
states’ policies simultaneously to jointly improve its value function in one state. This leads to the
natural question: Are there rates of change for λ0 and λ1 that improves the induced values at both
states? The answer is negative. The first graph of Fig 4 plots the feasible changes of λ0 and λ1 that

4We give the closed-form expression of φi in Cor 1 in the appendix.
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improve V π0(s0) and V π0(s1). When γ = 0.5, the feasible areas (blue and yellow) to improve both
objectives in both states are disjoint and hence cannot be improved simultaneously.

The mutual exclusiveness of the two areas is caused by the attenuation effect of the discount factor.
Consider the induced value function obtained by increasing λ0 from 0.5 to 0.7 for π0 (the steel-blue
dots in Fig. 3). This adjustment makes the induced function increase in Obj. 1 at the cost of Obj. 0 for
both states. Since we are making the adjustment from the perspective of s0, the value function change
is greatest in s0 and is dampened by the discount factor γ when viewed from s1. Similar observations
can be made by increasing λ1 from 0.5 to 0.7. This attenuation of the reward propagation makes it
impossible for the induced values to move in the same direction in all states, which prevents them
from being optimized simultaneously. The last two plots of Fig. 4 show that when γ increases, the
feasible areas to improve induced values in both states overlap, which corroborate our claims. We
generalize our observations by proving:

Proposition 2 Assume π0 ∈ Π is not optimal in the associated scalar problem for all w 6= 0. Let
s0 ∈ S. Then any neighbourhood of π0 contains π1, π2 ∈ Π such that for any u ∈ Rd we have

V π1(s0)− V π0(s0) = ξ1u and Vπ2
µ −Vπ0

µ = ξ2u for some ξ1, ξ2 > 0. (7)
Moreover, if the MDP is ergodic, as γ → 1, V π1(s)− V π0(s)→ ξ1u for all s ∈ S.

V π0(s0)
u

V(s0)

Figure 5: V π0(s0)
is not optimal for
any w but cannot
move along u.

Prop 2 says that, under some weak conditions, we can move the induced value of
π0 in a state (or the expected induced value) along any direction. Setting u = 1,
we improve the induced values. When the MDP is ergodic, as γ → 1, the values
in all states move along u and will be optimized at the same time.

Remark 1 We note that Prop 2 is non-trivial because a policy’s suboptimality
over all associated scalar problems does not automatically imply the induced
value function can move in any direction. For example, in Fig 5, V π0(s0) is not optimal in any
associated SORL problem but cannot move along u: Prop 2 says V(s0) cannot have a shape like this.

Remark 2 The first plot of Fig 4 shows π0 cannot be further improved in both states at the same time.
This implies π0 is in fact APE. However, Fig 2 shows V π0(s0) is in the middle of the induced value
function range. Thus, there exists a policy π that has an induced value in s0 greater than V π0(s0),
and hence π0 is not SPE in s0. This observation tells us SPE and APE are different in general.

4 CONVEXITY AND PARETO EFFICIENT POLICIES

The analysis of the induced value function’s behaviour in Sec 3 provides us with powerful tools to
characterize their properties. In this section, we use these tools to show the convexity of the induced
function’s range and the relationships among the three types of PE.

4.1 CONVEXITY OF THE INDUCED FUNCTION RANGES

For more than a decade, it has been considered true that the induced value functions’ ranges are
irregularly shaped (for stationary policies) (Vamplew et al., 2008; Roijers et al., 2013; Hayes et al.,
2022). In fact, this is the key reason behind the belief that LS is not powerful enough to find all PE
policies. Prop 3 shows that this belief is not true, and the ranges of the functions are actually convex.

Proposition 3 For s ∈ S, V(s) is convex. Also, Vµ is convex.

The convexity of V(s) can be shown by repetitively applying Prop 2 to construct a path between
V π0(s0) and V π1(s) with π0, π1 ∈ Π. Roughly speaking, for any point v over the path, starting from
V π0(s), we can repetitively use Prop 2 to construct a sequence of policies with the induced value
approaches v. Thus, the path is included in V(s), and by definition, V(s) is convex. We can apply
the similar idea to show Vµ is convex.

Remark 3 Prop 3 can also be proved as a corollary of the convexity of the occupancy measure,
initially derived in constrained Markov decision theory (Kallenberg, 1983; Puterman, 1994; Altman,
1999). We discuss their relationship and provide a second proof of Prop 3 in Appx C.
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Figure 6: Value functions
of s0 for various (λ0, λ1) in
Ex 1. The stars are deter-
ministic SPE policies and the
squares are stochastic ones;
sub-optimal ones are marked
by golden dots. The choice
of weights for finding differ-
ent SPE policies are plotted
in the top-right corner, where
the patch colours correspond
to the found SPE policies’.

LS is not a bottleneck in finding PE policies. The convexity of
the induced value functions’ ranges suggest that we can potentially
find all SPE (DPE) policies through LS. In particular, we have:

Proposition 4 For s ∈ S, π ∈ Π∗s if π is optimal in a SORL(w)
with some w � 0. Also, if π ∈ Π∗s , V π(s) is optimal in a SORL(w)
with a nonzero w � 0.

As a result, a SPE (DPE) policy achieves optimality in some associ-
ated SORL problem. This also suggests that we can potentially find
all SPE (DPE) policies by choosing different weights in LS.

Problems of the existing LS-based algorithms. We suggest that
there are two significant reasons why many algorithms cannot find
a rich set of PE policies: determinism and numerical instability.

The majority of RL algorithms favour determinism. While it is well-
known that an optimal deterministic policy always exists for SORL
problems (Puterman, 1994, Ch 6), almost all PE value functions for
a MORL problem require stochastic policies. In Fig. 6, we plot the
value functions of state s0 for different policies in Ex 1. We see
that most PE policies are stochastic (squares) while the deterministic
ones can only cover the vertexes (stars). This observation shows
that unless we ensure current algorithms can favour stochastic policies, we have implicitly excluded
almost all PE policies. Additionally, it is numerically impossible to obtain some SPE policies in
practice although they can be found in theory. In fact, almost all nonzero weights w � 0 correspond
to the SPE policies on the vertexes. For instance, in Fig. 6, we show the choice of weights for finding
a specific SPE policy in the up-right corner. While there is a wide range of weight selections for
finding the SPE policies on the vertexes, only those on the boundary of the green-cyan/cyan-purple
patches can be used to find the stochastic policies upper/right boundary of the polytope. Specifically,
only weight vectors normal to the Pareto front can be used to find stochastic policies. In practice, we
do not know how to find such weights; even if we do, they cannot be picked as a tiny perturbation
over them gives a weight corresponding to a vertex. Besides, these weights are shared by a set of
stochastic SPE policies (on the same facet of the polytope). Thus, the algorithm would produce a
random policy in the set with an undesired value function even if the right weight is picked.

Adding a strongly concave term fixes the problems. Let f : ∆|A| → R be a strongly concave
function for action-taking distributions. We then replace the regular rewardR(at, st) with R̃(at, st) =
R(at, st) + αf

(
π′(st)

)
1, where 1 ∈ Rd is a vector of ones and α > 0 controls the strength of the

augmentation effect. Then the induced value function of a policy π for initial state s ∈ S under this
augmented setting becomes:

V παf (s):=E
[ ∞∑
t=0

γt
(
R(at, st)+αf

(
π(st)

)
1
)]

with st∼P (at−1, st−1), at−1∼π(st−1), s0 =s. (8)

 

Figure 7: The effects on the induced value
functions at s0 for selected policies in Ex 1
by adding strongly concave terms to the im-
mediate rewards with different alpha. Here,
f returns the entropy of action taking distri-
bution. V?αf (s0) is marked in blue and the
dots of the same colour among the four plots
correspond to the same policy.

Let Vαf (s) = {V παf (s)|π ∈ Π}, W+ = {w �
0|r1 ≤ ‖w‖1 ≤ r2} for some r1, r2 > 0 and V?αf (s)

the set of PE elements in Vαf (s).

