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Cross-Class Domain Adaptive Semantic Segmentation
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ABSTRACT
This paper addresses the issue of cross-class domain adaptation
(CCDA) in semantic segmentation, where the target domain con-
tains both shared and novel classes that are either unlabeled or
unseen in the source domain. This problem is challenging, as the
absence of labels for novel classes hampers the accurate segmenta-
tion of both shared and novel classes. Since Visual LanguageModels
(VLMs) are capable of generating zero-shot predictions without
requiring task-specific training examples, we propose a label align-
ment method by leveraging VLMs to relabel pseudo labels for novel
classes. Considering that VLMs typically provide only image-level
predictions, we embed a two-stage method to enable fine-grained
semantic segmentation and design a threshold based on the un-
certainty of pseudo labels to exclude noisy VLM predictions. To
further augment the supervision of novel classes, we devise mem-
ory banks with an adaptive update scheme to effectively manage
accurate VLM predictions, which are then resampled to increase
the sampling probability of novel classes. Through comprehensive
experiments, we demonstrate the effectiveness and versatility of
our proposed method across various CCDA scenarios.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Cross-class domain adaptation, Semantic segmentation, Visual lan-
guage models

1 INTRODUCTION
Traditional Unsupervised Domain Adaptation (UDA) methods for
semantic segmentation [12, 24, 42, 49] aim to transfer knowledge
from a labeled source domain (e.g. synthetic samples) to an un-
labeled target domain (e.g. real-world samples). These methods,
while typically relying on self-training with pseudo-label genera-
tion [11, 13, 35, 47] for better adaptation, have become a promising
solution for addressing cross-domain challenges. However, due to
the assumption that the source and target domains must share an
identical set of classes, existing UDA solutions suffer from limited
generalizability especially when confronted with previously unseen
classes in the target domain [20, 25, 27]. This limitation renders
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Figure 1: Comparison between previous UDA methods and
our method. Here, the novel class is defined as “pole”, and the
ground truth is provided for better visualization. When en-
countering the novel class, conventional UDA methods like
[11] fail to capture correct pseudo labels, where the novel
class is always predicted as the shared ones. Instead, by uti-
lizing VFMs [7, 16, 28], our model can relabel novel classes
with accurate annotations, which facilitates robust learning
of both shared and novel classes.

them inflexible in real-world scenarios, where encountering unseen
classes is a common occurrence.

Motivated by this, we focus on a more practical but challenging
problem named Cross-Class Domain Adaptation (CCDA) [8] for
semantic segmentation, where the target domain not only includes
the shared classes but also involves some private novel classes that
are unlabeled or unseen in the source domain. TACS [8] is a pioneer
in researching this issue, but they require 30 labeled samples for
each novel class. Different from TACS, our objective is to address
challenges across different classes and domains without relying on
additional labels for novel classes. However, this setting is extremely
challenging as the absence of novel class labels hampers the correct
segmentation of both shared and novel classes. Specifically, the lack
of novel class annotations decreases the reliability of pseudo labels
by assigning novel classes as shared ones (as shown in Figure 1),
causing more noisy pseudo labels to mislead the training in the
target domain.

Recent breakthroughs in contrastive pre-training studies present
a promising path for developing foundational models that integrate
vision and language, known as Vision-LanguageModels (VLMs), for
various computer vision tasks. These VLMs like CLIP [28] and Im-
ageBind [7] excel at encoding a diverse range of visual concepts and
demonstrate remarkable capabilities in making zero-shot predic-
tions without task-specific training examples [34, 41], presenting a
potential solution to segment novel classes in CCDA. Nevertheless,
VLMs are trained to match an entire image with a text description
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(a) RGB image (c) SAM

(d) OVSeg (e) SAN (f) VLM prediction

(i) GT

(b) MaskFormer

(h) Ours (DAFormer)(g) DAFormer

Figure 2: Qualitative visualization. (a) is the input image. (b)
and (c) depict widely used mask proposal generators that
predict class-agnostic segmentation maps. However, Mask-
Former [3] fails to capture precise segmentation maps, while
SAM [16] can not provide masks for each pixel. (d) and (e) are
existing SOTA works, OVSeg [19] and SAN [44], performing
fine-grained semantic segmentation with VLMs, where they
exhibit low performance on small-size objects and distort
the outlines of objects. (f) denotes the mask proposals of
the novel class “pole” produced by combining SAM [16] and
ImageBind [7]. (g) and (h) are the results generated by the
DAFormer [11] framework without and with our proposed
elements. The ground truth is shown in (i).

and fail to capture fine-grained alignment between image regions
and text, resulting in limited applicability in fine-grained semantic
segmentation tasks. A promising remedy for enabling fine-grained
predictions is to generate a set of class-agnostic mask proposals (i.e.,
Figure 2 (b-c)), and then leverage VLMs to classify them into specific
classes [19, 44, 45]. For example, simply combining SAM [16] and
ImageBind [7] can generate Figure 2 (f) for the novel class “pole”.
However, these VLM-based fine-grained segmentation methods
demonstrate limited performance (as shown in Figure 2 (d-f)) due
to several factors: (1) the visual disparities between VLMs’ training
images and masked proposals [19, 45], (2) the defective predictions
of the mask proposal generators. Thus, CCDA challenges are far
from solved by directly applying these VLM-based approaches.

