
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONTRASTIVE-ONLINE-META (COM): A DYNAMIC
ADAPTATION MECHANISM FOR INSTRUCTION-TUNED
CODELLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Contrastive-Online-Meta (COM), a dynamic adaptation framework
for instruction-tuned CodeLLMs that coefficients to the issues of catastrophic for-
getting and noisy feedback at the time of deployment. The framework combines
contrastive pre-training and online meta-learning to separate the task-invariant
representation learning and fast adaptation, which helps preserve core program-
ming knowledge while achieving real-time adaptation. A contrastive pre-training
module takes a first step at clustering semantically similar instructions and union-
izing dissimilar ones, to guarantee its robustness to task variations. During infer-
ence, an online meta-learner takes pairs of instruction-feedback streaming and
does a light-weight gradient-based update to meta-parameters, which dynami-
cally adjust the model behavior in a way that does not destabilize the pre-trained
behavior-effective thing. Furthermore, the dynamic memory buffer simply retains
coherence with recent interactions by deriving pairs stored in the buffer for the
sake of contrastive match. Unlike monolithic fine-tuning or prompt engineering,
COM explicitly separates the processes of representation learning and adaptation,
hence avoiding forgetting and overfitting. Experiments using benchmark datasets
show that the framework has a better capacity for adaptation efficiency and task
generalization than static and incremental tuning baselines. The proposed method
fills in the missing link between the offline pre-training and the online acceler-
ated deployment, which provides a scalable solution to real-world code generation
systems that require continuous learning. And, its modular nature also supports
integration with existing CodeLLMs, which makes it practical for different pro-
gramming assistance scenarios.

1 INTRODUCTION

The groundbreaking development of code-generating large language models or CodeLLMs, has
revolutionized the software development landscape and enabled programmers to communicate with
models using natural language instructions. While instruction tuning has proven effective for adapt-
ing pre-trained models to specific coding tasks (Ahmad et al., 2025), existing approaches face critical
limitations when deployed in dynamic environments where new instruction patterns and feedback
arrive continuously. Traditional fine-tuning methods often exhibit catastrophic forgetting when in-
crementally updated (Kirkpatrick et al., 2017), while prompt engineering techniques struggle to
maintain robustness against noisy or ambiguous user inputs. This leads to an cognitive tension
between adaptability and stability in real programming assistance systems.

Current solutions for dynamic instruction tuning fall into two categories: those that emphasize rapid
adaptation through lightweight parameter updates (Lv et al., 2025), and those that prioritize knowl-
edge preservation through architectural constraints (Weyssow, 2024). The former tend to overfit to
recent tasks while the latter tend to be computationally expensive and inflexible. Recent work has
shown that contrastive learning can improve model robustness by clustering semantically similar
instructions (Jiang et al., 2024), and that meta-learning frameworks enable efficient few-shot adap-
tation (Ahmad et al., 2025). However, no current solution boosts these strengths in a systematic
manner to solve the dual problems of streaming adaptation and knowledge retention.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We present Contrastive-Online-Meta (COM), a unifying framework that fills in this gap with three
complementary innovations. First, a contrastive pre-training phase learns task-invariant represen-
tations by aligning embeddings of functionally equivalent code instructions while distancing dis-
similar ones, building on insights from (Muennighoff et al., 2023). Second, an online meta-learner
performs the processing of the received instruction-feedback pairs as non-stationary tasks, utilizing
gradient-based updates of a set of meta-parameters that alter the behaviors of the base model with-
out replacing the knowledge stored in the core model. Third, a system of dynamic memory keeps
a coherence in time by selective storage and replay of past interactions to keep them selectively
coherent so they are not drifted. This decomposition allows the model to simultaneously preserve
long-term programming knowledge while adapting to new task distributions—a capability absent in
prior instruction tuning methods (Li et al., 2023).

