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Abstract

This paper examines the performance of ridge regression in reproducing kernel
Hilbert spaces in the presence of noise that exhibits a finite number of higher
moments. We establish excess risk bounds consisting of subgaussian and polyno-
mial terms based on the well known integral operator framework. The dominant
subgaussian component allows to achieve convergence rates that have previously
only been derived under subexponential noise—a prevalent assumption in related
work from the last two decades. These rates are optimal under standard eigenvalue
decay conditions, demonstrating the asymptotic robustness of regularized least
squares against heavy-tailed noise. Our derivations are based on a Fuk–Nagaev
inequality for Hilbert-space valued random variables.

1 Introduction

Given two random variables X and Y , we seek to empirically minimize the expected squared error

R(f) := E
[
(Y − f(X))2

]
over functions f in a reproducing kernel Hilbert space H consisting of functions from a topological
space X to R. We consider the standard model

Y = f⋆(X) + ε

with the regression function f⋆ : X → R and noise variable ε satisfying E[ε|X] = 0. Given n
independent sample pairs (Xi, Yi) drawn from the joint distribution of X and Y , we investigate the
classical ridge regression estimate

f̂α := argmin
f∈H

1

n

n∑
i=1

(Yi − f(Xi))
2 + α∥f∥2H (1)
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with regularization parameter α > 0. We adopt the well-known perspective going back to the
pathbreaking work [1–4], which characterizes f̂α as the solution of a linear inverse problem in H
obtained by performing Tikhonov regularization [5] on a stochastic discretization of the integral
operator induced by the kernel of H and the marginal distribution of X . Since its inception, this
approach has been refined and generalized in a multitude of ways, including more general learning
settings and alternative algorithms and applications. We refer the reader to [6–23] and the references
therein for an overview. A common theme in the above line of work is the derivation of confidence
bounds of the excess risk

R(f̂α)−R(f⋆) = E[(f̂α(X)− f⋆(X))2]

i.e., with high probability over the draw of the sample pairs under appropriate regularity assumptions
about the regression function f⋆ and distributional assumptions about ε.

Heavy-tailed noise. In this work, we assume that the real-valued random variable ε has only a
finite number of higher conditional absolute moments, i.e., there exists some q ∈ N, q ≥ 3 such that

E[|ε|q|X] < Q < ∞ almost surely. (2)

This setting covers noise associated with distributions without a moment generating function—for
example the t-distribution, Fréchet distribution, Pareto distribution and Burr distribution (correspond-
ingly centered). In such a setting, the family of Fuk–Nagaev inequalities [24, 25] provides sharp
nontrivial tail bounds beyond Markov’s inequality for sums of heavy-tailed real random variables.
These results show that the tail is dominated by a subgaussian term [26] in a small deviation regime
(reflecting the central limit theorem) and a polynomial term in a large deviation regime. In order to ap-
ply this fact to the integral operator approach, we modify a vector-valued version of the Fuk–Nagaev
inequality going back to [27] for random variables taking values in Hilbert spaces. In a practical
context, heavy-tailed noise satisfying the moment condition (2) plays a role in fields such as finance,
insurance, communication networks and atmospherical sciences [28, 29].

Prior work: Bernstein condition. In the aforementioned context of spectral regularization algo-
rithms in kernel learning, existing work generally assumes that ε is subexponential.1 In particular, the
so-called Bernstein condition2 requires the existence of constants σ,Q > 0 almost surely satisfying

E[|ε|q|X] ≤ 1

2
q!σ2Qq−2 almost surely (3)

for all q ≥ 2. This condition allows to apply a Hilbert space Bernstein inequality [31] to the well-
known integral operator framework in order to obtain convergence results. We refer the reader to
[3, 6–11, 13] for a selection of results in this setting. To our knowledge, all results obtaining optimal
rates in this setting rely on the Bernstein tail bound. The importance of the Bernstein inequality
in the context of this work is emphasized by the effective dimension [3, 32], which measures the
capacity of the hypothesis space H relative to the choice of the regularization parameter α and the
marginal distribution of X in terms of the eigenvalues of the integral operator. When used as a
variance proxy in the Bernstein inequality, the effective dimension is the central tool that allows to
derive minimax optimal rates under assumptions about the eigenvalue decay, as first shown by [3] and
subsequently refined in the aforementioned work. Due to this elegant connection between eigenvalue
decay and concentration, the integral operator formalism has been predominantly focused around the
assumption (3) over the last two decades. Similar approaches based on the Bernstein inequality with
suitable variance proxies are commonly applied across a variety of estimation techniques in order to
obtain fast rates [e.g. 33, 34].

Overview of contributions. In this work, we show that the rates derived under the Bernstein
condition (3) in the mentioned literature can equivalently be obtained with the significantly less
restrictive higher moment assumption (2) with the same regularization parameter schedules. We
consider both the capacity independent setting (i.e., without assumptions about the eigenvalue
decay of the integral operator [4, 6]) and the more common capacity dependent setting involving

1The term subexponential in this work refers to light-tailed distributions in the Orlicz sense [26] in contrast
to alternative definitions for heavy-tailed distributions found in the literature [28].

2Condition (3) is in fact related to the slightly stronger subgamma property, see [30]. Applying Stirling’s
approximation to the right hand side of (3) gives the typical subexponential bound for Lq-norms of ε, see [26].
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the effective dimension [e.g. 3, 11, 35]. Even though the capacity dependent results are sharper,
we dedicate a separate discussion to the capacity independent setting, as it allows a less technical
presentation and a simplified and insightful asymptotic dicussion. In both settings, we base our
analysis on a Hilbert space version of the Fuk–Nagaev inequality, providing excess risk bounds that
exhibit both subgaussian and polynomial tail components. The dominant subgaussian term allows
to asymptotically recover the familiar bounds known from the subexponential noise scenario. In
the capacity dependent setting, we use the effective dimension not only as variance proxy, but also
as a proxy for the higher moments occurring in the Fuk–Nagaev inequality—the resulting bound
is sharp enough so that standard assumptions about the eigenvalue decay lead to known optimal
convergence rates. This technique directly generalizes the aforementioned approach based on the
Bernstein inequality.

Practical implications, future work and limitations. The square loss is often not used in practice
when one expects heavy-tailed noise, as it is sensitive to outliers when used without regularization
[36]. However, when used with regularization in the presence of noise of the form (2), we show that
it exhibits a certain degree of robustness. In particular,

(i) it asymptotically achieves the optimal rates with high probability known from the light-tailed
setting with the same regularization schedule,

(ii) in a large sample setting, the confidence behavior of the excess risk is essentially subexpo-
nential,

(iii) in a small sample setting, the confidence behavior is polynomial and stronger regularization
is required due to the impact of the heavy tails.

We focus on the original well-specified kernel ridge regression setting as investigated by [3] in order
to simplify the presentation and highlight the key arguments. However, we expect our approach
to transfer to other settings, for example involving more general source conditions [6, 37], general
spectral filter methods [9, 20], misspecified models [11, 38], the kernel conditional mean embedding
with unbounded kernels on the target space [17], high- and infinite-dimensional output spaces [15, 16]
and many other settings allowing for the application of the integral operator formalism. We believe
that kernel regression with unbounded kernels admitting a finite higher moment can be analyzed
with a similar technical approach as the one presented here. Let us mention some limitations of the
present work. While our results show a certain degree of robustness of regularized least squares
against heavy-tailed noise for q ≥ 3, q ∈ N, we expect our results to directly transfer to all real
q > 2, as versions of the real-valued Fuk–Nagaev bound cover this case [39, 40]. Currently, this
restriction of our results exclusively depends on the validity of the Fuk–Nagaev bound in Hilbert
spaces for these q as an artefact of the proof technique by [27], which we modify. Furthermore, for
q < 2, it is clear that the square loss is not necessarily well-defined and a different loss such as the
Cauchy loss should be used [41]. Our results demonstrate that, when operating in a high confidence
setting, heavy-tailed noise may require a significantly higher level of regularization than light-tailed
noise, making empirical regularization parameter choice rules as a function of the confidence level
very important. Extending the analysis of classical parameter choice rules for deterministic inverse
problems [42] to the stochastic setting based on heavy-tailed noise may therefore be an interesting
future direction.

Other related work. We are not aware of any specific analysis of kernel ridge regression and the
integral operator formalism in the heavy-tailed scenario given by (2) in the literature. However, there
exists a wide variety of related results for regression with heavy-tailed noise and robust estimation—
we put our results in the context of the most important related work. Optimal rates for (unpenalized)
least squares regression over nonparametric hypothesis spaces can generally only be derived in the
empirical process context when q in condition (2) is large enough with respect to suitable metric
entropy requirements, see [43–46]. In comparison, our setting allows to recover optimal rates for
the reproducing kernel Hilbert space scenario with a regularization schedule which is independent
of q. For linear models over finite basis functions, [47] derives exponential concentration of the
ridge estimator under finite variance on the noise for fixed α. We also highlight the field of robust
estimation techniques outside of the standard least squares context, see e.g. [36, 47–51] and the
references therein. While the analysis of robust finite-dimensional linear regression under heavy-
tailed noise requires discussions of the distribution of the covariates and their covariance matrix (often
under variance-kurtosis equivalence [52–54]), we impose the typical assumption that the kernel is
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bounded, leading to subgaussian concentration of the embedded covariates in the potentially infinite-
dimensional feature space. Recently, [41] derived nearly optimal rates for kernel ridge regression with
Cauchy loss under (2) with q > 0 depending on the Hölder continuity parameter of the target function
using more classical arguments. Finally, from a more technical perspective, the approach by [55]
shares similarities with the methods applied in our paper: The authors use a real-valued Fuk–Nagaev
inequality to bound the stopping time complexity of stochastic gradient descent for ordinary least
squares regression. However, [55] provides results only for the finite-dimensional setting based on a
martingale decomposition by assuming a lower bound on the minimal eigenvalue of the covariance
matrix. In contrast, our work targets the infinite-dimensional setting based on inverse problem theory
without such a lower bound and explicitly proves minimax optimality.

Structure of this paper. We introduce our notation and basic preliminaries in Section 2. In Sec-
tion 3, we provide the excess risk bound for the capacity independent setting and derive corresponding
rates. Section 4 contains an excess risk bound based on the effective dimension and recovers rates
which are known to be minimax optimal also in the subexponential noise setting. Finally, in Section 5,
we briefly discuss the Fuk–Nagaev inequality used to derive our results. Appendix A contains a
numerical experiment which confirms the behavior of the excess risk described by our theoretical
results. We report all proofs for the results in the main text in Appendix B and provide additional
technical results as individual appendices.

2 Preliminaries

We assume that the reader is familiar with the analysis of linear Hilbert space operators [56, 57] and
the basic theory of reproducing kernel Hilbert spaces [34, 58]. Let π denote the marginal distribution
of X and L2(π) denote the space of real-valued Lebesgue square integrable functions with respect
to π. We write L(H1, H2) for the space of bounded linear operators between Hilbert spaces H1

and H2 with operator norm ∥·∥ and abbreviate L(H1) = L(H1, H1). We additionally consider the
space of Hilbert–Schmidt operators S2(H1, H2) ⊂ L(H1, H2) and the space of trace class operators
S1(H1, H2) ⊂ S2(H1, H2) with norms ∥·∥S1(H1,H2) and ∥·∥S2(H1,H2) and the trace tr(·). The
adjoint of A ∈ L(H1, H2) is written as A∗ ∈ L(H2, H1).