To bridge the research gap, in this paper, we present a label
alignment approach for novel classes by employing VLMs to relabel
pseudo labels. In detail, we propose to utilize VLMs for locating
novel classes within target images, and then relabel pseudo labels
with these novel-class proposals. Motivated by evident failure cases
where several shared-class regions are misclassified as novel ones
in VLM predictions (i.e., Figure (f)), we present an uncertainty-
driven adaptive threshold for excluding misclassified proposals and
alternatively performing label alignment. To further enable the
sufficient learning of novel classes, we establish memory banks to
store novel-class proposals and resample them to augment pseudo
labels. Given the limited memory size, it is neither feasible nor
necessary to memorize every novel class proposal. To address this
issue, we devise an adaptive memory update scheme to dynamically

incorporate new proposals while discarding outdated ones. We
comprehensively assess the effectiveness and universality of our
method across different benchmarks, UDA frameworks, and VLM-
based segmentation methods. Extensive experiments illustrate our
method surpasses the existing state-of-the-art (SOTA) approaches
under the CCDA setting (as depicted in Figure 2 (g-i)). In summary,
our contributions can be outlined as follows:

• We propose a VLM-based label alignment method with an
uncertainty-driven threshold to relabel pseudo labels with
accurate novel class proposals.

• Wepresent a novel class resamplingmethodwith adaptively
updated memory banks to augment pseudo labels, which
facilitates the sampling probability of novel classes.

• Extensive evaluations validate that our proposed model
achieves top performance on different datasets and scenar-
ios in terms of both effectiveness and universality.

2 RELATEDWORK
2.1 Unsupervised domain adaptation
UDA semantic segmentation has been maturely developed recently,
which can be divided into adversarial training methods and self-
trainingmethods. Adversarial training approaches struggle to bridge
the domain gap by aligning the distributions of source and target
domains in either the input level [10, 33, 48], feature level [5, 22],
output level [30, 39, 46], or patch level [37] based on a Genera-
tive Adversarial Network (GAN) [9]. Benefiting from their train-
ing stability and strengthened performance, self-training methods,
which strive to generate pseudo labels offline [32, 51] or online
[6, 11, 35, 50] for enabling the training of the target domain, grad-
ually become the main solution for UDA. Moreover, some work
[15, 40] also attempts to combine adversarial training with self-
training strategies, pursuing better performance in cross-domain
scenarios. However, these UDA methods assume that the source
and target domains must possess identical sets of classes, rendering
them vulnerable when confronted with novel classes [20, 25, 27].
This limitation hinders their applications in real-world scenarios.
Therefore, investigating the CCDA problem is highly necessary for
semantic segmentation tasks.

2.2 Cross-class domain adaptation
Driven by the restriction of UDA methods on encountering novel
classes, some recent studies [18, 27, 31] attempt to explore the
cross-class problem in domain adaptation scenarios, where the tar-
get domain shares some classes with the source domain, but it also
includes its own distinct, private novel classes. For instance, open-
set/universal domain adaptation works [27, 31] focus on assigning
the “unknown” label to all novel classes during the inference, while
class-incremental domain adaptation [18] aims at recognizing each
shared and novel target classes with a unique semantic label. Nev-
ertheless, these studies merely revolve around image classification
tasks, resulting in CCDA for semantic segmentation still being an
open question. TACS [8] is the work most similar to ours. However,
TACS still necessitates few-shot labels for novel classes to conduct
cross-class adaptation, which restricts its generalization capabil-
ity in more challenging zero-shot scenarios. In contrast to TACS
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Figure 3: Overview of our framework, where novel classes are wall, fence, pole. Due to the lack of novel class labels, the
segmentation model predicts novel classes as shared ones. In this work, we propose a VLM-based label alignment method to
relabel pseudo labels with accurate novel class proposals and present a novel class resampling method with memory banks to
further augment the supervision of novel classes.

[8], we attempt to address CCDA challenges without relying on
additional labels for novel classes.

2.3 Pre-trained visual-language models
Due to the advancements in self-supervised representation learn-
ing [1, 2], multimodal Visual Language Models (VLMs), designed
to acquire generic representations of vision and language, have
showcased remarkable achievements in recent years. Recent stud-
ies, exemplified by CLIP [28] and ImageBind [7], connect visual
and language concepts by conducting pre-training on large-scale
text-image pairs. As numerous vision and language concepts are
encompassed within large-scale datasets, these methods showcase
surprisingly robust capabilities in conducting zero-shot predictions,
marking significant progress in various downstream tasks. For ex-
ample, Simseg [45] proposes a two-stage segmentation framework,
where they first generate class-agnostic mask proposals within im-
ages and then assign specific semantics for each mask by a frozen
CLIP. SAN [44] presents an adapter network to benefit CLIP in rec-
ognizing the semantics of mask proposals. However, despite their
successes, the performance of these VLM-based segmentation meth-
ods [19, 44, 45] remains constrained in complex scenarios due to
suboptimal mask proposal generators [3, 16] and visual disparities
between training and test samples [19]. In this paper, we endeavor
to harness the capabilities of VLMs for relabeling pseudo labels,
offering a promising avenue for their application in driving scenes.

3 METHODOLOGY
3.1 Problem description
In the CCDA settings, we have a labeled source dataset {X,Y}𝑆 =

{(𝑥𝑠𝑛, 𝑦𝑠𝑛)}𝑁
𝑆

𝑛=1 and an unlabeled target dataset {X𝑇 } = {𝑥𝑡𝑛}𝑁
𝑇

𝑛=1,
where X and Y refer to images and semantic labels. In the source
dataset, each image 𝑥𝑠𝑛 is associated with a corresponding label
𝑦𝑠𝑛 of source classes 𝐶𝑠ℎ𝑎𝑟𝑒𝑑 . However, in the target dataset, in
addition to 𝐶𝑠ℎ𝑎𝑟𝑒𝑑 , there are several private novel classes 𝐶𝑛𝑜𝑣𝑒𝑙

(𝐶𝑠ℎ𝑎𝑟𝑒𝑑 ∩𝐶𝑛𝑜𝑣𝑒𝑙 = ∅) that are either unlabeled or unseen in the
source dataset. In this context, the label space of the source domain
𝐶𝑆 = 𝐶𝑠ℎ𝑎𝑟𝑒𝑑 , and that of the target domain𝐶𝑇 = 𝐶𝑠ℎ𝑎𝑟𝑒𝑑 ∪𝐶𝑛𝑜𝑣𝑒𝑙 .
Our objective is to adapt the segmentation model 𝑓𝜃 , trained on
{X,Y}𝑆 and X𝑇 , to target dataset samples with the label space𝐶𝑇 .