Fig 7 shows how the reward augmentation changes
the value function’s range. We observe that the aug-
mentation makes the shape of the PE element set
V?αf (s) strictly convex. Thus, for every w ∈ W+,
there is a unique V παf (s) ∈ V?αf (s) that has the max-
imum projection on w. Let gs denote this unique
correspondence relationship fromW+ to V?αf (s):

gs(w) = argmaxv∈V?αf (s) w>v. (9)
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From Fig 7, we can also observe that, the strict convexity of V?αf (s) makes gs (uniformly) continuous.
As we rotate w clockwise, gs(w) slides from the left end of the blue curve the right for last three
plots; in contrast, for the first one, it will jump from top left vertex to the middle one followed by the
bottom right one. The continuity of gs makes it numerically possible to pick a good w with gs(w)
close to the desired PE element in V?αf (s). We summarize our observations in Prop 5.

Proposition 5 Function gs given in (9) is well-defined, surjective and uniformly continuous.

Finally, the strongly concave term naturally injects the preference on the stochastic policies. Therefore,
all the problems of the existing LS-based methods mentioned in Sec 4.1 has been fixed.

Remark 4 Function gs corresponds to the extended target value function considered by Abels et al.
(2019) and Yang et al. (2019). In their work, they implemented an extended Q-network, Q(s, a,w)
and minimize ‖gs(w) − Ea[Q(s, a,w)]‖2 for all s ∈ S, a ∈ A and w ∈ Φ ⊆ W+. In Sec 5,
we will see that, as they adopted regular rewards without augmentation, the target value function
gs is sensitive to the input w, making the training process unstable and lowering the algorithms’
performance (Appx D describes the causes of this training instability). We will instead propose a
concave-augmented Pareto Q-learning algorithm (CAPQL). Our empirical study shows that the
algorithm’s performance improves with significantly more stable training trajectories.

Remark 5 Fig 7 suggests that a smaller α preserves more information about the original problem
but makes gs(·) less robust to perturbations and lowers the stability of the algorithm approximating gs.
Likewise, a larger α improves the stability but would harm the algorithm’s expected performance.

4.2 RELATIONSHIPS AMONG THREE TYPES OF PE

Before we introduce our new LS-based MORL algorithm, we will complete our theoretical discussion
about PE. In particular, we prove that the three types of PE have the relationship summarized in
Fig. 1. Throughout this section, we assume that the MDP is ergodic.

SPE is state-independent and equivalent to DPE. According to Prop 4, if π ∈ Π∗s for s ∈ S,
then it must be the optimal policy for some associated scalar problem with some nonzero w � 0.
When w � 0, we apply Prop 4 to conclude that π ∈ Π∗s′ for all s′ ∈ S and π ∈ Π∗µ. If w contains
zero entries, the problem can be approximated by assigning an arbitrarily small positive weight to the
zero entries. Then, the problem is reduced to case with w � 0. 5 Since π is optimal in the associated
problem of all states, none of its value functions can be improved independently or in aggregation.
Hence, π ∈ Π∗ as well. We summarize the derived results in:

Proposition 6 If π ∈ Π∗s for some state s ∈ S, then for all s′ ∈ S, π ∈ Π∗s′ . Thus, the sets of
single-state PE policies coincide for all initial states and is a subset of Π∗.

Using a similar derivation by linking the PE policies to the optimal solutions of the corresponding
associated scalar problem also proves:

Proposition 7 A policy is SPE if and only if it is DPE. That is, for s ∈ S, Π∗s = Π∗µ.

SPE implies APE but not vice versa in general. For a selected state s ∈ S, a policy π is SPE as
long as its induced value function V π(s) is PE in V(s). The function values for other states are not
relevant. In contrast, APE involves the induced function value in all states. A policy π is APE if we
have to trade off the value functions of some states for improving those of the others.

For ergodic SORL problems, the induced value function of a policy π reaches the maximum in
one state if and only if it reaches the maximum in all states (Prop 2.1.2 in (Bertsekas, 2022)). This
implies that SPE and APE are equivalent in a SORL problem. However, the equivalence does not
generally hold for MORL problems. In Rmk 2, we presented a case where π0 ∈ Π∗ but π0 /∈ Π∗s0 .
Besides, Prop 6 shows that if π ∈ Π∗s for some s ∈ S , then π ∈ Π∗. As a result, Π∗s ⊂ Π∗ but do not
necessarily coincide.

5We provide a more rigorous proof in the appendix by constructing a lexicographic order on Rd.
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As we have noted in Sec 3.2, this proper subset relationship is due to the attenuation of the reward
propagation caused by the discount factor. The attenuation makes the moving direction of the value
function differ among various states and causes the feasible sets of improvement adjustments to be
disjoint (see Fig 4). When γ → 1, the moving directions of all states converge (Prop 2). Therefore,
the feasible sets of improvement adjustments for different states will also converge and eventually
overlaps for sufficiently large γ (see the last two plots of Fig 4). Therefore, improvements can be
made in all states until they reach the boundaries of the value functions’ ranges. In other words:

Proposition 8 For all s ∈ S, as γ → 1, the SPE policy set Π∗s approaches the APE one Π∗.

5 CONCAVE-AUGMENTED PARETO Q-LEARNING

Motivated by the discussions in Sec 4.1, in this section, we develop a new Q-learning algorithm with
the reward augmented by a strongly concave term. We call our new algorithm concave-augmented
Pareto Q-learning (CAPQL).

5.1 MORL PROBLEM WITH AGNOSTIC WEIGHT PREFERENCE

Our CAPQL algorithm is designed for solving MORL problems where the preference weights for the
objectives are (potentially) different between episodes and are not known in advance. The setting
was initially considered by Abels et al. (2019) to propose a multi-objective Q-network (MOQ). In
particular, the problem considers a set of weights Φ ⊆W+. For each episode, a preference weight
w ∈ Φ is given, and the algorithm is expected to maximize the sum of the rewards projected onto w.
Thus, the algorithm has to handle all possible weights in Φ.

5.2 IMPLEMENTATION OF CAPQL

Following Abels el al.’s work, we consider an extended Q-network, Q(s, a,w), and train it to
approximate the Q-values of a optimal policy of SORL(w) for all w ∈ Φ. Unlike MOQ that
uses the reward R(at, st) from the environment directly, CAPQL replaces it with R̃(at, st) =
R(at, st) + αf

(
π′(st; w)

)
1, where α > 0.

Notice that scaling w does change the selection of the induced value function Vαf (s) that has the
greatest projection on it. Without loss of generality, we assume ‖w‖1 = 1. Furthermore, we set f to
be the entropy operatorH(q) = −

∫
q(a) log q(a) da (discussions on the selection of f are given in

Appx E). We train our algorithm by optimizing it over SORL(w), for all w ∈ Φ. For a fixed w, the
learning task of SORL(w) can be written as

π( · ; w) = argmax
π′( · ;w)

E
[∑∞

t=0
γt
(
w>R(at, st) + αH

(
π′(st; w)

))]
, (10)

which is obtained by projecting the value function defined in (8) onto w followed by taking the maxi-
mum over the policies conditioned on it. Interestingly, this is the MORL extension of the learning task
considered in SAC (Haarnoja et al., 2018). Hence, we implement the algorithm with the Q-network
and policy network conditioned on w. In each training step, we first sample a weight w′ and follow
the SAC method to train the policy and the Q-network conditioned on it. (The implementation details,
pseudocode are given in Appx F and convergence property is discussed in Appx G.)

As discussed in Prop 5 and Rmk 4, the optimal policy π of SORL(w) has the value function gs(w).
Thus, the training is to make Ea∼π(s;w)[Q(s, a,w)] match gs(w) for all s ∈ S and w ∈ Φ. As
Prop 5 shows, adding the entropy term makes the target gs(w) uniformly continuous with respect
to w, which is easier to fit and is less numerically unstable (in Appx H, we empirically show this
phenomenon by training the algorithm over Ex 1 and visualizing its gs(w)). Hence, we should expect
CAPQL to both converge faster and be more numerically stable during training.