2.1 Reproducing kernel Hilbert space

We consider the reproducing kernel Hilbert space (RKHS) H consisting of functions from X to R
induced by the symmetric positive semidefinite kernel k : X × X → R. with canonical feature map

ϕ(x) : X → H,

x 7→ k(·, x),
i.e. we have the reproducing property f(x) = ⟨f, ϕ(x)⟩H for all x ∈ X and f ∈ H.
Assumption 2.1 (Domain and kernel). We impose the following standard assumptions throughout
this paper in order to avoid issues related to measurability and integrability [34, Section 4.3]:

(i) X is a second-countable locally compact Hausdorff space, H is separable (this is satisfied if
k is continuous, given that X is separable),

(ii) k(·, X) is almost surely measurable in its first argument,

(iii) k(X,X) ≤ κ2 almost surely for some finite constant κ.

All assumptions above hold for commonly used continuous radial kernels on Rd such as the Gaussian
kernel and the Matèrn kernel. However, the boundedness assumption is violated for polynomial
kernels unless X is bounded almost surely.

Integral and covariance operators. Under Assumption 2.1, we may consider the typical linear
operators associated with π and k. We consider the embedding operator

Iπ : H ↪→ L2(π),

f 7→ [f ]π
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identifying f ∈ H with its equivalence class [f ]π ∈ L2(π). The adjoint I∗π : L2(π) → H is given by

I∗πf =

∫
X
ϕ(x)f(x) dπ(x) ∈ H, f ∈ L2(π).

We obtain the self-adjoint integral operator Tπ := IπI
∗
π : L2(π) → L2(π) induced by k and π as

Tπf =

∫
X
k(·, x)f(x) dπ(x), f ∈ L2(π).

The self-adjoint kernel covariance operator Cπ := I∗πIπ : H → H is given by

Cπ =

∫
X
ϕ(x)⊗ ϕ(x) dπ(x).

Assumption 2.1(iii) ensures that we have ∥Iπ∥ = ∥I∗π∥ ≤ κ as well as ∥Tπ∥ = ∥Cπ∥ ≤ κ2. Moreover,
the operators Iπ and I∗π are Hilbert–Schmidt and both Tπ and Cπ are therefore self-adjoint positive
semidefinite and trace class. By the polar decomposition of Iπ and I∗π , there exist partial isometries
U : H → L2(π) and Ũ : L2(π) → H such that

Iπ = U(I∗πIπ)
1/2 = UC1/2

π and I∗π = Ũ(IπI
∗
π)

1/2 = ŨT 1/2
π . (4)

In particular, we have ∥[f ]π∥L2(π) = ∥Iπf∥L2(π) = ∥C1/2f∥H for all f ∈ H. We will also
frequently use the fact that Assumption 2.1(iii) implies supx∈X |f(x)| ≤ κ∥f∥H.

2.2 Ridge regression

We introduce the standard integral operator formalism for ridge regression in RKHSs, see e.g. [3].
We consider the standard L2(P)-orthogonal decomposition of Y with respect to the closed subspace
L2(P, σ(X)) ⊂ L2(P) of σ(X)-measurable functions given by

Y = f⋆(X) + ε (5)

with the regression function f⋆(X) = E[Y |X] ∈ L2(P) and noise variable ε ∈ L2(P) satisfying
E[ε|X] = 0. Based on the representation (5), we have R(f) = ∥f − f⋆∥2L2(π) + ∥ε∥2L2(P) for all
f ∈ L2(π) and hence the excess risk satisfies R(f)−R(f⋆) = ∥f − f⋆∥2L2(π).

Regularized population solution. We define the regularized population solution

fα : = argmin
f∈H

E[(Y − f(X))2] + α∥f∥2H = argmin
f∈H

∥Iπf − f⋆∥2L2(π) + α∥f∥2H,

with α > 0, which is alternatively expressed as

fα = (Cπ + α IdH)−1I∗πf⋆ ∈ H (6)

with the identity operator IdH on H.

Regularized empirical solution. We consider sample pairs (X1, Y1), . . . , (Xn, Yn) ∼ L(X,Y )
independently obtained from the joint distribution of X and Y . We define the empirical versions of
the operators above in terms of

Î∗πf :=
1

n

n∑
i=1

ϕ(Xi)f(Xi) ∈ H, f ∈ L2(π)

as well as

Ĉπ :=
1

n

n∑
i=1

ϕ(Xi)⊗ ϕ(Xi).

The empirical solution of the learning problem in H with regularization parameter α > 0 is given by
the empirical analogue of (6), which we obtain in terms of

f̂α = (Ĉπ + α IdH)−1Υ̂ ∈ H, (7)
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where the empirical right hand side Υ̂ ∈ H of the inverse problem is given by

Υ̂ :=
1

n

n∑
i=1

ϕ(Xi)Yi = Î∗πf⋆ +
1

n

n∑
i=1

ϕ(Xi)εi. (8)

Here, we use the orthogonal decomposition Yi = f⋆(Xi) + εi in the second equivalence. We note
that Υ̂ directly serves as an empirically evaluable unbiased estimate of I∗πf⋆, as Î∗πf⋆ itself cannot be
empirically evaluated because f⋆ is unknown. As usual, we interpret the above objects as random
variables depending on the product measure P⊗n through their definition based on the observation
pairs (Xi, Yi). In practice, the empirical solution f̂α can be evaluated in terms of the classical
representer theorem, see e.g. [1, Proposition 8].

2.3 Distributional assumptions

We list the assumptions we impose upon the distributions of Y , X and ε.
Assumption 2.2 (Moment condition). We consider the model given by (5) and assume that we have
almost surely

E[ε|X] = 0, E
[
ε2|X

]
< σ2 and E[|ε|q|X] < Q, (MOM)

for some constants σ2 > 0, Q > 0 and q ∈ N, q ≥ 3.

We now introduce a classical smoothness assumption in terms of a Hölder source condition [59].
Assumption 2.3 (Source condition). We define the set Ω(ν,R) := {T ν

π f | ∥f∥L2(π) ≤ R} ⊂ L2(π)
and assume

f⋆ ∈ Ω(ν,R) (SRC)
for some smoothness parameter ν ≥ 1/2 and R > 0.

We give the definition of the source set Ω(ν,R) with respect to L2(π) and not with respect to H,
which is also commonly found in the literature. Furthermore, the source condition is sometimes
described in terms of so-called interpolation spaces or Hilbert scales. Our definition can equivalently
be expressed in terms of these concepts by appropriately reparametrizing ν, see e.g. [6, 11, 59] for
more details.
Remark 2.4 (Well-specified case). In this work, we explicitly consider the condition ν ≥ 1/2, which
implies the well-specified setting in which we have Ω(ν,R) ⊂ Iπ(H). We note the case 0 ≤ ν < 1/2
covers the misspecified setting, in which Ω(ν,R) is allowed to contain elements from L2(π) \ Iπ(H).
We expect our approach to transfer to the misspecified setting by combining it with recent technical
arguments from the literature which are outside the scope of this work [11, 15, 16, 38, 60].

3 Capacity-free excess risk bound

We now provide an excess risk bound and corresponding rates for kernel ridge regression in the
heavy-tailed noise setting without additional assumptions about the eigenvalue decay of Tπ. We
present this setting separately from the capacity-based results in the next section, as it allows for a
clearer comparison with bounds based on subexponential noise and a simplified asymptotic discussion.

Proposition 3.1 (Main excess risk bound). Let (MOM) and (SRC) be satisfied. For all δ ∈ (0, 1)
and n ∈ N such that

Cκ log(6/δ) ≤ α
√
n, Cκ := 2(1 +

√
κ) ·max{1, κ2}, (9)

we have

∥Iπ f̂α − f⋆∥L2(π) ≤ Rαmin{ν,1} +
C⋄√
α

(
log(6/δ)

n
+

√
α2min{ν,1} log(6/δ)

n
+ η(δ, n)

)
,

with confidence 1− δ, with

η(δ, n) := max

{(
Q

δnq−1

)1/q

, σ

√
log(6c1/δ)

n

}
,

where 0 < C⋄ is given in (29) and c1 ≥ 1 is the constant from Proposition 5.1 depending only on q.
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Just as in the light-tailed setting, Proposition 3.1 shows that the optimal excess risk is achieved by
balancing the contributions of the approximation error (e.g. the model bias) and sample error (e.g. the
model variance) by choosing a suitable regularization parameter α depending on n and δ. The term
Rαmin{ν,1} quantifies the approximation error based on the smoothness of f⋆ and exhibits the typical
saturation effect of ridge regression: the fact that the convergence speed cannot be improved beyond
a smoothness level ν = 1 [e.g. 61, 62]. The key difference to known results for subexponential noise
in this setting [4, 6] is the Fuk–Nagaev term η(δ, n) appearing in the sample error, which introduces
an additional polynomial dependence on δ and n. We now investigate the consequences of this term.

Confidence regimes. We split the confidence scale into two disjoint intervals depending on whether
the subgaussian component or the polynomial component dominates in the term η(δ, n). For n ∈ N,
q ≥ 3 we define

D1(n, q) :=

{
δ ∈ (0, 1) : η(δ, n) = σ

√
log(6c1/δ)

n

}

=

{
δ ∈ (0, 1) : n ≥

(
Q2

σ2q

) 1
q−2

δ−
2

q−2 · log(6c1/δ)−
q

q−2

}
, (10)

D2(n, q) := (0, 1) \D1(n, q) . (11)

In what follows, we will refer to D1(n, q) as the subgaussian confidence regime and D2(n, q) as the
polynomial confidence regime. The effective sample size n0 ensuring subgaussian behavior of η(n, δ)
for all n ≥ n0 is hence

n0 :=

(
Q2

σ2q

) 1
q−2

δ−
2

q−2 · log(6c1/δ)−
q

q−2 . (12)
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Figure 1: Illustration of the the effective sample size n0 ensuring subgaussian behavior of the term
η(δ, n) defined in (12) for different choices of q. For simplicity, we set c1 = 1, σ = 2 and Q = 10.

We illustrate the behavior of n0 depending on 1− δ for different choices of q in Figure 1 (we note
that the involved constant c1 stems from the Fuk–Nagaev inequality given in Proposition 5.1 and
generally depends on q). We choose c1 = 1 for simplicity to provide a basic intuition—note that c1
only affects n0 logarithmically. We refer the reader to [40] for a detailed discussion based on the
bound for real-valued random variables.

Subgaussian confidence regime and convergence rates. We now give an excess risk bound which
is similar to the setting with bounded or subexponential noise: it exhibits a logarithmic dependence
of the confidence parameter δ and a dependence of the sample size up to n−1/3 depending on the
level of smoothness given by ν [4, 6]. In the asymptotic large sample context, this bound is dominant
and allows us to recover convergence rates.
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Corollary 3.2 (Subgaussian confidence regime). Let (MOM) and (SRC) be satisfied. Then there
exist constants c̃1, c̃2 > 0 such that with the regularization schedule

α1(n, δ) := c̃2

(
log(6c1/δ)

n

) 1
2min{ν,1}+1

we have

∥Iπ f̂α1(n,δ) − f⋆∥L2(π) ≤ c̃1R

(
log(6c1/δ)

n

) min{ν,1}
2min{ν,1}+1

, (13)

with confidence 1− δ for all δ ∈ D1(n, q) and n ∈ N such that α1(n, δ) ≤ κ2.

