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Abstract
In this paper we survey and put in a common framework several works that have been developed in different contexts, all
dealing with the same abstract problem, called synchronization by some authors, or averaging, or graph optimization by
others. The problem consists in recovering some variables from a set of pairwise relation measurements. In particular, we
concentrate on instances where the variables and the measures belong to a (semi-)group and the measures are their mutual
differences (or ratios, depending on how the group operation is called). The groups we deal with have a matrix representation,
which leads to an elegant theory and closed-form solutions.

Keywords Synchronization · Averaging · Graph optimization · Multiple point-set registration · Structure from motion ·
Multi-view matching

1 Introduction

Consider a network of nodes where each node is character-
ized by an unknown state, and suppose that pairs of nodes
can measure the ratio (or difference) between their states.
The goal is to infer the unknown states from the pairwise
measures. This is a general statement of the synchronization
problem (Karp et al. 2003; Giridhar and Kumar 2006; Singer
2011). States are represented by elements of a group �, that
is why the problem is actually referred to as group synchro-
nization. The groups of interest are defined in Table 1, while
Fig. 1 represents their inclusion.

The problem can be usefully modelled by introducing a
graph G = (V, E), which is referred to as the measurement
graph, where nodes correspond to the unknown states and
edges correspond to the pairwise measures, and it is well-
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posed only if such a graph is connected. Synchronization can
be seen as upgrading from relative (pairwise) information,
which involves two nodes at a time, onto absolute (global)
information, which involves all the nodes simultaneously. In
the literature, the same problem is also referred to as averag-
ing (Govindu 2004; Wilson et al. 2016; Hartley et al. 2013)
or graph optimization (Carlone et al. 2015) in some cases.

As an example, consider the graph in Fig. 2, where nodes
and edges are labelled with integer numbers: the task is to
recover the unknown numbers in the nodes by measuring
their differences (on the edges). Two things can be imme-
diately observed: a solution exists only if the sum of the
differences along any cycle is zero, and, when it exists, the
solution is not unique, for adding a constant to the nodes does
not change the differences.

Measures are typically corrupted by errors, which can be
gross errors (outliers) and/or a diffuse noise with small vari-
ance. If G is a tree then these errors will creep in the solution,
however, as soon as redundant measures are considered (i.e.
the graph has at least one cycle), they are exploited by syn-
chronization to globally compensate the errors. The solution
minimizes a suitable cost functionwhich evaluates the coher-
ence between the unknown states and the pairwise measures.
By construction synchronization enforces cycle consistency
(Enqvist et al. 2011; Zach et al. 2010), namely the property
that the composition of relative measures along any cycle in
the measurement graph should return the identity.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-019-01240-x&domain=pdf
http://orcid.org/0000-0003-0331-4032
http://orcid.org/0000-0003-2963-0316


International Journal of Computer Vision

Table 1 Matrix groups/semigroups considered in this paper

GL(d) The General Linear Group is the set of invertible matrices: GL(d) = {M∈Rd×d s.t . det(M)�=0}
SL(d) The Special Linear Group is the set of matrices with unit determinant: SL(d) = {M ∈ R

d×d s.t . det(M) = 1}
O(d) The Orthogonal Group is the set of rotations and reflections: O(d) = {M ∈ R

d×ds.t . MTM = MMT = Id }
SO(d) The Special Orthogonal Group is the set of rotations: SO(d) = {M ∈ O(d) s.t . det(M) = 1}
GA(d) The General Affine Group is the set of affine maps: GA(d) =

{[
M t
0T 1

]
, s.t . M ∈ GL(d), t ∈ R

d
}

SE(d) The Special Euclidean Group is the set of direct isometries: SE(d) =
{[

M t
0T 1

]
, s.t . M ∈ SO(d), t ∈ R

d
}

Sd The Symmetric Group is the set of total permutations: Sd = {M ∈ {0, 1}d×d s.t . M1 = 1, 1M = 1}
Id The Symmetric Inverse Semigroup is the set of partial permutations: Id = {M ∈ {0, 1}d×d s.t . M1 ≤ 1, 1M ≤ 1}

GL(d)

SL(d) O(d)

SE(d-1)

SO(d)

Sd

I
GA(d-1)

Fig. 1 Subgroups of GL(d). The identity is in the intersection of all of
them
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Fig. 2 Synchronization over (Z,+)

Several instances of synchronization have been studied
in the literature. � = R yields clock synchronization (with
offset) (Karp et al. 2003; Giridhar and Kumar 2006), from
which the term synchronization originates, where all the
nodes in a network are synchronized to a common clock. The
same problem is studied under the name levelling in topog-

raphy and surveying (Bjerhammar 1973). If the clock model
includes also a drift (besides the offset), the problem can be
addressed in� = GA(1) (Solis et al. 2006). Synchronization
over GA(3) has also been applied to RGB colour matching
in image mosaicking (Santellani et al. 2018). � = Z2 gives
sign synchronization (Cucuringu 2015), which was used to
identify communities in a network where the interaction
between the nodes is described by two dichotomous values,
e.g., agreement/disagreement, and the network has a natu-
ral partition into two communities. � = R

d is a translation
synchronization (Barooah and Hespanha 2007; Russel et al.
2011; Tron et al. 2015; Molavi and Jadbabaie 2011; Aragues
et al. 2012), namely the problemof localizing a set of nodes in
space from pairwise differences.� = SO(d) corresponds to
rotation synchronization (also known as rotation averaging)
(Sharp et al. 2002; Martinec and Pajdla 2007; Singer 2011;
Thunberg et al. 2011; Crandall et al. 2011; Fredriksson and
Olsson 2012; Boumal et al. 2013; Hartley et al. 2013; Chat-
terjee and Govindu 2013; Wang and Singer 2013; Arrigoni
et al. 2014a; Tron et al. 2016) and � = SE(d) results in
rigid-motion synchronization (also known as motion averag-
ingor pose graphoptimization) (Fusiello et al. 2002;Govindu
2004; Torsello et al. 2011; Tron and Danilidis 2014; Bernard
et al. 2015; Arrigoni et al. 2016c, b; Rosen et al. 2015,
2019), which find application in structure from motion, reg-
istration of 3D point sets and simultaneous localization and
mapping (SLAM). � = SL(d) produces homography syn-
chronization (Schroeder et al. 2011), which is an essential
step in the context of image stitching or mosaicking. Finally,
� = Sd and � = Id give rise to permutation synchroniza-
tion (Pachauri et al. 2013; Shen et al. 2016;Yu et al. 2016) and
partial permutation synchronization (Arrigoni et al. 2017),
respectively, which are related to multi-view matching, as it
will be clarified in Sect. 8.2.

While it is clear that synchronization over R
d can be

reduced to a linear system of equations, the other instances
of synchronization involve the minimization of a non convex
cost function, which make the problem difficult to solve.
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However, if � admits a matrix representation, i.e. it
can be embedded in R

d×d , then synchronization reduces to
an eigenvalue decomposition, resulting in an efficient and
closed-form solution. Specifically, the unknown states are
derived from the top eigenvectors of a matrix constructed
from the pairwisemeasures. An equivalent null-space formu-
lation can also be derived. This procedure was introduced in
Singer (2011) for � = SO(2), extended in Arie-Nachimson
et al. (2012), Singer and Shkolnisky (2011) to � = SO(3),
and further generalized in Arrigoni et al. (2016c), Bernard
et al. (2015) to � = SE(3). The same formulation appeared
in Schroeder et al. (2011) and Pachauri et al. (2013) for
� = SL(d) and � = Sd respectively. The latter was
extended to � = Id in Arrigoni et al. (2017).

Other techniques exploiting a matrix representation of the
group can be found in the literature, which express the syn-
chronization problem in terms of well studied mathematical
tools, such as semidefinite programming (Singer 2011;Wang
and Singer 2013; Rosen et al. 2015) or matrix completion
(Arrigoni et al. 2018), resulting in iterative solutions. These
approaches, however, are not applicable to all groups. For
example, the semidefinite programming formulation derives
from specific properties of O(d) and SE(d), namely the fact
that thematrix constructed from thepairwisemeasures is pos-
itive semidefinite when considering the Orthogonal Group
(Singer 2011; Wang and Singer 2013), and the property that
the convex hull of the Special Euclidean Group admits a
semidefinite representation (Rosen et al. 2015). The matrix
completion formulation (Arrigoni et al. 2018), instead, is
based on the property that the matrix containing the pairwise
measures is low-rank and it is incoherent (see Candès and
Tao 2010). Unfortunately in the � = Sd case the matrix is
sparse, being composed of permutation matrices, and hence
it does not satisfy the incoherence assumption.

Other approaches include iterating local solutions on the
measurement graph or explicit minimization of a cost func-
tion. The former comprises (Sharp et al. 2002), where the
error is distributed over a set of cycles, and (Torsello et al.
2011; Aftab et al. 2015), where each state is updated in turn
in a distributed fashion. The latter includes Quasi-Newton
iterations (Fusiello et al. 2002), the Levenberg–Marquardt
algorithm (Crandall et al. 2011), Riemannian trust-region
optimization (Boumal et al. 2013), Riemannian gradient
descent (Tron and Danilidis 2014), integer quadratic pro-
gramming (Carlone and Censi 2014), and the Gauss–Seidel
method (Yu et al. 2016). These techniques, however, heav-
ily depend on the chosen group and its parametrization. For
instance, unit quaternions are used in Castellani et al. (2002)
and dual quaternions in Torsello et al. (2011), which repre-
sent rotations and rigid-motions in 3-space, respectively. See
also the references in Carlone and Censi (2014).

1.1 Scope and Outline

In this paper we provide a comprehensive survey on closed-
form solutions to group synchronization, namely linear least
squares (Barooah and Hespanha 2007; Russel et al. 2011)
and spectral decomposition (Singer 2011; Schroeder et al.
2011; Singer and Shkolnisky 2011; Arie-Nachimson et al.
2012; Pachauri et al. 2013; Bernard et al. 2015; Arrigoni
et al. 2016c, 2017). The former solves synchronization over
R
d in an optimal way. The latter, although suboptimal, is

theoretically appealing since it can be applied to any group
admitting a matrix representation (e.g. homographies, rigid
motions, permutations, . . . ), as opposed to other techniques
which are based on ad-hoc minimizations of specific cost
functions. These solutions are extremely fast and they easily
cope with weights on individual relative measures, allowing
a robust extension via Iteratively Reweighted Least Squares
(IRLS) (Holland and Welsch 1977).

We also set forth a theoretical unified framework where
several synchronization problems are seen as instances of a
more abstract principle, gathering several works that were
developed in different communities (including Computer
Vision, Photogrammetry, Robotics and Graph Theory), and
we showhow this framework can be profitably used in several
applications.

The paper is organized as follows. Section 2 formally
defines the synchronization problem, which is grounded on
the notion of group-labelled graph. Section 3 is devoted to
synchronization over (Rd ,+), which is expressed as a lin-
ear system of equations. Section 4 addresses synchronization
over (GL(d), ·), which can be cast to a spectral decom-
position or a null-space problem. Then, several subgroups
of GL(d) are analysed in Sect. 5, namely SL(d), O(d),
SE(d − 1), GA(d − 1) and Sd , in which cases the solu-
tion needs to be projected onto the group, as closure is not
guaranteed. Section 6 shows that the spectral solution can be
extended to synchronization over Id , which is an inverse
monoid and a subsemigroup of Sd . Some considerations
about the optimization problem associated with the spec-
tral solution are reported in Sect. 7. Finally, Sect. 8 describes
how some Computer Vision problems can be addressed in
terms of synchronization and Sect. 9 briefly discusses pros
and cons of spectral synchronization. The results presented
in this paper require some basic notions from graph theory,
which are covered in “Appendix B”, and the definitions of
the Kronecker, Hadamard and Khatri–Rao products, which
are given in “Appendix A”.

2 Theoretical Framework

Let us start by introducing the notion of group-labelled graph
(Edelman and Saks 1979). Let (�, ∗) be a group with unit
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element 1� , and let G = (V, E) be a simple directed graph
with vertex set V = {1, 2, . . . , n} and edge set E , with m =
|E |. A �-labelled graph is a directed graph with a labelling
of its edge set by elements of �, that is a tuple � = (V, E, z)
where

z : E → � (1)

is such that if (i, j) ∈ E then ( j, i) ∈ E and

z( j, i) = z(i, j)−1. (2)

Thus, we may also view G as an undirected graph.