The contribution of the framework is three fold. It sets up the first principled merging of contrastive
objectives and the meta-learning that happens online of CodeLLMs, encouraging in learning for
the first time that task-aware representation learning and rapid adaptations are complementary, not
competing objectives. The forgetting-overfitting problem is explicitly accomplished by modular
design of updates: contrastive losses preserve global coherence while meta-learned local updates
manage task-specific nuances. Experimentally, COM achieves significantly higher robustness than
standard fine-tuning when tested on mixed-domain programming tasks, while requiring 3-5× fewer
updates than conventional meta-learning approaches (Nichols et al., 2024). The method also shows
particular strength in low-resource scenarios, outperforming instruction-tuned baselines by 12-18%
on unseen programming languages.

The remaining part of this paper can be organized as follows: Sections 2 reviews relevant work in
instruction tuning and continual learning for CodeLLMs. Section 3 solidifies the main technical
challenges and provides some necessary background in contrastive learning and meta-learning. Sec-
tion 4 is for the architecture of the COM framework and training dynamics. Experimental results
with several programming benchmarks are presented in Section 5 followed by discussion of larger
implications in Section 6. Section 7 provides a concluding set of directions for further research of
the paper.

2 RELATED WORK

The development of dynamic adaptation mechanisms for CodeLLMs touches upon several different
branches of research, such as instruction tuning, continual learning, and meta-learning. Existing
approaches can be broadly divided into three directions: the static instruction tuning, the incremental
adaptation methods and contrastive learning frameworks for code representations.

2.1 INSTRUCTION TUNING FOR CODE GENERATION

Instruction tuning has become the rising trend for aligning CodeLLMs with human intent. Recent
work such as (Ahmad et al., 2025) introduced large-scale datasets specifically designed for code in-
struction tuning, demonstrating that task diversity significantly impacts model generalization. While
viable for static deployment, these approaches need complete retraining when new instruction pat-
terns are encountered, being unusable for dynamic environments. Alternative approaches like (Li
et al., 2023) focus on specialized code editing tasks but similarly lack mechanisms for continuous
adaptation. The introduction of parameter-efficient fine-tuning techniques (Weyssow, 2024) par-
tially addresses this limitation through adapter layers, though such methods still exhibit catastrophic
forgetting when applied sequentially.

2.2 CONTINUAL LEARNING IN CODE MODELS

The difficulty of preserving model performance when dealing with sequential tasks has been heavily
studied in continual learning literature. For CodeLLMs, recent work has explored memory replay
mechanisms (Lv et al., 2024) and dynamic architecture expansion (Lv et al., 2025) to mitigate for-
getting. However, these approaches usually rely on that these well-curated tasks have access to
well-curated boundaries available tasks and well-curated data streams (something that is rarely the
case in programming assistance tasks). The problem becomes particularly acute when dealing with
noisy user feedback, as shown in (Wang et al., 2024), where even small deviations in instruction

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

phrasing can degrade model performance. Our work is different in its explicit modeling of the
instruction space through contrastive learning, thus making the framework robust to such variations.

2.3 META-LEARNING AND CONTRASTIVE APPROACHES

Meta-learning has shown promise for few-shot adaptation of language models, with methods like
(Yuan & Lu, 2022) demonstrating that contrastive objectives can improve task representation learn-
ing. In the code domain, (Wang et al., 2023) applied similar principles to graph neural networks,
though their framework lacks the online adaptation capabilities needed for streaming data. The
most relevant prior work comes from (Qin et al., 2023), which combines contrastive learning with
meta-optimization for recommendation systems. But their approach is centered around static item
embeddings instead of the dynamic instruction-to-code relationship for CodeLLMs.

Compared to existing methods, COM is innovative for several reasons. Unlike static approaches for
tunable instruction data [1,2], our framework can cope with continuous adaptation through online
meta-learning. However, unlike common approaches of continual learning [4,5], we avoid catas-
trophic forgetting by virtue of contrastive representation learning instead of architectural constraints.
Most importantly, COM bridges these different components in a unified way in which contrastive
objectives and meta-learning mutually enhance each other-a design choice not studied in previous
work led on code models [3,6] or general meta-learning systems [7,9]. This combination provides
both high-quality task-invariant representations for good generalization and low-cost task-specific
adaptation, solving fundamental limitations in existing dynamic tuning schemes.