The constants c̃1 and c̃2 in Corollary 3.2 only depend on R, ν, κ, σ, c1, c2 and can be made explicit,
but we omit their closed form here for the sake of a more accessible presentation. We refer the reader
to the proof for more details.
Remark 3.3 (Convergence rates). We directly obtain convergence rates from the above consideration.
For fixed confidence parameter δ ∈ (0, 1), we see that for all n ≥ n0, where n0 is the effective
sample size given in (12), we have δ ∈ D1(n, q). Furthermore, there exists some ñ0 ∈ N such that
α1(n, δ) ≤ κ2 for all n ≥ ñ0. Combining these two insights, from Corollary 3.2, we obtain

∥Iπ f̂α1(n,δ) − f⋆∥L2(π) ≤ c̃1R

(
log(6c1/δ)

n

) min{ν,1}
2min{ν,1}+1

with confidence 1− δ for all n ≥ max{n0, ñ0}. We explicitly note that the convergence rates as well
as the regularization schedule α1(n, δ) match exactly the known results for the capacity-independent
setting that have been derived under the assumption of bounded or subexponential noise [4, 6].

Polynomial confidence regime. By definition (10), the polynomial confidence regime δ ∈ D2(n, q)
is relevant in the nonasymptotic investigation whenever n < n0. For completeness, we address this
setting in Appendix C and show that Proposition 3.1 can yield simplified risk bounds with suitable
regularization schedules for α based on δ and n. Depending on δ, these bounds may require a stronger
regularization α2(n, δ) than the subgaussian confidence setting. In fact, the resulting bound exhibits
a polynomial worst-case dependence on δ, which is compensated by a better dependence on the
sample size before transitioning to the behavior from the subgaussian confidence regime given by
Corollary 3.2. This behavior can be observed in practice, which we confirm in a basic numerical
experiment provided in Appendix A.

4 Capacity dependent bound and optimal rates

We now improve the results from the previous section and give an excess risk bound that involves the
effective dimension, which has been established as a central tool to quantify the algorithm-dependent
capacity of the hypothesis space H relative to the distribution π and regularization parameter α
in order to derive risk bounds in regularized kernel-based learning under the assumptions of an
eigenvalue decay of Cπ [3, 9, 10, 32].
Definition 4.1 (Effective dimension). For α > 0, we define

N (α) := tr
(
Cπ(Cπ + α IdH)−1

)
< ∞.

We now assume the standard polynomial eigenvalue decay of Cπ [3, 9, 11].
Assumption 4.2 (Eigenvalue decay). We assume that the nonincreasingly ordered sequence of
nonzero eigenvalues (µi)i≥1 of Tπ satisfies the decay

µi ≤ Di−1/p, i ∈ N (EVD)

for a constant D > 0 and some p ∈ (0, 1).

Under the additional assumption (EVD), we can sharpen Proposition 3.1.
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Proposition 4.3 (Capacity-dependent excess risk bound). Let (MOM), (SRC) and (EVD) be satisfied.
Suppose that δ ∈ (0, 1) and

log(2/δ)

(
2κ2

nα
+

2
√

D̃κ√
nα(1+p)/2

)
≤ 1. (14)

Then there exists a constant c > 0 not depending on δ and n such that with confidence 1− δ, we have

∥Iπ f̂α − f⋆∥L2(π) ≤ c

(
αmin{ν,1} +

log(8/δ)√
αn

+

√
N (α) log(8/δ)

n
+
√
N (α) · η(δ, n, α)

)
,

where we set

η(δ, n, α) := max

{(
1

δnq−1

)1/q

·
(

1

αN (α)

) q−2
2q

,

√
log(8c1/δ)

n

}
.

The constant c is made explicit in the proof. The key idea builds upon the original work of [3]. In
particular, we incorporate the effective dimension into the Fuk–Nagaev inequality as a proxy for
the q-th absolute moment appearing in the term η(δ, n, α), thereby generalizing the idea to use the
effective dimension as a variance proxy in the Bernstein inequality.
Corollary 4.4 (Convergence rates). Let (MOM), (SRC) and (EVD) be satisfied. Then for every
δ ∈ (0, 1), there exists some n0 ∈ N such that with the regularization schedule

α(n, δ) :=

(
log(8c1/δ)

n

) 1
2min{ν,1}+p

,

we have

∥Iπ f̂α(n,δ) − f⋆∥L2(π) ≤ c

(
log(8c1/δ)

n

) min{ν,1}
2min{ν,1}+p

(15)

with confidence 1− δ for all n ≥ n0 with a constant c > 0 independent of n and δ.
Remark 4.5 (Optimality of rates). The rates provided by Corollary 4.4 match the rates from the
literature derived for well-specified kernel ridge regression under the assumption of subexponential
noise [3, 35]. In particular, these rates are known to be minimax optimal over the class of distributions
satisfying (SRC), (EVD) and the Bernstein condition (3). Corollary 4.4 now proves that one can
significantly relax the assumption of subexponential noise (3), as rate optimality is already achieved
under the condition (MOM). Furthermore, the regularization schedule α(n, δ) is the same as in the
light-tailed setting—in particular, it does not depend on q.

5 Fuk–Nagaev inequality in Hilbert spaces

We discuss the central ingredient for the derivation of the previous results in more detail for con-
venience. We refer the reader to [24, 25] for the original work in the setting of real-valued random
variables and [40] for a discussion of the involved constants. We present a sharpened version of a
result due to [27, Theorem 3.5.1], which is formulated more generally in normed spaces, but exhibits
an excess term that can be removed in the Hilbert space case. We provide the proof in Appendix D.
We also note that the proof of the result in [27] is incomplete due to an inconsistent exponential
moment bound. We address this issue by deriving an alternative bound.
Proposition 5.1 (Fuk–Nagaev inequality; Hilbert space version). Let ξ, ξ1, . . . ξn be independent
and identically distributed random variables taking values in a separable Hilbert space X such that

E[ξ] = 0, E
[
∥ξ∥2X

]
< σ2 and E[∥ξ∥qX ] < Q,

for some constants σ2 > 0, Q > 0 and q ∈ N, q ≥ 3. Write Sn :=
∑

i=1 ξi. Then there exist two
constants c1 > 0 and c2 > 0 depending only on q such that for every t > 0, we have

P
[ ∥∥∥∥ 1nSn

∥∥∥∥
X

> t

]
≤ c1

(
Q

tqnq−1
+ exp

(
−c2

t2n

σ2

))
. (16)

Remark 5.2. For simplicity, we may assume that 1 ≤ c1 when we apply Proposition 5.1.
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Confidence regimes. Directly rearranging (16) from a tail bound to a confidence interval bound
requires to solve a transcendental equation which does not admit a simple closed form solution.
However, we can still derive an upper bound on the confidence intervals that reflects the superposition
of polynomial and sub-gaussian tail in (16). By introducing

δ := 2max

{
c1Q

tqnq−1
, c1 exp

(
−c2

t2n

σ2

)}
, (17)

we have P[n−1∥Sn∥X ≤ t] ≥ 1− δ by (16). Rearranging (17), we have

t ≥
(

2c1Q

δnq−1

)1/q

and t ≥ σ

√
log(2c1/δ)

c2n
, (18)

immediately leading to the following confidence bound.
Corollary 5.3 (Confidence bound). Under the assumptions of Proposition 5.1, for all δ ∈ (0, 1), we
have ∥∥∥∥ 1nSn

∥∥∥∥
X

≤ max


(

2c1Q

δnq−1

)1/q

, σ

√
log(2c1/δ)

c2n

 (19)

with probability at least 1− δ.

For every fixed δ and n → ∞, this shows the typical subgaussian behavior and a convergence rate of
1
nSn of the order n−1/2 with high probability. Interpreting the right hand side as a function of δ for
a fixed sample size n however, the above bound characterizes a confidence regime change at δ̄(n),
which we define as the solution to the equation(

2c1Q

δ̄(n)nq−1

)1/q

= σ

√
log(2c1/δ̄(n))

c2n
. (20)

In fact, in the polynomial confidence regime δ < δ̄(n), the dependence of the upper bound given in
Corollary 5.3 on δ is clearly worse than in the subgaussian regime δ ≥ δ̄(n) which is characterized
by a logarithmic dependence on δ. In contrast, the polynomial confidence regime allows for a better
sample dependence of n−(q−1)/q .

Sharpness of the tail bound. Both the subgaussian term and the polynomial term in the right
hand side of the bound given by Proposition 5.1 can generally not be improved without additional
assumptions. We repeat a similar argument as the one given in [63, Proposition 9], which is given in
the context of linear processes. Let ξ, ξ1, . . . , ξn be independent real-valued random variables drawn
from a centered t-distribution with q degrees of freedom, i.e. E[ξq−c] < ∞ for all 0 < c ≤ q and let
σ2 := E[ξ2] = q/(q − 2). Then [25, Theorem 1.9] shows that we have

P[Sn/n > t] = P[Sn/σ > nt/σ] ∼ 1− ϕ(n1/2t/σ) + n(1− Fσ−1ξ(nt/σ)) as n → ∞
for nt/σ ≥ n1/2, where Φ is the standard normal cumulative distribution function and Fσ−1ξ

is the cumulative distribution function of σ−1ξ. We now note that we have the basic property
Fσ−1ξ(nt/σ) = Fξ(nt) and we can show that the distribution of ξ satisfies 1− F (nt) ∼ Cq/(nt)

q

as nt → ∞, where Cq is a constant depending exclusively on q. In total, we obtain

P[Sn/n > t] ∼ 1− Φ(n1/2t/σ) +
Cq

tqnq−1
as n → ∞

for nt/σ ≥ n1/2, showing that Proposition 5.1 is asymptotically optimal.
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Appendices
The appendices are organized as follows.

Appendix A contains a numerical experiment which confirms the behavior of the excess risk as
described by the bounds provided in the main text in a very basic setting. In Appendix B, we report
proofs of the results in the main text of this paper. In Appendix C, we provide an additional excess
risk bound for the polynomial confidence regime based on Proposition 3.1. We collect some tail
bounds and concentration results in Appendix D. In particular, Appendix D.3 contains a proof of
Proposition 5.1. In Appendix E, we recall additional miscellaneous inequalities required for our
proofs.

A Numerical experiment

We provide a basic numerical experiment3 showing that the confidence regimes are not only occurring
in the upper bound on the excess risk given by Proposition 3.1, but are effectively reflected in the
distribution of the excess risk in practice, even for very simple models.

We consider the input space X := R equipped with the RKHS H induced by the radial basis kernel
k(x1, x2) := exp(−|x1−x2|2

2 ) and define the target function f⋆(x) :=
∑5

i=1 aik(xi, x) ∈ H, x ∈ X
for vectors a := (2,−1,−3, 1, 2) and x := (−4,−2− 0, 3, 7). We define the covariate distribution
X ∼ π := N (0, 1) on X and generate independent observation pairs with a light-tailed noise
distribution and a heavy-tailed distribution with identical variance based on

(i) the light-tailed noise model given by

Y(N ) = f⋆(X) + ε(N ), (21)

where the noise ε(N ) ∼ N (0, σ2) follows a centered Gaussian distribution with variance
σ2 = 3.

3We provide the source code on GitHub: https://github.com/mollenhauerm/krr-heavy-tailed.
The experiment can be run on the CPU of any consumer laptop.
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(ii) the heavy-tailed noise model with a finite number of higher moments given by

Y(t) = f⋆(X) + ε(t), (22)

where the noise ε(t) ∼ t(0, ν) follows a centered t-distribution with ν = 3 degrees of
freedom and E[ε2(t)] = 3.
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(b) Heavy-tailed noise

Figure 2: Empirical approximations of the quantile function of the excess risk ∥Iπ f̂α − f⋆∥L2(π) for
(a) the light-tailed noise model given in (21) and (b) in the t-distributed noise model given by (22)
for different choices of the regularization parameter α and fixed sample size n = 20.