5.3 EXPERIEMENTS

We test our algorithm over a multi-objective version of the MuJoCo environment. The reward vector
was created by simply exposing the individual components that went into the regular scalar reward:
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Figure 8: Training curves of the MORL algorithms in MuJoCo environments with vector rewards.

adding them up recovers the default scalar reward. (See Appx I-Table 4 for details.) We restrict Φ to
only contain weights within 22.5 degrees of the unit vector to ensure that w � 0. Finally, we will
also perform an ablation study to understand how the algorithm’s performance changes with different
strength of reward augmentation.

We compare our method to two popular LS-based algorithms: MOQ (Abels et al., 2019) and
EnvQ (Yang et al., 2019). MOQ can be seen as a special case of CAPQL as α → 0 and EnvQ is
its enhanced version. It has been shown that EnvQ enjoys a higher sampling efficiency and has a
consistently better performance than MOQ on multiple MORL benchmarks. Since MOQ and EnvQ
were proposed under the finite action setting, to adapt them to MuJoCo’s continuous action space,
we follow Tang & Agrawal (2020)’s work and discretize each action dimension into five discrete
values (e.g., Hopper has three action dimensions; then there are 53 = 125 actions). Additionally, we
implement a continuous action version of EnvQ combined with an actor-critic formulation (referred
as QEnv-ctn) for comparison. (The model and training configurations are summerized in Appx I).
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Figure 9: Training curves of CAPQL
with different α for Hopper.

Fig 8 plots the methods’ trajectories on four MuJoCo bench-
marks. We train each method five times with various random
seeds and report the mean and standard deviation. In every
step, we test them over ten randomly sampled weights. We
observe that CAPQL has a consistently better performance
over all benchmarks and enjoys a faster convergence speed.
Additionally, compared to QEnv-ctn, CAPQL has a far more
stable training trajectory over different random seeds.

The relationship between the augmentation strength and
CAPQL’s performance. In Rmk 5, we discussed how the
augmentation would affect the CAPQL’s performance as its
strength varies. In Fig 9, we plot the training curves of CAPQL for Hopper with different α, which
corroborates our claim. In particular, as α increases, the target value function gs(w) defined in
Prop 5 becomes less sensitive to w. Thus, it can be learned more easily; meanwhile, we observe a
faster convergence and stabler training trajectories over various random initial seeds. However, if α
becomes too large (the case with α = 0.8), gs(w) will significantly deviate from the original one
(i.e., when α = 0). Then, the algorithm’s performance after convergence starts to drop.

6 DISCUSSION

This paper performed a rigorous analysis of the dynamics of the induced value functions resultant
from policy alterations in MORL problems. We analyzed the behaviours of the functions when
a single state’s policy is altered and showed that this is insufficient to optimize the induced value
functions in a MORL setting. We then discussed how to update a policy in multiple states to improve
the value function of a specific state. We also showed that when γ → 1, the induced values of all
states will be improved as well. These insights into the induced value function’s properties helped
us show the convexity of their range and prove that LS is sufficient to find all SPE (DPE) policies.
The equivalence of SPE and DPE was shown, which are also equivalent to APE when γ → 1. Next,
we showed why existing LS-based algorithms fail and proposed the CAPQL algorithm to address
these issues; our empirical evaluation indicates CAPQL’s superior performance and corroborates our
theoretical analysis.
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REPRODUCIBILITY

Theoretical Work All theoretical results have formal proofs provided in the Appx B.

Empirical Work We provide a detailed pseudocode description of our CAPQL implementation
(Alg 1) in Appx F. The parameters used to train and implement all algorithms we analyzed are listed
in Tables 1-3 in Appx I. Additionally, we have provided details on the environment configuration and
our derived reward functions in Table 4. The source code of our CAPQL implementation is available
online: https://github.com/haoyelu/CAPQL.git.
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Peter Vamplew, and Diederik M Roijers. A practical guide to multi-objective reinforcement
learning and planning. Autonomous Agents and Multi-Agent Systems, 36(26):1–59, 2022. URL
https://doi.org/10.1007/s10458-022-09552-y.
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A RELATED WORK

In recent years, there have been relatively few developments in the abstract analysis of the spaces
involved in MORL problems. Much of the previous work done on analyzing the set of induced value
functions has been done on a general state-space while allowing various kinds of deterministic or
mixed policies (Feinberg & Shwartz, 1995; Vamplew et al., 2008; 2009; Roijers et al., 2013; Barrett
& Narayanan, 2008; Moffaert & Nowé, 2014). In particular, Feinberg & Shwartz (1995) found that
the expected discounted sum of rewards V π(s) with a fixed initial state s is a convex set when π
is allowed to be non-stationary. Moreover, they prove that Pareto optimality (at any given state) is
equivalent to a linear scalarization (LS) problem under a specific weight vector. Similar convexity
and Pareto results were found by Vamplew et al. (2008; 2009), but instead of allowing a general
non-stationary policy, they restricted their policies to the set of mixed deterministic policies. The
key difference between our work and theirs is that we restrict our analysis to stochastic stationary
policies. Hernández-Lerma & Romera (2004) also performed an analysis in a similar setting to us but
focused on the feasibility of finding Pareto optimal solutions for specific weights.

Mannor & Shimkin (2004) have also done similar work and required that there exists a common
accessible state from every other state; ergodicity is a sufficient condition for their setting. How-
ever, their expected sum of rewards is un-discounted, which is not reflective of common modern
formulations. They also focused significantly on directional policy optimization and proposed several
algorithms that require mixed deterministic policies to function. Apart from the theoretical works,
Abels et al. (2019) generalized the Q-function by conditioning it on the importance of the objectives.
In their problem setting, the objective preference changes between different episodes and is not known
in advance. Therefore, the learning task requires the algorithm to perform well over all potential
weight selections. Yang et al. (2019) extended Abels et al.’s work. In particular, they developed a
new Bellman optimality operator using envelope updates and proposed a new algorithm for MORL
called envelope Q-learning (QEnv). They showed that their algorithm consistently performs better
over multiple MORL benchmarks and is more sample efficiency. Finally, Abdolmaleki et al. (2020)
have developed an algorithm that allows users to choose objective preferences in a scale-invariant
way by restricting the relative influence of each objective when improving the policy.

It should be noted that significant efforts have been made to find alternatives to LS due to perceived
and real drawbacks. For example, Van Moffaert et al. (2013) demonstrate that Chebyshev metric
can dominate LS in the discrete policy setting since it can be used to find Pareto efficient policies
that are in the interior of the convex hull. While one of its primary benefits over LS no longer holds
in the stochastic policy setting, it may be interesting to see if an extension of this methodology to
our setting could still be beneficial. Alternatively, recent papers in the domain of concave utility
reinforcement learning (CURL) have achieved some intriguing results (Geist et al., 2021; Zhang et al.,
2020; Agarwal et al., 2022). In the recent work of Agarwal et al. (2022), they seek to find a single
policy that maximizes a concave utility function applied to V π(s). While their setting, methods,
focuses and insights are largely different from ours, they analyzed their framework’s sample efficiency
and developed an actor-critic method that reduces the variation of the policy gradients by directly
shifting them with a state-dependent term.

B PROOFS

Given s0 ∈ S and π0 ∈ Π, we temporarily restrict our attention to the policies equal to π0 in all
states except s0; this is the set:

Φ(s0, π0) := {π ∈ Π : π(s) = π0(s) for s 6= s0}. (11)

Proposition 9 Let Ṽ(s; s0) and X̃(s; s0) denote the random variables that, starting from s ∈ S,
the sum of the discounted rewards and the number of steps before the first time reaching s0.6

(The distributions of Ṽ(s; s0) and X̃(s; s0) do not depend on π(s) and thus are identical for all
π ∈ Φ(s0, π0).) Write

V(s0) =
[
E Ṽ(s′; s0) for s′ ∈ S

]
∈ Rd×|S|, Γ(s0) =

[
E γX̃(s′;s0) for s′ ∈ S

]
∈ R1×|S|. (12)

6When s = s0, Ṽ(s0; s0) = X̃(s0; s0) = 0.
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For π ∈ Φ(s0, π0), we have

Vπ = V(s0) + V π(s0)Γ(s0) = V(s0) +
Q(s0)π(s0)Γ(s0)

1− γη(s0)π(s0)
. (13)

where η(s0) = Γ(s0)P(s0), Q(s0) =
(
R(s0) + γV(s0)P(s0)

)
. Moreover, η(s0)π(s0) ∈ [0, 1].