3 BACKGROUND: CONTINUAL LEARNING, META-LEARNING, AND
CONTRASTIVE OBJECTIVES FOR CODE MODELS

To set up the stage for our proposed framework, we first terms, which provide the foundation for
our approach: continual learning in code models, meta-learning principles, and contrastive learning
objectives. With these components, several different, but complementary, challenges associated with
fitting CodeLLMs to dynamic instruction streams are addressed.

3.1 CONTINUAL LEARNING IN CODE MODELS

When incrementally trained on new programming tasks, neural networks often suffer from catas-
trophic forgetting—a phenomenon where learning new patterns causes abrupt degradation in perfor-
mance on previously learned tasks (Kirkpatrick et al., 2017). This challenge is especially acute for
code generation models because of the compositional nature for programming knowledge. For ex-
ample, a model trained serially on tasks of Python data analysis and web development might forget
the patterns of how APIs work in the first as it adapts itself for the second. The standard continual
learning objective minimizes the cumulative loss of all the tasks:

L =

n∑
i=1

Li (1)

where Li represents the loss for task i. However, naively optimising this objective creates interfer-
ence between tasks since gradient updates for new tasks overshadow parameters that are important
for old tasks. Recent work has shown that code models exhibit stronger forgetting effects than
general language models due to the precise syntactic and semantic constraints of programming lan-
guages (Yadav et al., 2023).

3.2 META-LEARNING BASICS

Meta-learning helps overcome the challenge of condensing models into a fast-adaptive mode by
benefiting from efficient learning on small data. The basic concept is that of learning high-level
parameters that determine how the parameters of the base model should change for adapting to new
tasks. In the case of CodeLLMs, this means the model can more quickly modify its behaviour when
presented with new programming patterns or APIs. The standard meta update rule is as follows:

θnew = θold − α∇θL(θ,Dmeta) (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where α is the meta-learning rate and Dmeta represents the support set for a new task. This formu-
lation enables few-shot adaptation by learning optimal initialization points and update rules (Finn
et al., 2017). For code generation tasks, meta-learning has shown promise in adapting to new pro-
gramming languages with minimal examples (Yin, 2020).

3.3 CONTRASTIVE LEARNING FOR CODE REPRESENTATION

Contrastive learning is a mechanism that allows learning of robust representations through the
pulling together of semantically similar code samples in embedding space and the pushing apart
of dissimilar ones. Given quantitatively an anchor code snippet x1 and its positive pair x2 (i.e.,
functionally equivalent implementations the contrastive loss can be formulated as follows

Lcontrast = − log
exp(sim(x1, x2)/τ)

exp(sim(x1, x2)/τ) +
∑K
i=1 exp(sim(x1, xineg)/τ)

(3)

where sim(·) measures cosine similarity, τ is a temperature parameter, and xineg are negative sam-
ples. In programming contexts, positive pairs might include different implementations of the same
algorithm, while negatives could be code snippets with distinct functionality (Jain et al., 2020). This
approach has been shown to improve generalization across programming languages and tasks by
capturing functional equivalence beyond surface-level syntax (Shuai et al., 2020).

These three components, namely continual learning objectives, meta-learning dynamics and con-
trastive representation learning are the basis for the theoretical design of our proposed COM frame-
work. While each of them addresses different aspects of the adaptation challenge, they complement
each other to come up with a more robust solution to the forgetting-adaptation trade-off in dynamic
code generation scenarios. The following section will describe in more detail the way in which we
combine these ideas into a unified approach.

4 CONTRASTIVE-ONLINE-META: A UNIFIED FRAMEWORK FOR
STREAMING INSTRUCTION ADAPTATION

The COM framework is operated through four interwoven parts which, overall, facilitate the possi-
bility of robust dynamic adaptation of the CodeLLMs. The system architecture keeps the frozen base
CodeLLM and learns two sets of adaptable parameters: contrastive embeddings on representation
of instructions and meta-parameters for task-specific adaptation. This separation of concerns makes
it easy to maintain some knowledge of programming England’s instructions and so allow today’s
model to stay implies in nearly new instruction patterns.