Definition 1 Let � = (V, E, z) be a �-labelled graph. We
say that a circuit {(i1, i2), (i2, i3), . . . , (i�, i1)} is a null cycle1
if and only if the composition of the edge labels along the
circuit returns the identity, namely

z(i1, i2) ∗ z(i2, i3) ∗ · · · ∗ z(i�, i1) = 1�. (3)

The “null” term clearly refers to an additive notation for
the group (which is used in Kawarabayashia and Wollan
2006; Chudnovsky et al. 2008; Guillemot 2011), without
implying that � needs to be Abelian. Note that if the group
is not commutative, then it may happen that cyclic shifts of
the same circuit yield different elements of the group. Never-
theless the notion of null cycle is well defined, as either all of
the cyclic shifts are equal to 1� or none of them, as observed
also in Guillemot (2011). As noted in Barooah and Hespanha
(2008), the concept of null cycle resembles Kirchoff’s volt-
age law, stating that the electrical potential differences around
any cycle sum to zero.

Definition 2 Let � = (V, E, z) be a �-labelled graph. Let
x : V → � be a vertex labelling.We say that x is a consistent
labelling if and only if

z(e) = x(i) ∗ x( j)−1 ∀ e = (i, j) ∈ E . (4)

A�-labelled graph admitting a consistent labelling is also
called balanced (Joglekar et al. 2012). Equation (4) means
that each edge label is the ratio of the corresponding vertex
labels, as shown in Fig. 3. Such condition is referred to as
consistency constraint and it is equivalent to

z(e) ∗ x( j) = x(i) ∀ e = (i, j) ∈ E . (5)

It is understood that a consistent labelling is defined up to a
global (right) product with any group element, in the sense
that if x : V → � is consistent then also y : V → �,
y(i) = x(i) ∗ s, is consistent, for any (fixed) s ∈ �.

1 A circuit is also a cycle; definitions are given in “Appendix B”.
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Fig. 3 Consistent labelling

The notion of consistent labelling is strictly related to that
of null cycle, as stated by the following result.

Proposition 1 (Guillemot 2011) Let � = (V, E, z) be a �-
labelled graph. There exists a polynomial algorithm which
either finds a non-null cycle in � or finds a consistent
labelling of �.

The following procedure draws an outline of the proof.
First, compute a spanning tree (see “Appendix B”) and use
Eq. (5) to label nodes, starting from the root labelled with
the identity 1� : this is a consistent labelling by construction.
Then add one by one the edges not belonging to the spanning
tree, thereby creating a circuit. If the cycle is null then the
edge can be added and leave the labelling consistent, other-
wise a non-null cycle has been found.

Corollary 1 (Guillemot 2011) The �-labelled graph � =
(V, E, z) has a consistent labelling if and only if it does not
contain a non-null cycle.

One direction is an immediate consequence of Proposi-
tion 1. The opposite direction follows from the observation
that, if Eq. (4) holds, then all the terms in the left side in
Eq. (3) simplify, yielding the identity.

2.1 Group Feedback Edge Set

The problem of finding non-null cycles in a group-labelled
graph is studied in Graph Theory community under the name
of “group feedback edge set” problem (Guillemot 2011).
Specifically, the goal is to break non-null cycles by delet-
ing k edges, where k ∈ N is assumed to be known.

Definition 3 Let � = (V, E, z) be a �-labelled graph. The
Group Feedback Edge Set (GFES) problem is defined as fol-
lows: on input (�, k) for some k ∈ N, decide whether there
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exists a subset of the edges S ⊆ E with |S| ≤ k such that
the labelled graph of the remaining edges �′ = (V, E\S, z)
does not contain a non-null cycle.

With some abuse of notation, in Definition 3 we denote
with (V, E\S, z) the �-labelled graph with edges in S
removed from E , even though formally z has in its domain
edges that do not exist in E\S.

The set S satisfying Definition 3 (if it exists) is called the
feedback edge set of �. The interpretation is that S identifies
edges with outlying labels that prohibit a consistent labelling
to be found. Note that in the presence of noise we have to
relax Eq. (3) and consider the following

δ
(
z(i1, i2) ∗ z(i2, i3) ∗ · · · ∗ z(i�, i1), 1�

)
/
√

� ≤ τ (6)

where τ ≥ 0 is a given threshold and it is assumed that �

admits a metric function δ : � × � → R
+. The normal-

ization factor
√

� takes into account error propagation when
considering long cycles (Enqvist et al. 2011).

Outlying labels can be detected through the methods in
Wahlström (2014), Cygan et al. (2012), which come from
Graph theory community. Alternatively, Computer Vision
solutions can be used, which include outlier rejection heuris-
tics (Enqvist et al. 2011; Arrigoni et al. 2014b), Random
Sample Consensus (RANSAC) (Govindu 2006; Olsson and
Enqvist 2011), and Bayesian inference (Zach et al. 2010;
Moulon et al. 2013; Bourmaud et al. 2014). However, these
strategies are computationally demanding and do not scale
well with the size of the graph.

2.2 Group Synchronization

Let us assume that � is equipped with a metric function
δ : � × � → R

+ and let ρ : R+ → R
+ be a non-negative

non-decreasing function with a unique minimum at 0 and
ρ(0) = 0. Some instances are the quadratic loss function
ρ(y) = y2 or robust loss functions used in M-estimators
(Holland and Welsch 1977).

Definition 4 Let � = (V, E, z) be a �-labelled graph. Let
x̃ : V → � be a vertex labelling. We define the consistency
error of x̃ as the quantity

ε(̃x) =
∑

(i, j)∈E
ρ
(
δ
(̃
z(i, j), z(i, j)

))
(7)

where z̃ is the edge labelling induced by x̃ , namely z̃(i, j) =
x̃(i) ∗ x̃( j)−1.

A vertex labelling is consistent if and only if it has zero
consistency error. In practical applications a labelling with
zero error hardly exists, since the edge labels are corrupted
by noise, thus the goal is to address the following problem.
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Fig. 4 The synchronization problem

Definition 5 Given a �-labelled graph � = (V, E, z), the
group synchronization problem consists in finding a vertex
labelling with minimum consistency error.

In other words, one wants to recover the unknown group
elements (vertex labels) given a redundant set of noisy mea-
surements of their ratios (edge labels), as shown in Fig. 4.

A related approach (e.g. Sharp et al. 2002) consists in
minimizing the cost function (7) with respect to the edge
labelling z̃ while imposing the constraint that all the cycles
are null (a.k.a. cycle consistency). For the � = R

d case
this is equivalent to synchronization (Proposition 2), whereas
analogous results are not known in general.

The synchronization problem requires the graph to be con-
nected, but error compensation happens only within cycles.
The minimum number of relative measures is n − 1, which
makes G a tree. In this case every vertex can be labeled by
simply propagating Eq. (5) along the tree, starting from the
root labeled with the identity element. In this case, however,
there is no remedy to error propagation: the error affecting an
edge label propagates down to the leaves of the tree without
compensation, as shown (e.g.) by experiments in Govindu
(2004). In the synchronization problem, instead, the goal is
to exploit redundant relative measures in a global fashion to
improve the final estimate.

If themeasures are also corrupted by outliers, one needs to
solve a GFES problem beforehand, using a relaxed notion of
null cycle, i.e., Eq. (6). Alternatively, a robust loss function
can be used in (7) without detecting outliers explicitly (as
done in Sect. 9.5).
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2.3 Synchronization over an Inverse Monoid

As observed in Arrigoni et al. (2017), the notion of syn-
chronization can be extended to the case where � is an
inversemonoid. One example is� = Id , which is a subsemi-
group ofSd , resulting in partial permutation synchronization
(Arrigoni et al. 2017).

Definition 6 An inverse semigroup (�, ∗) is a semigroup in
which for all s ∈ � there exists an element t ∈ � such that
s = s ∗ t ∗ s and t = t ∗ s ∗ t . In this case, we write t = s−1

and call t the inverse of s. If � has an identity element 1�

(i.e. it is a monoid), then it is called an inverse monoid.

Remark 1 Inverses in an inverse semigroup have many of the
same properties as inverses in a group, for instance, (a ∗
b)−1 = b−1 ∗ a−1 for all a, b ∈ �.

If � is an inverse monoid, then Eqs. (4) and (7) still make
sense, with the provision that x( j)−1 now denotes the inverse
of x( j) in the semigroup. Note that x( j)−1 ∗ x( j) and x( j)∗
x( j)−1 are not necessarily equal to the identity, thus Eq. (4)
is not equivalent to (5). The solution to the synchronization
problem over an inverse monoid is defined up to a global
(right) product with any element y ∈ � such that y ∗ y−1 =
1� = y−1 ∗ y.

As concerns the notion of null-cycle, Eq. (3) still makes
sense in the case of an inverse monoid, since it only involves
products between elements of the set and the existence of
a unit element 1� . However, Proposition 1 (and hence one
direction of Corollary 1) does not straightforwardly extend
to this case since the proof exploits Eq. (5), which is no
longer equivalent to the consistency constraint. Regarding
the other direction of Corollary 1, note that, if the consistency
constraint holds, then the left side in Eq. (3) rewrites

z(i1, i2) ∗ z(i2, i3) ∗ · · · ∗ z(i�, i1)

= x(i1) ∗ x(i2)
−1 ∗ x(i2)︸ ︷︷ ︸
�=1�

∗x(i3)−1 ∗ · · · ∗ x(i�) ∗ x(i1)
−1

(8)

which, in general, does not coincide with the identity. Devel-
oping a complete theory for synchronization over an inverse
monoid is outside the scope of this paper.

3 Synchronization overRd

In this section we consider the synchronization of real vec-
tors with addition, namely (�, ∗) = (Rd ,+), which is also
known as translation synchronization, and we derive a direct
solution following (Barooah and Hespanha 2007; Russel
et al. 2011).

A vertex labelling x : V → R
d is consistent with a given

edge labelling z : E → R
d if and only if2

xi − x j = zi j ∀ (i, j) ∈ E . (9)

Note that we can view each component in Eq. (9) as a syn-
chronization over (R,+).

If we denote the incidence vector of the edge (i, j) with

bi j = [ 0, . . . , 1
↑
i

, . . . ,−1
↑
j

, . . . , 0 ]T (10)

then Eq. (9) can be written as

[ x1, . . . , xn ] bi j = zi j ∀ (i, j) ∈ E (11)

or, equivalently, in matrix form

XB = Z (12)

where B is the n ×m incidence matrix of the directed graph
G, which has the vectors bi j as columns, X is the d × n
matrix obtained by juxtaposing all the vertex labels, namely
X = [x1 . . . xn], and Z is the d × m matrix obtained by
juxtaposing all the edge labels (ordered as in B), namely
Z = [z12 . . . zi j . . . ]. See “Appendix B.1” for the definition
of incidence matrix and related properties.

Applying the vectorization operator vec(·) to both sides
in (12) and using formula (87) we get

(BT ⊗ Id) vec(X) = vec(Z) (13)

where Id denotes the d × d identity matrix and ⊗ denotes
the Kronecker product, defined in “Appendix A”, which has
the effect of “inflating” the incidence matrix in order to cope
with the vector representation of the group elements.

Under the assumption that the graph is connected we
have rank(B) = n − 1 and hence, using (89), we have
rank(BT⊗ Id) = dn−d. The rank deficiency corresponds to
the translation ambiguity. Since the solution to the synchro-
nization problem is defined up to a global group element,
we are allowed w.l.o.g. to arbitrarily set xk = 0 = 1� for
a chosen k ∈ V . Removing xk from the unknowns and the
corresponding row in B leaves a full-rank matrix.

With a suitable choice of δ(·, ·) and ρ in Eq. (7), the con-
sistency error of the synchronization problem writes

ε(X) = ‖(BT ⊗ Id) vec(X) − vec(Z)‖2 (14)

where‖·‖denotes theEuclideannorm.Thus the least-squares
solution of Eq. (13) solves the synchronization problem. This

2 For simplicity of notation, hereafter we will use subscripts instead of
parenthesis to denote indices of a node/edge labelling.