Proof: Let s′ be the next state starting from s0. For π ∈ Φ(s0, π0),

V π(s0) = E
[
R(a, s0) + γṼ(s′; s0) + γ · γX̃(s′;s0) · V π(s0)

]
(14)

= R(s0)π(s0) + γ
∑
s′

(
E
[
Ṽ(s′; s0)

]
+ E

[
γX̃(s′;s0)

]
V π(s0)

)∑
a

P (s0, a, s
′)π(a, s0),

(15)

where π(a, s0) is the probability of taking action a in state s0 when adopting policy π and P (s0, a, s
′)

is the transition probability of moving to state s′ when taking a in s0.

That is,

V π(s0) = R(s0)π(s0) + γV(s0)P(s0)π(s0) + γV π(s0)η(s0)π(s0), (16)

where η(s0) = Γ(s0)P(s0), and it is easy to see η(s0)π(s0) ∈ [0, 1]. Rearranging it yields

V π(s0) =
(
R(s0) + γV(s0)P(s0)

) π(s0)

1− γη(s0)π(s0)
= Q(s0)

π(s0)

1− γη(s0)π(s0)
. (17)

Note that, for all s ∈ S, we have

V π(s) = E
[
Ṽ(s; s0) + γX̃(s′;s0) · V π(s0)

]
= E

[
Ṽ(s; s0)

]
+ E

[
γX̃(s′;s0)

]
V π(s0). (18)

Replacing V π(s0) with the expression in (17) yields (13).

Corollary 1 (Full version of Proposition 1 in the main text) For π0, π1 ∈ Φ(s0, π0), let πα =
(1− α)π0 + απ1, with α ∈ [0, 1]. Then

Vπα = (1− β(α; s0))Vπ0 + β(α; s0)Vπ1 , (19)

where

β(α; s0) =
αφ1

(1− α)φ0 + αφ1
(20)

with φi = 1− γη(s0)πi(s0) ∈ [1− γ, 1] and β′(α; s0) > 0. Besides,

Vπ1 −Vπ0 =
(
V π1(s0)− V π0(s0)

)
Γ(s0), (21)

and

∂Vπα

∂α
= β′(α; s0) · (Vπ1 −Vπ0) = β′(α; s0) ·D(s0)Γ(s0) (22)

=
∂V πα(s0)

∂α
Γ(s0), (23)

where

D(s0) = Q(s0)

(
π1(s0)

1− γη(s0)π1(s0)
− π0(s0)

1− γη(s0)π0(s0)

)
. (24)

(Note: Eq (23) is identical to (5) in Prop 1.)

15



Published as a conference paper at ICLR 2023

Proof: Notice that

(1− β(α; s0))Vπ0 + β(α; s0)Vπ1

=
(1− α)φ0

(1− α)φ0 + αφ1
Vπ0 +

αφ1

(1− α)φ0 + αφ1
Vπ1

= V(s0) + Q(s0)

[
(1− α)φ0

(1− α)φ0 + αφ1

π0(s0)

φ0

+
αφ0

(1− α)φ0 + αφ1

π1(s0)

φ1

]
Γ(s0) [by (17)]

= V(s0) + Q(s0)
(1− α)π0 + απ1

(1− α)φ0 + αφ0
Γ(s0)

= V(s0) + Q(s0)
πα

1− γη(s0)πα
Γ(s0)

= Vπα [by (17)]

which is (19).

By Prop 9, η(s0)πi(s0) ∈ [0, 1) for i = 0, 1. Hence, φi = 1 − γη(s0)πi(s0) ∈ [1 − γ, 1] and
β′(α; s0) = φ0φ1

(φ0α−φ0−φ1α)2 ∈ [1−γ, 1]. Besides, by (19), we have ∂Vπα

∂α = β′(α; s0)·(Vπ1−Vπ0).
Plugging π1 and π0 into (13) followed by taking the difference yields Vπ1 −Vπ0 = D(s0)Γ(s0),
with D(s0) defined in (24). In this way, (22) is proved.

Let Γ(s; s0) be the entry for s in Γ(s0). Namely, Γ(s; s0) = E
[
γX̃(s;s0)

]
. Then

V π1(s0)− V π0(s0) = D(s0)Γ(s0; s0) = D(s0)E
[
γ0
]

= D(s0). (25)

Hence,

Vπ1 −Vπ0 = D(s0)Γ(s0) =
(
V π1(s0)− V π0(s0)

)
Γ(s0), (26)

which is (21). Likewise, (22) can be written as
∂V πα(s0)

∂α
= β′(α; s0) ·D(s0)Γ(s0; s0) = β′(α; s0) ·D(s0)E

[
γ0
]

= β′(α; s0) ·D(s0). (27)

Therefore, for s ∈ S,
∂V πα(s)

∂α
= β′(α; s0) ·D(s0) Γ(s; s0) =

∂V πα(s0)

∂α
Γ(s; s0), (28)

which is (23).

Proposition 10 (Proposition 2 in the main text) Assume π0 ∈ Π is not optimal in the associated
scalar problem for all w 6= 0. Let s0 ∈ S. We have the conic hull

Q1 = cone

(
V π(s0)− V π0(s0)

∣∣∣π ∈ ⋃
s∈S

Φ(s, π0)

)
= Rd, (29)

Q2 = cone

(
V πµ − V π0

µ

∣∣∣π ∈ ⋃
s∈S

Φ(s, π0)

)
= Rd. (30)

Therefore, for all u ∈ Rd, we can construct a function

π(α1, . . . , αM ) =
(

1−
M∑
i=1

αi

)
π0 +

M∑
i=1

αiπi (31)

with αi ≥ 0,
∑
j αj ≤ 1 and πi ∈ Π such that

u =

M∑
j=1

∂V π(0)(s0)

∂αj
· rj for some rj ≥ 0. (32)
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(Note that π(0) = π(0, 0, . . . , 0) = π0. ) Besides, assuming the MDP is ergodic, if γ → 1,
M∑
j=1

∂V π(0)(s)

∂αj
· rj → u for all s ∈ S. (33)

Similarly, we can construct π(α1, . . . , αM) such that

u =

M∑
j=1

∂V
π(0)
µ

∂αj
· rj for some rj ≥ 0. (34)

Proof: Assume the cone
(
V π(s0)− V π0(s0)

∣∣∣π ∈ ⋃s∈S Φ(s, π0)
)
6= Rd. Then by Farkas’

lemma (Dax, 1997), it must be contained in some closed half-spaceH1 = {x ∈ Rd|n>1 x ≤ 0}. Now
we show that n>1 V

π0(s0) cannot be further improved, which means π is optimal in the associated
scalar RL problem with weight n1 and thus is a contradiction. To improve n>1 V

π(s0), there must be
some s′ ∈ S that is reachable from s0 and π′ ∈ Φ(s′, π0) such that n>1 (V π

′
(s′)− V π0(s′)) > 0. By

(21), this implies,

n>1
(
V π
′
(s0)− V π0(s0)

)
= n>1

(
V π
′
(s′)− V π0(s′)

)
· Γ(s0; s′) > 0, (35)

where Γ(s0; s′) > 0 is the entry corresponding to s0 in Γ(s′).7 Hence, V π
′
(s0) − V π0(s0) 6∈ H1,

which is a contradiction. Therefore, we have shown that Q1 = Rd.

