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Abstract—In recent years, pre-trained language models have 
emerged as a transformative technology in the field of Natural 
Language Processing (NLP), reshaping how we approach 
language understanding and generation tasks. From early 
innovations in word embeddings, such as Word2Vec and GloVe, 
to the advent of sophisticated transformer-based architectures like 
BERT, GPT-3, and their numerous variants, these models have 
demonstrated unprecedented capabilities across a wide range of 
NLP applications, including machine translation, text 
summarization, question answering, and sentiment analysis. 
However, their immense size and computational requirements 
have posed significant challenges, particularly for fine-tuning and 
deployment in resource-constrained environments. This paper 
centers on the Transformer model and conducts an in-depth 
exploration of LoRA (Low-Rank Adaptation), a lightweight fine-
tuning technique designed to address these challenges by enabling 
efficient adaptation of pre-trained language models to 
downstream tasks with minimal computational and storage 
overhead. We not only delve into the fundamental principles of 
LoRA but also review various improvements and derivative 
technologies that have been built upon its foundation. To provide 
a structured understanding, this paper categorizes these 
advancements into two primary directions:  Enhancing Training 
Efficiency, focusing on techniques that reduce resource 
consumption, speed up training processes, and enable model 
adaptation with limited computational budgets; and Improving 
Training Performance, which encompasses methods aimed at 
achieving better task-specific accuracy, robustness, and 
generalization capabilities. Within these two overarching 
categories, we analyze several representative optimizations and 
extensions, highlighting their unique contributions and practical 
applications. Beyond summarizing existing research, this paper 
also offers a forward-looking perspective on emerging trends and 
unresolved challenges in this domain. We discuss hot topics such 
as the integration of LoRA with other lightweight techniques (e.g., 
adapter tuning, prompt tuning, and pruning) and the potential for 
creating hybrid approaches that combine their strengths. 
Additionally, we identify promising directions for future 
exploration, including further optimizations of LoRA's low-rank 
framework, its scalability to even larger models, and its 
applications in multimodal and cross-lingual contexts. 
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I. INTRODUCTION  
NLP is a crucial branch of AI dedicated to enabling 

computers to comprehend, generate, and manipulate human 
language [1-3]. The development of NLP has evolved over 
time, from early rule-based language processing to statistical 
and machine learning methods, ultimately culminating in 
modern NLP techniques consisting of deep learning [4] and 
neural networks. In earlier times, researchers mainly relied on 
rule-based or statistical methods to process language. With the 
advancement of machine learning, techniques like SVM and 

Random Forest were introduced to NLP for various tasks, for 
example, text classification and sentiment analysis. As deep 
learning technologies emerged, particularly the development 
of neural networks, NLP witnessed revolutionary progress. 
Models like CNN and RNN were employed to process textual 
data, leading to achievements in word embeddings, language 
models and machine translation. 

Nowadays, the emergence of pretrained language models 
has driven the forefront of NLP research. These models 
undergo large-scale pretraining on extensive text corpora and 
are fine-tuned for downstream tasks, resulting in significant 
performance improvements across multiple tasks. However, 
with the growing scale of pretrained language models, 
adapting them to downstream tasks becomes a critical concern. 
Full fine-tuning requires maintaining a large parameter 
backup for each task, which becomes expensive as the number 
of downstream tasks increases. This problem is exacerbated as 
pretrained models approach sizes of hundreds of billions or 
even trillions of parameters. Consequently, Parameter-
Efficient Fine-Tuning (PEFT) [5] arises. PEFT such as 
Prompt Tuning [6] and Prefix-Tuning [7] primarily focuses on 
fine-tuning a tiny subset of trainable parameters and aims to 
achieve performance comparable to full fine-tuning. This 
approach also addresses potential structural mismatches 
between inputs and outputs of upstream and downstream tasks. 
Low-Rank Adaptation (LoRA) is a groundbreaking technique 
introduced by Edward Hu et al. in 2021 within the domain of 
PEFT. It efficiently fine-tunes pretrained models by 
introducing low-rank approximations to weight matrices, 
reducing the number of parameters, which needed to be 
regenerated in the fine-tuning process. 