123



International Journal of Computer Vision

method is adopted in Barooah and Hespanha (2007), Russel
et al. (2011) to localize a group of agents in a sensor network
and in Arrigoni et al. (2016a) to recover camera positions in
a structure-from-motion pipeline.

Remark 2 If c ∈ {−1, 0, 1}m denotes the indicator vector of
a circuit in G, the cycle is null if and only if

Zc = 0. (15)

If the equations coming from all the circuits in a cycle basis
are stacked, then the cycle consistency writes:

ZCT = 0 (16)

where C ∈ {−1, 0, 1}(m−n+1)×m denotes the cycle matrix
associated to the basis. See “Appendix B” or Carlone et al.
(2011) for the definitions of cycle basis and cycle matrix.
Using the vectorization operator and formula (87), cycle con-
sistency can also be expressed as

(C ⊗ Id) vec (Z) = 0. (17)

It can be shown that the edge labels produced by the syn-
chronization process are the closest to the input edge labels
among those that yield null-cycles.

Proposition 2 (Russel et al. 2011) If X̃ is the least-squares
solution to Eq. (13), then the induced edge labelling Z̃ = X̃ B
solves the following constrained minimization problem

min
Z̃

‖Z − Z̃‖2 s.t. Z̃CT = 0 (18)

where C denotes the cycle matrix associated to a cycle basis
of G.

This result was also known in topography, in the context
of the least-squares adjustment of leveling networks (Bjer-
hammar 1973).

4 Synchronization over GL(d)

In this section we consider the synchronization problem over
the General Linear Group GL(d), which is the set of all
d×d invertiblematrices,where the groupoperation∗ reduces
to matrix multiplication and 1� = Id . A vertex labelling
X : V → R

d×d is consistent with a given edge labelling
Z : E → R

d×d if and only if Zi j = Xi · X−1
j .

All the vertex/edge labels can be collected in two matri-
ces X ∈ R

dn×d and Z ∈ R
dn×dn respectively, which are

“matrices of matrices” defined as follows

X =

⎡
⎢⎢⎣
X1

X2

. . .

Xn

⎤
⎥⎥⎦ , Z =

⎡
⎢⎢⎣

Id Z12 . . . Z1n

Zn1 Id . . . Z2n

. . . . . .

Zn1 Zn2 . . . Id

⎤
⎥⎥⎦ . (19)

For a complete graph, the consistency constraint can be
expressed in matrix form as

Z = XX−	 (20)

where XX−	 contains the edge labels induced by X and
X−	 ∈R

d×dn denotes theblock-matrix containing the inverse
of each d × d block of X , i.e. X−	 = [X−1

1 X−1
2 . . . X−1

n ].
Note that Eq. (20) implies that rank(Z) = d.

Remark 3 By computation it can be verified that

X−	X = nId (21)

and hence Z/n is idempotent.

If the graph is not complete then Z is not fully specified.
In this case missing edges are represented as zero entries, i.e.
ZA := Z ◦ (A⊗ 1d×d) represents the matrix of the available
measures, where ◦ is the Hadamard product and A is the
adjacency matrix of the graph G, which gets “inflated” by the
Kronecker product with 1d×d to match the block structure of
the measures. Being a matrix of 0/1, the effect of its entry-
wise product with Z is to zero the unspecified entries and
leave the others unchanged. See “Appendices B and A” for
the definitions of Hadamard product and adjacency matrix,
respectively. Hence the consistency constraint writes

ZA = (XX−	) ◦ (A ⊗ 1d×d). (22)

With a suitable choice of δ(·, ·) and ρ in Eq. (7) the con-
sistency error of the synchronization problem writes

ε(X) = ‖ZA − (XX−	) ◦ (A ⊗ 1d×d)‖2F (23)

where ‖·‖F denotes the Frobenius norm. The Hadamard
product with A⊗1d×d mirrors the summation over the edges
in E in the definition of the consistency error. The minimiza-
tion of ε is a non-linear least squares problem, for which
closed-form solutions do not seem to exist. However, two
direct solutions to a related version of the problem exist
(Singer 2011; Singer and Shkolnisky 2011; Arie-Nachimson
et al. 2012), which can be derived by considering the exact
(noiseless) case.

4.1 Spectral Solution

Let us consider the noiseless case, i.e. ε = 0, and let us start
assuming that the graph is complete. Using the consistency
constraint and (21) we obtain
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Z X = nX (24)

which means that—in the absence of noise—the columns of
X are d (independent) eigenvectors of Z corresponding to
the eigenvalue n. Note that, since Z has rank d, all the other
eigenvalues are zero, thus n is also the largest eigenvalue of
Z .

We now consider the case of missing edges in which the
graph is not complete and the adjacency matrix comes into
play.

Proposition 3 (Singer 2011; Singer and Shkolnisky 2011;
Arie-Nachimson et al. 2012) The columns of X are d (inde-
pendent) eigenvectors of (D ⊗ Id)−1ZA associated to the
eigenvalue 1.

Proof In the case of missing data, it can be seen that Eq. (24)
generalizes to

ZAX = (D ⊗ Id)X (25)

where D is the degree matrix of the graph (see
“Appendix B.1”). Indeed, the i-th block-row in the above
equation is

∑
j s.t . (i, j)∈E

Zi j X j = [D]i i Xi (26)

which is satisfied since Zi j = Xi X
−1
j . ��

Note that the incomplete data matrix ZA has full rank
in general, thus 1 is not the unique nonzero eigenvalue of
(D ⊗ Id)−1ZA, in contrast to the case of Eq. (24). However,
it can be shown that 1 is the largest eigenvalue of such a
matrix.

Proposition 4 (Arrigoni et al. 2016c) The matrix (D ⊗
Id)−1ZA has real eigenvalues. The largest eigenvalue is 1
with multiplicity d.

Proof By computation it can be verified that

ZA = blkdiag(X)(A ⊗ Id) blkdiag(X)−1 (27)

where blkdiag(X) produces a dn×dn block-diagonal matrix
with d × d blocks X1, . . . , Xn along the diagonal. Note that
the diagonal matrix (D⊗ Id)−1 commutes with blkdiag(X),
since each d × d block along its diagonal is a multiple of the
identity matrix. Thus

(D ⊗ Id)
−1ZA

= blkdiag(X)(D ⊗ Id)
−1(A ⊗ Id) blkdiag(X)−1

= blkdiag(X)((D−1A) ⊗ Id) blkdiag(X)−1 (28)

where the last equality follows from properties (85) and (86).
Hence (D ⊗ Id)−1ZA is similar to the matrix (D−1A) ⊗ Id ,
i.e., they have the same eigenvalues. The matrix D−1A
is the transition matrix of the graph G (see “Appendix
B.1”), which—as a consequence of the Perron–Frobenius
theorem—has real eigenvalues and 1 is the largest eigen-
value (with multiplicity 1), if the graph is connected. Since
the eigenvalues of the Kronecker product of two matrices
are the product of the eigenvalues of the matrices, we con-
clude that the largest eigenvalue of (D−1A) ⊗ Id is 1 with
multiplicity d. ��
The proof of Proposition 4 has pointed out that—provided
that Z is decomposable as Z = XX−	—the matrix (D ⊗
Id)−1ZA has a particular structure that yields real eigen-
values, although it is not symmetric. In particular, the
eigenvalues do not depend on the measured data, but they
depend only on the structure of the graph G (through the
matrices D and A).

When noise is present, i.e. ε �= 0, the eigenvectors of
(D ⊗ Id)−1ZA corresponding to the d largest eigenvalues
are an estimate of the vertex labelling X . The presence of
noise, however, cripples the structure of ZA, i.e. ZA �=
(XX−	) ◦ (A ⊗ 1d×d), thus the eigenvalues and the eigen-
vectors may be complex. As a consequence, after computing
the leading eigenvectors, the imaginary part is zeroed. This
approach is adopted in Arrigoni et al. (2016a) in the d = 1
case to synchronize distances between camera pairs in a
structure-from-motion pipeline. To the best of our knowl-
edge, no general results are known linking this spectral
solution to the synchronization cost function. Results in the
special case where � = O(d) are reported in Sect. 7.1.

AmbiguitySince the eigenvalue 1 is repeated, the correspond-
ing eigenvectors span a linear subspace, and hence any basis
for such a space is a solution. However, a change of the basis
in the eigenspace corresponds to right-multiply the eigen-
vectors by an invertible d × d matrix, i.e., the solution to
synchronization is defined up the action of an element of
GL(d), as expected.

Projection Let U be the matrix containing the d leading
eigenvectors of (D ⊗ Id)−1ZA, where the imaginary part (if
any) is zeroed. The blocks of U are in general non-singular,
hence they belong to GL(d). This means that the solution is
intrinsic, and no projection is required.

Remark 4 The top eigenvector can be computed by the power
iterationmethod, which, considering (e.g.) the case of a com-
plete graph, starts with a randomvector x0 ∈ R

dn and iterates
the relation xk+1 = Zxk/‖Zxk‖, thus it requires to compute
Zk , for k = 1, 2, . . . , kmax. It is observed in Singer (2011)
that multiplying the matrix Z by itself integrates the consis-
tency relation of triplets, while high order iterations exploit
consistency relations of longer cycles. Indeed
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Z2
i j =

n∑
k=1

Zik Zk j (29)

Z3
i j =

n∑
k=1

n∑
h=1

Zik Zkh Zhj . . . (30)

Thus the top eigenvector integrates the consistency relation
of all cycles.

4.2 Null-Space Solution

We now show that synchronization over (GL(d), ·) can also
be expressed as a null-space problem. If ε = 0 Eq. (24) is
equivalent to

(nIdn − Z)X = 0 (31)

which means that, if the graph is complete, the vertex
labelling X coincides with the d-dimensional null-space of
nIdn − Z . In the case of missing edges, let us rewrite (25) as

(D ⊗ Id − ZA)X = 0 (32)

thus X belongs to the null-space of D ⊗ Id − ZA.
Let us observe that the matrix D⊗ Id coincides with (D⊗

1d×d)◦ Z , since Z has identity blocks along its diagonal and
D ⊗ 1d×d is block-diagonal. Using the distributive property
of the involved products, we obtain an equivalent expression
for D ⊗ Id − ZA

D ⊗ Id−ZA=((D − A) ⊗ 1d×d) ◦ Z = (L ⊗ 1d×d) ◦ Z

(33)

where L = D − A is the Laplacian matrix of G (see
“Appendix B.1”), which gets “inflated” to a d × d-block
structure by the Kronecker product with 1d×d , to match the
block structure of Z .

Note that in practice one cannot measure the matrix (L ⊗
1d×d) ◦ Z , since the full Z is not available. In fact, only the
product Z ◦ (A ⊗ 1d×d) is available. Therefore, the left side
in (33) will be used in real scenarios. However, the right side
emphasizes the presence of the Laplacian matrix, which is
useful to prove that the null-space of D ⊗ Id − ZA is d-
dimensional, as happens in the case of a complete graph.

Proposition 5 (Arrigoni et al. 2016c)Thematrix D⊗ Id−ZA

has a d-dimensional null-space.

Proof By computation it can be verified that

D ⊗ Id − ZA = (L ⊗ 1d×d) ◦ Z

= blkdiag(X)(L ⊗ Id) blkdiag(X)−1 (34)

which means that D ⊗ Id − ZA and L ⊗ Id are similar, thus
they have the same rank. The rank of the Laplacian matrix is
n − 1, under the assumption that the graph is connected (see
“Appendix B.1”). Since the rank of the Kronecker product
of two matrices is the product of the rank of the matrices, we
obtain

rank(D ⊗ Id − ZA) = rank(L) rank(Id) = dn − d (35)

thus we have the thesis. ��
When noise is present, an estimate of X is given by the

right singular vectors of D ⊗ Id − ZA corresponding to the
d least singular values, which solve the following problem

min
XTX=nId

‖(D ⊗ Id − ZA)X‖2F . (36)

A formal relationship between this cost function and the con-
sistency error of the synchronization problem has still to be
found.

The considerations about ambiguity/projection made for
the spectral method apply also to the null-space solution,
modulo the fact that singular vectors are real even in the
absence of noise, so no rounding is needed.