Similarly, if Q2 6= Rd, Farkas’ lemma shows it must be contained in some closed half-space
H2 = {x ∈ Rd|n>2 x ≤ 0}. Since π0 is assumed to be not optimal in all associated SORL
problems with w 6= 0, it is not optimal for the SORL one with weight n2. Therefore, there exists
some s′ ∈ S that is reachable when following the initial distribution and π′ ∈ Φ(s′, π0) such that
n>2 (V π

′
(s′)− V π0(s′)) > 0. Then (21) implies

n>2 (V π
′
(s)− V π0(s)) = n>2 (V π

′
(s′)− V π0(s′)) · Γ(s; s′) > 0 (36)

for all s ∈ S. As a result,

n>2

(
V πµ − V π0

µ

)
= n>2

∑
s∈S

µ(s)
(
V π
′
(s)− V π0(s)

)
> 0. (37)

Hence, V πµ − V π0
µ 6∈ H2, which is a contradiction. Therefore, Q2 = Rd.

Since Q1 = Rd, there exist si ∈ S, πi ∈
⋃
s∈S(si, π0) and d′i ≥ 0, for i = 1, . . . ,M , such that

u =

M∑
i=1

d′i
(
V πi(s0)− V π0(s0)

)
. (38)

Define function π taking the expression (31). By Corollary 1, we have

∂Vπ(0)

∂αj
=
∂V(1−αj)π0+αjπj |αj=0

∂αj
= β′(αj ; sj) · (Vπj −Vπ0) =

∂V π(0)(sj)

∂αj
Γ(sj). (39)

This implies,

∂V π(0)(s0)

∂αj
=β′(αj ; sj) · (V πj (s0)− V π0(s0)) (40)

=
∂V π(0)(sj)

∂αj
Γ(s0; sj). (41)

Combining (38) and (40) yields

u =

M∑
i=1

d′i
β′(αi; si)

∂V π(0)(s0)

∂αi
. (42)

7We note that the policy optimization is performed in s′ instead of s0 (as we did in Cor 1).
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Setting ri =
d′i

β′(αj ;sj)
yields (32). Moreover, if the MDP is ergodic, as γ → 1, we have all entries of

Γ(sj) approach to one for all j = 1, 2, . . . ,M . Then, combining (41) and (42) yield

u =

M∑
i=1

d′i
β′(αi; si)

∂V π(0)(s0)

∂αi
=

M∑
i=1

d′i
β′(αi; si)

∂V π(0)(si)

∂αi
=

M∑
i=1

ri
∂V π(0)(s)

∂αi
, (43)

for all s ∈ S.

Likewise, since Q2 = Rd, there exist r′i ≥ 0 for i = 1, . . . ,M such that

u =

M∑
i=1

r′i (V πiµ − V π0
µ ). (44)

Notice that

∂V
π(0)
µ

∂αj
=
∂
∑
s µ(s)V π(0)(s)

∂αj
=
∑
s

µ(s) · ∂V
π(0)(s)

∂αj

=
∑
s

µ(s)β′(αj ; sj) ·
(
V πj (s)− V π0(s)

)
[by (22)]

= β′(αj ; sj) (V πjµ − V π0
µ ).

Plugging it into (44) yields,

u =

M∑
i=1

r′i
β′(αi; si)

· ∂V
π(0)
µ

∂αi
. (45)

Setting ri =
r′i

β′(αi;si)
yields (34).

Proposition 11 (Proposition 3 in the main text) For s ∈ S , V(s) is convex. Besides, Vµ is convex.

Proof: We first consider the set of policies Π̃ that are not optimal in the associated scalar problem for
all w 6= 0. Then for π1, π2 ∈ Π̃ and α ∈ [0, 1], we show

(1− α)V π1(s) + αV π2(s) = V π
′
(s) for some π′ ∈ Π̃. (46)

Note that, since V π1(s) and V π2(s) are not optimal in the associated SORL problem for all w 6= 0,
for any vector v on the line segment from V π1(s) to V π2(s), v cannot be optimal in any associated
problem either. (Otherwise, at least one of V π1(s) and V π2(s) is optimal.) Therefore, starting from
V π1(s), we can keep constructing function π̃ defined in Prop 10 with u = V π2(s)− V π1(s) to move
along the line segment.8 In this way, we can find a policy π that has V π(s) corresponding to each
point on the line segment, which implies {V π(s)|π ∈ Π̃} is convex. Therefore, V(s) = {V π(s)|π ∈
Π} = cl({V π(s)|π ∈ Π̃}) is convex.

Similarly, for π1, π2 ∈ Π̃, V π1
µ and V π2

µ are not optimal in the associated SORL problem for all
w 6= 0. Therefore, for any vector v that is a convex combination of V π1

µ and V π2
µ , v is not optimal in

any associated SORL problem either. According to Prop 10, for every convex combination v, there is
a policy π that has V πµ = v. Hence, {V πµ |π ∈ Π̃} is convex, which implies its closure Vµ is also
convex.

Proposition 12 (Proposition 4 in the main text) For s ∈ S, π ∈ Π∗s if there exists w � 0 such
that π is optimal in the associated scalar problem. Also, if π ∈ Π∗s , π is optimal in an associated
scalar problem with some nonzero w � 0. A similar statement holds for Π∗s replaced with Π∗µ.

8A more rigorous treatment is to construct a line (path) integral with the directional derivative u.
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Proof: Consider the optimization problem

maximize w>v subject to v ∈ V(s). (47)

If π is optimal for some associated scalar problem with weight w � 0, then V π(s) is the optimal
solution of problem (47) (Bertsekas, 2022, Prop 2.1.2). Since V(s) is convex (Prop 11), according to
(Miettinen, 1998, Thm 3.1.2), V π(s) is Pareto optimal in V(s). That is, π ∈ Π∗s .

Conversely, if π ∈ Π∗s , then V π(s) is Pareto optimal in V(s). Since V(s) is convex, by (Miettinen,
1998, Thm 3.1.4), there exists w � 0 and w 6= 0 such that V π(s) is a solution of problem (47). Then
π is optimal in the associated SORL problem with the nonzero w � 0.

Repeating the derivations by replacing Π∗s with Π∗µ proves the similar statement for Π∗µ.

Proposition 13 (Proposition 5 in the main text) Function gs given in (9) is well-defined, surjective
and uniformly continuous.

We prove Prop 13 by first proving the functional relationship from w ∈ W+ to V παf (s) ∈ V?αf (s)
and thus gs is well defined. In particular, we show

Lemma 1 For any w ∈ W+, there exists a unique V παf (s) ∈ V?αf (s) such that π is optimal in
SORL(w). (i.e., V παf (s) is the only element in Vαf (s) having the greatest projection on w.)

Proof: We prove the lemma by contradiction. Assume that there exist two distinct V π1

αf (s) and
V π1

αf (s) in V?αf (s) such that π1 and π2 are optimal in SORL(w). Then we have

{V π1

αf (s), V π2

αf (s)} ⊆ argmax
v∈Vαf (s)

w>v, (48)

and

w>V π1

αf (s) = w>V π2

αf (s). (49)

In a SORL problem, it is well-known that a policy π is optimal for initial state s if and only if it is
optimal for all states that are reachable from s (Sutton & Barto, 2018). Since V π1

αf (s) 6= V π2

αf (s),
we have π1(s′) 6= π2(s′) for some s′ that is reachable from s under policies π1 and π2. Moreover,
we have w>V π1

αf (s′) = w>V π2

αf (s′). We then consider a new policy π′ that equals π1 for all s ∈ S
except s′. For s′, π′(s′) = 1

2 (π1(s′) + π2(s′)). Due to the strongly concavity of the immediate
augmented reward, the projected immediate reward of π′ on w is strictly greater than the ones of
π1 and π2. As a single-state action optimization is sufficient to increase the value function in all
states (Sutton & Barto, 2018, p78), we also have w>V π

′

αf (s) > w>V π1

αf (s) = w>V π2

αf (s), which
contradicts (48).

Since for each w ∈ W+, there exists a unique corresponding V παf (s) ∈ V?αf (s). The relationship
gs(·) by definition is a function. We then show that

Lemma 2 gs : W+ → V?αf (s) is surjective.

Proof: Consider a variant of the MORL problem that has the same setting as the original one except
that we now treat the action-taking distributions of a state as actions. We keep referring the actions
under the original definition as actions and the ones under the new definition as the d-actions.