3.2 Framework overview
In our framework, as shown in Figure 3, a neural network 𝑓𝜃 is
trained on the source dataset (X𝑆 ,Y𝑆 ) and is expected to perform
well on the target dataset samples without access to target labels
Y𝑇 . As annotations Y𝑆 are available for the source classes 𝐶𝑆 ,
we naively compute the supervised cross-entropy loss L𝑆 on the
source domain via:

L𝑆 = −
𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝐶𝑆∑︁
𝑐=1

𝑦𝑠𝑖, 𝑗,𝑐 log 𝑓𝜃 (𝑥𝑠 )𝑖, 𝑗,𝑐 . (1)

Nevertheless, the model only trained with L𝑆 will suffer from
performance degradation on the target domain. To address this
issue, an auxiliary unsupervised loss L𝑇 is devised for the target
domain, which is calculated with pseudo labels 𝑦𝑡 predicted via a
teacher network 𝑓𝜃 ′ :

𝑦𝑡𝑖, 𝑗,𝑐 = 𝜉 (𝑐 = arg max
𝑐′∈𝐶𝑇

𝑓𝜃 ′ (𝑥𝑡𝑖, 𝑗,𝑐′ )) . (2)

L𝑇 = −
𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝐶𝑇∑︁
𝑐=1

𝑞𝑡𝑦𝑡𝑖, 𝑗,𝑐 log𝜃 (𝑥𝑡 )𝑖, 𝑗,𝑐 . (3)

Here, 𝜉 (·) and 𝑞𝑡 represent the Iverson bracket and the confidence
weighting coefficient [12, 13], respectively. Then the total loss L
is computed as L = L𝑆 + L𝑇 . In addition, to stabilize pseudo
labels [11], the teacher network 𝑓𝜃 ′ is optimized via the exponential
moving average (EMA) strategy [17] by:

𝜃 ′ ← 𝛼 ∗ 𝜃 ′ + (1 − 𝛼) ∗ 𝜃 . (4)

Here, 𝛼 is the smoothing factor and is defined as 0.999.
3
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However, due to the absence of novel class labels, the segmen-
tation model struggles to capture robust representations for novel
classes during training, resulting in novel classes being erroneously
assigned as shared ones in pseudo labels. Driven by this motivation,
we first present a VLM-guided label alignment method to alterna-
tively rectify pseudo labels with precise proposals for novel classes.
Additionally, to enhance sufficient learning for novel classes, we
construct memory banks to dynamically manage novel class pro-
posals and utilize them to augment the supervision for novel classes.
Detailed descriptions of our proposed methods for label alignment
and novel class resampling will be provided in the following sec-
tions.

3.3 Label alignment
Under the CCDA settings, the segmentation model consistently
develops a biased perception of novel classes due to the absence
of their annotations. Hence, we propose a label alignment method
aimed at rectifying pseudo labels with accurate novel class seman-
tics. Our label alignment method comprises two steps: mask pro-
posal generation for novel classes and threshold-guided pseudo
label rectification.

Mask proposal generation for novel classes. The correction
of pseudo labels necessitates precise semanticmaps for novel classes.
However, given unlabeled target samples, localizing novel classes
with accurate semantics poses a significant challenge. To address
this issue, we resort to pre-trained VLMs, especially ImageBind [7],
thanks to their capability of making zero-shot predictions without
the need for task-specific training examples. Specifically, in this
work, we introduce a VLM-based fine-grained segmentationmethod
to conduct the localization of novel classes: we first generate class-
agnostic mask proposals from target images and then assign each
mask proposal with a specific semantic.

In particular, we segment objects within an unlabeled target
image 𝑥𝑡 based on a generic segmentation model 𝑔𝑠𝑒𝑔 , where the
process can be formulated as follows:

M = 𝑔𝑠𝑒𝑔 (𝑥𝑡 ), (5)

Here,M represents a set of binary masks. Note that each mask
covers a potential object in 𝑥𝑡 but fails to deliver any semantic
labels. By using each mask𝑚 ∈ M, we extract an individual object
from the color image and capture its unique mask proposal via
𝑤 =𝑚 ⊙ 𝑥𝑡 .

We then classify these mask proposals with the guidance of
ImageBind. The fundamental concept is to introduce the text en-
coder 𝜙𝑡𝑒𝑥𝑡 and the image encoder 𝜙𝑖𝑚𝑔 of ImageBind to conduct
semantic alignment between visual proposals and text descriptions,
identifying novel classes in unlabeled target samples.