4.3 Additive Solution

We observe that synchronization over the General Linear
Group can be cast to a translation synchronization, exploiting
the fact thatGL(d) has the structure of aLie group (Varadara-
jan 1984), where the associated Lie algebra consists of all
d × d real matrices with the commutator operator serving as
the Lie bracket, namely [Y ,W ] = YW −WY . Informally, a
Lie group can be locally viewed as topologically equivalent
to a vector space, and the local neighbourhood of any group
element can be adequately described by its tangent space,
whose elements form a Lie algebra. The Lie algebra and the
Lie group are related by the exponential mapping, and the
inverse mapping from the Lie group to the Lie algebra is
given by matrix logarithm.

By taking the logarithm, the consistency constraint of the
synchronization problem over GL(d), that is Zi j = Xi X

−1
j ,

can be transformed into the consistency constraint of an addi-
tive group, namely

log(Zi j ) = log(Xi ) − log(X j ) (37)

assuming that the each of the above matrices admits a unique
real logarithm. Specifically, by vectorizing each side in (37),
a relation of the form (9) is obtained, which defines a transla-
tion synchronization problem. Thus the solution can be found
by solving a linear system in the least-squares sense, as done
in Sect. 3, or via IRLS (to gain robustness to outliers), as
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explained in Sect. 9.5. In other words, the synchronization
problem is addressed in the Lie algebra rather than in the
group.

However, as observed in Govindu (2004), the Euclidean
distance in the Lie algebra does not coincide with the Rie-
mannian distance in the group, but it constitutes a first-order
approximation, as stated by the Baker–Campbell–Hausdorff
formula (Varadarajan 1984). For this reason, in Govindu
(2004, 2006), Chatterjee and Govindu (2013) the solution
is found by iterating between solving the linear system in the
Lie algebra and remapping onto the group.

As afinal note, it is straightforward to see that the approach
of Sect. 4 also applies to synchronization over (R\{0}, ·), for
it coincides with (GL(1), ·).

5 Synchronization over Subgroups of GL(d)

The analysis carried out in Sect. 4 can be extended to the
case where � is a subgroup of GL(d), i.e., it can be embed-
ded in Rd×d , where the group operation ∗ reduces to matrix
multiplication and 1� = Id . In this case Propositions 4
and 5 still hold, and the synchronization problem can be
addressed either via the spectral solution, which computes
the top d eigenvectors of (D ⊗ Id)−1ZA (which may be
complex in the presence of noise), or via the null-space solu-
tion, which computes the least d right singular vectors of
D ⊗ Id − ZA. Alternatively, the (approximate) null-space of
Idn − (D⊗ Id)−1ZA can be computed, as done in Schroeder
et al. (2011).

Let U be the dn × d matrix containing either the output
of the spectral method or the null-space solution. Recall that
U is not uniquely determined (even in the absence of noise)
but it is defined up to (right) multiplication by an element
of GL(d), since any basis for the null-space of D ⊗ Id −
ZA (or, equivalently, any basis for the eigenspace of (D ⊗
Id)−1ZA associated with eigenvalue 1) is a solution. Thus a
procedure that reduces the ambiguity up to an element of �

is required, since the solution to the synchronization problem
is inherently defined up to an element of the group.

Note that closure is not always guaranteed. In other words,
the spectral and the null space methods produce an extrinsic
estimate of the vertex labelling X which needs to be even-
tually projected onto �. This approach is clearly suboptimal
with respect to working in the group, and represents the price
to be paid for simplicity and computational efficiency.

In the following sections we will analyze synchronization
is some subgroups of GL(d) (see Table 1 and Fig. 1). They
basically differ from each other by the ambiguity fixing and
the projection stages.

Remark 5 Synchronization over a subgroup of GL(d) can
also be addressed via the approach detailed in Sect. 4.3,

as done in Govindu (2004, 2006), Chatterjee and Govindu
(2013). Particularly interesting are the � = SO(3) and
� = SE(3) cases, where the associated Lie algebras are
described by 3 and 6 parameters, respectively, and the expo-
nential and logarithm maps admit closed form expressions
(Moakher 2002; Cardoso and Leite 1999).

5.1 Synchronization over SL(d)

The Special Linear Group SL(d) is the set of d × d matrices
with unit determinant. Synchronization over SL(3) is studied
in Schroeder et al. (2011) within the context of multiple-view
homography estimation, that is why the problem is referred
to as homography synchronization.

AmbiguityU is the solution up tomultiplication by element of
GL(d), which can be reduced to SL(d) after permutation of
twocolumnsofU s.t. det(U1) > 0 anddivisionby d

√
det(U1),

where U1 denotes the first d × d block in U .

Projection In order to obtain elements of SL(d) from U ,
each d ×d block inU , denoted byUi , must be scaled to unit
determinant, which can be done by dividingUi by d

√
det(Ui ).

In the case of the spectral solution, before performing such
projection, the imaginary part of the eigenvectors is zeroed.

5.2 Synchronization overO(d)

The Orthogonal Group O(d) is the set of orthogonal trans-
formations in d-space, which admits a matrix representation
through d × d orthogonal matrices. An important subgroup
of O(d) is the Special Orthogonal Group SO(d), that is the
set of orthogonal matrices with determinant 1, which repre-
sent rotations in d-space. Synchronization over SO(d) is also
known as rotation (angular) synchronization (Singer 2011)
or multiple rotation averaging (Hartley et al. 2013; Wilson
et al. 2016). A comprehensive survey on existing solutions
can be found in Carlone et al. (2015), Tron et al. (2016).

From the theoretical perspective, synchronization over
SO(3) is analyzed in depth in Hartley et al. (2013), Wilson
et al. (2016). In Hartley et al. (2013) the consistency error
(7) is studied under the choice ρ(y) = y p (with p ≥ 1) and
several distance measures are considered, including quater-
nion, angular (geodesic) and chordal distances, where each
metric is related to a particular parametrization of the rota-
tion space. InWilson et al. (2016) it is shown that smaller and
well-connected graphs are easier than larger and noisy ones,
based on a local convexity analysis. Further theoretical anal-
ysis is reported in Boumal et al. (2014) where Cramèr–Rao
bounds for synchronization over SO(d) are derived, namely
lower bounds on the variance of unbiased estimators, assum-
ing a certain noise model.

The spectral method was introduced in Singer (2011) for
� = SO(2) and extended in Singer and Shkolnisky (2011),
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Arie-Nachimson et al. (2012) to � = SO(3). A related
approach is adopted in Martinec and Pajdla (2007), where
the � = SO(3) case is considered and the least eigenvec-
tors of D ⊗ I3 − ZA are computed (instead of the least right
singular vectors).

Remark 6 Note that both Z and ZA are symmetric even in
the presence of noise, since, by assumption, a group-labelled
graph satisfies Z ji = Z−1

i j for all (i, j) ∈ E , which becomes

Z ji = ZT
i j in the� = O(d) case. The matrix (D⊗ Id)−1ZA

is not symmetric, but it is similar to the symmetric matrix
(D ⊗ Id)−1/2ZA(D ⊗ Id)−1/2, thus its eigenvalues are real
and it admits an orthonormal basis of real eigenvectors.

Ambiguity The solution U is defined up to an element
of O(d), since a change of the orthonormal basis in the
eigenspace (or null-space) corresponds to (right) multipli-
cation by an orthogonal d×d matrix. This reduces to SO(d)

after permutation of columns of U such that det(U1) is pos-
itive.

Projection Each d × d block of U is not guaranteed to
belong to O(d) and has to be projected onto the group.
Such projection can be obtained by solving an orthogonal
Procrustes problem, e.g. via Singular Value Decomposition
(SVD) (Keller 1975). Specifically, if Q ∈ R

d×d is a given
matrix, then the nearest orthogonal matrix (in the Frobenius
norm sense) is given by

R = WV T ∈ O(d) (38)

where Q = WSV T denotes the singular value decomposi-
tion of Q. If the synchronization problemover� = SO(d) is
considered, the projection step is slightly different. Specif-
ically, the nearest rotation matrix (in the Frobenius norm
sense) is given by

R = W diag([1, . . . , 1, det(WV T)])V T ∈ SO(d). (39)

Note that the final rounding stepwhich is required forGL(d),
i.e., zeroing the imaginary part of the eigenvectors, is not
necessary here due to Remark 6.

5.3 Synchronization over GA(d)

The General Affine Group GA(d) is the set of invertible
affine transformations in d-space, which admits a matrix rep-
resentation through (d + 1) × (d + 1) matrices

GA(d) =
{ [

M t
0T 1

]
, s.t . M ∈ GL(d), t ∈ R

d
}
. (40)

Synchronization over GA(d) is referred to as affine synchro-
nization (Bernard et al. 2015; Santellani et al. 2018).

Ambiguity The solution U is unique up to the action of an
element of GL(d + 1), which can be reduced to GA(d) by
computing a linear combination of the columns ofU such that
the output matrix has the vector [01×d1] in rows multiple of
d + 1. More precisely, let F ∈ R

n×(d+1)n be the 0/1-matrix
such that FU ∈ R

n×(d+1) consists of the rows of U with
indices multiple of d + 1. The coefficients a,b ∈ R

d+1 of
the linear combination are solution of

FUa = 0n×1, FUb = 1n×1 (41)

where the first equation has a d-dimensional solution space.
If a1, . . . , ad denotes a basis for the null-space of FU , then
U is transformed into U [a1, . . . , ad ,b]. In the presence of
noise, Eq. (41) is solved in the least squares sense.

Projection In order to project the solution onto GA(d), the
rows of U multiple of d + 1 are forced to [01×d1], and the
imaginary part of the eigenvectors is zeroed (in the case of
the spectral solution).

5.4 Synchronization over SE(d)

The Special Euclidean Group SE(d) is the set of direct
isometries (or rigid motions) in d-space, which admits a
matrix representation through (d + 1) × (d + 1) matrices

SE(d) =
{[

R t
0T 1

]
, s.t . R ∈ SO(d), t ∈ R

d
}
. (42)

Synchronization over SE(d) is also known as rigid-motion
synchronization (Arrigoni et al. 2016c;Bernard et al. 2015) or
motion averaging (Govindu 2004, 2017) or pose-graph opti-
mization (Carlone et al. 2015). The spectral and null-space
solutions can be regarded as the extension of the rotation syn-
chronization approach introduced in Singer (2011), Singer
and Shkolnisky (2011), Arie-Nachimson et al. (2012), and
were developed independently by Bernard et al. (2015) and
Arrigoni et al. (2016c).

AmbiguityThe solutionU is unique up to the action of an ele-
ment ofGL(d+1). In order to reduce the ambiguity up to an
element of SE(d) we must design a suitable transformation
thatmaps, e.g., the first block ofU onto an element of SE(d).
In order to do that let us apply a linear combination of the
columns of U such that the (d + 1)th row becomes [01×d1],
as in the � = GA(d) case, and subsequently transform U
such thatU1, the first d × d block ofU , becomes an element
of SO(d). Let U1 = RP be the polar decomposition of U1,
with R ∈ O(d) and P symmetric positive definite. SinceU1

is invertible, then R = U1P−1, and P−1 is the sought trans-
formation. In the presence of noise, a least square solution
that brings every row multiple of d + 1 as close as possible
to [01×d1] is sought, as in the affine case.
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Projection In order to project the solution onto SE(d)—as
in Belta and Kumar (2002)—the rows of U multiple of d +
1 are forced to [01×d1] and the d × d rotation blocks are
projected onto SO(d). In the case of the spectral solution,
before performing such projection, the imaginary part of the
eigenvectors is zeroed.

Two-StepSynchronizationSince theSpecialEuclideanGroup
is the the semi-direct product of SO(d) andRd , synchroniza-
tion over SE(d) can be alternatively addressed by breaking
the problem into rotation and translation and solving the two
sub-problems separately, as done (e.g.) in Arrigoni et al.
(2016a). Let Xi ∈ SE(d) denote the (unknown) label of
node i

Xi =
[
Ri ti
0T 1

]
(43)

where Ri ∈ SO(d) and ti ∈ R
d denote the rotation and

translation components of the rigid motion, respectively.
Similarly, each edge label Zi j ∈ SE(d) can be expressed
as

Zi j =
[
Ri j ti j
0T 1

]
(44)

with Ri j ∈ SO(d) and ti j ∈ R
d . Using this notation, the con-

sistency constraint for synchronization over SE(d), namely
Zi j = Xi X

−1
j , can be equivalently rewritten as

Ri j = Ri R
T
j (45)

ti j = −Ri R
T
j t j + ti . (46)

Note that Eq. (45) defines a rotation synchronization prob-
lem, thus the rotation components of the unknown vertex
labels can be recovered as explained in Sect. 5.2. Equation
(46) can be equivalently written as

− RT
i ti j = RT

j t j − RT
i ti = xi − x j (47)

using the substitution xi = −RT
i ti . Thus—assuming that

rotations have been computed beforehand—recovering the
translation components of the vertex labels can be reduced to
a translation synchronization problem (as defined in Sect. 3),
where the edge labels are given by zi j = −RT

i ti j .