For both models, we compute f̂α based on the generated sample pairs for a sample size n = 20

and record the error ∥Iπ f̂α − f⋆∥L2(π), which we approximate through Monte Carlo simulation by
drawing samples from π. We perform the above computation for a selection of different regularization
parameters α, repeating each experiment across 10000 random seeds (per model and choice of α).
Based on the recorded errors, we empirically approximate the quantile function of the distributions of
∥Iπ f̂α − f⋆∥L2(π) given by

Q(1− δ) := inf
{
t : P

[
∥Iπ f̂α − f⋆∥L2(π) ≤ t

]
≥ 1− δ

}
, δ ∈ [0, 1]

The resulting approximated quantile functions are visualized in Figure 2 for all choices of α and both
models.
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While the excess risk quantiles exhibit the same qualitative behaviour and are of the same order
in both models for moderate confidence levels, the excess risk quantiles of the heavy-tailed model
increase rapidly for a small regularization parameter beyond a high confidence level of 1− δ ≈ 0.95.
Consequently, the heavy-tailed model requires a stronger regularization than the light-tailed model
in high confidence settings, as explained by the transition of the excess risk from a subgaussian
confidence regime to a polynomial confidence regime in Section 3.

B Proofs

We provide the proofs for the results presented in the main text of this work.

B.1 Proof of Proposition 3.1

We investigate the classical bias-variance decomposition

Iπ f̂α − f⋆ = Iπ f̂α − Iπfα + Iπfα − f⋆

and bound both terms individually.

B.1.1 Bounding the variance Iπ f̂α − Iπfα.

We first collect some generic properties of fα. The identity fα = (Cπ + α IdH)−1I∗πf⋆ gives

E[Î∗π(f⋆ − Îπfα)] = I∗π(f⋆ − Iπfα) = αfα. (23)

Based on (6), (7) and (8), we decompose the variance in H as

f̂α − fα = (Ĉπ + α IdH)−1

{
Î∗π(f⋆ − Îπfα)− αfα +

1

n

n∑
i=1

ϕ(Xi)εi

}

= (Ĉπ + α IdH)−1

{
Î∗π(f⋆ − Îπfα)− I∗π(f⋆ − Iπfα) +

1

n

n∑
i=1

ϕ(Xi)εi

}
by (23)

= (Ĉπ + α IdH)−1{∆1 +∆2},
where we introduce the H-valued random variables

∆1 = Î∗π(f⋆ − Îπfα)− E[Î∗π(f⋆ − Îπfα)], ∆2 =
1

n

n∑
i=1

ϕ(Xi)εi . (24)

We now obtain an L2(π)-norm bound on the variance as

∥Iπ(f̂α − fα)∥L2(π) = ∥C1/2
π (f̂α − fα)∥H = ∥C1/2

π (Ĉπ + α IdH)−1{∆1 +∆2}∥H
≤

√
2 B(n, δ, α)1/2

∥∥∥(Ĉπ + α IdH)1/2(Ĉπ + α IdH)−1{∆1 +∆2}
∥∥∥
H

≤ 2
√
2
∥∥∥(Ĉπ + α IdH)−1/2{∆1 +∆2}

∥∥∥
H

≤ 2

√
2

α
(∥∆1∥H + ∥∆2∥H), (25)

with probability at least 1− δ, where B(n, δ, α) is defined in (57) and where we apply Lemma D.10
in the first inequality, Corollary D.7 in the second inequality, and additionally the fact that we have
∥(Ĉπ + α IdH)−1/2∥L(H) ≤ α−1/2 in the last inequality.

We now provide individual confidence bounds for ∆1 and ∆2.

Bounding ∆1: Bennett inequality. We introduce the independent and identically distributed
random variables ξi := (f⋆(Xi)− fα(Xi))ϕ(Xi) ∈ H and note that ∆1 := 1

n

∑n
i=1(ξi −E[ξi]) and

proceed similarly as in the proof of [4, Theorem 1 & Theorem 5].
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To apply Bennett’s inequality, we need to bound the norm of the ξi. First, note that almost surely, we
have by (SRC), for some f ∈ L2(π), such that ∥f∥L2(π) ≤ R

∥fα(Xi)ϕ(Xi)∥H = ∥⟨fα, ϕ(Xi)⟩Hϕ(Xi)∥H
≤ κ2∥fα∥H
= κ2∥(Cπ + α IdH)−1I∗πf⋆∥H
= κ2∥I∗π(Tπ + α IdH)−1T ν

π f∥H.

A short calculation shows that for ν ≥ 1/2, the map h(t) = tν+1/2(t + α)−1 is increasing on the
spectrum of Tπ with

sup
t∈(0,κ2]

|h(t)| = sup
t∈(0,κ2]

tν−1/2 t

t+ α
≤ κ2(ν−1/2),

for all α > 0. Hence,

∥I∗π(Tπ + α IdH)−1T ν
π f∥H ≤ R · sup

t∈(0,κ2]

|h(t)| ≤ R · κ2(ν−1/2)

and therefore
∥fα(Xi)ϕ(Xi)∥H ≤ R · κ2ν+1 .

This gives

∥ξi∥H ≤ κ∥f⋆∥L∞(π) + ∥fα(Xi)ϕ(Xi)∥H
≤ κ∥f⋆∥L∞(π) +R · κ2ν+1.

Furthermore, by [64, Proposition 3.3] and [11, Lemma 25] we see

E[∥ξi∥2H] ≤ κ2∥f⋆ − Iπfα∥2L2(π)

= κ2∥(IdH −Tπ(Tπ + α IdH)−1)T ν
π f∥2L2(π)

≤ κ2R2α2min{ν,1}.

Applying Proposition D.2 to ∆1 = 1
n

∑n
i=1(ξi − E[ξi]), with probability at least 1− δ for for any

1 > δ > 0, we have

∥∆1∥H ≤ 2(κ∥f⋆∥L∞(π) +R · κ2ν+1) log(2/δ)

n
+

√
2κ2R2α2min{ν,1} log(2/δ)

n

≤ C̃⋄ ·
(
log(2/δ)

n
+

√
α2min{ν,1} log(2/δ)

n

)
, (26)

where we use
√

2 log(2/δ) ≤ 2 log(2/δ) and with

C̃⋄ = 2κ ·max{∥f⋆∥L∞(π) +R · κ2ν , R}. (27)

Bounding ∆2: Fuk–Nagaev inequality. We introduce the independent and identically distributed
random variables ζi := ϕ(Xi)εi and note that ∆2 = 1

n

∑n
i=1 ζi. By Assumption 2.2, we clearly have

E[ζi] = E[ϕ(Xi)E[εi | X]] = 0 as well as

E[∥ζi∥2H] < κ2σ2 and E[∥ζi∥qH] < κqQ.

We can therefore apply Corollary 5.3 to ∆2 = 1
n

∑n
i=1 ζi and obtain

∥∆2∥H ≤ max


(
2c1κ

qQ

δnq−1

)1/q

, κσ

√
log(2c1/δ)

c2n

 (28)

with probability at least 1− δ.
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Collecting the terms. By the union bound, the three individual confidence bounds (25), (26) and
(28) and hold simultaneously with probability at least 1− δ. We have

∥Iπ(f̂α − fα)∥L2(π) ≤
C⋄√
α

(
log(6/δ)

n
+

√
α2min{ν,1} log(6/δ)

n
+ η(δ, n)

)
.

Here, we set

η(δ, n) := max

{(
Q

δnq−1

)1/q

, σ

√
log(6c1/δ)

n

}
and

C⋄ = 2
√
2max{C̃⋄, κ ·max{(6c1)1/q, 1/

√
c2}}. (29)

B.1.2 Bounding the bias Iπfα − f⋆

We apply the standard theory of source conditions in inverse problems as discussed for example by
[59]. In particular, under the L2(π)-source condition given by (SRC), we have

∥Iπfα − f⋆∥L2(π) ≤ Rαmin{ν,1},

see e.g. [64, Proposition 3.3]. Combining the variance bound and the bias bound yields the result.

B.2 Proof of Corollary 3.2

Let δ ∈ D1(n, q). Using that α ≤ κ2 and recalling that c1 ≥ 1, we find by Proposition 3.1 for any
δ ∈ D1(n, q) with confidence 1− δ

∥Iπ(f̂α − f⋆)∥L2(π) ≤ Rαmin{ν,1} +
C⋄√
α

(
log(6/δ)

n
+

√
α2min{ν,1} log(6/δ)

n
+ σ

√
log(6c1/δ)

n

)
.

Assuming
αmin{ν,1}√n ≥

√
log(6/δ) (30)

gives
log(6/δ)

n
≤
√

α2min{ν,1} log(6/δ)

n
≤ κ2min{ν,1}

√
log(6c1/δ)

n
.

Hence,

∥Iπ f̂α − f⋆∥L2(π) ≤ Rαmin{ν,1} + c3

√
log(6c1/δ)

αn
,

with c3 = 3C⋄ max{κ2min{ν,1}, σ}. Ensuring that the remaining estimation error contribution will
not be dominated by the approximation error, we see that the regularization parameter has to satisfy

α ≥ c4

(
log(6c1/δ)

n

) 1
2min{ν,1}+1

, (31)

with c4 = (c3/R)
1

min{ν,1}+1/2 . We therefore obtain

∥Iπ f̂α − f⋆∥L2(π) ≤ c̃1R

(
log(6c1/δ)

n

) min{ν,1}
2min{ν,1}+1

,

with confidence 1− δ and c̃1 = 2c
min{ν,1}
4 . In order for this bound to hold, the regularization strength

has to fulfill condition (9), (30) and (31), that is,

α ≥ max

{
c4

(
log(6c1/δ)

n

) 1
2min{ν,1}+1

,

(
log(6/δ)

n

) 1
2min{ν,1}

, Cκ
log(6/δ)√

n

}
(32)

in addition to the restriction α ≤ κ2. As we always have n− 1
2min{ν,1} ≤ n−1/2 ≤ n− 1

2min{ν,1}+1 for
ν ≥ 1/2 and log(6c1/δ) ≥ log(6/δ), there exists a constant c̃2 such that

α1(n, δ) := c̃2

(
log(6c1/δ)

n

) 1
2min{ν,1}+1

satisfies (32).
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B.3 Proof of Proposition 4.3

We split again into variance and bias:

Iπ f̂α − f⋆ = Iπ(f̂α − fα) + Iπfα − f⋆.

B.3.1 Bounding the variance Iπ f̂α − Iπfα

Following [65, Appendix C], we further decompose the variance term in L2(π) as

Iπ f̂α − Iπfα = Iπ f̂α − IπĈπ(Ĉπ + α IdH)−1fα + IπĈπ(Ĉπ + α IdH)−1fα − Iπfα

= Iπ(Ĉπ + α IdH)−1
(
Υ̂− Ĉπfα

)
︸ ︷︷ ︸

=:I1

+αIπ(Ĉπ + α IdH)−1fα︸ ︷︷ ︸
=:I2

, (33)

where we use the definition of f̂α in (7) for the first term and the identity

Ĉπ(Ĉπ + α IdH)−1 − IdH = α(Ĉπ + α IdH)−1

for the second summand.

B.3.2 Bounding the first term I1

We introduce the shorthand notation Cα := Cπ + α IdH, Ĉα := Ĉπ + α IdH. We note that we may
write

C1/2
π (Ĉπ + α IdH)−1 = C1/2

π C−1/2
α C1/2

α Ĉ−1/2
α Ĉ−1/2

α C1/2
α C−1/2

α .