Specifically, let "a photo of a [𝐶𝐿𝐴𝑆𝑆]”, denoted asA, refer to the
semantic template that serves as input to 𝜙𝑡𝑒𝑥𝑡 . This input produce
a 𝑑-dimensional text embedding 𝑒𝑐 for the class 𝑐 via:

𝑒𝑐 = 𝜙𝑡𝑒𝑥𝑡 (A), 𝑒𝑐 ∈ R1×𝑑 . (6)

In Eq. (6), we obtain a set of text embeddings for the classes in
𝐶𝑇 . Similarly, for each mask proposal 𝑤 , we can derive a visual
embedding 𝑢 by 𝜙𝑖𝑚𝑔 :

𝑢 = 𝜙𝑖𝑚𝑔 (𝑤), 𝑢 ∈ R1×𝑑 . (7)

We calculate the cosine distance between 𝑢 and the set of text
embeddings. Then, the most similar text embedding is selected via:

𝑐∗ = arg max
𝑐∈𝐶𝑇

𝑢 · 𝑒𝑐
| |𝑢 | | · | |𝑒𝑐 | |

. (8)

Here, | | · | | represents L2-norms. The class semantic of mask propos-
als 𝑤 is assigned as 𝑐∗ if 𝑐∗ ∈ 𝐶𝑛𝑜𝑣𝑒𝑙 , where we denote this novel
class proposal as𝑤∗. Hence, we generate a set of novel class pro-
posals by repeating the aforementioned process on each unlabeled
target training image 𝑥𝑡 . Nevertheless, due to the visual dispar-
ities between masked images and ImageBind’s training samples,
there are numerous noisy predictions in labeled proposals, where a
considerable number of shared class proposals are misclassified as
novel ones (as shown in Figure. 3).

Threshold-guided pseudo label rectification. To tackle the
problem of noisy VLM predictions, we design an uncertainty-driven
adaptive threshold to filter out misclassified proposals and conduct
label alignment with accurate ones. Our proposedmethod is derived
from the empirical observation that novel classes exhibit significant
uncertainty compared with shared ones by the segmentation model
[14, 21, 43]. Therefore, the uncertainty of shared classes can be re-
garded as a threshold for localizing novel class regions. Specifically,
given a novel class proposal𝑤∗ and its associated image region𝑤 ,
we regard𝑤∗ as a misclassification if the segmentation model yields
higher uncertainty in 𝑤 . In this paper, we adopt the entropy 𝑣 of
the pseudo label 𝑦𝑡 as the prediction uncertainty, which is defined
as:

𝑣𝑖, 𝑗 = −
1

log(𝐶𝑇 )

𝐶𝑇∑︁
𝑐=1

𝑝𝑖, 𝑗,𝑐 log𝑝𝑖, 𝑗,𝑐 . (9)

Here, 𝑝𝑖, 𝑗,𝑐 represents the softmax probability of pixel 𝑥𝑖, 𝑗 in class
𝑐 . However, due to varying entropy exhibited throughout the self-
training process, and the inconsistent complexities among different
classes, the prediction entropy is both class-dependent and time-
varying. Hence, it is impractical to compare the entropy of novel
and shared classes. Aiming at this challenge, to capture real-time
entropy at different training stages, we calculate the average en-
tropy 𝑣𝑐 for each class 𝑐 ∈ 𝐶𝑇 at every iteration step and then
employ the EMA strategy for their online updates via:

𝑣𝑐 =

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝛿 (𝑦𝑡
𝑖, 𝑗

== 𝑐) ∗ 𝑣𝑖, 𝑗

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝛿 (𝑦𝑡
𝑖, 𝑗

== 𝑐)
, (10)

𝑣𝑐 ← 𝛽 ∗ 𝑣 ′𝑐 + (1 − 𝛽) ∗ 𝑣𝑐 . (11)
Here, 𝑣 ′𝑐 is the mean entropy of the class 𝑐 in the previous iteration,
and 𝛽 is the smoothing factor set as 0.999.

Considering a pixel 𝑥𝑖, 𝑗 located in a proposal 𝑤∗ labeled with
𝑐𝑛𝑜𝑣𝑒𝑙 , the segmentation model predicts 𝑥𝑖, 𝑗 as 𝑐𝑠ℎ𝑎𝑟𝑒𝑑 with entropy
𝑣𝑖, 𝑗 . It is intuitive to conclude that the segmentationmodel makes an
inaccurate prediction at 𝑥𝑖, 𝑗 when 𝑣𝑖, 𝑗 > 𝑣𝑐𝑠ℎ𝑎𝑟𝑒𝑑 , and an accurate
prediction when 𝑣𝑖, 𝑗 ≤ 𝑣𝑐𝑠ℎ𝑎𝑟𝑒𝑑 . Inspired by this, we relabel 𝑦𝑡 via:

𝑦𝑡𝑖, 𝑗 =

{
𝑐𝑛𝑜𝑣𝑒𝑙 , 𝑣𝑖, 𝑗 > 𝜎1 ∗ 𝑣𝑐𝑠ℎ𝑎𝑟𝑒𝑑 ,
𝑐𝑠ℎ𝑎𝑟𝑒𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(12)

Here, the scaling factor 𝜎1 is introduced to exclude cases where the
object is misjudged due to some factors such as distance or size.
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Nevertheless, Eq. (12) is executed discretely in spatial dimensions,
ignoring the challenging regions on shared classes and hindering
the generation of complete semantic maps for novel classes. There-
fore, we further employ a voting strategy to address these issues in
pseudo-label rectification. This voting strategy is conducted within
the area covered by𝑚 in 𝑦𝑡 , utilizing statistical analysis of pixel-
wise semantics:

𝑧𝑐 =

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝛿 (𝑦𝑡
𝑖, 𝑗

== 𝑐) ∗ 𝛿 (𝑚𝑖, 𝑗 == 1)

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝛿 (𝑚𝑖, 𝑗 == 1)
, (13)

𝑐∗ = arg max
𝑐∈𝐶𝑇

𝑧𝑐 . (14)

Here, 𝛿 (·) is the indicator function. The pseudo label 𝑦𝑡 is further
refined via:

𝑦𝑡 ←𝑚 ⊙ (I ∗ 𝑐∗) + �̄� ⊙ 𝑦𝑡 . (15)

I denotes a matrix filled with ones, which shares the same shape
with 𝑦𝑡 .