5.5 Synchronization overSd

The Symmetric Group Sd is the set of bijections between d
objects, which admits a matrix representation through d ×
d permutation matrices. A permutation matrix is such that
exactly one entry in each row and column is equal to 1 and
all other entries are 0. Synchronization over Sd is also known

as permutation synchronization, which finds application in
multi-view matching (see Sect. 8.2). The spectral solution
was introduced in Pachauri et al. (2013) for a complete graph
(based on Singer (2011)) and subsequently extended in Shen
et al. (2016) to the case of missing data.

Ambiguity The solution U is defined up to an element of
O(d), as a consequence of Remark 6. However, the solu-
tion to permutation synchronization is inherently defined up
to an element of Sd . Let Q be the unknown orthogonal
transformation such that X = UQ, where X is the solu-
tion, a matrix whose blocks are in Sd . Let U1 be the first
d rows of U , then from X1 = U1Q we have Q = U T

1 X1,
i.e., Q = U T

1 up to a permutation. U1 is indeed orthogonal
because U1U T

1 = X1XT
1 = Id .

Projection Even after fixing the ambiguity, the blocks of U
will not be permutation matrices (in general). We need to
project them onto Sd by solving the so-called permutation
Procrustes problem, e.g., with the Kuhn–Munkres algorithm
(Kuhn 1955). Note that the spectral solution returns real
eigenvectors, as in the � = O(d) case.

6 Synchronization over Id

Let us consider now the Symmetric Inverse Semigroup Id ,
that is the set of bijections between (different) subsets of
d objects, which admits a matrix representation through
d × d partial permutation matrices. A partial permutation
matrix—which represents matches between different objects
(see Fig. 6)—has at most one nonzero entry in each row and
column, and these nonzero entries are all 1. The synchroniza-
tion problem over Id is also known as partial permutation
synchronization (Arrigoni et al. 2017).

The set Id is an inverse monoid with respect to matrix
multiplication (and a subsemigroup of Sd ) where the inverse
is given by matrix transposition (see Definition 6). Let Xi ∈
Id denote the (unknown) label of vertex i and let Zi j ∈ Id
denote the (known) label of edge (i, j) ∈ E , which are linked
by the consistency constraint

Zi j = Xi X
T
j . (48)

If [Xi ](h,k) = 1 for some index h we say that “node i sees
object k”. Note that XT

i Xi is not equal, in general, to the
identity, unless Xi ∈ Sd . Indeed, [XT

i Xi ](k,k) = 1 if node
i sees object k and [XT

i Xi ](k,k) = 0 otherwise. However, it
can be checked that XT

i Xi ≤ Id .

Remark 7 If {(i1, i2), (i2, i3), . . . , (i�, i1)} denotes a circuit
in G, then—assuming that the consistency constraint (48)
holds—the composition of edge labels along its edges
becomes
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Zi1i2 Zi2i3 · · · · · Zi�i1

= Xi1 X
T
i2Xi2︸ ︷︷ ︸
≤Id

XT
i3 · · · · · Xi� X

T
i1 ≤ Id . (49)

In contrast to the case of total permutations, where syn-
chronization implies that compositions of edge labels over
circuits must be equal to the identity (see Corollary 1), in
the case of partial permutations we obtain that compositions
of edge labels over circuits must be a subset of the identity,
as observed also in Bernard et al. (2019). In other words,
with reference to the multi-view matching application (see
Sect. 8.2), due to potential missing matches (i.e. zero rows/-
columns in Zi j ) along a cyclic path, some of the original
matches may vanish, and only those matches that are seen in
all the images survive.

6.1 Spectral Solution

Despite the fact that the group structure is missing,3 it can
be shown that a spectral solution can be derived under the
assumption that the graph is complete. Let X and Z be two
block-matrices containing the vertex labels and edge labels
respectively—defined as in (19)—so that the consistency
constraint becomes Z = XXT with Z of rank d. Note that
here the diagonal of Z is not filled with identity matrices,
in general. When all the objects seen by node i are different
from those seen by node j we have Xi XT

j = 0, resulting in
a zero block in Z .

Proposition 6 (Arrigoni et al. 2017) The columns of X are d
(orthogonal) eigenvectors of Z and the corresponding eigen-
values are contained in the diagonal of the following d × d
matrix

V := XTX =
n∑

i=1

XT
i Xi . (50)

Proof Using (50) and the consistency constraint, we obtain

Z X = XV (51)

which is a spectral decomposition, i.e. the columns of X are
d eigenvectors of Z and the corresponding eigenvalues are
on the diagonal of V . Recall that Z admits an orthonormal
basis of real eigenvectors since it is symmetric. ��

Although Id is not a group, an eigenvalue decomposition
problem has been obtained, where the non-zero eigenval-
ues are contained in the diagonal of V . Specifically, the k-th

3 Note that 0 ∈ Id , thus we can not distinguish between the case of
missing measures and the case of missing correspondences between
nodes, as it was the case for the subgroups of GL(d).

eigenvalue counts how many nodes see object k, thus all the
eigenvalues are integer numbers lower than or equal to n.
This implies that, when the number of objects is larger than
the number of nodes (i.e., d > n)—which is likely to hap-
pen in themulti-viewmatching application—the eigenvalues
are repeated. In the case of total permutations (i.e. � = Sd )
all the nodes see all the objects, thus V = nId and all the
eigenvalues are equal, hence Eq. (51) reduces to (24). In the
presence of noise, the eigenvectors of Z corresponding to the
d largest eigenvalues are computed.

This result holds for a complete graph. When it is not,
Proposition 6 can not be straightforwardly extended as we
did for � = GL(d) case.

Remark 8 Equation (51) could also be expressed as a null-
space problem, but in that case the matrix V , which is
unknown, have to be estimated somehow.

Ambiguity Note that the reverse of Proposition 6 is not true
in general, i.e., the matrix U is not necessarily equal to the
vertex labelling X . Indeed, U is not uniquely determined if
the eigenvalues of Z are repeated. So we have to face the
problem of how to select, among the infinitely manyUs, the
one that resembles X , a matrix composed of partial permu-
tations. Note that the reasoning reported in Sect. 5.5 does
not apply here, since the first block U1 is not orthogonal in
general, due to the presence of zero rows. A key observation
is reported in the following proposition, suggesting that such
a problem can be solved via clustering techniques.

Proposition 7 (Arrigoni et al. 2017) Let U be the nd × d
matrix composed by the d leading eigenvectors of Z; then
U has d + 1 different rows (in the absence of noise). One of
these is the zero row.

Proof Let λ1, λ2, . . . , λ� denote all the distinct eigenvalues
of Z (with � ≤ d), and let m1,m2, . . . ,m� be their mul-
tiplicities such that

∑�
k=1 mk = d. Let Uλk denote the mk

columns ofU corresponding to the eigenvalueλk , and let Xλk

be the corresponding columns of X . Up to a permutation of
the columns, we have

U = [Uλ1 Uλ2 . . . Uλ�
], X = [Xλ1 Xλ2 . . . Xλ�

]. (52)

Since Uλk and Xλk are (orthogonal) eigenvectors corre-
sponding to the same eigenvalue, there exists an orthogonal
matrix Qk ∈ R

mk×mk representing a change of basis in the
eigenspace of λk , such that Uλk = Xλk Qk . In matrix form
this rewrites

U = X blkdiag(Q1, Q2, . . . , Q�)︸ ︷︷ ︸
Q

. (53)

Note that the rows of X are the rows of Id plus the zero row.
Since Q is invertible (hence injective), U = XQ has only
d + 1 different rows as well. ��
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Specifically, an estimate of the vertex labelling can be
obtained by clustering the rows ofU into d + 1 clusters (e.g.
with k-means), then assigning the centroid which is closest
to zero to the zero row, and arbitrarily assigning each of the
other d centroids to a row of Id . This arbitrary assignment
corresponds to the fact that the solution to partial permutation
synchronization is defined up to an element of Sd .

ProjectionEven after fixing the ambiguity, valid permutation
matrices may not be obtained. Indeed, since there are no con-
straints in the clustering phase, it may happen that different
rows of a d × d block in U are assigned to the same cluster,
resulting in more than one entry per column equal to 1. For
this reason, for each d×d block inU , the partial permutation
matrix that best maps such block into the set of centroids has
to be computed (e.g. via the Kuhn–Munkres algorithm Kuhn
1955), and such permutation is output as the sought solution.

7 Spectral and Other Relaxations

In this section we concentrate mainly on the� = O(d) case.
We frame the spectral solution as an instance of a constraint
relaxation pattern by setting it side by side with rank relax-
ation (Arrigoni et al. 2014a, 2016b; Zhou et al. 2015) and
semidefinite programming (Singer 2011; Chen et al. 2014;
Rosen et al. 2015), which are not closed-form, though.More-
over we highlight the link between the spectral solution and
the consistency error of the synchronization problem (which
is available only for � = O(d)).

Note that this is a special case, since the inverse equals
matrix transposition, thus the consistency constraint rewrites
Zi j = Xi XT

j which, if the graph is complete, is equivalent to

Z = XXT. (54)

Such a decomposition implies that, if ε = 0, the matrix Z
is symmetric and positive semidefinite, besides being low-
rank. In the case of missing edges, the consistency constraint
translates into

ZA = (XXT) ◦ (A ⊗ 1d×d) (55)

and the consistency error of the synchronization problem
becomes

ε(X) =
∑

(i, j)∈E
‖Zi j − Xi X

T
j‖2F

= ‖ZA − (XXT) ◦ (A ⊗ 1d×d)‖2F . (56)

In particular, since the Frobenius norm of a matrix can be
defined in terms of its trace, Eq. (56) can be expressed as

ε(X)

=
n∑

i, j=1

tr(ZT
i j Zi j ) + tr(X j X

T
i Xi X

T
j )−2tr(XT

i Zi j X j )

=
n∑

i, j=1

tr(ZT
i j Zi j ) + d−2tr(XT

i Zi j X j ) (57)

where a complete graph is considered and the last equality
holds since XT

i Xi = Id = XT
j X j . Therefore

min
X∈O(d)n

ε(X) ⇐⇒ max
X1,...,Xn∈O(d)

n∑
i, j=1

tr(XT
i Zi j X j )

= max
X∈O(d)n

tr(XTZ X). (58)

Solving the synchronization problem over O(d) is diffi-
cult since the feasible set is non-convex, and the cost function
may havemultiple localminima in different regions of attrac-
tion, as shown in Hartley et al. (2013). Several relaxations
will be considered.

7.1 Spectral Relaxation

Let us start with the case of a complete graph and let us
consider the following minimization problem

min
XTX=nId

‖Z − XXT‖2F (59)

where the columns of X are constrained to be orthogonal
rather than imposing that each d × d block in X belongs to
O(d). This is called the spectral relaxation, and, reasoning as
in Eq. (58), it can be shown to be equivalent to the following
generalized Rayleigh problem

max
XTX=nId

tr(XTZ X). (60)

Proposition 8 Equation (60), with Z symmetric, admits a
closed-form solution given by the d leading eigenvectors of
Z.