Recall that ∥C1/2
π C−1/2

α ∥L(H) ≤ 1 and that by Corollary D.9 and Lemma E.2, with confidence 1− δ,
we have

∥C1/2
α Ĉ−1/2

α ∥L(H) = ∥Ĉ−1/2
α C1/2

α ∥L(H) ≤ 2,

provided (14) is satisfied. Hence, by (4), with confidence 1− δ

∥I1∥L2(π) = ∥Iπ(Ĉπ + α IdH)−1(Υ̂− Ĉπfα)∥L2(π) ≤ 4 ∥(Cπ + α IdH)−1/2(Υ̂− Ĉπfα)∥H.
(34)

We proceed by further splitting

(Cπ + α IdH)−1/2(Υ̂− Ĉπfα) = (Cπ + α IdH)−1/2[(Υ̂− Ĉπfα)− (I∗πf⋆ − Cπfα)]
+ (Cπ + α IdH)−1/2(I∗πf⋆ − Cπfα).

Note that by (8), we have

Υ̂ = Î∗πf⋆ +
1

n

n∑
i=1

ϕ(Xi)εi.

Introducing

∆1 := (Î∗πf⋆ − Ĉπfα)− (I∗πf⋆ − Cπfα), ∆2 :=
1

n

n∑
i=1

ϕ(Xi)εi,

we obtain

(Cπ + α IdH)−1/2(Υ̂− Ĉπfα) = I11 + I12 + I13,

where we set

I11 := (Cπ + α IdH)−1/2∆1

I12 := (Cπ + α IdH)−1/2∆2

I13 := (Cπ + α IdH)−1/2(I∗πf⋆ − Cπfα).
Thus, with (34), we have

∥I1∥L2(π) ≤ 4(∥I11∥H + ∥I12∥H + ∥I13∥H) (35)

We proceed to bound the terms on the right hand side individually.
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Bounding ∥I11∥H. To bound the norm of I11, we apply Bennett’s inequality Proposition D.2 to the
independent and identically distributed random variables

ξi := (Cπ + α IdH)−1/2(f⋆(Xi)− fα(Xi))ϕ(Xi).

Then

I11 =
1

n

n∑
i=1

ξi − E[ξi].

Furthermore,

E[∥ξi∥2H] ≤ sup
X∈X

|f⋆(X)− fα(X)|2 E[∥(Cπ + α IdH)−1/2ϕ(Xi)∥2H].

since fα ∈ H and by (SRC), we have for ν ≥ 1/2

|fα(X)| = |⟨fα, ϕ(X)⟩H|
= |⟨(Cπ + α IdH)−1I∗πT ν

π f, ϕ(X)⟩H|
= |⟨f, T ν

π Iπ(Cπ + α IdH)−1ϕ(X)⟩L2(π)|
≤ κR∥I∗π(Tπ + α IdL2(π))

−1T ν
π ∥L(L2(π),H)

≤ κR sup
0<t≤κ2

|tν+1/2(t+ α)−1|

≤ κ2νR. (36)

We proceed with writing

E[∥(Cπ + α IdH)−1/2ϕ(Xi)∥2H] = E[tr((Cπ + α IdH)−1ϕ(Xi)⊗ ϕ(Xi))] = N (α).

Hence,

E[∥ξi∥2H] ≤ 2(∥f⋆∥2∞ + κ4νR2)N (α) =: σ̃2.

Moreover,

∥ξi∥H = ∥(Cπ + α IdH)−1/2(f⋆(Xi)− fα(Xi))ϕ(Xi)∥H
≤ ∥f⋆(Xi)(Cπ + α IdH)−1/2ϕ(Xi)∥H + ∥fα(Xi)(Cπ + α IdH)−1/2ϕ(Xi)∥H

≤ κ∥f⋆∥∞√
α

+
κfα(Xi)√

α

≤ κ√
α

(∥f⋆∥∞ + κ2νR) =: L.

In the last step we use (36). From Proposition D.2, we obtain with confidence 1− δ

∥I11∥H ≤ 2L log(2/δ)

n
+

√
2σ̃2 log(2/δ)

n

≤ c11

(
log(2/δ)√

αn
+

√
N (α) log(2/δ)

n

)
, (37)

with c11 = 2(∥f⋆∥∞ + κ2νR) max{1, κ}.

Bounding ∥I12∥H. The idea is to apply the Fuk-Nagaev inequality Corollary 5.3 to the independent
and identically distributed random variables

ζi := εi(Cπ + α IdH)−1/2ϕ(Xi).

We repeatedly apply Assumption 2.2 to bound the expectation and moments of the ζi. We get

E[ζi] = E[E[εi|Xi]︸ ︷︷ ︸
=0

(Cπ + α IdH)−1/2ϕ(Xi)] = 0.
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Moreover,
E[∥ζi∥2H] = E[E[ε2i |Xi] ∥(Cπ + α IdH)−1/2ϕ(Xi)∥2H]

< σ2E[tr((Cπ + α IdH)−1ϕ(Xi)⊗ ϕ(Xi))]

= σ2N (α)

=: σ̃2.

Since q > 2, we find

E[∥ζi∥qH] = E[E[|εi|q|Xi] ∥(Cπ + α IdH)−1/2ϕ(Xi)∥qH]

< Q E[∥(Cπ + α IdH)−1/2ϕ(Xi)∥2H∥(Cπ + α IdH)−1/2ϕ(Xi)∥q−2
H ]

≤ Q κq−2

(
1

α

) q−2
2

N (α)

=: Q̃.

Since 1
n

∑n
i=1 ζi = I12, applying Corollary 5.3 gives with confidence 1− δ

∥I12∥H ≤ max


(

2c1Q̃

δnq−1

)1/q

, σ̃

√
log(2c1/δ)

c2n


= max


(
2c1κ

q−2Q

δnq−1

)1/q(
1

α

) q−2
2q

N (α)1/q, σ

√
N (α) log(2c1/δ)

c2n


≤ c12

√
N (α) max

{(
1

δnq−1

)1/q(
1

αN (α)

) q−2
2q

,

√
log(2c1/δ)

n

}
, (38)

with c12 = max{(2c1κq−2Q)1/q, σ/
√
c2}.

Bounding ∥I13∥H. Using the definition of fα from (6), we see that by (SRC), we have

I13 = (Cπ + α IdH)−1/2(I∗πf⋆ − Cπ(Cπ + α IdH)−1I∗πf⋆)

= (Cπ + α IdH)−1/2(IdH −Cπ(Cπ + α IdH)−1)I∗πf⋆

= (Cπ + α IdH)−1/2(IdH −Cπ(Cπ + α IdH)−1)I∗πT ν
π f

= I∗π(Tπ + α IdL2)−1/2(IdL2 −Tπ(Tπ + α IdL2)−1)T ν
π f

= ŨT 1/2
π (Tπ + α IdL2)−1/2(IdL2 −Tπ(Tπ + α IdL2)−1)T ν

π f,

for some f ∈ L2(π) satisfying ∥f∥L2(π) ≤ R and the partial isometry Ũ : L2(π) → H given by (4).
This gives

∥I13∥H ≤ R sup
0<t≤κ2

|αtν+1/2(t+ α)−3/2|

≤ R sup
0<t≤κ2

|αtν(t+ α)−1| sup
0<t≤κ2

|t1/2(t+ α)−1/2|

≤ R sup
0<t≤κ2

|αtν(t+ α)−1|

≤ Rmax{1, κ2(ν−1)}αmin{ν,1} = c13 α
min{ν,1}, (39)

where we use Lemma E.1 for the last inequality and set c13 := Rmax{1, κ2(ν−1)}.

Collecting all terms. Collecting the bounds (37), (38), (39), together with (35) and taking a union
bound gives with confidence 1− δ

∥I1∥L2(π) ≤ 4(∥I11∥H + ∥I12∥H + ∥I13∥H)

≤ cκ,ν,q,R

(
αmin{ν,1} +

log(4/δ)√
αn

+

√
N (α) log(4/δ)

n
+
√
N (α) · η(δ, n, α)

)
,

(40)
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where we set

η(δ, n, α) := max

{(
1

δnq−1

)1/q(
1

αN (α)

) q−2
2q

,

√
log(4c1/δ)

n

}
,

and with cκ,ν,q,R := 4max{c11, c12, c13}.

B.3.3 Bounding the second term I2

We write again Cα := Cπ + α IdH, Ĉα := Ĉπ + α IdH and find with Lemma E.2 and Corollary D.9
with confidence 1− δ

∥I2∥L2(π) = ∥αIπ(Ĉπ + α IdH)−1fα∥L2(π)

= α∥IπC−1/2
α C1/2

α Ĉ−1/2
α Ĉ−1/2

α C1/2
α C−1/2

α fα∥L2(π)

= α∥C1/2
π C−1/2

α C1/2
α Ĉ−1/2

α Ĉ−1/2
α C1/2

α C−1/2
α fα∥H

≤ 4α ∥C−1/2
α fα∥H,

where we again use (4) and ∥C1/2
π C−1/2

α ∥L(H) ≤ 1. Hence, by (SRC) and the definition of fα, we
have with confidence 1− δ

∥I2∥L2(π) ≤ 4α ∥C−1/2
α fα∥H

≤ 4R sup
0<t≤κ2

|α(t+ α)−3/2tν+1/2|

≤ 4Rmax{1, κ2(ν−1)}αmin{ν,1} = 4c13 α
min{ν,1}, (41)

where we repeat the computation from (39).

B.3.4 Final variance bound

Collecting now (33), (40) and (41) and taking a union bound gives the final bound for the variance.
With confidence 1− δ, we obtain

∥Iπ(f̂α − fα)∥L2(π) ≤ c̃κ,ν,q,R

(
αmin{ν,1} +

log(8/δ)√
αn

+

√
N (α) log(8/δ)

n
+
√
N (α) · η(δ, n, α)

)
,

where we set

η(δ, n, α) := max

{(
1

δnq−1

)1/q(
1

αN (α)

) q−2
2q

,

√
log(8c1/δ)

n

}
,

and with c̃κ,ν,q,R := 8max{c11, c12, c13}.

B.3.5 Bounding the bias Iπfα − f⋆

The bias can be bounded in the same way as in Section B.1.2:

∥Iπfα − f⋆∥L2(π) ≤ Rαmin{ν,1}.

Combining the variance bound and the bias bound yields the result.

B.4 Proof of Corollary 4.4

We first need a standard lemma that allows us to bound the effective dimension based on the eigenvalue
decay of Tπ due to [11, Lemma 11].

Lemma B.1 (Eigenvalue decay). Assume (EVD). Then there exists constant D̃ > 0 such that

N (α) ≤ D̃α−p α > 0.
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For simplicity, we will use the symbols ≲ for inequalities which hold up to a nonnegative multiplica-
tive constant that does not depend on n and δ.

We first note that for every fixed δ ∈ (0, 1), a short calculation shows that there exists an ñ0 ∈ N
such that with the choice

α(n, δ) :=

(
log(8c1/δ)

n

) 1
2min{ν,1}+p

the condition (14) is satisfied (since we have nα(n, δ) → ∞ and
√
nα(n, δ)(1+p)/2 → ∞ for

n → ∞). We may hence apply Proposition 4.3 and with confidence 1− δ, we have

∥Iπ f̂α − f⋆∥L2(π) ≤ c

(
αmin{ν,1} +

log(8/δ)√
αn

+

√
N (α) log(8/δ)

n
+
√
N (α) · η(δ, n, α)

)
,

(42)

with

η(δ, n, α) = max

{(
1

δnq−1

)1/q

·
(

1

αN (α)

) q−2
2q

,

√
log(8c1/δ)

n

}
for all n ≥ ñ0 with a constant c > 0 not depending on δ and n.