4.1 INTEGRATION OF CONTRASTIVE PRE-TRAINING AND ONLINE META-LEARNING

The framework begins with contrastive pre-training of the instruction encoder fθ, which maps natu-
ral language instructions to a latent space where functionally similar tasks cluster together. Given a
batch of instruction pairs (xi, xj) we calculate the contrastive loss:

Lcont = − 1

B

B∑
i=1

log
exp(sim(fθ(xi), fθ(x

+
j ))/τ)∑K

k=1 exp(sim(fθ(xi), fθ(x
−
k ))/τ)

(4)

where B is the batch size, x+j denotes positive pairs (semantically equivalent instructions), and x−k
represents negative samples. The temperature parameter τ controls the sharpness of the similarity
distribution. This pre-training phase helps to make sure that the instruction encoder learns task-
invariant features before it can be deployed on-line.

During inference, the meta-learner gϕ processes streaming instruction-feedback pairs (xt, yt) where
yt represents execution results or user feedback. The meta-update rule is a combination of task-
specific adaptation and regularization:

ϕt+1 = ϕt − α∇ϕ

(
∥gϕ(fθ(xt))− yt∥2 + λ∥ϕt − ϕt−1∥2

)
(5)

The first term the prediction error is minimized on the current task and the second term a constraint
is used to prevent parameter drift, the so-called catastrophic forgetting. The learning rate α and
regularization strength λ are hyperparameters controlling the adaptation speed-stability trade-off.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 DYNAMIC MEMORY BUFFER FOR CONTRASTIVE ALIGNMENT

A FIFO buffer M of capacity C stores recent instruction-feedback pairs to maintain temporal co-
herence. At each timestep, the buffer samples a mini-batch of m historical pairs in order to calculate
an auxiliary contrastive loss:

Lbuffer = − 1

m

m∑
i=1

log
exp(sim(fθ(xi), fθ(x

+
i,mem))/τ)∑m

j=1 exp(sim(fθ(xi), fθ(x
−
j,mem))/τ)

(6)

where x+i,mem and x−j,mem are positive and negative samples drawn from M. This loss ensures that
new adaptations are consistent in that they aligned with representation in recently seen tasks (No
representation drift). The rule for buffer update is as follows:

Mt+1 = FIFO-Update(Mt, (xt, yt)) (7)

4.3 FROZEN BASE CODELLM WITH META-LEARNER ADAPTATION

The base CodeLLM hψ remains frozen throughout the adaptation process. The meta-learner modi-
fies instruction embeddings before feeding them to hψ:

p(y|x) = hψ(gϕ(fθ(x))) (8)

Gradients flow only through gϕ and fθ, leaving ψ unchanged. This choice of design helps in main-
taining the just minimal programming knowledge in the model, still enabling us to modulate task
specific behavior. The separation of parameters enables efficient updates—typically requiring ¡5%
of the base model’s parameters to be trainable.

4.4 TASK-INVARIANT REGULARIZATION IN META-LEARNING

As a method of keeping things stable, two additional types of regularization are incorporated into
the meta-learner. First, a projection head qω maps contrastive embeddings to a lower-dimensional
space where regularization is applied:

zt = qω(fθ(xt)) (9)

The projection space makes it possible to control the drift of representation more tightly through:

Lproj = ∥zt − zt−1∥2 (10)

Second, we perform spectral normalization to the weight matrices of the meta-learner to bound their
Lipschitz value, to ensure that the adaptation behaviour does not change in a sudden manner:

WSN =W/σ(W ) (11)

where σ(W ) denotes the largest singular value ofW . This combination of techniques is what makes
for nice adaptation trajectories while keeping the fundamentals of the model’s capabilities intact.

The full procedure for the COM training cycle consists of an alternation between contrastive update
(Equation 4) and meta-update (Equation 5), with some additional regularization resulting from the
memory buffer (Equation 6). This hybrid approach provides the ability to preserve global task
representations and localization of instruction-specific adaptations simultaneously - an ability that is
not achieved by approaches based on contrastive learning, or further learning using meta-learning.
The frozen base model provides stability; and, the adaptable parts respond to new programming
requirements and new user feedback patterns.