Proof Let F be the unconstrained cost function correspond-
ing to problem (60), namely

F(X) = tr(XTZ X) + tr(�(XTX − nId)) (61)

where � ∈ R
d×d is a symmetric matrix of unknown

Lagrange multipliers. Setting to zero the partial derivatives
of F with respect to X we obtain

∂F
∂X

= 2Z X + 2X� = 0 ⇒ Z X = −X�. (62)
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Let ui denote d eigenvectors of Z (normalized so that ‖ui‖ =√
n) for i = 1, . . . , d and let λi be the corresponding eigen-

values. Then X = [u1 u2 . . . ud] satisfies both (62) and the
constraint XTX = nId , with � = − diag([λ1, λ2, . . . , λd ]).
In other words, any set of d eigenvectors is a stationary point
for the objective function F . The corresponding stationary
value is given by n(λ1 +λ2 + . . . λd), hence the maximum is
attained if ui are the eigenvectors of Z corresponding to the
d largest eigenvalues. ��

If the graph is not complete, we consider a different defi-
nition for the consistency error

ε(X) =
∑

(i, j)∈E
[D]−1

i i ‖Zi j − Xi X
T
j‖2F (63)

in which the term associated to the edge (i, j) is weighted
with the inverse of the degree of node i . Reasoning as before
we get

min
X∈O(d)n

ε(X)

⇐⇒ max
X1,...,Xn∈O(d)

∑
(i, j)∈E

[D]−1
i i tr(XT

i Zi j X j )

= max
X∈O(d)n

tr(XT(D ⊗ Id)
−1ZAX) (64)

which, if the spectral relaxation is adopted, becomes

max
XTX=nId

tr(XT(D ⊗ Id)
−1ZAX) (65)

whose solution is given by the d leading eigenvectors of (D⊗
Id)−1ZA.

We have shown, following (Arie-Nachimson et al. 2012),
that the spectral solution minimizes the consistency error of
the synchronization problem under relaxed constraints. Note
that this result is due to the special structure of O(d), it also
holds for subgroups of O(d), and it is not available in general
for synchronization over GL(d).

Concerning the Symmetric Inverse Semigroup, since Z
is symmetric, Proposition 8 holds. However, the computa-
tion above linking Problem (60) to the synchronization cost
function is no longer valid since the equation XT

i Xi = Id =
XT

j X j does not hold for � = Id .

7.2 Rank Relaxation

Let  = A ⊗ 1d×d denote the pattern (also known as
the sampling set) of ZA, that is the index set of available
entries. Using this notation, the synchronization problem can
be expressed as

min
X∈�n

ε(X) = min
X∈�n

‖(Z − XX−	) ◦ ‖2F ⇐⇒ (66)

min
Z̃

‖(Z − Z̃) ◦ ‖2F s.t . Z̃ = XX−	, X ∈ �n (67)

where the problem of finding a consistent vertex labelling X
is reduced to that of finding an edge labelling Z̃ induced by
X .

If the rank relaxation is adopted (Arrigoni et al. 2014b),
i.e. thematrix Z̃ is enforced to have rank (atmost)d (while the
remaining properties on Z̃ are not enforced), then Problem
(67) becomes

min
Z̃

‖(Z − Z̃) ◦ ‖2F s.t . rank(Z̃) ≤ d (68)

which is a matrix completion problem (Candès and Tao
2010), that is the problem of recovering a low-rank matrix
starting froman incomplete subset of its entries (possibly cor-
rupted bynoise),which canbe solvedvia (e.g.) theOptSpace
algorithm (Keshavan et al. 2010).

In order to handle outliers, a robust matrix completion
framework can be considered instead of (68), namely

min Z̃ ,S‖(Z − Z̃ − S) ◦ ‖2F
s.t . rank(Z̃) ≤ d, S is sparse in 

(69)

where the additional variable S represents outliers, which are
sparse over the measurement graph (by assumption). Avail-
able algorithms to solve problem (69) include R- Godec
(Arrigoni et al. 2014a), Grasta (He et al. 2012) and L1-
Alm (Zheng et al. 2012). This approach was introduced in
Arrigoni et al. (2014a) for � = SO(d) and extended in
Arrigoni et al. (2016b) to � = SE(d).

In the � = Sd case, however, the optimization variable Z̃
is sparse, being composed of binary matrices, and hence it
does not satisfy the incoherence assumption (see Candès and
Tao 2010) that make “generic”matrix completion algorithms
work in practice. To overcome this drawback, the authors of
Zhou et al. (2015) consider the following problem instead of
(68)

min
Z̃

‖(Z − Z̃) ◦ ‖2F + α‖Z̃‖1
s.t . rank(Z̃) ≤ d, 0 ≤ Z̃ ≤ 1 (70)

where the regularization term α‖Z̃‖1 is included to promote
a sparse solution, and the optimization variable is enforced
to lie in the interval [0, 1] (while the binary constraints are
not enforced). The resulting cost function is minimized via
the Alternating Direction Method of Multipliers (ADMM)
(Boyd et al. 2011).
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7.3 Semidefinite Relaxation

Let us consider the� = O(d) case. Reasoning as in Eq. (67),
we can express the synchronization problem as

min
Z̃

‖(Z − Z̃) ◦ ‖2F s.t . Z̃ = XXT, X ∈ �n . (71)

If the semidefinite relaxation is employed (Singer 2011;
Singer and Shkolnisky 2011; Arie-Nachimson et al. 2012),
i.e. the optimization variable Z̃ is constrained to be sym-
metric positive semidefinite and covered by identity blocks
along its diagonal (while the remaining properties on Z̃ are
not enforced), then Problem (71) reduces to a semidefinite
program

min
Z̃

‖(Z − Z̃) ◦ ‖2F s.t . Z̃ � 0, Z̃ii = Id (72)

which can be solved (e.g.) though interior point methods
(Wright 1997). In Wang and Singer (2013) the �1-norm is
used in (72) in place of the �2-norm, exploiting the fact that
the former is more robust to outliers than the latter.

In order to deal with the� = Sd case, the authors of Chen
et al. (2014) introduce in (72) the non-negative constraint
Z̃ ≥ 0 and a sparsifying regularization termα‖Z̃‖1, similarly
to (70), resulting in the following problem

min
Z̃

‖(Z − Z̃) ◦ ‖2F + α‖Z̃‖1
s.t . Z̃ � 0, Z̃ii = Id , Z̃ ≥ 0 (73)

which is solved via the ADMM algorithm.
Concerning the Special Euclidean Group, in Rosen et al.

(2015) a cost function tightly related to (67) is considered
and the feasible set SE(d) is relaxed to its convex hull,
which admits a semidefinite representation (Saunderson et al.
2015). A convex relaxation is also employed in Rosen et al.
(2019), Carlone et al. (2016)where the authors, using the the-
ory ofLagrangian duality, develop an algorithm for certifying
the global optimality of a candidate solution to rigid-motion
synchronization.

It should be noted that although semidefinite relaxation
solutions are not closed-form, they are nonetheless convex
problems, which are relatively easy to compute.

8 Synchronization in Computer Vision

Among the several applications that have been mentioned
in the introduction (image mosaicking, multi-view match-
ing, clock synchronization, etc.) we concentrate here on the
few ones where the formulation of the problem in terms of
synchronization might require some clarification.

1

2

3

4

5

6

7

1

2

4

5

3

1

2

3

4

5

1

1

2

3

4

5

6

7

node A node B

Fig. 5 In the center, two nodes with partial visibility match their three
commonobjects.At the extrema the ground truth ordering of the objects.
Each node sees some of the objects (white circles are missing objects)
and puts them in a different order, i.e., it gives them different numeric
labels

8.1 Homography Synchronization

When elements of SL(d) are identified with homographies
of the (d−1)-dimensional projective space, synchronization
over SL(3) can be easily seen as a convenient way to align
multiple images into a mosaic, starting from pairwise homo-
graphies. This works because any real non-singular 3 × 3
matrix can be scaled to a real unit determinant matrix, as
first mentioned in Schroeder et al. (2011). The same trick
does not apply when d is even because of complex roots.

8.2 Permutation Synchronization

Consider a set of d objects, which is attached to each node in
the measurement graph in a random order, i.e., each node has
its own local labelling of the objectswith integers in the range
{1, . . . , d}, represented as a permutation. It is assumed that
pairs of nodes can match these objects, establishing which
objects are the same in the two nodes, despite the different
naming, and the goal is to infer a global labelling of the
objects, such that the same object receives the same label in
all the nodes (see Fig. 5).

A more concrete problem statement can be given in terms
of multi-view matching (Chen et al. 2014; Zhou et al. 2015;
Maset et al. 2017), where nodes are images and objects are
features. A set of matches between pairs of images is com-
puted in isolation, and the goal is to jointly update them so as
to maximize their consistency. In general, not all the features
are visible (or matchable) in all the images, so each matching
is modelled as a partial permutation (Fig. 6).

Specifically, the permutation matrix P representing the
matching between node B and node A is constructed as fol-
lows:

[P]h,k =
{
1 if obj. k ∈ B is matched with obj. h ∈ A;
0 otherwise.
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Fig. 6 Partial permutation matrix representing the matches between
two nodes

If row [P]h,· contains only zeros, then object h in node A
does not have a matching object in node B. If column [P]·,k
is made of zeros, then object k in node B does not have a
matching object in node A.

Let Zi j denote the permutation matrix representing the
matching between node j and node i , and let Xi (resp. X j )
denote the unknown permutation that reveals the true identity
of the objects in node i (resp. j). It can be easily verified that
Zi j = Xi XT

j , thus the problem of finding the global labelling
of the objects can be modelled as a synchronization problem
over the Symmetric Inverse Semigroup Id (if permutations
are partial), or over the Symmetric GroupSd (if permutations
are total).

8.3 Rigid-Motion Synchronization

Elements of SE(d) represent the angular attitude and posi-
tion of a d-dimensional reference frame. These two proper-
ties are collectively referred to asmotion in ComputerVision,

orientation in Photogrammetry, or pose in Robotic (although
pose is also used in Vision). Synchronization over SE(d) is
tantamount to recovering the location and attitude of a set of
reference frames organized in a network, where the links of
this network are relative transformations of one frame with
respect to (some of) the others. This is also called network
orientation (Fraser 20058), pose graph optimization (Car-
lone et al. 2015), or sensor network localization (Cucuringu
et al. 2012). If we restrict the attention to the angular attitude
(leaving out the position) then we get a rotation synchroniza-
tion. Similarly, if position only is considered, it results in
translation synchronization.

Such local frames can be local coordinates where 3D
points are represented, in which case we are dealing with
multiple point-set registration (Pulli 1999), or camera refer-
ence frames, in which case we are in the context of (global)
structure-from-motion (Ozyesil et al. 2017).

In the first case, the goal is to find the rigid transformation
that brings multiple (n > 2) 3D point sets into alignment.
The problem can be solved in point space or in frame space.
In the former case all the transformations are simultaneously
optimized with respect to a cost function that depends on
the distance between corresponding points (Pennec 1996;
Benjemaa andSchmitt 1998;Krishnan et al. 2007;Toldo et al.
2010; Fantoni et al. 2012). In the latter case the optimization
criterion is related to the internal coherence of the network of
transformations applied to the local coordinate frames (Sharp
et al. 2002; Fusiello et al. 2002; Torsello et al. 2011; Govindu
and Pooja 2014; Arrigoni et al. 2016b). This is exactly an
instance of rigid-motion synchronization, as shown in Fig. 7,
where the input edge labels are typically computed via the
Iterative Closest Point algorithm (Besl and McKay 1992).

In the structure from motion application the goal is to
recover both scene structure (3D coordinates of scene points)

Fig. 7 The goal of the multiple point-set registration problem is to find the rigid transformations that bring multiple 3D point sets into alignment,
where each rigid transformation is represented by a direct isometry
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Fig. 8 The epipolar graph: each node represents one camera and each
edge is labelled with the essential matrix of the corresponding camera
pair, which encodes the relative rotation and translation (up to scale)

and camera motion starting from a set of images. In this
case G is known as the epipolar graph (Moulon et al. 2013;
Arrigoni et al. 2015) or the viewing graph (Levi andWerman
2003) (see Fig. 8).

Structure from motion is a well studied problem that can
be addressed in several ways [see the recent survey by Ozye-
sil et al. (2017)]. One stream of research focuses on methods
that compute the motion before recovering the structure, and
in this paper we are specifically interested in frame-space
methods, that do not make use of points in order to com-
pute the global motion. These methods are usually faster
than sequential and hierarchical methods (e.g. Snavely et al.
2006; Schonberger and Frahm2016; Toldo et al. 2015), while
ensuring a fair distribution of the errors among the cameras,
being global. On the other hand, accuracy is usually worse
than that achieved by point-space methods, such as bundle
adjustment.