We now show there exists n0 ∈ N such that

√
N (α(n, δ)) · η(δ, n, α(n, δ)) ≲

√
log(8c1/δ)

nα(n, δ)p
(43)

for all n ≥ n0, i.e., the subgaussian term asymptotically dominates the regularized Fuk–Nagaev term
under the choice α(n, δ). In fact, note that under N (α) ≤ D̃αp ensured by Lemma B.1, we have

√
N (α)

(
1

αN (α)

) q−2
2q

=

(
1

α

) q−2
2q

N (α)p/q ≤
(
1

α

) q−2
2q

(
D̃

α

)p/q

,

and we hence have

√
N (α) · η(δ, n, α) ≲ max


(

1

δnq−1

)1/q

·
(
1

α

) q−2
2q

(
D̃

α

)p/q

,

√
log(8c1/δ)

nαp

. (44)

We insert the definition of α = α(n, δ) into (44) and isolate the exponents corresponding to 1/n in
both expressions inside of the above maximum. We obtain the exponent

q − 1

q
− 1

2min{ν, 1}+ p
·
(
q − 2

2q
+

p

q

)
=

2(q − 1)(2min{ν, 1}+ p)− (q − 2 + 2p)

2q(2min{ν, 1}+ p)
(45)

for the first expression and

1

2
− p/2

2min{ν, 1}+ p
=

min{ν, 1}
2min{ν, 1}+ p

=
2qmin{ν, 1}

2q(2min{ν, 1}+ p)
(46)

for the second expression. We show that the difference between the numerator of (45) and the
numerator of (46) is nonnegative. We have

2(q − 1)(2min{ν, 1}+ p)− q + 2− 2p− 2qmin{ν, 1} = (4q − 4)min{ν, 1}︸ ︷︷ ︸
≥1/2

+2p(q − 2)︸ ︷︷ ︸
≥0

+2− q

≥ q − 2 + 2− q = 0,

where we use ν ≥ 2, q ≥ 3 and p ∈ (0, 1), hence proving (43).
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Consequently, for n ≥ max{ñ0, n0} and with Lemma B.1 and (43), the bound provided by (42) now
reduces to

∥Iπ f̂α(n,δ) − f⋆∥L2(π) ≲ α(n, δ)min{ν,1} +
log(8c1/δ)√
α(n, δ)n

+

√
log(8c1/δ)

nα(n, δ)p

≲

(
log(8c1/δ)

n

) min{ν,1}
2min{ν,1}+p

+

(
log(8c1/δ)

n

) 2min{ν,1}+p−1/2
2min{ν,1}+p

+

(
log(8c1/δ)

n

) min{ν,1}
2min{ν,1}+p

≲

(
log(8c1/δ)

n

) min{ν,1}
2min{ν,1}+p

with confidence 1− δ, where we use
√
log(8/δ) ≤ log(8/δ) ≤ log(8c1/δ) since c1 ≥ 1, and bound

the exponent of the middle term in the second step using ν ≥ 1/2.

C Excess risk bound for polynomial confidence regime

We now prove a simplified capacity-free excess risk bound based on Proposition 3.1 for the polynomial
confidence regime δ ∈ D2(n, q).
Corollary C.1 (Polynomial confidence regime). Let (MOM) and (SRC) be satisfied. There exists a
constant c > 0 and a subset D̃2(n, q) ⊆ D2(n, q), defined in the proof, such that for all δ ∈ D̃2(n, q),
we have

∥Iπ f̂α2(n,δ) − f⋆∥L2(π) ≤ c · α2(n, δ)
min{ν,1} (47)

with confidence 1− δ, where

α2(n, δ) := max

{(
1

δnq−1

) 2
q(2min{ν,1}+1)

,
log(6/δ)√

n
, κ2

}
.

Proof. Let δ ∈ D2(n, q). We have from Proposition 3.1 with confidence 1− δ

∥Iπ f̂α − f⋆∥L2(π) ≤ Rαmin{ν,1} +
C⋄√
α

(
log(6/δ)

n
+

√
α2min{ν,1} log(6/δ)

n
+

(
Q

δnq−1

)1/q
)
.

Note that δ ∈ D2(n, q) and c1 ≥ 1 ensure that√
log(6/δ)

n
≤
√

log(6c1/δ)

n
≤ 1

σ

(
Q

δnq−1

)1/q

.

Hence, since α2(n, δ) ≤ κ2, we find√
α2min{ν,1} log(6/δ)

n
≤ κ2min{ν,1}

σ

(
Q

δnq−1

)1/q

.

This leads to the bound

∥Iπ f̂α − f⋆∥L2(π) ≤ Rαmin{ν,1} +
C⋄√
α

(
log(6/δ)

n
+ c7

(
1

δnq−1

)1/q
)
,

holding with confidence 1− δ and where we set c7 := Q1/q
(
1 + κ2min{ν,1}

σ

)
.

Next, we observe that condition (9) implies

log(6/δ)

n
≤ 1

Cκ

α√
n
.
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Further assuming

α ≥
(
1

n

) 1
2min{ν,1}−1

, (48)

then
C⋄

Cκ
√
α
· α√

n
≤ C⋄

Cκ
αmin{ν,1} .

The upper bound for the excess risk reduces then to

∥Iπ f̂α − f⋆∥L2(π) ≤ c8 αmin{ν,1} +
c9√
α

(
1

δnq−1

)1/q

.

where we introduce c8 = R+ C⋄
Cκ

and c9 = c7C⋄.

To ensure that the remaining variance part is of the same order as the approximation error part, we
need to choose

α ≥ c10

(
1

δnq−1

) 2
q(2min{ν,1}+1)

, (49)

with c10 =
(

c9
c8

) 2
2min{ν,1}+1

. This finally gives with confidence 1− δ

∥Iπ f̂α − f⋆∥L2(π) ≤ 2c8 αmin{ν,1},

provided conditions δ ∈ D2(n, q) (9), (48), (49) and α ≤ κ2 hold. To simplify the conditions for α,
we observe that for all q ≥ 3, ν ≤ 1 and δ ∈ (0, 1) we have

(
1

n

) 1
2min{ν,1}−1

≤
(

1

δnq−1

) 2
q(2min{ν,1}+1)

.

As a result, condition (49) implies (48) with an appropriate constant. To sum up, the regularization
parameter needs to satisfy

α ≥ c11 ·max

{(
1

δnq−1

) 2
q(2min{ν,1}+1)

,
log(6/δ)√

n

}
,

with c11 = max{1, c10, Cκ}.

To ensure that α remains bounded by κ2 it is sufficient to choose n sufficiently large:

n ≥ n0(δ) := c11 ·max
{
κ−2 log2(6/δ), δ−

1
q−1κ−γ

}
,

with γ = 2q(2min{ν,1}+1)
q−1 . Recall that δ ∈ D2(n, q) requires

n ≤ nmax(δ) :=

(
Q2

σ2q

) 1
q−2

δ−
2

q−2 · log(6c1/δ)−
q

q−2 ,

so we need to restrict D2(n, q) such that both conditions for n are met. Letting now δ ∈ D̃2(n, q)
with

D̃2(n, q) := {δ ∈ D2(n, q) : n0(δ) ≤ nmax(δ)},
then (47) holds with confidence 1− δ.

D Concentration bounds

We collect the concentration bounds used in the main text of this work and prove Proposition 5.1.
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D.1 Hoeffding inequality in Hilbert spaces

The following bound is classical and follows as a special case of [66, Theorem 3.5], see also [67,
Section A.5.1].
Proposition D.1 (Hoeffding inequality). Let ξ, ξ1, . . . ξn be independent random variables taking
values in a Hilbert space X such that E[ξ] = 0 and ∥ξ∥X ≤ L almost surely. Then for all t > 0, we
have

P

[∥∥∥∥∥ 1n
n∑

i=1

ξi

∥∥∥∥∥
X

≥ t

]
≤ 2 exp

(
− nt2

2L2

)
.

D.2 Bennett inequality in Hilbert spaces

We now give a version of a Bennett-type inequality going back to [66, Theorem 3.4]. We use the
confidence bound version as derived by [4, Lemma 2].
Proposition D.2 (Bennett inequality). Let ξ, ξ1, . . . ξn be independent and identically distributed
random variables taking values in a Hilbert space X such that ∥ξ∥X ≤ L almost surely and
σ2 := E[∥ξ∥2X ]. Then for any δ ∈ (0, 1), we have∥∥∥∥∥ 1n

n∑
i=1

ξi − E[ξ]

∥∥∥∥∥
X

≤ 2L log(2/δ)

n
+

√
2σ2 log(2/δ)

n

with probability at least 1− δ.

D.3 Fuk–Nagaev inequality in Hilbert spaces

The bound in Proposition 5.1 given in the main text is a sharper version of a more general bound
given by [27] for general normed spaces, which we state here for completeness.

The original proof of the result below relies on an inconsistent exponential moment bound, which we
address by providing an alternative bound alongside a detailed proof. We were made aware of this
fact by Christian Fiedler [68], who contributed to the alternative proof presented here.
Proposition D.3 (Fuk–Nagaev inequality, [27], Theorem 3.5.1). Let ξ1, . . . ξn be independent and
identically distributed random variables taking values in a normed space X with measurable norm
such that

E[ξi] = 0,

n∑
i=1

E
[
∥ξi∥2X

]
< B2 and

n∑
i=1

E[∥ξi∥qX ] < A (50)

for some constants B2 > 0, A > 0 and q ∈ N, q ≥ 3. Then there exist two universal constants
c1 > 0 and c2 > 0 depending only on q, such that with Sn :=

∑n
i=1 ξi we have for every t > 0 that

P
[
∥Sn∥X − E[∥Sn∥X ] ≥ tB

]
≤ c1

(
A

Bqtq
+ exp(−c2t

2)

)
.

Compared to the result above, Proposition 5.1 removes the excess term E[∥Sn∥X ] on the left hand
side by making use of the geometry of the Hilbert space norm (see [31, 66]).

We now prove Proposition 5.1 and emphasize that it can be directly extended to random variables
in (2, D)-smooth Banach spaces by incorporating arguments from [66] with adjusted constants.
We provide the proof in three parts: In Appendix D.3.1, we give an exponential moment bound.
Appendix D.3.2 contains the core proof of Proposition 5.1 and incorporates the exponential moment
bound into a Chernoff bound that is obtained via a truncation argument. Appendix D.3.3 provides the
final optimization of the Chernoff bound.

D.3.1 Exponential moment bound

We now provide a sharpened version of [27, Lemma 3.5.1] that allows to bound the exponential
moments of sums of random variables in Hilbert spaces. The proof of [27, Lemma 3.5.1] is lacking
details and is inconsistent, as it generally seems to require bounded scaling factors h > 0 in the
exponent, but the result is stated for all h > 0. Our proof holds for all h > 0 and gives a slightly
adjusted bound.
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Lemma D.4. Let ξ1, . . . ξn be independent random variables taking values in a separable Hilbert
space X such that the conditions (50) are satisfied and additionally ∥ξi∥X ≤ L holds almost surely
for some L > 0 and all 1 ≤ i ≤ n. Then for all h > 0, we have

E[cosh(h∥Sn∥X )] ≤ exp
(
c̃2h

2B2 + c̃qAhqehL
)
,

where the positive multiplicative constants c̃2 and c̃q only depend on q.