3.4 Novel class resampling
Although the label alignmentmethod is capable of rectifying pseudo
labels, the quantity of corrected novel class regions remains insuffi-
cient to enable comprehensive learning by the segmentation model.
Hence, we establish memory banks to store novel class proposals
for further enhancing the supervision of novel classes. However,
storing all novel class proposals generated by VLMs is impractical,
as it would accumulate noisy proposals and significantly inflate
the size of the memory bank. Therefore, we propose a fixed-size
memory bank with an adaptive update strategy to more effectively
manage novel class proposals. Specifically, our proposed adaptive
update strategy comprises two operations: caching new proposals
and removing obsolete ones.

Caching new proposals. Since there is a considerable number
of misclassifications in VLM predictions, simply storing these novel
class proposals generated offline may involve misleading informa-
tion. Therefore, we maintain an independent memory bank for each
novel class online for organizing those proposals with accurate la-
bels. In this work, the proposals intended for storage primarily
originate from three sources. Firstly, executing the operations out-
lined in Eq. (5-15) yields a comprehensive appearance of the novel
class region. These proposals, after being rectified by novel class
alignment, are stored in the memory bank. Secondly, in the later
stages of self-training, our label alignment method enables the seg-
mentation model to accurately represent novel class objects. We
incorporate these novel class regions, self-predicted by the segmen-
tation model, into our memory bank for subsequent pseudo-label
augmentation. Thirdly, to accommodate a more diverse range of
novel class proposals, we relax the requirement in Eq. (14) that
the novel class must constitute the majority. Specifically, given a
VLM-predicted proposal 𝑤∗ labeled with 𝑐𝑛𝑜𝑣𝑒𝑙 and 𝑦𝑡 relabeled
after label alignment, we calculate the ratio 𝑧𝑐𝑛𝑜𝑣𝑒𝑙 via Eq.(14). Once
𝑧𝑐𝑛𝑜𝑣𝑒𝑙 > 𝜎2, where 𝜎2 is a predetermined threshold to mitigate the
interference caused by challenging regions of shared classes,𝑤∗ is
adopted for storage.

Removing obsolete proposals. In this study, we eliminate
obsolete proposals based on the pixel areas of cached samples, as
larger-area proposals contribute significantly to the comprehensive
learning of novel classes [36]. Instead of directly counting the pixel
areas of cached samples, we preserve valuable proposals based on
the number of pixels 𝑝 predicted or rectified as novel classes, as it
indirectly reflects both the pixel area and discriminative capacity
of a specific proposal. Specifically, within a memory bank of 𝑐𝑛𝑜𝑣𝑒𝑙 ,
we preserve the subset 𝐷𝑐𝑛𝑜𝑣𝑒𝑙 consisting of 𝐾 proposals with the
highest 𝑝 values. Furthermore, we utilize these cached novel class
proposals to augment pseudo labels via ClassMix [26]:

𝑦𝑡 ←𝑚 ⊙𝑤∗ + �̄� ⊙ 𝑦𝑡 . (16)

4 EXPERIMENTS
4.1 Experimental settings
Datasets. To validate the effectiveness of our proposed elements,
we evaluate our framework on two benchmarks. Namely SYN-
THIA→ Cityscapes and SYNTHIA→ IDD, respectively. The source
dataset in both settings is SYNTHIA [29], where only the objects of
classes road, sidewalk, building, traffic light, traffic sign, vegetation,
sky, person, rider, car, bus, motorcycle, and bike are labeled in our
experiments. In the first setting, we focus on dealing with the do-
main gap in structured scenes, where the Cityscapes [4] serves as
the target dataset, where no annotations are given for novel classes
wall, fence, pole, terrain, truck, and train. In the second setting, we
attempt to address domain gaps in unstructured scenes. We lever-
age IDD dataset [38] as the target dataset, where 6 classes wall,
fence, pole, truck, animal, and autorickshaw are defined as novel
classes with no annotations.

Implementation details. In our experiments, the implemen-
tation is based on DAFormer [11] framework with its training
hyperparameters and self-training strategy. Our model is trained
with AdamW [23], where a learning rate of 6 × 10−5 is set for the
encoder and that of 6× 10−4 for the decoder. We configure a weight
decay to 0.01, and the batch size to 2, where the images are cropped
into 512× 512 [11] during the 40𝑘 iterations. We adopt SAM [16] as
our generic segmentation model due to its capability on precisely
segmenting arbitrary images. We fixed the size of the memory bank
for each novel class at 30. When referring to the parameters in-
volved in our elements on the DAFormer framework, we set 𝜎1 and
𝜎2 to 2 and 0.1 for best performance.

Competitive methods. To evaluate the effectiveness in zero-
shot CCDA scenarios, our proposed model is compared with the
existing top-performing algorithms, which include UDA methods
[11–13, 35], the VLM-based methods [7, 16, 19, 44], and the CCDA
methods [8].

4.2 Comparison with SOTA methods
In this section, we evaluate ourmethod against other top-performing
methods in various cross-class scenarios. Tables 1 and 2 illustrates
the segmentation results on both benchmarks.