Then for each state-action pair (ā, s), the immediate reward is R(s)ā + αf(ā). This setting is
the same as the one we considered in the proof of the convexity of the induced value function’s
range. Therefore, let V̄αf (s) denote the range of the induced value function for the original MORL
problem’s variant; by Prop 3, we have V̄αf (s) is convex. (In this variant of the MORL problem, the
action space Ā is actually infinite. Thus, to apply Prop 3, we need to first approximate the action
space through sufficiently fine discretization (Chow & Tsitsiklis, 1991).) Let V̄?αf (s) denotes the set
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of PE elements in V?αf . Then applying the same method for the proof of Prop 12, we can show that
for all v ∈ V̄?αf (s), there exists w ∈W+ such that v has the maximum projection on w. Besides,
applying the same method used in the proof of Lem 1, we can show that for any w ∈ W+, there
exists a unique v ∈ V̄?αf (s) such that v has the maximum projection on w. Therefore, there is a
functional relationship ḡs : W+ → V̄?αf (s) that maps w to v. Moreover, ḡs is surjective. Finally, we
show that ḡs = gs by showing that v must be in V?αf (s).

Given v ∈ V̄?αf (s) that has the maximum projection over some w ∈ W+. Then consider its
associated SORL with weight w. Since the corresponding policy of taking d-actions are optimal, it
must achieve the maximal cumulative discounted reward in all s′ that are reachable from s. Then
suppose in some s′ the policy of taking actions is not deterministic (i.e., the agent follows some
distribution p(ā) to take d-actions). Then by replacing the distribution with the one only taking
d-action ā′ =

∫
Ā
āp(ā), the projected cumulative discounted reward starting at s′ increases (due

to the strongly convavity and the Jensen’s inequality). Therefore, to find an optimal policy of the
associated SORL, we only need to consider the deterministic d-action policy. Namely, it is sufficient
to choose one distribution to take actions instead of adopting a bilevel design such that first follow a
distribution to pick an action-taking distribution q followed by using q to take actions. Equivalently,
we have shown that v ∈ V?αf (s), which completes the proof.

Finally, we show that gs is uniformly continuous.

Lemma 3 gs is uniformly continuous.

Proof: We first show that w is continuous overW+. By Lem 1, we know gs(w) can be written as

gs(w) = argmax
v∈Vαf (s)

w>v. (50)

For a sequence wk → w?, let vk = gs(wk) and v? = gs(w
?). Then for any subsequence

I ⊂ N, vk has an accumulation point v′ (because Vαf (S) is closed and bounded and due to the
Bolzano–Weierstrass theorem (Davidson & Donsig, 2009)). Since w>k vk ≥ w>k v for all v ∈ Vαf (s),
k ∈ I . We also have w?>v′ ≥ w?>v for all v ∈ Vαf (s). Therefore, v′ = v? and gs is continuous
by definition (Davidson & Donsig, 2009).

Finally, sinceW+ is compact, gs is uniformly continuous (Davidson & Donsig, 2009).

Combining Lemma 1-3 completes the proof of Prop 13.

Corollary 2 (Proposition 6 in the main text) If π ∈ Π∗s for some state s ∈ S, then for all s′ ∈ S,
π ∈ Π∗s′ . Thus, the sets of SPE policies coincide for all initial states and is a subset of Π∗.

Proof: According to Prop 12, if π ∈ Π∗s′ for some s′ ∈ S, then V π(s′) is optimal in an associated
SORL with some none-zero w � 0. Thus, V π(s) is the optimal solution of problem (47) for all
s ∈ S (by (Bertsekas, 2022, Prop 2.1.2) and the ergodic assumption).

If w � 0, then by Prop 12, V π(s) ∈ V(s) for all s ∈ S. That is, π ∈ Π∗s for all s.

If w contains zero entries, as π(s′) ∈ Π∗s′ , V
π(s′) is Pareto optimal in V(s′). Intuitively, V π(s′) can

be seen as a maximizer of problem (47) with weight w′ = limε→+0 w + ε1. Then since w + ε1 � 0
as it approaches to w, the problem is reduced to the first case, and thus, π ∈ Π∗s for all s.

A more rigorous proof can be done by introducing a lexicographic order over Rd. Specifically, we
need to construct a lexicographic order such that V π(s′) is the global maximum V(s′) ⊂ Rd. Let
w0 = w, S0 = V π(s′) and m0 = maxv∈S0

w>0 v. Define S1 = {v ∈ S0|w>0 v = m0}. Since S0 is
convex, so is S1 as it is an intersection of S0 and a hyperplane. It is easy to check V π(s′) ∈ S1 and is
Pareto optimal in S1. Applying (Miettinen, 1998, Thm 3.1.4), there exists nonzero w1 � 0 such that
w1 ·w0 = 0 and V(s′) is a solution of

maximize w>1 v subject to v ∈ S1. (51)
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We can continue this process to get mk = maxv∈Sk w>k v, Sk+1 = {v ∈ Sk|w>k v = mk}, followed
by applying (Miettinen, 1998, Thm 3.1.4) to get wk+1, where wk+1 · wj = 0 for all j < k + 1.
Besides, wk+1 has at least one nonzero entry, which is zero for the counterpart in wj for all j < k+1.

The process will continue until we get a list of non-zero weights w0,w1, . . . ,wn � 0 such that for
any dimension i = 1, 2, . . . , d, there is exactly one wj having a positive entry in dimension i. Then
we can construct a lexicographic order �L over Rd by ordering tuple (w>0 v,w>1 v, . . . ,w>n v) where
v ≺L u if w>k v = w>k v for k < j and w>j v < w>j v.

Since V π(s′) is Pareto optimal in all Sk, it is the global maximum of V(s′) under �L. Since for any
dimension in Rd, there is exactly one wj , j = 0, 1, . . . , n, having a positive entry. For u,v ∈ Rd, if
u 6= u, either u �L v or u ≺L v. Thus, V(s′) is in fact the unique global maximum of V(s′).

Gabor et al. (Gábor et al., 1998) extends the SORL setting to MORL by ordering Rd using a
lexicographic order. They generalized the Bellman optimality operator by choosing the action that
gives the greatest (vectored) value function under the lexicographic order. They showed that under
this setting, the value function converges to the unique optimal point (under the lexicographic order)
and the generalized Bellman optimality operator is monotonic. Thus, the value function reaches the
optimality for all states simultaneously under the ergodic assumption.

As a result, since V π(s′) is optimal in V(s′), V π(s) is also optimal in V(s) for all s ∈ S (under
order �L). Thus, V π(s) is Pareto optimal in V(s). (Otherwise, if there is some u ∈ V(s) such that
u � V π(s), we can show that u �L V π(s) as well.)

Proposition 14 (Proposition 7 in the main text) For all s ∈ S, Π∗s = Π∗µ.

Proof: If π ∈ Π∗s′ for some s′ ∈ S, then by Prop 12, π is optimal in an associated SORL problem
with some nonzero w � 0. Therefore, w>V π(s) reaches the maximum for all s ∈ S; thus, so is
w>V πµ =

∑
s∈S µsw

>V π(s).

If w � 0, by Prop 12, V πµ is Pareto optimal in Vµ. Otherwise, w contains zero entries. Intuitively,
we can approximate w with w′ = limε→+0 w + ε1 like what we do in the proof of Cor 2. More
rigorously, we can use the same trick to construct a lexicographic order �L over Rd, where V π(s′) is
the only global maximum of V(s′). Then, by Gabor et al. (Gábor et al., 1998)’s work, V π(s) is the
only global maximum of V(s) for all s, which implies V πµ is the only global maximum in Vµ under
order �L. Therefore, V πµ is Pareto optimal in Vµ.

Reversely, given π ∈ Π∗µ, we have V πµ is Pareto optimal in Vµ. Then Prop 12 shows π is optimal in
an associated SORL problem with a nonzero w � 0. If w � 0, then by Prop 12, π ∈ Π∗s for all
s ∈ S . Otherwise, we construct a lexicographic order �L through the method used in Cor 2’s proof.
Then we can show that V πµ is the the global maximum in Vµ, and V π(s) is the global maximum in
V(s) for all s (under order �L). Thus, V π(s) is Pareto optimal in V(s) and π ∈ Π∗(s) for all s.