The upper bound of Lemma D.4 differs from [27, Lemma 3.5.1] in the sense that it removes an
additive constant in the exponent. Furthermore, our constant c̃2 of the quadratic term depends on q,
while c̃2 = 1/2 for all q in [27, Lemma 3.5.1], which seems to conflict with unbounded h > 0.

Proof. We have

E[cosh(h∥Sn∥X )] ≤
n∏

i=1

E
[
eh∥ξi∥X − h∥ξi∥X

]
≤ exp

(
n∑

i=1

E[eh∥ξi∥X − 1− h∥ξi∥X ]

)
where the first inequality is due to [31, Theorem 3], the second inequality follows from the fact that
we have x ≤ exp(x− 1) for all x ∈ R. We hence need to show

n∑
i=1

E[eh∥ξi∥X − 1− h∥ξi∥X ] ≤ c̃1h
2B2 + c̃qAhqehL.

We start by expanding the term on the left hand side as
n∑

i=1

eh∥ξi∥X − 1− h∥ξi∥X =

n∑
i=1

∞∑
j=2

hj∥ξi∥jX
j!

.

The term for the index j = 2 is immediately bounded as

E

[
n∑

i=1

h2∥ξi∥2X
2!

]
≤ 1

2
h2B2.

Hence, the claim now reduces to showing

E

 n∑
i=1

∞∑
j=3

hj∥ξi∥jX
j!

 ≲ h2B2 +AhqehL

with constants only depending on q. We split the inner sum over j at the index q and obtain

E

 n∑
i=1

∞∑
j=3

hj∥ξi∥jX
j!

 = E

 n∑
i=1

q−1∑
j=3

hj∥ξi∥jX
j!

+ E

 n∑
i=1

∞∑
j=q

hj∥ξi∥jX
j!

.
We now proceed to bound both terms on the right hand side individually.

Bounding the first summand. We address the first term as

E

 n∑
i=1

q−1∑
j=3

hj∥ξi∥jX
j!

 ≤ E

 n∑
i=1

q−1∑
j=3

j−2
q−2 · hq∥ξi∥qX + q−j

q−2 · h2∥ξi∥2X
j!


=

q−1∑
j=3

1

j!

n∑
i=1

j − 2

q − 2
· hqE[∥ξi∥qX ] +

q − j

q − 2
· h2E[∥ξi∥2X ]

=

q−1∑
j=3

1

j!

(
j − 2

q − 2
· hqA+

q − j

q − 2
· h2B2

)
≲ hqA+ h2B2 ≤ hqAehL + h2B2,

where we apply Lemma E.3 with x = h∥ξj∥X , a = 1 and ρ = j to each individual term in the sum
and use that h > 0 and L > 0 ensure ehL ≥ 1. Note that the unspecified constants only depend on q.
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Bounding the second summand. It remains to bound the second sum. Almost surely, we have

E

 n∑
i=1

∞∑
j=q

hj∥ξi∥jX
j!

 = E

[
n∑

i=1

hq∥ξi∥qX
q!

+
hq+1∥ξi∥q+1

X
(q + 1)!

· · ·
]

= E

[
n∑

i=1

hq∥ξi∥qX
q!

(
1 +

h∥ξi∥X
(q + 1)

+
h2∥ξi∥2X

(q + 1)(q + 2)
· · ·
)]

≤ E

[
n∑

i=1

hq∥ξi∥qX
q!

(
1 +

h1L

(q + 1)
+

h2L2

(q + 1)(q + 2)
· · ·
)]

≤ hq

q!
ehL

n∑
i=1

E[∥ξi∥qX ] ≤ hq

q!
ehLA,

proving the claim.

D.3.2 Core proof of Proposition 5.1

We can now prove Proposition 5.1 by modifying the truncation argument and Chernoff bound given
by [27, Section 3.5.2] in combination with Lemma D.4. Let us assume that (50) holds. For L > 0,
we introduce the truncated random variables

ξ̃i := ξi 1 [∥ξi∥X≤L ], S̃n :=

n∑
i=1

ξ̃i.

In contrast to Sn, the truncated sum S̃n is not necessarily centered. Here, our version of the proof
differs from the proof of [27, Theorem 3.5.1]. The original proof approximates the centered norm
∥Sn∥X − E[∥Sn∥X ] with the truncated centered norm ∥S̃n∥X − E[∥S̃n∥X ], leading to the excess
term E[∥Sn∥X ] in the event for which the tail is bounded. In contrast, we perform the centering
directly in the norm: we approximate ∥Sn∥X with ∥S̃n − E[S̃n]∥X .

We first note that the difference between ∥S̃n∥X and its centered version ∥S̃n − E[S̃n]∥X can be
bounded conveniently:∣∣∣∥S̃n∥X − ∥S̃n − E[S̃n]∥X

∣∣∣ ≤ ∥E[S̃n]∥H = ∥E[S̃n]− E[Sn]∥X

≤
n∑

i=1

E
[
∥ξ̃i − ξi∥X

]
=

n∑
i=1

E
[
1 [∥ξi∥X>L ] ∥ξi∥X

]
=

n∑
i=1

E

[
1 [∥ξi∥X>L ]

∥ξi∥q−1
X

∥ξi∥q−1
X

∥ξi∥X
]

≤ A

Lq−1
. (51)

We now verify the conditions (50) for the centered sum S̃n − E[S̃n]. We obviously have

n∑
i=1

E[∥ξ̃i − E[ξ̃i]∥2X ] ≤
n∑

i=1

E[∥ξ̃i∥2X ] ≤
n∑

i=1

E[∥ξi∥2X ] ≤ B2.

28



Furthermore, from Minkowski’s inequality followed by (a+ b)q ≤ 2q−1(aq + bq) for a, b ≥ 0 and
Jensen’s inequality, we analogously obtain

n∑
i=1

E[∥ξ̃i − E[ξ̃i]∥qX ] ≤
n∑

i=1

(
E[∥ξ̃i∥qX ]1/q + E[∥ξ̃i∥X ]

)q
≤ 2q−1

n∑
i=1

(
E[∥ξ̃i∥qX ] + E[∥ξ̃i∥X ]q

)
≤ 2q

n∑
i=1

E[∥ξ̃i∥qX ] ≤ 2q
n∑

i=1

E[∥ξi∥qX ] ≤ 2qA =: Ã.

We now provide the final tail bound for the norm of Sn by approximating it with the centered
truncated sum S̃n − E[S̃n]. For every t > 0 and h > 0 we have

P[∥Sn∥X ≥ tB] ≤ P[Sn ̸= S̃n] + P[∥S̃n∥X ≥ tB]

≤ A

Lq
+ P[∥S̃n∥X ≥ tB] (Markov’s inequality)

≤ A

Lq
+ P[∥S̃n − E[S̃n]]∥X ≥ tB −A/Lq−1] (by (51))

≤ A

Lq
+ exp

(
−htB +

hA

Lq−1

)
E[exp(h∥S̃n − E[S̃n]∥X )] (Chernoff bound)

≤ A

Lq
+ exp

(
−htB +

hA

Lq−1

)
2E[cosh(h∥S̃n − E[S̃n]∥X )] (cosh(x) = (ex + e−x)/2)

≤ A

Lq
+ 2 exp

(
−htB +

hA

Lq−1
+ c̃2h

2B2 + c̃qÃhqehL
)

(Lemma D.4)

≤ 2

(
Ã

Lq
+ exp

(
−htB +

hÃ

Lq−1
+ c̃2h

2B2 + c̃qÃhqehL

))
.

We derive an upper bound of the last expression in the parentheses over all choices of L > 0 and
h > 0 as shown in detail in Appendix D.3.3, giving

P
[
∥Sn∥X ≥ tB

]
≤ c1

(
Ã

Bqtq
+ exp(−c2t

2)

)
(52)

for some positive constants c1 and c2 only depending on q. Note that we absorb the factor 2q from
Ã = 2qA into the generic constant c1 in the resulting bound.

Whenever the ξi satisfy E[∥ξi∥2X ] = σ2 and E[∥ξi∥qX ] = Q for some constants σ2, Q > 0, we may
substitute B = nσ2 and A = nQ in (52). Rearranging proves the bound given in Proposition 5.1.

D.3.3 Chernoff bound optimization

The final bound we want to obtain is of the form

min
h,L≥0

Ã

Lq
+ exp

(
−htB +

hÃ

Lq−1
+ c̃2h

2B2 + c̃qÃhqehL

)
≤ c1

(
Ã

Bqtq
+ exp(−c2t

2)

)
(53)

with positive constants c1 and c2 only depending on q. We now adapt the idea of the original
optimization argument by [27, pp. 105] to the setting of our Lemma D.4. We first introduce the
shorthand notation

∆(t) := Ã/(Bqtq) and Λ(t) := L/(tB).

With this notation, we rewrite the term on the left hand side of (53) as
∆(t)

Λ(t)q
+ exp

(
−htB + htB∆(t)/Λ(t)q−1 + c̃2h

2B2 + c̃q(htB)q∆(t)eΛ(t)thB
)

=
∆(t)

Λ(t)q
+ exp

(
htB

(
∆(t)/Λ(t)q−1 − 1

)
+ c̃2h

2B2 + c̃q(htB)q∆(t)eΛ(t)thB
)
. (54)
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Note that for all t > 0, Λ(t) can be chosen independently of ∆(t) by adjusting the truncation level L
in our optimization. Note also that ∆(t) is exactly the first summand in the right hand side of the
final desired bound (53). We will check the validity of the bound of the type (53) based on a case
distinction.

Large ∆(t). We assume ∆(t) ≥ 1. For every t > 0, we may choose L such that Λ(t) > 1 and
proceed to bound (54) as

∆(t)

Λ(t)q
+ exp

(
htB

(
∆(t)/Λ(t)q−1 − 1

)
+ c̃2h

2B2 + c̃q(htB)q∆(t)eΛ(t)thB
)

≤ ∆(t) + exp
(
htB(∆(t)− 1) + c̃2h

2B2 + c̃q(htB)q∆(t)eΛ(t)thB
)

≤ ∆(t) + 2 ≤ 3∆(t) + exp(−c2t
2)

for any c2 > 0, if we choose h small enough such that

exp(htB (∆(t)− 1)︸ ︷︷ ︸
≥0

+c̃2h
2B2 + c̃q(htB)q∆(t)eΛ(t)thB) ≤ 2.

This establishes (53).

Small ∆(t). We therefore need to consider the case where ∆(t) < 1. Without loss of generality,
in this setting we again assume that we are choosing L appropriately to ensure that Λ(t) > 1. This
gives us

∆(t)

Λ(t)q
≤ ∆(t),

and hence we only need to bound the exponential term in (54), as the polynomial term satisfies the
final bound (53). We distinguish two cases, as the exponential term in (54) behaves differently for
different ratios of t2/ log(1/∆(t)).

Small ∆(t), case 1: We assume ∆(t) < 1, Λ(t) > 1 and t2 ≤ 6c̃2 log(1/∆(t)). We will show that
in this case, the exponential term in (54) can be bounded by c1 exp(−c2t

2).