Comparison with UDAmethods.We first assess our proposed
method based on DAFormer [11] framework with SOTA UDAmeth-
ods [11–13, 35]. As shown in Table 1 and 2, our proposed method
achieves top performance and outperforms these UDA methods.
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Table 1: Quantitative comparison (IoU in %) with the SOTA methods on the SYNTHIA→ Cityscapes benchmark. The results of
novel classes are emphasized in gray. The best result is highlighted in bold.
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MIoU MIoU

UDA

DACS [35] 82.97 24.47 79.77 0.00 0.00 0.00 51.97 36.47 79.96 0.00 90.38 71.89 33.45 87.85 0.00 35.40 0.00 32.92 59.27 0.00 40.35
DAFormer [11] 86.84 46.79 84.89 0.00 0.00 0.00 52.32 53.17 83.24 0.00 83.87 70.44 43.57 87.56 0.00 51.70 0.00 53.69 62.43 0.00 45.29
HRDA [12] 80.64 51.53 83.62 0.00 0.00 0.00 64.64 65.17 80.12 0.00 92.98 64.98 54.65 87.55 0.00 21.49 0.00 62.23 64.72 0.00 46.02
MIC [13] 87.76 56.72 85.78 0.00 0.00 0.00 63.50 70.14 84.50 0.00 93.00 80.50 58.98 83.78 0.00 62.81 0.00 65.27 65.88 0.00 50.45

VLM
S+I [7, 16] 51.60 10.62 39.47 12.74 16.08 4.91 3.17 12.46 39.79 10.18 21.84 5.08 0.36 31.52 19.55 25.16 4.69 10.66 21.04 11.36 17.94
OVSeg [19] 53.21 20.46 52.08 15.77 21.67 2.13 23.10 20.51 31.30 1.32 73.85 56.31 10.23 53.23 34.56 21.20 0.38 30.69 46.01 12.64 29.90
SAN [44] 85.03 44.67 78.48 33.48 41.79 2.97 37.39 26.45 78.49 0.00 80.96 58.03 0.00 43.29 23.05 58.00 0.68 30.64 55.61 17.00 41.00

CCDA

TACS [8] 72.47 27.23 81.06 0.00 0.00 0.00 29.40 25.86 76.93 0.00 89.84 68.14 36.33 84.04 0.00 40.59 0.00 36.25 43.11 0.00 37.43
Ours (DACS) 89.48 39.04 81.77 7.67 29.32 28.75 52.37 44.35 86.16 22.85 81.19 71.47 30.49 87.75 19.53 23.56 26.10 36.77 65.18 22.37 48.51

Ours (DAFormer) 84.06 39.66 89.02 35.55 38.59 26.43 52.50 59.99 87.00 40.31 93.82 73.96 46.06 91.68 63.83 69.07 45.28 55.71 68.41 41.67 61.10
Ours (MIC) 84.93 40.43 88.99 32.69 34.72 23.99 58.51 59.89 80.08 31.63 94.17 77.11 49.42 92.10 56.44 69.62 42.59 62.19 73.31 37.01 60.67

Table 2: Quantitative comparison (IoU in %) with the SOTA methods on SYNTHIA→ IDD benchmarks.
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DACS [35] 90.26 6.29 63.43 0.00 0.00 0.00 3.22 7.66 84.49 92.56 58.81 53.42 50.39 0.00 39.09 53.72 25.89 0.00 0.00 0.00 33.12
DAFormer [11] 95.21 24.95 67.63 0.00 0.00 0.00 13.44 22.11 86.32 92.80 66.02 60.99 47.43 0.00 42.08 68.97 24.39 0.00 0.00 0.00 37.49
HRDA [12] 74.23 6.00 68.43 0.00 0.00 0.00 14.30 22.80 74.47 83.54 64.00 52.13 42.61 0.00 63.25 57.76 9.65 0.00 0.00 0.00 33.32
MIC [13] 93.82 22.80 49.74 0.00 0.00 0.00 19.48 44.70 85.62 78.04 65.49 53.29 41.93 0.00 61.39 60.06 12.84 0.00 0.00 0.00 36.27

VLM
S+I [7, 16] 53.71 1.54 29.06 15.95 5.12 2.85 0.28 9.51 50.18 43.34 4.77 3.70 45.91 26.15 37.77 14.89 10.96 1.60 22.05 12.29 19.97
OVSeg [19] 49.06 8.52 48.31 27.03 12.62 14.86 4.13 7.54 46.57 60.20 43.56 29.51 39.44 44.38 53.01 65.46 24.48 12.13 29.22 23.37 32.63
SAN [44] 74.56 17.39 57.04 33.94 12.03 2.43 15.00 8.80 71.45 92.78 34.28 0.34 73.46 59.90 65.11 59.34 16.52 61.56 47.73 36.27 42.30

CCDA
TACS [8] 94.96 9.25 43.16 0.00 0.00 0.00 4.81 15.54 80.63 62.87 65.51 56.28 45.98 0.00 45.55 67.60 33.87 0.00 0.00 0.00 32.97

Ours (DAFormer) 90.14 19.21 76.47 43.03 25.60 18.52 9.90 47.01 86.78 95.93 69.80 63.06 78.24 73.40 77.65 70.53 36.65 16.01 57.76 39.05 55.56

DAFormer MIC SAN TACS Ours (DAFormer) GTInput

Figure 4: Segmentation results predicted by the previous SOTA UDA methods [11, 13], the VFM-based method [44], the TACS
method [8], and our presented framework on the SYNTHIA→ Cityscapes benchmark. The segmentation areas of novel classes
are highlighted by yellow dashed boxes.

Specifically, in contrast to the best performing MIC [13], our model
improves by +10.65 mIoU on the SYNTHIA→ Cityscapes bench-
mark and +17.88 mIoU on the SYNTHIA → IDD benchmark. It
is worth mentioning that the performance of our method far ex-
ceeds these UDA studies on novel classes. For example, in Table

1, the novel class pole achieves a +26.43 significant performance
gain against all UDA methods, demonstrating the effectiveness
of our approach in segmenting novel classes. These observations
are further supported by Figure 4, where previous methods strug-
gle with incomplete segmentation of novel classes and misclassify
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Table 3: Ablation study of our proposed elements on the
SYNTHIA→ Cityscapes benchmark.