Following the introduction of LoRA, numerous 
researchers have further optimized and improved the 
technique to make it more adaptable to diverse scenarios and 
enhance its performance. But the summary analysis and 
comparative literature are insufficient. Thus, this paper 
reviews and analyzes the researches related to LoRA and 
summarize the advancements in lightweight fine-tuning 
techniques based on LoRA over the past two years. This 
encompasses improvements to the LoRA technique itself and 
novel fine-tuning methods that have emerged based on the 
foundational concept of LoRA. 

II. BACKGROUDS 

A. Large language model 
Large language models (LLMs) are designed to handle 

human language. They are trained on a massive quantity of 
textual data, which make them to be capable of performing a 
various scope of missions, including text generation, 
summarization and more. The defining characteristic of LLMs 
is their massive scale, with billions of parameters that enable 



them to study complex patterns. These models typically base 
on the architectures of deep learning like transformers, which 
contribute to their fantastic capability across many NLP tasks.         

Due to the continuous expansion of dataset sizes, the cost 
of training large language models like GPT-3 175B has 
become extremely substantial. In order to make these massive 
pretrained models more practical for downstream tasks, the 
concept of PEFT has emerged. PEFT aims to effectively fine-
tune pretrained language models with minimal required 
parameters and computational resources. It constitutes a set of 
techniques in NLP tasks, enabling pretrained language models 
to fit in downstream missions with fewer computational 
resources compared to traditional fine-tuning methods. These 
techniques hold great significance for researchers and 
developers who might not have access to powerful hardware 
or need to perform model fine-tuning on resource-constrained 
devices. LoRA is a pivotal fine-tuning technique in the PEFT 
realm introduced by Microsoft. 

B. Low rank adaption 
LoRA is a fine-tuning method designed to simplify large 

models by approximating their complex high-dimensional 
structures with lower-dimensional ones. Specifically applied 
to language models, LoRA involves creating a smaller base 
model that can be effectively tailored for various downstream 
tasks. Extensive research has revealed that large models 
contain a significant amount of unnecessary and redundant 
information in their high-dimensional structure. In contrast, 
there exists a more compact intrinsic dimension that captures 
the essential information. 

Therefore, during the training phase, it is possible to focus 
on learning these low-rank intrinsic dimensions independently, 
resulting in a more efficient and resource-friendly model. To 
illustrate, consider the case of fine-tuning a massive model 
like GPT-3 175B with the Adam optimizer. With LoRA, it 
becomes feasible to decrease the amount of trainable 
parameters by 10,000 times and reduce GPU memory 
requirements by threefold. 

 The primary components of LoRA comprise: 

 Pretrained Language Model: This refers to a large-scale 
language model, such as GPT-3 or BERT, that serves as the 
foundation for the adaptation. 

 Low-Rank Adaptation Layer: Low-rank matrices are 
introduced, which are attached to the weight matrices of the 
pretrained model. They play a significant role in 
approximating the model's high-dimensional structure. 

Fine-Tuning Process: This step involves training the low-
rank matrices, allowing them to adapt to the specific tasks and 
data. This fine-tuning process is a key element in making the 
model more efficient and task-specific. 

LoRA parameterizes two small matrices A,B and a low-
rank matrix ∆W.-s the product of them: 

𝒉 = 𝑾𝟎𝒙 + ∆𝑾𝒙 = 𝑾𝟎𝒙 + 𝑩𝑨𝒙 (1) 

where 𝑾𝟎, ∆𝑾 ∈ ℝ𝒅𝟏×𝒅𝟐 ,  𝑨 ∈ ℝ𝒓×𝒅𝟐  and 𝑩 ∈ ℝ𝒅𝟏×𝒓  with 
𝒓 ≪ {𝒅𝟏, 𝒅𝟐}. In the fine-tuning process, 𝑾𝟎 is frozen and 
only 𝑨 and 𝑩 are trained. The rank 𝒓 is much smaller than the 
dimension of 𝑾𝟎  . The detail of the structure of LoRA is 
shown in Fig. 1. 