Proposition 15 (Proposition 8 in the main text) For any s ∈ S, as γ → 1, the SPE set Π∗s ap-
proaches to the APE one Π∗.

Proof: It is sufficient to show as γ → 1, every policy π ∈ Π∗ must be in Π∗s . In particular, assume
there is π ∈ Π∗ but π /∈ Π∗s . Then there exists v ∈ V(s) such that v 6= V π(s) and v � V π(s). By
Prop 11, V(s) is convex. Thus, the line segment with the ends v and V π(s) is contained in V(s). By
Prop 10, we can optimize the policy to move from V π(s) to v over the line segment; at the same
time, as γ → 1, V π(s′) will move in the same direction for all s′ ∈ S (see (33)). Hence, the value
function are improved in all states, which implies π cannot be APE.
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C THE RELATIONSHIP BETWEEN THE CONVEXITY OF THE OCCUPATION
MEASURE AND THE INDUCED FUNCTION’S RANGE

The convexity of the induced function’s range can also be seen as a corollary of the occupation
measure’s convexity, which was initially proved by Kallenberg (1983). In this section, we give a
second proof of Prop 3 based on the occupation measure’s convexity.

For any initial distribution µ, the occupation measure of a policy π is defined as (Altman, 1999, p27)

x(π, µ; a, s) = (1− γ)

∞∑
t=0

γtP (at, st;π, µ), (52)

where P (at, st;π, µ) denotes the probability of taking action at in state st at step t when adopting
policy π with initial distribution µ. It is easy to see that we can write

V πµ =
1

1− γ
∑
s∈S

∑
a∈A

x(π, µ; a, s) ·R(a, s). (53)

Let X(π, µ) ∈ R|A|×|S| such that [X(π, µ)]as = x(π, µ; a, s). Additionally, let X(µ) =
{X(π, µ)|π ∈ Π}. Then Kallenberg (1983) proved that (Altman, 1999, Thm 3.2)

Lemma 4 (Convexity of occupation measure) X(µ) is convex.

In other words, for X1, X2 ∈ X(µ), we also have δX1 + (1− δ)X2 ∈ X(µ) for all δ ∈ [0, 1].

Then, we use this result to prove the convexity of the induced function’s range.

Proof: [The second proof of Prop 3] Given V π1
µ , V π2

µ ∈ Vµ, by (53), we have

V π1
µ =

1

1− γ
∑
s∈S

∑
a∈A

x(π1, µ; a, s) ·R(a, s), (54)

V π2
µ =

1

1− γ
∑
s∈S

∑
a∈A

x(π2, µ; a, s) ·R(a, s). (55)

Then for any δ ∈ [0, 1], we have

(1− δ)V π1
µ + δV π2

µ =
1

1− γ
∑
s∈S

∑
a∈A

[
(1− δ) x(π1, µ; a, s) + δ x(π2, µ; a, s)

]
·R(a, s). (56)

Due to the convexity of X(µ), we know that there exists some π′ such that

x(π′, µ; a, s) = (1− δ) x(π1, µ; a, s) + δ x(π2, µ; a, s) (57)

for all s ∈ S and a ∈ A. That is,

(1− δ)V π1
µ + δV π2

µ =
1

1− γ
∑
s∈S

∑
a∈A

x(π′, µ; a, s) ·R(a, s) = V π
′

µ ∈ Vµ, (58)

as well. Therefore, Vµ is convex. Let µ be the one-hot distribution that puts all mass on state s. We
have V(s) = Vµ, which is also convex.

D WHY A DISCONTINUOUS gs MAKES THE TRAINING PROCESS UNSTABLE

Training using LS is unstable because of the sensitivity of gs to preference vectors w that are near
normal to a surface or edge of V(s): slight changes in w means the optimal policy will be on a
different vertex of the polytope. This behaviour will be exacerbated by estimating V(s) since slight
changes in the value functions will also change the surface geometry. More specifically, gs(w) is
discontinuous when we do not add our concave regularization term (α = 0), so it is highly sensitive
to errors in our estimate of Vαf (s).
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E THE SELECTION OF THE STRONGLY CONCAVE TERMS IN CAPQL

In this section, we discuss our selection of the strongly concave term used in CAPQL.

According to the theoretical results presented in Sec 4.1, f can be any strongly concave term for the
definition of V π given in (8), and Prop 5 shows that the corresponding gs defined in (9) is surjective
and uniformly continuous. In this way, all the problems of the existing LS-based methods discussed
in Sec 4.1 are solved.

 

177

Figure 10: The effects on the induced value functions at s0 for selected policies in Ex 1 by adding
strongly concave terms to the immediate rewards with different alpha. Here, f : ∆|A| → R is defined
as f(p) = −

∑|A|
i=1 p

2
i . V?αf (s0) is marked in blue and the dots of the same colour among the four

plots correspond to the same policy.

In Fig 10, we visualize the changes of V?αf (s0) by choosing a different f(p) = −
∑|A|
i=1 p

2
i . We can

observe that the transformation of V?αf (s0) here is very similar to the one presented in Fig 7 where
f(p) = H(p).

While the theoretical results presented in Sec 4.1 holds as long as f is strongly concave, some special
choice of f can significantly simplify the implementation of CAPQL and improve the computational
efficiency. Specifically, CAPQL consists of two major parts: 1) optimizing the generalized Q-
nework using the Bellman operation and 2) optimizing the policy networks πφ conditioned on w by
minimizing the KL divergence from the predicted action-taking distribution πφ(s,w) and the target
one induced by the Q-values:

π∗(s) = argmax
π(s)

(
w>

∑
a∈A

Qθ(s, a,w) · π(a, s)
)

+ αf
(
π(s)

)
, (59)

where π(a, s) denotes the probability of taking action a in state s.9

Regarding the first part, the optimization of Q(st, at,w) needs the estimated value function condi-
tioned on w at the next state st+1. That is,

V (st+1,w) = Ea∼πφ(st+1,w)

[
Qθ(st+1, a,w)

]
+ αf

(
πφ(st+1,w)

)
, (60)

which requires f(πφ(st+1,w)) can be computed efficiently. If the number of actions is huge or
infinite, we need to estimate V (st+1,w) through sampling. Note that, when f = H, we have

V (st+1,w) = Ea∼πφ(st+1,w)

[
Qθ(st+1, a,w)

]
− α Ea∼πφ(st+1,w)

[
log πφ(st+1,w)

]
, (61)

= Ea∼πφ(st+1,w)

[
Qθ(st+1, a,w)− α log πφ(st+1,w)

]
(62)

≈ Qθ(st+1, a,w)− α log πφ(st+1,w) (63)
with a ∼ πφ(st+1,w). (We adopt this approximation in our CAPQL implementation as the MoJuCo
environment has a continuous action space.) However, a similar estimation cannot be made given
f(p) = −

∑|A|
i=1 p

2
i because the expression is not an expectation over the action-taking distribution.

For the second part, a practical implementation requires that the π∗(s) defined in (59) can be evaluated
efficiently. When f = H, the π∗ has the expression:

π∗(a, s) =
exp

(
w>Qθ(s, a,w)/α

)
Z

, (64)

9See Appx F for the implementation details of πφ and Qθ .
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where Z =
∫
a∈A exp

(
w>Qθ(s, a,w)/α

)
da. In Appx F, we will show that Z is not required to be

evaluated explicitly. As a result, π∗ can be computed effortlessly.

Since setting f = H enables the efficient computation/estimation in training the Q network and
the policy network, we use the entropy function to augment the immediate rewards in our CAPQL
implementation.

F IMPLEMENTATION DETAILS OF CAPQL

In this section, we provide extra implementation details of the CAPQL algorithm and gives its
psuedocode.

Our algorithm largely follows the spirit of the implementation of the soft actor critic (SAC) (Haarnoja
et al., 2018). The major difference is that in CAPQL, the Q-network and the policy network are
conditioned on the preference weight w. As a result, the Q-network takes input (s, a,w) instead of
(s, a), and the policy network has input (s,w) instead of s.