Weare interested in these “structure-free”methodsbecause
they reduce to a rigid-motion synchronization, modulo the
fact that the relative translations are only known as direc-
tions, as the magnitude is unknown.

8.3.1 Localization

We consider here the two-step formulation of synchroniza-
tion over SE(3), described in Sect. 5.4. Since the magnitude
of translations are unknown, we are required to estimate such
magnitudes either directly or indirectly (i.e., by computing
camera locations from the directions only). We will only hint
at these solutions here, since they fall outside the domain of
synchronization, although being related to it. As a matter
of fact, the starting point is the translation synchronization
equation

(BT ⊗ I3) vec(X) = vec(Z) (74)

and from here two paths can be followed:

– First recover themagnitude of translations (Arrigoni et al.
2015; Tron et al. 2015) and then solve a translation syn-
chronization;

– Solve the problem straight from the direction informa-
tion: bearing-only localization (Brand et al. 2004; Zhao
and Zelazo 2016).

Direct computation of magnitudes If the relative measures
zi j are expanded into magnitude αi j = ‖zi j‖ and direction
ui j = zi j/‖zi j‖, then the matrix Z rewrites

Z = U diag(α) (75)

where U denotes the 3 × m matrix obtained by juxtapos-
ing all the edge directions, namely U = [u12 . . . ui j . . . ],
and α ∈ R

m denotes the vector containing all the unknown
magnitudes, namely α = [α12 . . . αi j . . . ]T. Thus, using
Property (92), we get

vec(Z) = (Im �U )α (76)

where � denotes the Khatri–Rao product (see “Appendix
A”). Hence, Eq. (74) rewrites

(BT ⊗ I3) vec(X) = (Im �U )α. (77)

This equation is also called the edge-based bearing con-
straint in Tron et al. (2015). Let us consider the cycle matrix
C ∈ {−1, 0, 1}(m−n+1)×m associated with a cycle basis of
G = (V, E) and let us multiply left and right sides in (77) by
(C ⊗ I3)

(C ⊗ I3)(B
T ⊗ I3) vec(X) = (C ⊗ I3)(Im �U )α. (78)

Using Properties (86), (91) and (108) we get

(CBT ⊗ I3) vec(X) = 0 = (C �U )α. (79)

Note that Eq. (79) is nothing else but the cycle consistency
(Eq. (17)) rewritten in terms of directions and magnitudes.

Proposition 9 (Arrigoni et al. 2015; Tron et al. 2015) The
unknown translation magnitudes can be uniquely (up to a
global scale) recovered if and only if rank(C �U ) = m − 1.
In this case the solution is given by the 1-dimensional null-
space of C �U.

Bearing-only localization Let us multiply (74) by the block-
diagonal matrix

S = blkdiag ({[ui j ]×}(i, j)∈E ) (80)
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Fig. 9 The relationship between synchronization and localization

where [ui j ]× denotes the 3× 3 skew-symmetric matrix cor-
responding to the cross-product with ui j , yielding

S(BT ⊗ I3) vec(X) = S vec(Z) = 0. (81)

This step has the effect of substituting Z , which is unknown,
with S (derived fromU ) which is known instead. Expanding
this equation for a single edge (i, j) of the graph yields the
more custom expression:

ui j × (xi − x j ) = 0. (82)

This equation is also called the node-based bearing con-
straint in Tron et al. (2015). Its solution yields the node
locations X , hence implicitly recovering themagnitudes. It is
observed in Kennedy et al. (2012) that least squares solution
of (81), which is used (e.g.) in Govindu (2001), is equivalent
to the method presented in Brand et al. (2004). A bearing-
only formulation is also adopted in Goldstein et al. (2016),
Jiang et al. (2013), Moulon et al. (2013), Ozyesil and Singer
(2015), Tron and Vidal (2014), Wilson and Snavely (2014)
within the context of structure from motion.

This last section led us to glimpse the problem of local-
ization. The goal of localization is to compute the position
of n nodes in d-space given measures on the edges. As in
a translation synchronization problem the nodes correspond
to positions, i.e., elements of Rd , but the available measures
are not differences of states, i.e. translations, for they can be
directions (bearings) or distances. Figure 9 hopefully helps
to clarify this relationship.

The problem of localization from directions and the con-
ditions under which an epipolar graph is localizable are
discussed with continuity of notation by the same authors
of this paper in Arrigoni and Fusiello (2019).

9 Discussion

In this section we report some considerations about the pros
and cons of the closed-form solutions reviewed in this paper.

9.1 Simplicity

These methods are particularly attractive for their simplicity.
As an example we report the Matlab code of rotation and
translation synchronization in 3-space (Listings 1 and 2 ).

Listing 1 Rotation synchronization

1 function R = rotation_synch(Z,A)
2 n = size(A,1);
3 iD = diag (1./ sum(A,2));
4 [Q,~]= eigs( kron(iD,eye (3))*Z, 3);
5
6 % Remove ambiguity
7 Q = Q/(Q(1:3, 1:3));
8
9 % Projection onto SO(3)
10 R=cell(1,n);
11 for i=1:n
12 [U,~,V] = svd(Q(3*i -2:3*i,:));
13 R{i} = U*diag([1,1,det(U*V ’)])*V’;
14 end
15 end

Listing 2 Translation synchronization

1 function T = translation_synch(U,B)
2
3 B(1,:) = []; % remove node 1
4 F=kron(B’,eye (3));
5 X=F\U(:);
6 X=[0;0;0;X]; % add node 1
7 X=reshape(X,3 ,[]);
8
9 T = num2cell(reshape(X,3 ,[]) ,...

10 [1,size(X ,2)]);
11 end

In particular, rotation synchronization can be taken as a
prototype of synchronization in any subgroup of GL(d): the
only step that changes is the projection. In fact, the removal
of the ambiguity with division by the first block works in all
cases, since the identity belongs to any subgroup.

This does not hold for Id , which is not a subgroup of
GL(d). In this case, removal of the ambiguity reduces to a
clustering problem, as explained in Sect. 6. See also Tron
et al. (2017) for the relation between clustering and partial
permutation synchronization. Note that synchronizationover
Id requires to know the value of d in advance, which is not
available in themulti-viewmatching application, since it cor-
responds to the total number of features (or tracks) present in
the images. To overcome this drawback, a practical solution
to multi-view matching is developed in Maset et al. (2017),
where the authors compute refined edge labels (instead of
vertex labels), in order to avoid the ambiguity issue.
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9.2 Spectral SolutionVersus Null-Space Solution

In the presence of noise the null-space and spectral solutions
do not coincide, in general. In the case of a complete graph,
for instance, they coincide if and only if the unique non zero
eigenvalue of Z is exactly n, which is unlikely to happen in
practice.

An empirical comparison between the two approaches—
for the � = SE(3) case—is reported in Arrigoni et al.
(2016c) where it is shown that the spectral solution achieves
the same accuracy as the null-space method but it is faster. In
particular, it turns out that the final rounding step, i.e. zeroing
the imaginary part of the eigenvectors, do not compromise
the accuracy achieved by the spectral method.

Note that in both cases the matrices inherit the same spar-
sity pattern as the adjacencymatrix A, thus sparse solvers can
be exploited, e.g., eigs for the spectral method and svds
for the null-space solution, as done inListing 1.As amatter of
fact, svds(F) calls eigs([0 F; F’ 0]), as reported
in the function documentation, and consequently it runsmore
slowly, for the dimension of the matrix is double. From the
computational complexity point of view, every iteration of
the Lanczos method (implemented by eigs) is linear in n
(Golub and Van Loan 1996), if the matrix is sparse, but the
number of iterations cannot be bounded by a constant.

9.3 Efficiency

The considered instances of synchronization translate into
efficient closed form solutions, such as spectral decompo-
sition or linear least squares. As a matter of fact, in the
experiments reported in the literature (Arie-Nachimson et al.
2012; Bernard et al. 2015;Arrigoni et al. 2016c) they are con-
sistently the fastest method. For instance, the rigid-motion
synchronization pipeline in Arrigoni et al. (2016a) takes 7
s for the Madrid Metropolis dataset (Wilson and Snavely
2014), whose epipolar graph contains about 300 nodes and
65% of missing edges (with respect to the complete graph).

Note also that the spectral/null-space solutions aim at
recovering the vertex labelling X , thus they require to store
a dn × d matrix in addition to the dn × dn matrix ZA con-
taining the input measures, which is sparse if the graph is not
complete. Semidefinite and rank relaxations, instead, aim at
computing a refined edge label for each pair of nodes, rep-
resented by the optimization variable Z̃ (see Sects. 7.2 and
7.3), thus they require an additional amount of memory to
store a full dn × dn matrix.

9.4 Accuracy

The least-squares solution to translation synchronization is
statistically optimal, whereas the spectral (or, equivalently,
null-space) solution to the other instances of synchroniza-

tion provides an extrinsic estimate, whose quality is—in
general—inferior to those provided by intrinsic methods.
Note also that the spectral technique is a weaker relaxation
than semidefinite programming (namely it enforces less con-
straints on the optimization variable), as explained in Sect. 7,
and it does not guarantee exact recovery (in contrast toWang
and Singer 2013; Rosen et al. 2019; Carlone et al. 2016).

In Arrigoni et al. (2016c) the spectral method is compared
to Rosen et al. (2015), which minimizes a geometric error
tightly related to the synchronization cost function with a
convex relaxation.The latter returns amore accurate solution,
but it requires a significant amount of time (for instance, it
takes around ten minutes on a synthetic scenario with n =
100 and 30%ofmissing edges,whereas the spectral approach
is able to compute a solution in less than 2 s with up to
n = 1000).

Experiments on multiple point-set registration conducted
in Arrigoni et al. (2018)—graphs with up to 95% of miss-
ing edges—demonstrate that the spectral solution and the
semidefinite relaxation proposed in Rosen et al. (2019) are
comparable in accuracybut the latter requires additional time.
However, the same comparison4 on theSLAMdataset used in
Rosen et al. (2019)—withmore than 99%ofmissing edges—
reveals that (Rosen et al. 2019) achieves a running time
comparable with the spectral method on these very sparse
graphs. The authors Rosen and Carlone (2017) suggest that
some computational enhancements can be incorporated in
semidefinite relaxations in order to speed up the computation
further. Finally, the same study performed in Arrigoni et al.
(2018) indicates also that methods based on matrix comple-
tion (Arrigoni et al. 2014a), instead, fail when the percentage
of missing data is higher than 90%.

Although the accuracy obtained by the spectral method is
not optimal, it is however high, as demonstrated by exper-
iments performed in Arrigoni et al. (2016c) in a variety of
scenarios (for instance, it gets an average rotation error of
the order of 1 degree on the popular Stanford 3D Scanning
Repository5). As a consequence, it can be seen as a good
and fast initialization for a subsequent local refinement (e.g.
bundle adjustment in structure from motion).

9.5 Robustness

The least-squares solution for translation synchronization of
Sect. 3 can be made resistant to outliers (i.e. rogue edge
labels) by replacing ρ(y) = y2 in Eq. (14) with another func-
tion ρ(y) with sub-quadratic growth, and solving the result-
ing minimization problem, e.g., with Iteratively Reweighted
Least Squares (IRLS) (Holland and Welsch 1977). This
technique iteratively solves weighted least squares problems

4 Unpublished experiments made by the authors.
5 http://graphics.stanford.edu/data/3Dscanrep/.
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where the weights are computed at each iteration as a func-
tion of the residuals of the current solution.

As for synchronization over GL(d), it is easy to see that
the analysis of Sect. 4 can be extended to handle weighted
measurements, which translates in relaxing the entries of the
adjacency matrix A to assume real values in [0, 1], where
0 still indicates a missing measurement and the other val-
ues reflect the reliability of the edge labels. This allows to
apply an IRLS-like scheme: first, an estimate for the vertex
labelling with given edge weights is obtained via either the
spectral approachor the null-space solution; then, theweights
are updated based on the current estimate of the vertex labels,
and these steps are iterated until convergence or a maximum
number of iterations is reached.

Experiments in Arrigoni et al. (2016c) report good perfor-
mances in the � = SE(d) case (resilience to about 40% of
wrong edge labels) and it is shown in Arrigoni et al. (2018)
that the spectral relaxation is comparable to methods per-
forming robust matrix completion in terms of robustness to
outliers.