 

 

Fig. 1. Structure of LoRA 
 

 

III. RESEARCH BASED ON LORA METHOD 

A. Improve the efficiency of training process 
Although LoRA effectively reduces the number of 

trainable parameters, when applied to larger models like GPT-
4 1.8T, the simplified trainable parameter count through 
LoRA remains substantial. Therefore, it is necessary to further 
optimize beyond the original LoRA framework to enhance 
training efficiency, decrease training overhead, and ensure the 
accuracy of prediction results. 

One effective method for reducing the number of 
parameters in LoRA involves freezing the matrix A, leading 
to a substantial reduction in trainable parameters and an 
enhancement in training efficiency. This variant is known as 
LoRA with Frozen-A (LoRA-FA) [8,9], which excels at 
significantly minimizing the activation memory footprint of 
LoRA without introducing any additional computational 
overhead. Specifically, the strategy is to freeze both the 
pretrained weight matrix 𝑾 and 𝑨, while only updating the 
projection-up weight matrix 𝑩. By adopting this approach, the 
training process focuses solely on computing the gradient of 
𝑩, which requires storing a much smaller input derived from 
AX during the feed-forward pass. Given that 𝑟 ≪  𝑑 (𝑾 ∈
ℝ𝑑×𝑑 , 𝑨 ∈ ℝ𝑑×𝑟 , and 𝑩 ∈ ℝ𝑟×𝑑 ), the memory requirement 
for activations in LoRA-FA is significantly reduced. 
Furthermore, LoRA-FA achieves a remarkable reduction in 
the number of trainable parameters, reducing them from 𝑑2to 
𝑑𝑟 , which amounts to a reduction by a factor of 2048. 
Initializations are critical in this context, with 𝑨  being 
randomly initialized from a normal distribution and 𝑩 
initialized as zero. These initializations ensure that pretrained 
models with LoRA-FA modules maintain their model 
predictions before fine-tuning. 

It's worth noting that LoRA-FA doesn't alter the feed-
forward and back-propagation computations of LoRA, and 
thus, it doesn't introduce additional computational overhead 
during the fine-tuning phase. During inference, similar to 
LoRA, it can merge low-rank weights by adding 𝑨，𝑩 into 
𝑾, which means that it doesn’t introduce any extra inference 

latency compared to a fully fine-tuned model. 
The advantage of LoRA-FA lies in maintaining a certain 

level of accuracy while significantly decreasing 
computational requirements and reducing GPU consumption 
compared to the original LoRA. However, due to the 



condition where 𝑟 ≪  𝑑, while the improvements of LoRA-
FA over Full Fine-Tuning are evident, its enhancement 
compared to LoRA is not substantial enough. Additionally, 
due to limited training parameters, it may exhibit slightly 
poorer performance on certain downstream tasks compared to 
LoRA. 

It's worth noting that LoRA-FA doesn't alter the feed-
forward and back-propagation computations of LoRA, and 
thus, it doesn't introduce additional computational overhead 
during the fine-tuning phase. During inference, similar to 
LoRA, it can merge low-rank weights by adding 𝑨，𝑩 into 
𝑾, which means that it doesn’t introduce any extra inference 

latency compared to a fully fine-tuned model. 
The advantage of LoRA-FA lies in maintaining a certain 

level of accuracy while significantly decreasing 
computational requirements and reducing GPU consumption 
compared to the original LoRA. However, due to the 
condition where 𝑟 ≪  𝑑, while the improvements of LoRA-
FA over Full Fine-Tuning are evident, its enhancement 
compared to LoRA is not substantial enough. Additionally, 
due to limited training parameters, it may exhibit slightly 
poorer performance on certain downstream tasks compared to 
LoRA. 
 