Let Qθ denote the Q-network with parameter θ for training, Qθ̄ target network with parameter θ̄ and
πψ the policy network with parameter ψ. Additionally, let Dφ be a weight sampling distribution
with support φ. As mentioned in the main text, without the loss of generality, we assume that for all
w ∈ φ, we have ‖w‖1 = 1; in practice, the assumption can be simply satisfied by normalize w after
sampling it. Then we give the CAPQL’s implementation in Alg 1.

Algorithm 1: The CAPQL implementation
Input: A weight sampling distribution Dφ

Initialize parameter vectors θ1, θ2, θ̄1, θ̄2, ψ
θ̄i ← θi for i ∈ {1, 2}
for each iteration do

for each environment step do
sample w ∼ Dφ

at ∼ πψ(st,w)
st+1 ∼ P (at, st)
D ← D ∪ {(st, at, R(at, st), st+1,w)}

end
for each training step do
S ← sample N transitions from D
θi ← θi − λQ∇θi

(
1
2ES‖Q̂(sj , aj ,w)−Qθi(sj , aj ,w)‖22

)
for i ∈ {1, 2}

where Q̂(sj , aj ,w) = R(aj , sj)+
γ
(

mini∈{1,2}Qθ̄i(sj+1, aj+1,w)− α log πφ(aj+1, sj+1,w) 1
)

and aj+1 ∼ πψ(sj+1,w)

ψ ← ψ − λπ∇ψES
(
DKL

(
πψ(·, sj ,w)

∥∥ exp(w>mini∈{1,2}Qθi (sj ,·,w)/α)

Z(sj ,w)

))
with Z(sj ,w) =

∫
A exp

(
w>mini∈{1,2}Qθi(sj , a,w)/α

)
da

θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}
end

end

Note that when computing the gradient of ψ, the partition function Z(sj ,w) does not depend on ψ
and will be dropped in the actual implementation. Besides, we use an exponentially moving average
with a smoothing constant τ to update the target network, which stabilizes the learning trajectory.
This technique has been commonly adopted in the prior work (Mnih et al., 2015; Lillicrap et al.,
2016; Haarnoja et al., 2018).

Implementation of the Q-network. Inspired by the design of SAC, our Q-network consists of
two fully connected networks (FCNs). The two networks have the same architecture but different
parameters. Each of them has two hidden layers and takes input of the dimension equal to the sum
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of the ones of observation states and reward. The output dimension equals the reward’s. When
performing inference, the Q-network returns element-wise minimum over the two FCNs’ outputs.

Implementation of the policy network. The policy network is implemented using the reparame-
terization trick. In particular, it can be written as

at = fψ(εt; st,w), (65)

where εt is a sample of a spherical Gaussian distribution. In our implementation, we first use the trick
to generate a Gaussian sample with mean µφ(st,w) and standard deviation σφ(st,w) (µφ and σφ
are respectively implemented by a two-layer FCN), followed by using tanh function to ensure at is
in [−1, 1]d as required by the Mujoco environment.

G THE CONVERGENCE PROPERTIES OF CAPQL

In this section, we discuss the convergence property of the CAPQL algorithm. As mentioned in
Sec 5.2, the learning task of SORL(w) specified in (10) is the one used in SAC (Haarnoja et al.,
2018); therefore, after picking w, we use the SAC method to train the policy and the Q-network.

LetW = {w′|w′ ∈ Φ and ‖w′‖1 = 1}. It has been shown that by repeatedly applying the SAC
optimization step, the policy converges to the optimal (Haarnoja et al., 2018, Thm 1). As a result,
for CAPQL, given a fixed weight w ∈ W , we have the conditioned policy π(·, ·,w) converge to the
optimal policy π∗w such that w>Qπ

∗
w(s, a) ≥ w>Qπ(s, a) for all π ∈ Π and (s, a) ∈ S ×A.

As the CAPQL algorithm converges conditioned on every w ∈ W , it also converges as a whole.

H ADDITIONAL EMPIRICAL STUDY OF CAPQL
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Figure 11: Visualization of the estimated gs0(w) in Ex 1 by MOQ (Abels et al., 2019) and CAPQL
with α = 0.1, 0.3, 0.5. The MOQ can be seen as a special case of CAPQL when α→ 0.

In this section, we provide extra empirical evidence to corroborate our theoretical results discussed in
Prop 5 and Rmk 4 and show that CAPQL is capable of finding all the PE policies

We perform the experiments on the environment specified in Ex 1 which has a simple configuration
so that we can plot the range of its induced value function.

In Fig 11, we visualize the estimated gs0(w) of the CAPQL with α = 0.1, 0.3, 0.5. We also provide
one for MOQ (Abels et al., 2019) which can be seen as a limiting case of CAPQL when α→ 0. The
visualization was made by picking w ∈

{
[w0, w1]> ∈ R2|w0 + w1 = 1, w0 ∈ [0, 1]

}
.

Fig 11 (left plot) shows that the MOQ algorithm cannot precisely estimate gs0 as it is not continuous
when α = 0. In particular, the target gs0 has the range only consisting of the upper two vertices and
the one on the right (also see Fig 6). However, the estimated gs0 randomly fluctuates at the vertices
and mistakenly has a continuous transition between the upper two. The fluctuations suggest that
the estimated gs0 is numerically unstable and could harm the performance of the induced policy.
Additionally, the continuous transition indicates that the target gs0 is inaccurately estimated.

The right three plots show that the aforementioned problems can be alleviated by the CALQL
algorithm. We observe that even a relatively small alpha (α = 0.1) can largely alleviate the numerical
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stability problem as the most of fluctuations near the vertices disappeared and the estimation of gs0
improves. We also observe that as α increases to 0.5, a nearly perfect estimation of gs0 is obtained.
The observations tell us by adding the entropy term to the immediate reward can indeed make it easier
to learn gs0 and improves the numerical stability, which supports our claims in Prop 5 and Rmk 4.

Moreover, we can observe that the learned gs0 is a surjective function fromW+ to the entire Pareto
front, which implies that the corresponding policies learned by CAPQL are the induced value
functions which cover the entire Pareto front of V?αf (s0) as well.

I HYPERPARAMETERS

Tables 1-3 list the hypermeters of the models considered in Sec 5.3. Table 4 lists the specifications of
the four Mujoco environments.

Table 1: Hyperparameters of CAPQL and QEnv-ctn

Parameter Value
Optimizer Adam
learning rate 3× 10−4

discount factor (γ) 0.99
hidden dim (for all networks) 256
replay buffer size 106

minibatch size 256
nonlinearity ReLU
target smoothing coefficient (τ ) 0.005

Table 2: Augmentation strength of CAPQL

Environment α

Hopper 0.2
Walker2D 0.05
HalfCheetah 0.1
Humanoid 0.005

Package Versioning Python 3.10.4 was used as the primary programming language. We accessed
MuJoCo210 through gym-0.21.0’s wrapper classes. Training was done using pytorch-1.12.1 and
NVIDIA’s CUDA 11.6.
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Table 3: Hyperparameters of QEnv and MOQ

Parameter Value Additional Info

Optimizer Adam — SGD
SGD was only used on Humanoid
because Adam was requiring too much
RAM for the system

learning rate 1× 10−4

discount factor (γ) 0.99
hidden dim
(for all networks)

A linear function
of dim(S) + d

The NN architecture was used
in the original QEnv work.

replay buffer size 4000

minibatch size 16× 16
Effective batch size after taking the
Cartesian product with the preference
vectors

nonlinearity ReLU

# discretized values
for each action dim. 5 (2 for humanoid)

The Humanoid’s action-space has
dimension of 17, making it infeasible
to use a more fine-grained discretization
of its action space.

Table 4: Specifications of Environments

Environment Action dim. Obs. state dim. Rwd. dim. Rwd entries

Hopper 3 11 3
forward reward
negative ctrl cost
healthy reward

Walker2D 6 17 3
forward reward
negative ctrl cost
healthy reward

HalfCheetah 6 17 2 forward reward
negative ctrl cost

Humanoid 17 376 4

forward reward
negative ctrl cost
healthy reward
negative contact cost
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