We choose the optimization parameter h := zt/B with some z > 0, which we will determine later.
The exponent in the right hand side of (54) can now be written as

zt2
(
∆(t)/Λ(t)q−1 − 1

)
+ z2c̃2t

2 + c̃qz
qt2q∆(t)eΛ(t)zt2

=t2
(
∆(t)/Λ(t)q−1 − z + c̃2z

2
)
+ c̃qz

qt2q∆(t)eΛ(t)zt2

≤t2
(
z∆(t)− z + c̃2z

2
)
+ c̃qz

q(6c̃2 log(1/∆(t))q∆(t)1−6c̃2Λ(t)z

≤− c1t
2 + 6q c̃q c̃

q
2z

qe−q

(
q

c2

)q

, (55)

where we invoke Lemma E.4 in the last step and choose z small enough such that we have

−z∆(t) + z − c̃2z
2 > c1 > 0 and 1− 6c̃2Λ(t)z > c2 > 0,

in which case the exponent estimate (55) is bounded by −c1t
2 + c̃, yielding the claim.

Small ∆(t), case 2: We assume ∆(t) < 1, Λ(t) > 1 and t2 > 6c̃2 log(1/∆(t)). We will show that
in this case, the exponential term in (54) can be bounded by c1∆(t).
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In this regime, we choose the optimization parameter h := z log(1/∆(t))/(tB) > 0 with some
z > 0 which we will determine later. The exponent in (54) with this choice becomes

z log(1/∆(t))︸ ︷︷ ︸
>0

(−1 + ∆(t)/Λ(t)q−1) + c̃2z
2t−2 log(1/∆(t))2︸ ︷︷ ︸

<t2 log(1/∆(t))/(6c̃2)

+c̃qz
q log(1/∆(t))q∆(t)eΛ(t)z log(1/∆(t))

≤ z log(1/∆(t))(−1 + ∆(t)) +
z2

6
log(1/∆(t)) + c̃qz

q log(1/∆(t))q∆(t)1−6c̃2Λ(t)z

= log(∆(t))︸ ︷︷ ︸
<0

(z −∆(t)z − z2

6
) + c̃qz

q log(1/∆(t))q∆(t)1−6c̃2Λ(t)z

≤ log(∆(t))︸ ︷︷ ︸
<0

+c̃qz
qe−q

(
q

c

)q

, (56)

where in the last step we apply Lemma E.4 and choose z small enough such that

z −∆(t)z − z2

6
≥ 1 and 1− 6c̃2Λ(t)z > c > 0.

We finally obtain an upper bound of the exponent (56) as log(∆(t)) + c̃, yielding the claim.

Final bound: The final bound (53) results from considering all of the the above cases and choosing
the individual constants c1 and c2 large enough such that all cases are satisfied simultaneously (for
example by choosing the maximum of the individual constants obtained above).

D.4 Concentration of empirical covariance operators

We have the following classical bound on the estimation error of the empirical covariance operators
when Proposition D.1 is applied to the centered random operators ξi := ϕ(Xi)⊗ ϕ(Xi)− Cπ which
are bounded by 2κ2 in Hilbert–Schmidt norm under Assumption 2.1. Note that the operator norm
can be bounded by the Hilbert–Schmidt norm.
Corollary D.5 (Sample error of empirical covariance operator). Under Assumption 2.1, we have∥∥∥Ĉπ − Cπ

∥∥∥
S2(H)

≤ 2κ2

√
2 log(2/δ)

n

with probability at least 1− δ.

We now recall a result by [69, Proposition 1].
Proposition D.6 (Empirical inverse, [69], Proposition 1). Let Assumption 2.1 hold. For all δ ∈
(0, 1), n ∈ N, α > 0, denote

B(n, δ, α) := 1 + log2(2/δ)

(
2κ2

nα
+

√
4κ2N (α)

nα

)2

. (57)

With probability at least 1− δ∥∥∥(Ĉπ + α IdH)−1(Cπ + α IdH)
∥∥∥
L(H)

≤ 2B(n, δ, α). (58)

In particular, if
1

nα
≤ N (α) , 16max{1, κ4} log2(2/δ) N (α)

α
≤ n, (59)

then
∥∥∥(Ĉπ + α IdH)−1(Cπ + α IdH)

∥∥∥
L(H)

≤ 4.

Proof. We prove the particular case. Note that if (nα)−1 ≤ N (α),

B(n, δ, α) ≤ 1 + log2(2/δ)(κ+ 1)2
4κ2N (α)

nα
≤ 1 + 16max{1, κ4} log2(2/δ)N (α)

nα
.

Therefore, if 16max{1, κ4} log2(2/δ)N (α) ≤ nα, then B(n, δ, α) ≤ 2.
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We next give a Corollary, providing a simplified bound under a worst case assumption for the effective
dimension that can be applied without information about the eigenvalue decay.

Corollary D.7 (Empirical inverse, worst case scenario). Let Assumption 2.1 hold. Assume that
N (α) ≤ cα−1 for some c > 0. Then, with confidence 1− δ, we have∥∥∥(Ĉπ + α IdH)−1(Cπ + α IdH)

∥∥∥
L(H)

≤ 4,

provided that

Cκ
log(2/δ)

α
≤ √

n, Cκ := 2(1 +
√
c) ·max{1, κ2} .

Proof. Using N (α) ≤ cα−1 and plugging it into (57), we obtain

B(n, δ, α) ≤ 1 + log2(2/δ)

(
2κ2

nα
+

2
√
cκ√
nα

)2

.

Note that
2κ2

nα
+

2
√
cκ√
nα

≤ 2(1 +
√
c) ·max{1, κ2}√

nα
=

Cκ√
nα

.

Therefore,

B(n, δ, α) ≤ 1 + log2(2/δ) · C2
κ

nα2
.

To ensure B(n, δ, α) ≤ 2, it suffices that

log2(2/δ) · C2
κ

nα2
≤ 1 ⇐⇒ Cκ · log(2/δ)

α
≤ √

n.

Under this condition, we obtain B(n, δ, α) ≤ 2, and hence∥∥∥(Ĉπ + αI)−1(Cπ + αI)
∥∥∥ ≤ 4,

as claimed.

Remark D.8 (Worst case scenario). Note that, by Assumption 2.1, we always have

N (α) ≤ tr(Cπ)α−1 = E[∥ϕ(X)∥2H]α−1 ≤ κ2α−1.

We therefore see that the constant c in the above assumption always exists and satisfies c ≤ κ2.

Under the eigenvalue decay assumption (EVD), the conditions of Proposition D.6 can be simplified.

Corollary D.9 (Empirical inverse under (EVD)). Let Assumption 2.1 and (EVD) hold. Then, with
confidence 1− δ, we have ∥∥∥(Ĉπ + α IdH)−1(Cπ + α IdH)

∥∥∥
L(H)

≤ 4,

provided that

log(2/δ)

(
2κ2

nα
+

2
√

D̃κ√
nα(1+p)/2

)
≤ 1,

where D̃ is defined in Lemma B.1.

Proof. By Lemma B.1, under (EVD), there exists a constant D̃ > 0 such that N (α) ≤ D̃α−p.
Inserting this bound into (57) leads to

B(n, δ, α) ≤ 1 + log2(2/δ)

(
2κ2

nα
+

2
√
D̃κ√

nα(1+p)/2

)2

.
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We can use Proposition D.6 to bound the weighted norm of a function in H by an empirically
weighted and regularized norm.
Lemma D.10 (Concentration of weighted regularized norm). Under Assumption 2.1, for all f ∈ H
and all α > 0 and s ∈ [0, 1], we have

∥Cs
πf∥H ≤ 2sB(n, δ, α)s

∥∥∥(Ĉπ + α IdH)sf
∥∥∥
H

(60)

with probability at least 1− δ.

Proof. We have

∥Cs
πf∥H ≤

∥∥Cs
π(Cπ + α IdH)−s

∥∥
L(H)

∥∥∥(Cπ + α IdH)s(Ĉπ + α IdH)−s
∥∥∥
L(H)

∥∥∥(Ĉπ + α IdH)sf
∥∥∥
H
.

(61)
We bound the terms on the right hand side individually. Applying Lemma E.2 to the first term on the
right hand side of (61), we have∥∥Cs

π(Cπ + α IdH)−s
∥∥
L(H)

≤
∥∥Cπ(Cπ + α IdH)−1

∥∥s
L(H)

≤ 1.

The second term can be bounded with Proposition D.6.

E Miscellaneous results

We recall a standard result that addresses the saturation property of Tikhonov regularization, see e.g.
[59, Example 4.15].
Lemma E.1. Let α > 0 and ν > 0. We have

sup
t∈[0,κ2]

αtν

t+ α
≤ max{1, κ2(ν−1)}αmin{ν,1}.

We will also frequently use the following classical bound for products of fractional operators.
Lemma E.2 (Cordes inequality, [70]). Let s ∈ [0, 1] and A,B ∈ L(H) be positive-semidefinite
selfadjoint. Then we have ∥AsBs∥L(H) ≤ ∥AB∥sL(H).

The next result is part of [40, Proposition 3.5]. It allows us to bound moments between 2 and q. For
convenience, we provide a detailed, self-contained proof.
Lemma E.3. Let q > 2. For all ρ ∈ [2, q], a ∈ R>0, and x ∈ R>0 we have

(q − 2)xρ ≤ (ρ− 2)aρ−qxq + (q − ρ)aρ−2x2. (62)

Proof. We first show that

(q − 2)
(x
a

)ρ−2

≤ (ρ− 2)
(x
a

)q−2

+ (q − ρ). (63)

For this, define for some y ∈ R>0 and t ∈ R>0 the function f : [0, t] → R by f(s) = exp(ln(y)s).
Note that f is convex (since f ′(s) = f(s) ln(y), f ′′(s) = f(s) ln(y)2 > 0). For s ∈ [0, t] we then
get

ys = f(s) = f((1− s/t) · 0 + s/t · t)
≤ (1− s/t)f(0) + s/t · f(t) = (1− s/t) + s/t · yt

and multiplying both sides by t leads to

tys ≤ syt + (t− s).

Setting t = q − 2, s = ρ− 2, and y = x/a then shows (63). Finally, multiplying both sides of this
with x2/a2−ρ establishes the result.

Finally, we require the following basic inequality.
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Lemma E.4. Consider the function f : (0, 1) → R+ given by f(α) = log(1/α)qαs for some s > 0
and q > 0. Then we have

sup
α∈(0,1)

f(α) ≤ e−q
(q
s

)q
.

Proof. We may substitute the transformation x := log(1/α) ∈ (0,∞) and consider f(x) =
xq exp(−sx) instead. Note that f is nonnegative on (0,∞) and that f(0) = limx→∞ f(x) =
limx→0+ f(x) = 0. The derivative f ′(x) = exp(−sx)(qxq−1 − sxq) has the unique root x⋆ = q/s
and we hence obtain f(x⋆) = exp(−q)(q/s)q as the maximal value.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We specifically point out the settings and detailed contributions of our work in
both abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In describing our assumptions as well as discussing our theoretical results, we
specifically list our limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We specifically list all assumptions in the main text and refer to each as-
sumption individually for every theoretical result we obtain. All proofs are reported in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details (including parameter settings) required to perform and reproduce
our experiment are reported in the paper and can also be found in the GitHub repository,
which we provide for the reader.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a GitHub link containing the source code which covers the
synthetic data generation as well as the computations and plots reported in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All required details and parameter settings are reported in the paper and can
also be found in the source code on GitHub.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We plot quantile functions of the excess risks and thereby capture the full
distribution of the random quantities of interest.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explicitly state that the experiments can be run on any consumer laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics—this paper conforms with the Code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper mainly focuses on investigating the learning efficiency of ridge
regression. We therefore believe our paper does not have any negative societal impacts. We
explain how our theory can improve our understanding of various learning algorithms in the
introduction which could be potential positive societal impacts.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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