B. Enhance the accuracy of prediction 
Because LoRA uses low-rank matrix approximation of the 

original high-dimensional structure, it might introduce some 
approximation errors that could impact the model's 
performance on certain tasks. As a result, certain studies have 
proposed improvements to LoRA aimed at enhancing its 
accuracy across various downstream tasks, thus increasing the 
reliability and effectiveness during training. 

A cutting-edge approach named Generalized LoRA 
(GLoRA) [11] achieve universal and PEFT across various 
tasks. Building upon the LoRA framework, GLoRA 
introduces a generalized prompt module that optimizes 
pretrained model weights and adjusts intermediate activations. 
This enhancement provides GLoRA with greater flexibility 
and adaptability when applied to diverse tasks and datasets.  

To be specific, GLoRA streamlines the parameter 
adaptation process by merging an expandable and modular 
layer-wise structure search [12]. This innovative approach 
learns unique adapters for every layer, contributing to 
improved model performance. Thorough experimentation 
provides compelling evidence that GLoRA surpasses all prior 
techniques on various benchmarks encompassing natural, 
domain-specific, and structured tasks. It attains remarkable 
accuracy while making more efficient use of parameters and 
computational resources across a diverse set of datasets. 
The consolidated formulation to represent all tunable spaces 
can be represented as follow, sand the detailed illustration is 
shown in Fig. 2.  

𝑓(𝑥) =  (𝑾𝟎  +  𝑾𝟎𝑨 +  𝐁)𝑥 +  𝑪𝑾𝟎 +  𝑫𝒃𝟎  +   𝑬 + 𝒃𝟎(𝟐) 

 
Fig. 2. Process of GloRA 

Here A,B,C,D,E are the trainable support tensors for 
downstream tasks in our GLoRA, W_0 and b_0 are frozen 
during whole fine-tuning. A is utilized to scale the weight. B 
has the role to scale the input and shift the weight. C is the 
layer-wise prompt serving a similar function of VPT-Deep, D 
and E are used to scale and shift the bias, respectively. 
One notable advantage of GLoRA is its structural re-
parameterization design, which ensures that it doesn't incur 
any extra inference cost. This makes GLoRA a practical and 
efficient solution for resource-limited applications.  

AdaLoRA [13] presents an innovative improvement 
method to address certain limitations observed in LoRA. 
Unlike LoRA, which mandates the pre-specification of a 
consistent eigen-rank 'r' for each incremental matrix, 
AdaLoRA recognizes the substantial variations in the 
importance of weight matrices across different modules and 
layers during fine-tuning of pretrained models. Additionally, 
LoRA primarily focuses on training the attention mechanism 
and doesn't explicitly handle the FFN. To overcome these 
shortcomings, AdaLoRA introduces a set of enhancements. 
One key feature of AdaLoRA is its dynamic allocation of 
parameter budgets to weight matrices based on importance 
scores. It achieves this by parameterizing incremental updates 
using singular value decomposition (SVD), allowing for the 
removal of unimportant singular values while preserving their 
corresponding singular vectors. This approach significantly 
accelerates computations by reducing the parameter budgets, 
all the while maintaining the potential for future recovery and 
ensuring training stability. 

AdaLoRA comprises two essential components: 
Adaptation based on SVD: This element constructs the 

incremental matrices using singular value decomposition, 
facilitating efficient updates. 

Rank allocation with importance-aware: AdaLoRA trims 
unnecessary singular values using a freshly devised 
significance measure, guaranteeing the retention of only 
pertinent information. 

Initially, representing the incremental updates of the pre-
trained weight matrices through singular value 
decomposition., where 𝑃 ∈ ℝ𝑑1×𝑟  and 𝑄 ∈ ℝ𝑟×𝑑2  mean the 
different singular vectors of ∆, while the diagonal matrix 𝛬 ∈
ℝ𝑟×𝑟  contains the singular values {𝜆𝑖}1≤𝑖≤𝑟 with 𝑟 ≪
 𝑚𝑖𝑛(𝑑1, 𝑑2). 