Method Baseline LA NCR MIoU
novel shared all

1 ✓ 0.00 66.19 45.29
2 ✓ ✓ 35.99 69.74 59.08
3 ✓ ✓ 26.97 67.10 54.43
4 ✓ ✓ ✓ 41.67 70.07 61.10

Figure 5: Visualization results of pseudo labels by adopting
label alignment. The segmentation results of novel classes
are emphasized by white dashed boxes.

them as shared ones. For instance, MIC misclassifies “terrain” as
“vegetation” in the second row. Instead, through relabeling pseudo
labels and augmenting novel classes, our model adeptly handles
the challenges arising from cross-class adaptation.

Comparison with VLM-based method. Our method is also
assessed against SOTAVLM-based fine-grained segmentationmeth-
ods [7, 16, 19, 44] in Table 1, where “S+I” refers to the segmentation
results generated by SAM [16] and ImageBind [7]. As exhibited
in Table 1, the VLM-based methods fall short of the performance
achieved by our proposed method. Specifically, the mIoU accuracy
of our method stands at 61.10, surpassing the top-performing VLM
method, SAN, by +20.1. In Figure 4, we observe that SAN encoun-
ters challenges in accurately segmenting tiny novel classes (i.e.,
"poles" in the first row), and distinguishing visually similar objects
(i.e., “train” and “bus” in the fourth row). Meanwhile, the segmen-
tation maps generated by SAN exhibit significant distortions in
object contours. Therefore, there is still a lot of room for VLMs
to improve fine-grained semantic segmentation results. Instead,
our approach, independent of VLMs during the inference stage,
achieves accurate segmentation results even in cases of small sizes
or similar appearances, exhibiting superior advantages compared
to VLM-based methods.

Comparison with CCDA method. We further evaluate our
proposed method with TACS [8] which is also meticulously de-
signed to address the CCDA problem. For comparison under our
CCDA setting, we retrained TACS under the 0-shot setting, and
the results obtained on the two benchmarks are shown in Tables 1
and 2. Analyzing their mIoU values, our results achieve significant
performance gains compared to TACS on both benchmarks. For

instance, in Table 1, the mIoU performance of novel classes and all
classes are higher than TACS by +41.67 and +23.67, respectively.
The segmentation maps shown in Figure 4 also demonstrate that
the elements proposed in TACS are not effective in 0-shot settings:
(1) TACS fails to locate novel classes in the target images, result-
ing in the persisting issue of misclassifying novel classes, (2) the
objects segmented by TACS exhibit incompleteness in appearance,
such as the bicycles in the first row. Meanwhile, our method not
only achieves correct segmentation of novel classes in a zero-shot
manner but also restores the complete appearance of the objects.

Generalization for various UDA methods. Our proposed el-
ements are plug-and-play and can be seamlessly embedded into
self-training UDA frameworks, enabling an efficient resolution of
both domain gaps and class gaps. In Tables 1 and 2, we evaluate
the performance of combining our proposed elements with repre-
sentative UDA methods [11, 13, 35]. It is evident that our model
consistently delivers notable performance enhancements when cou-
pled with various UDA methods. For instance, when evaluating our
method with the DAFormer [11] framework on the SYNTHIA→
Cityscapes benchmark, we achieve performance gains +41.67 for
novel classes and +15.81 for both shared and novel classes. The per-
formance improvements on the SYNTHIA→ IDD benchmark also
highlight the adaptability and versatility of our proposed elements
and clarify their positive influence on various UDA methods for
dealing with the CCDA problem.

4.3 Component ablations
To assess the effectiveness of each component, we conduct ablation
studies on the DAFormer framework in Table 3 owing to the fast
training. The baseline denotes the DAFormer framework retrained
on CCDA settings. “LA” and “NCR” are our proposed label align-
ment and novel class resampling, respectively. Firstly, our LA has a
positive impact on segmentation performance, resulting in a +3.55
gain in shared classes and a +35.99 in novel classes (method 1 and
method 2). The absence of labels for novel classes in the baseline
model impedes the robust representations of these novel classes.
However, by relabeling novel classes in pseudo labels, our proposed
LAmethod is capable of simultaneously improving the performance
of both novel and shared classes. Figure 5 further illustrates the
effectiveness of our presented uncertainty-guided threshold in LA.
We can observe that there are a great number of misclassifications
in VLM predictions. However, by comparing the uncertainty of
novel classes with shared ones (i.e., the uncertainty of “terrain” and
“tree”), the pseudo label can be accurately relabeled for novel class
proposals. Meanwhile, the voting strategy further rectifies objects
with complete masks. Secondly, the importance of NCR can not
be ignored (method 1 and method 3), where mask proposals with
accurate novel class labels are employed to augment pseudo labels.
It plays a crucial role in facilitating the learning of novel classes
while retaining the performance of shared classes. Thirdly, our
complete model achieves a mIoU of 61.10, exhibiting a substantial
mIoU performance improvement compared to other settings.

4.4 Sensitivity analysis of parameters
Influence of the parameter 𝜎1. To gain a more profound insight
into the operational principles of our label alignment mechanism,
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Table 4: Comparison of our proposed model with different
parameters on the SYNTHIA→ Cityscapes benchmark.