9.6 Limitations and Open Questions

In summary, the spectral andnull-spacemethods provide fast,
sub-optimal (but fairly accurate) solutions in the presence of
noise/outliers.

Further efficiency is needed in certain applications involv-
ing very large-scale problems, such as multi-view matching.
For instance, the method in Maset et al. (2017), which
provides a practical approach to partial permutation synchro-
nization based on a spectral decomposition, took one and half
hour to compute a solution in the Dino dataset (Seitz et al.
2006), where d = 493 and n = 363 (resulting in a matrix of
size≈ 180000). A possible way to speed-up the computation
is to split the synchronization problem into smaller subprob-
lems in a distributed fashion, similarly to (Cucuringu et al.
2012; Bhowmick et al. 2014).

Thanks to the group-labelling interpretation, the for-
malism of synchronization permits to address a variety of
Computer Vision applications using the same Linear Alge-
bra approach without relying on features or points, since the
problem is formulated in frame space, or, more abstractly,
in a group/semigroup. An unexplored application involves
projective frames, which are represented by 4 × 4 invertible
matrices defined up to scale. As mentioned in Sect. 8.1, the
idea of scaling each matrix by the d-th root of its determi-
nant, which was used in Bartoli and Sturm (2003), does not
apply here because complex roots may appear, hence fur-
ther research is required in order to formulate the problem in
terms of synchronization.

From the theoretical perspective, interesting open ques-
tions include the link between the spectral solution and the
consistency error when the data matrix is not symmetric, and

the relation between the notion of null-cycle and the synchro-
nization problem over an inverse monoid.

10 Conclusion

In this paper we gathered several disparate works within the
common framework of synchronization and showed how this
framework can be profitably used in several ComputerVision
applications.Besides exhibiting a nice and clean formulation,
synchronization can also benefit from efficient and closed-
form solutions such as spectral decomposition or linear least
squares.We hope that this surveywill serve as a starting point
for more research in this field.
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AKronecker,HadamardandKhatri–RaoProd-
ucts

This appendix is devoted to the Kronecker, Hadamard and
Khatri–Rao products (Van Loan 2000; Minka 2000; Liu and
Trenkler 2008), which are widely used in this paper.

Let A and B be two real matrices of dimension m × r and
n × s respectively. The Kronecker product of A and B (Van
Loan 2000), denoted by A ⊗ B, is defined as

A ⊗ B =

⎡
⎢⎢⎣

[A]1,1B [A]1,2B . . . [A]1,r B
[A]2,1B [A]2,2B . . . [A]2,r B

. . . . . .

[A]m,1B [A]m,2B . . . [A]m,r B

⎤
⎥⎥⎦ (83)

where each [A]i, j B is a block of dimension n×s, thus A⊗B
has dimensionmn×rs. TheKronecker product is associative,
distributive (with respect to the sum of matrices), but not
commutative, and it satisfies the following properties

(A ⊗ B)T = AT ⊗ BT (84)

(A ⊗ B)−1 = A−1 ⊗ B−1 (85)

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (86)

vec(AXB) = (BT ⊗ A)vec(X) (87)

where vec(·) denotes the vectorization operator which trans-
forms a matrix into a vector by stacking the columns of the
matrix one underneath the other.
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Let A = UA�AV T
A and B = UB�BV T

B be the singular
value decompositions of A and B, respectively, then

A ⊗ B = (UA ⊗UB)(�A ⊗ �B)(VA ⊗ VB)T (88)

which implies

rank(A ⊗ B) = rank(A) rank(B). (89)

Thus the Kronecker product of two matrices is invertible if
and only if both the factors are invertible.

Consider now two real matrices A and B of dimension
m × r and n × r respectively, and denote the columns of A
by a1, . . . , ar and those of B by b1, . . . ,br . The Khatri–Rao
product of A and B (Khatri and Rao 1968; Liu and Trenkler
2008), denoted by A � B, is defined as

A � B = [
a1 ⊗ b1 a2 ⊗ b2 · · · ar ⊗ br

]
(90)

where each ai ⊗ bi is a vector of dimension mn, thus A� B
has dimension mn × r . The Khatri–Rao product is associa-
tive, distributive, but not commutative, and it satisfies the
following equalities

(A ⊗ B)(C � D) = (AC) � (BD) (91)

vec(A diag(x)B) = (BT � A)x (92)

where diag(x) transforms the vector x = [x1 . . . xr ]T into a
diagonal matrix with elements x1, . . . , xr along the diagonal.

To the best of our knowledge, equalities expressing the
rank of A�B in terms of the rank of the factors are not present
in the literature, in contrast to the case of the Kronecker prod-
uct. Some inequalities are reported in Khatri and Rao (1968),
where it is shown, for instance, that rank(A� B) ≥ rank(A),
if all the columns of B corresponding to independent columns
of A are non-null.

Let A and B be two real matrices of dimension m × r .
The Hadamard product (or entry-wise product) of A and B
(Minka 2000), denoted by A◦B, has dimensionm×r aswell,
and it is simply the product of the corresponding elements

A ◦ B =

⎡
⎢⎢⎣

[A]1,1[B]1,1 [A]1,2[B]1,2 . . . [A]1,r [B]1,r
[A]2,1[B]2,1 [A]2,2[B]2,2 . . . [A]2,r [B]2,r

. . . . . .

[A]m,1[B]m,1 [A]m,2[B]m,2 . . . [A]m,r [B]m,r

⎤
⎥⎥⎦ .

(93)

The Hadamard product is associative, distributive, commu-
tative, and it satisfies the following properties

(A � B) ◦ (C � D) = (A ◦ C) � (B ◦ D) (94)

(A � B)T(A � B) = (AAT) ◦ (BBT) (95)

vec(A ◦ B) = diag(vec(A)) vec(B) (96)

diag(x) A diag(y) = A ◦ (xyT) (97)

rank(A ◦ B) ≤ rank(A) rank(B). (98)

B Results fromGraph Theory

In this section we review some useful concepts from graph
theory. A complete treatment of this subject can be found in
Bollobas (1998), Kavitha et al. (2009).

A graph is a pairG = (V, E)whereV is a finite set and E is
a family of pairs of elements of V . We use n and m to denote
the number of vertices and edges respectively, namely n =
|V| andm = |E |. Aweighted graph is a graph together with a
weight functionω : E → R

+. If the graph is unweighted, we
set ω : E → 1 and call w the uniform weight function. An
edge occurring more than once is referred to as a multiple
edge, and a graph without multiple edges is called simple.
An edge of the form (v, v) is called a loop. In an undirected
graph, the degree of a vertex v is the number of times that
v occurs as an endpoint of an edge. In a directed graph, the
outdegree and indegree of a vertex v are the number of times
that v occurs as the tail and head of an edge, respectively.

A subgraph G′ = (V ′, E ′) of G is a graph with V ′ ⊆ V
and E ′ ⊆ E . If E ′ is a subset of E , then G\E ′ denotes
the graph obtained by removing all the edges in E ′ from
G. If V ′ is a subset of V , then G\V ′ denotes the graph
obtained by removing all the vertices in V ′ and their inci-
dent edges from G. A path from v to w is a subgraph
G′ = (V ′, E ′) with V ′ = {v0 = v, v1, . . . , vk = w}
and E ′ = {(v0, v1), (v1, v2), . . . , (vk−1, vk)}. An undirected
graph is called connected if there exists a path from each ver-
tex to any other, and a directed graph is called connected if
the underlying undirected graph is connected. Any maximal
connected subgraph H is called a connected component. A
graph is a tree if it is connected and it has n − 1 edges. The
disjoint union of trees is called a forest. The number of edges
in a forest is n − cc, where cc denotes the number of con-
nected components in G. A subgraph G′ of a connected graph
G is called a spanning tree if it has the same vertices of G and
it is a tree. If G is not connected, any union of spanning trees
for each connected component is called a spanning forest.

A cycle in a graph G is a vector c ∈ Q
m such that for any

vertex v ∈ V it holds

∑
e∈δ+(v)

[c]e =
∑

e∈δ−(v)

[c]e (99)

where δ+(v) and δ−(v) denote the edges leaving and entering
v, respectively, and [c]e denotes the component of c indexed
by edge e. A cycle is simple if [c]e ∈ {−1, 0, 1} for all e ∈ E ,
and a simple cycle is a circuit if its support (i.e. the set of
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edges with [c]e �= 0) is connected and for any vertex v ∈ V
there are at most two edges in the support incident to v. The
set of cycles forms a vector space overQ, which is called the
cycle space of G, and a cycle basis is a set of circuits forming
a basis of such a space. It can be shown (Bollobas 1998;
Kavitha et al. 2009) that if G is connected the dimension of
the cycle space is given by the cyclomatic number

ν = m − n + 1. (100)

B.1 Matrices Associated with Graphs

Theadjacencymatrix A of a graphG is then×nmatrixwhose
elements indicate whether pairs of vertices are adjacent or
not, namely

[A]i, j =
{
1 if (i, j) ∈ E
0 otherwise.

(101)

If G does not contain loops, then A has zero diagonal. Note
that the adjacency matrix is symmetric if the graph is undi-
rected.

The incidence matrix B of a directed graph G is the n×m
matrix defined by

[B]k,e =

⎧⎪⎨
⎪⎩

−1 if k is the head of edge e,

1 if k is the tail of edge e,

0 otherwise.

(102)

The rows of B correspond to vertices and the columns cor-
respond to edges. Note that each column has exactly two
non zero entries, which correspond to the endpoints of the
edge associated to that column. The incidence matrix B of
an undirected graph G is defined considering a particular ori-
entation of the edges. It is shown in Bollobas (1998) that, if
G is connected, then

rank(B) = n − 1. (103)

The degree matrix D of an undirected graph G is the n×n
diagonal matrix such that [D]i,i contains the degree of node
i . Equivalently, it can be defined as

D = diag(A1n×1) (104)

where 1n×1 denotes a n×1matrix filled by ones, thus A1n×1

is the sum of the rows of A. In the case of a directed graph,
either the indegree or the outdegree can be used. The transi-
tion matrix P is defined as

P = D−1A. (105)

The Laplacian matrix L of a graph G is defined as

L = D − A. (106)

It can be checked that, independently of the orientation of
the edges, the following equation holds

L = BBT (107)

which implies that L is symmetric and positive semidefinite,
and, if the graph is connected, rank(L) = rank(B) = n − 1,
hence L is singular. Note that the vector 1n×1 is in the null-
space of L .

The notion of adjacencymatrix can be extended to the case
of a weighted graph, which translates in letting the entries of
A to assume values in [0, 1]. Specifically, [A]i, j contains
the weight of edge (i, j), and [A]i, j = 0 still indicates that
(i, j) /∈ E . In this case Eqs. (104), (105) and (106) still make
sense, which define the degree matrix, the transition matrix
and the Laplacian matrix of a weighted graph, respectively.

The cycle matrix C corresponding to a cycle basis of a
connected graph G is the (m − n + 1) ×m matrix having the
incidence vectors of the circuits in the basis in its rows. The
following equation (Bollobas 1998) expresses the relation
between the cycle matrix and the incidence matrix

CBT = 0. (108)

Note that, if the graph is undirected, the matrices A and
L are symmetric, thus their eigenvalues are real. The matrix
P is not symmetric, but it is similar to the symmetric matrix
N defined as

N = D−1/2AD−1/2 (109)

since P = D−1/2ND1/2. The matrices N and P have the
same eigenvalues, so P has real eigenvalues.

Theorem 1 (Perron–Frobenius (Meyer 2000)) If an n × n
matrix has non-negative entries then it has a non-negative
real eigenvalue λwhich has maximum absolute value among
all the eigenvalues. This eigenvalue has a non-negative real
eigenvector. If, in addition, thematrix has noblock-triangular
decomposition, then λ has multiplicity 1 and the correspond-
ing eigenvector is positive.

As explained in Lovász (2007), the Perron–Frobenius the-
orem implies that, if G is connected, the largest eigenvalue
of A has multiplicity 1. Likewise, the largest eigenvalue of
the transition matrix is 1 and it ha multiplicity 1. It is easy
to check that the eigenvector associated to such eigenvalue
is 1n×1.
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