5 EXPERIMENTAL SETUP AND EVALUATION

For validating the effectiveness of the COM framework, we performed extensive experiments across
several dimensions, including adaptation efficiency, robustness against catastrophic forgetting and
generalization to previously unseen programming tasks. The evaluation measures COM against
three classes of baselines including static instruction-tuned models, continual learning approaches
and meta-learning approaches.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: Integration of the COM Framework in the Instruction-Tuned CodeLLM System

5.1 DATASETS AND TASKS

We tested on a diverse range of programming benchmarks that include different programming lan-
guages and orders of magnitude. The CodeAlpaca-20k dataset (Ahmad et al., 2025) provides
20,000 instruction-code pairs across Python, JavaScript, and Java, covering algorithmic, data pro-
cessing, and API usage tasks. For continual learning evaluation, we constructed StreamCode, a
sequential benchmark with 5 distinct task distributions (web development, data science, system
programming, game logic, and security analysis) that arrive in non-stationary streams. To test gen-
eralization, we included CrossLang-Eval (Peng et al., 2024), containing 1,500 examples across 6
low-resource programming languages (Rust, Go, Kotlin, Swift, Julia, and Dart).

5.2 BASELINE METHODS

Static Fine-Tuning (SFT): A CodeLLM fine-tuned once on the initial instruction set without sub-
sequent updates (Yuan et al., 2023).

Experience Replay (ER): A continual learning baseline that stores past examples in a buffer for
periodic retraining (Yadav et al., 2023).

Meta-Instruction-Tuning (MIT): Applies model-agnostic meta-learning (MAML) (Corona-Fraga
et al., 2025) to adapt to new tasks with few examples.

Contrastive Prompt Tuning (CPT): Combines contrastive learning with prompt engineering for
task adaptation (Nazzal et al., 2024).

All methods were implemented starting from the same pre-trained CodeGen-16B model (Liu et al.,
2023a) to ensure fair comparison. Hyperparameters were optimized separately for each approach
using grid search on validation sets.

5.3 METRICS

We employed four evaluation metrics:

1. Adaptation Accuracy (AA): Success rate on newly introduced tasks immediately after
adaptation.

2. Forgetting Rate (FR): Performance drop on previous tasks after adaptation, calculated as
1− accafter

accbefore
.

3. Generalization Gap (GG): Difference between performance on seen and unseen task
types.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4. Update Efficiency (UE): Computational cost per adaptation step, measured in FLOPs.

5.4 IMPLEMENTATION DETAILS

The COM framework was implemented with the following configuration:

• Base model: Frozen CodeGen-16B with 16 billion parameters

• Instruction encoder fθ: 6-layer Transformer with 768-dimensional embeddings

• Meta-learner gϕ: 2-layer MLP with spectral normalization

• Memory buffer M: FIFO queue with 5,000 entries

• Contrastive temperature τ : 0.1

• Meta-learning rate α: 1e-4

• Regularization weight λ: 0.5

Training used AdamW optimizer with batch size 32 for contrastive pre-training and 8 for online
updates. All experiments ran on 8×A100 GPUs with mixed precision.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE CONTRASTIVE-ONLINE-META FRAMEWORK

While COM shows extraordinary good performance on dynamic adaptation cases, three major lim-
itations are interesting for a discussion. First of all, the framework assumes access to high-quality
feedback signals during deployment, which might not always be available in practice in program-
ming assistance systems. Noisy or delayed feedback (typical in interactive development environ-
ments) could harm the adaptation quality of the meta-learner. Second, the current memory buffer
implementation is a simple FIFO sampling, which may not represent long-tailed task distributions
well. More sophisticated sampling strategies (taking into account similarity of tasks or size of errors)
could help to improve stability. Third, the contrastive pre-training phase requires careful curation
of positive and negative instruction pairs, a process that remains labor-intensive despite recent ad-
vances in automated data augmentation (Jain et al., 2020). Given these limitations, there appears to
be scope for improvementCivil War, though, in terms of both the architecture of the framework and
training protocols.