𝜎2 = 0.1
𝜎1 0.5 1 2 3 4

MIoU𝑛𝑜𝑣𝑒𝑙 30.72 34.31 41.76 34.96 23.04
MIoU𝑎𝑙𝑙 51.15 55.80 61.10 58.14 54.14

𝜎1 = 2
𝜎2 0 0.1 0.2 0.3 0.4

MIoU𝑛𝑜𝑣𝑒𝑙 33.86 41.67 34.77 33.62 33.73
MIoU𝑎𝑙𝑙 56.91 61.10 57.37 56.95 56.01

Table 5: Segmentation results of our method with different
VLM-based implements.

Method MIoU𝑛𝑜𝑣𝑒𝑙 MIoU𝑠ℎ𝑎𝑟𝑒𝑑 MIoU𝑎𝑙𝑙

DAFormer [11] 0.00 66.19 45.29
Ours (w./ CLIP [28]) 31.31 68.73 56.91

Ours (w./ ImageBind [7]) 41.67 70.07 61.10

Table 6: Comparison of our method on various inconsistent
taxonomy settings.

Coarse-to-fine Implicitly overlapping
𝑀𝐼𝑜𝑈𝑓 𝑖𝑛𝑒. 𝑀𝐼𝑜𝑈𝑎𝑙𝑙 𝑀𝐼𝑜𝑈𝑖𝑚𝑝𝑙 . 𝑀𝐼𝑜𝑈𝑎𝑙𝑙

DAFormer 27.07 57.68 28.02 51.56
Ours 50.10 63.71 51.87 56.94

we explore the impacts of the parameter 𝜎1 on excluding noisy
novel class proposals. We build our experiments on the DAFormer
[11] framework. Table 4 illustrates a comparison of the performance
under different 𝜎1 values when 𝜎2 = 0.1. It is evident that as 𝜎1
gradually increases, the predictive accuracy also shows an improve-
ment, where its peak performance is achieved when 𝜎1 reaches
2. This occurs because a smaller 𝜎1 may result in challenging re-
gions within shared classes being incorrectly relabeled as novel
classes. In these cases, the number of trainable samples in shared
classes is reduced and a significant amount of misleading informa-
tion is introduced into the training of novel classes, hindering the
robust learning of both shared and novel classes. Whereas, when
the 𝜎1 becomes excessively large, for instance, when 𝜎1 is set to
4, a significant decline in performance is observed. This is due to
the circumstance that, upon satisfying the specified threshold, the
limited region is being reassigned with correct novel class labels,
resulting in the underutilization of novel class proposals for pseudo
labels.

Influence of the parameter𝜎2.Wealso conduct experiments to
analyze the sensitivity of our proposed method on the parameter 𝜎2
within the DAFormer [11] framework, evaluating its performance
on the SYNTHIA → Cityscapes benchmark. We summarize the
segmentation results with the different 𝜎2 in Table 4 when 𝜎1 = 2.
Observably, the model achieves optimal segmentation performance
when 𝜎2 is configured as 0.1. Specifically, setting 𝜎2 to 0.1 results
in an MIoU value of 41.67 for the novel classes and an overall MIoU

value of 61.10 across all classes. However, when 𝜎2 is excessively
high or low, the performance of our model experiences degradation.
When the parameters are set too low, such as 0, challenging regions
within the shared classes are incorrectly relabeled as novel classes,
reducing the quality of trainable samples for novel classes. Larger
values reduce the number of novel class proposals to be stored,
thereby limiting pseudo-label augmentation and diminishing the
enhancement effects on our segmentation model.

4.5 Feasibility on VLM-based implements
In this section, we assess the feasibility of our method under differ-
ent VLM-based implementations. Here, we provide several alterna-
tive solutions with different VLMs to classify mask proposals for
novel classes. Specifically, ImageBind and CLIP [28] are involved
in the evaluation. Based on the aforementioned implementations,
we retrain our model with the DAFormer framework[11] on the
SYNTHIA→ Cityscapes benchmark. As shown in Table 5, in addi-
tion to ImageBind, our method also displays positive effects with
CLIP, where the mIoU accuracy of novel classes is 31.31 and that
of all classes is 56.91. However, in comparison to CLIP, our model
demonstrates superior performance on ImageBind, exhibiting a
performance gain +10.36 for novel classes and +4.19 for all classes.
This may be because ImageBind conducts contrastive pre-training
on multiple modalities (i.e., audio and depth images), contributing
to learning more robust visual-language connections of classes.
This can be advantageous to obtain more precise mask proposals
for novel classes. These results demonstrate that our method can
be implemented with different VLMs.

4.6 Generalization on various taxonomy types
In TACS [8], three types of inconsistent taxonomic setups are stud-
ied, including the open, coarse-to-fine, and implicitly overlapping
taxonomy settings. In Tables 1 and 2, we assess the effectiveness of
our method under the open taxonomy setting in the zero-labeled
target domain. Here, we further evaluate the adaptability and effec-
tiveness of our DAFormer-based pipeline under other two distinct
taxonomy settings. All experiments here strictly follow the set-
tings in TACS, with the only variation being the zero-labeled target
domain. Table 6 presents the results in the coarse-to-fine and im-
plicitly overlapping taxonomy settings, where our method has a
positive impact on both settings. The performance improvements
demonstrate the generalizability of our proposed method across
various taxonomy types.

5 CONCLUSION
In this paper, we present a generic self-training framework for
addressing the CCDA problem in semantic segmentation. Our pro-
posed label alignment and novel class resampling methods effec-
tively rectify pseudo labels and enhance the supervision of novel
classes, offering a promising solution for both cross-class and cross-
domain challenges. In comprehensive experiments, we have shown
that our method archives considerable performance improvements
when embedded into UDA approaches across various settings, such
as different benchmarks and different taxonomy types. Importantly,
our method exhibits versatility to diverse VLM-based implements,
enhancing its flexibility for real-world applications.
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