𝑾 =  𝑾(𝟎) +  ∆ =  𝑾(𝟎)  +  𝑷𝛬𝑸             (3) 
An additional penalty term is introduced in the training 

loss to keep the two singular matrices P and Q orthogonal, 



thereby avoiding extensive SVD computations and stabilizing 
the training process. 

𝑅(𝑃, 𝑄) = ||𝑃𝑇𝑃 − 𝐼||
𝐹

2
+ ||𝑄𝑇𝑄 − 𝐼||

𝐹

2
(4) 

The incremental updates are parameterized using SVD, 
and unimportant singular values are pruned based on 
importance metrics, while retaining the singular vectors. Since 
performing an accurate SVD decomposition on a large matrix 
is computationally intensive, this approach accelerates 
calculations by reducing their parameter budget. 
Simultaneously, it preserves the potential for future recovery 
and stabilizes the training process. 

Second, adjusting the allocation of incremental matrices. 
AdaLoRA assigns higher ranks to crucial incremental 
matrices to capture finer and task-specific information, while 
reducing the rank of less important matrices to prevent 
overfitting and save computational budget. The authors 
applied SVD-Based Adaptation to parameter matrices such as 
𝑊𝑓 , 𝑊𝑞 , 𝑊𝑣 , 𝑊𝑘. To control the budget of trainable parameters, 
it's necessary to dynamically allocate trainable parameters for 
each parameter during the training process.  

In comparison to LoRA, AdaLoRA offers several notable 
advantages in its design. AdaLoRA prunes only the singular 
value matrix Λ while leaving the singular vectors untouched, 

which simplifies the recovery of inadvertently pruned singular 
values during training, contributing to enhanced training 
stability. Additionally, AdaLoRA employs orthogonal 
matrices 𝑷  and 𝑸 , which differ from the non-orthogonal 
matrices 𝑨  and 𝑩 . The pruning operations training do not 
affect the singular vectors corresponding to other singular 
values, enhancing the model's stability and improving 
generalization performance. 

In summary, AdaLoRA offers a valuable enhancement by 
dynamically allocating resources to weight matrices based on 
their importance and efficiently using SVD for incremental 
updates, thereby addressing limitations in LoRA. These 
methods achieve improvements in LoRA performance 
through distinct approaches. GloRA enhances the pretrained 
model's weights by introducing a generalized prompt module 
and adjusting intermediate activation functions. This enables 
greater flexibility and capability for various tasks and datasets. 
It employs an extensible, modular, and layer-wise structure 
search to learn a unique adapter for each layer. On the other 
hand, AdaLoRA optimizes and refines the original LoRA 
model by introducing importance scores to allocate budget for 
weight matrices. It also incorporates a penalty term to mitigate 
excessive computations in SVD and stabilize training. 

IV. CONCLUSION 

Today, NLP has entered the era of modern NLP, characterized 
by the dominance of deep learning and neural networks. The 
development of PEFT techniques has also been rapidly 
progressing. These techniques alleviate the training costs 
associated with large pretrained models, enabling researchers 
to efficiently adapt these models to new tasks even under 
limited computational resources, facilitating effective transfer 
learning. This paper mainly categorizes, organizes, and 
summarizes the research landscape of novel lightweight fine-
tuning techniques based on LoRA. The study classifies 
research results based on their objectives into categories such 
as "enhance the efficiency of the training process" and 
"enhance the accuracy of prediction", summarizing the 
technical characteristics and pros and cons of each category of 
methods. Building upon existing research achievements, the 
paper identifies several directions for future exploration in this 
field: 

A. Optimizing Intrinsic Dimensionality: 

Despite existing research efforts in optimizing the intrinsic 
dimensionality of LoRA model weight matrices, there's still 
room for better understanding how to allocate intrinsic 
dimensions during the training of downstream task models to 
enhance training performance. Achieving this effectively 
remains a challenge. 

B. Combining and Optimizing Multiple Fine-Tuning 
Techniques: 

Since LoRA is not in conflict with many other fine-tuning 
techniques, exploring how to rationally combine and 
optimize various techniques to achieve significantly better 
results offers a promising avenue for research. 
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