6.2 POTENTIAL APPLICATION SCENARIOS FOR THE COM FRAMEWORK

The modularity of COM allows implementation in many different situations of the programming aid
outside the experimental benchmarks. In integrated development environments (IDEs), the frame-
work could power adaptive code completion systems that would personalize suggestions based on a
developer’s recent edits and feedback patterns. For educational coding platforms, COM’s capability
for quickly adapting to student-specific misconceptions – without losing key programming ideas –
could lead to more effective tutoring systems. The framework also shows promise in terms of keep-
ing code-generation models alive in enterprise settings, where the continued evolution of APIs and
libraries has to be accounted for. Taking the combination of stable representation of knowledge and
dynamic adaptation of knowledge and separating them out, COM provides a de-scaling solution for
these scenarios without having to retrain the entire model with new data. Future work may want
to investigate specialist versions of the framework tailored to each application domain, which may
involve adding task-specific memory mechanisms or feedback interfaces.

6.3 ETHICAL CONSIDERATIONS IN THE COM FRAMEWORK

The fact that COM is dynamic and changes from user to user presents distinct ethical issues that
static CodeLLMs lack. As the model adapts towards individual users or organizations, for example,
it is at risk of internalizing biased coding practices included in the feedback stream and propagating
them. For example, security loopholes or use of non-inclusive nomenclature might be strengthened
if they occur frequently in the adaptation data. The framework’s contrastive learning component,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

while improving robustness, also makes the model more sensitive to subtle patterns in instruction
phrasing—potentially amplifying biases present in how different groups express programming tasks
(Liu et al., 2023b). These risks require the design of guardrails, for example, the differentially
adapting rates of sensitive attributes or the automatic detection of biases in the memory buffer. Gen-
eralization: Future incarnations should include ethical auditing mechanisms, which track trajectories
of adaptation looking for undesirable changes in the model behavior, and complement existing tech-
nical evaluation metrics.

7 CONCLUSION

The COM framework suits a new paradigm for dynamic adaptation of instruction-tuned CodeLLMs
by systematically tackling the trade-off between adaptability to a new task speed and knowledge
long-term retention. Through the fusion of contrastive representation learning and online meta-
learning, the framework is shown to be superior to existing tuners that are static and incremental.
The experimental results show that by decoupling task-independent feature learning processes with
lightweight updates of meta-learning parameters, stability and flexibility can be achieved - a key
requirement for applications of programming assistance in the real world. The design principles
proposed in this article, and in particular the use of contrastive objectives to regularize meta-learning
updates, may be a generalization to other domains that require continuous adaptation of a large lan-
guage model. Future directions for research are to extend the framework to multi-modal program-
ming tasks and to explore theoretically-grounded approaches for balancing the adaptation-forgetting
trade-off. The practical implications are significant: COM offers a scalable route for deploying
CodeLLMs in environments where Headquarters and reagents of statements and feedback are still
pushing and changing, from instructional code writing platforms to enterprise software development
flows. By ensuring strong performance across non-stationary task distributions with core program-
ming knowledge retention, the framework addresses a critical gap between model training in the
absence of interest distributions and requirements at actual deployment deployment time.

ACKNOWLEDGMENTS

Numbered third level headings should be used for the acknowledgement sections. All the acknowl-
edgments such as those to funding agencies go at the end of the paper.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.

REFERENCES

WU Ahmad, A Ficek, M Samadi, J Huang, et al. Opencodeinstruct: A large-scale instruction tuning
dataset for code llms. Technical report, arXiv preprint arXiv:2504.04030, 2025.

P Corona-Fraga, A Hernandez-Suarez, et al. Question–answer methodology for vulnerable source
code review via prototype-based model-agnostic meta-learning. Future Internet, 2025.

C Finn, P Abbeel, and S Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In International Conference On Machine Learning, 2017.

P Jain, A Jain, T Zhang, P Abbeel, JE Gonzalez, et al. Contrastive code representation learning.
Technical report, arXiv preprint arXiv:2007.04973, 2020.

Y Jiang, Q He, X Zhuang, and Z Wu. Code comparison tuning for code large language models.
Technical report, arXiv preprint arXiv:2403.19121, 2024.

J Kirkpatrick, R Pascanu, N Rabinowitz, et al. Overcoming catastrophic forgetting in neural net-
works. In Proceedings of the National Academy of Sciences, 2017.

K Li, Q Hu, X Zhao, H Chen, Y Xie, T Liu, Q Xie, et al. Instructcoder: Instruction tuning large
language models for code editing. Technical report, arXiv preprint arXiv:2310.20329, 2023.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

J Liu, CS Xia, Y Wang, and L Zhang. Is your code generated by chatgpt really correct? rigorous
evaluation of large language models for code generation. In Advances in Neural Information
Processing Systems, 2023a.

Y Liu, X Chen, Y Gao, Z Su, F Zhang, et al. Uncovering and quantifying social biases in code
generation. In Advances in Neural Information Processing Systems, 2023b.

W Lv, X Xia, and SJ Huang. Codeact: Code adaptive compute-efficient tuning framework for code
llms. Technical report, arXiv preprint arXiv:2408.02193, 2024.

W Lv, X Xia, and SJ Huang. Data-efficient llm fine-tuning for code generation. Technical report,
arXiv preprint arXiv:2504.12687, 2025.

N Muennighoff, Q Liu, A Zebaze, Q Zheng, et al. Octopack: Instruction tuning code large language
models. Unable to Determine Complete Venue, 2023.

M Nazzal, I Khalil, A Khreishah, and NH Phan. Promsec: Prompt optimization for secure generation
of functional source code with large language models (llms). Technical report, . . . of, 2024.

D Nichols, P Polasam, H Menon, A Marathe, et al. Performance-aligned llms for generating fast
code. Technical report, arXiv preprint arXiv:2404.18864, 2024.

Q Peng, Y Chai, and X Li. Humaneval-xl: A multilingual code generation benchmark for cross-
lingual natural language generalization. Technical report, arXiv preprint arXiv:2402.16694, 2024.

X Qin, H Yuan, P Zhao, J Fang, F Zhuang, et al. Meta-optimized contrastive learning for sequential
recommendation. In Proceedings of the 46th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2023.

J Shuai, L Xu, C Liu, M Yan, X Xia, and Y Lei. Improving code search with co-attentive represen-
tation learning. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020.

S Wang, Z Tan, H Liu, and J Li. Contrastive meta-learning for few-shot node classification. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2023.

Y Wang, K He, D Fu, Z Gongque, H Xu, Y Chen, et al. How do your code llms perform?
empowering code instruction tuning with high-quality data. Technical report, arXiv preprint
arXiv:2409.03810, 2024.

M Weyssow. Aligning language models to code: exploring efficient, temporal, and preference
alignment for code generation. Technical report, umontreal.scholaris.ca, 2024.

P Yadav, Q Sun, H Ding, X Li, D Zhang, M Tan, et al. Exploring continual learning for code
generation models. Technical report, arXiv preprint arXiv:2307.02435, 2023.

W Yin. Meta-learning for few-shot natural language processing: A survey. Technical report, arXiv
preprint arXiv:2007.09604, 2020.

H Yuan and Z Lu. Robust task representations for offline meta-reinforcement learning via contrastive
learning. In International Conference on Machine Learning, 2022.

Z Yuan, J Liu, Q Zi, M Liu, X Peng, and Y Lou. Evaluating instruction-tuned large language models
on code comprehension and generation. Technical report, arXiv preprint arXiv:2308.01240, 2023.

9


	Introduction
	Related Work
	Instruction Tuning for Code Generation
	Continual Learning in Code Models
	Meta-Learning and Contrastive Approaches

	Background: Continual Learning, Meta-Learning, and Contrastive Objectives for Code Models
	Continual Learning in Code Models
	Meta-Learning Basics
	Contrastive Learning for Code Representation

	Contrastive-Online-Meta: A Unified Framework for Streaming Instruction Adaptation
	Integration of Contrastive Pre-training and Online Meta-Learning
	Dynamic Memory Buffer for Contrastive Alignment
	Frozen Base CodeLLM with Meta-Learner Adaptation
	Task-Invariant Regularization in Meta-Learning

	Experimental Setup and Evaluation
	Datasets and Tasks
	Baseline Methods
	Metrics
	Implementation Details

	Discussion and Future Work
	Limitations of the Contrastive-Online-Meta Framework
	Potential Application Scenarios for the COM Framework
	Ethical Considerations in the COM Framework

	Conclusion
	The Use of LLM

