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ABSTRACT

Unsupervised anomaly detection in medical images facilitates practical clinical
adoption by identifying abnormalities without relying on scarce and costly an-
notated data. However, prior works have predominantly focused on specialized
models for individual organs and modalities, impeding knowledge transfer and
scalable deployment. In this paper, we investigate a task of universal anomaly de-
tection guided by natural language prompts. We propose a prompt-driven mixture
of experts framework that detects anomalies across multiple organs and modalities
within a single network. Specifically, our method comprises encoders for vision
and text, a routing network, and a mixture of hallucination-minimized expert de-
coders. An image and a prompt describing the organ and modality are fed to the
encoders. The routing network then selects specialized yet collaborative expert
decoders to analyze the image. We observe that anomaly detection models often
erroneously identify normal image regions as anomalous, a phenomenon we term
“hallucinatory anomaly”. To address this issue, we design hallucination-aware
experts that produce improved anomaly maps by jointly learning reconstruction
and minimizing these false positives. For comprehensive evaluation, we curate
a diverse dataset of 12,153 images spanning 5 modalities and 4 organs. Exten-
sive experiments demonstrate state-of-the-art anomaly detection performance in
this universal setting. Moreover, the natural language conditioning enables inter-
pretability and user interaction. The code and data will be made publicly available.

1 INTRODUCTION

Deep learning has achieved remarkable success across a variety of computer vision tasks, yet its ap-
plication to medical image analysis remains constrained by the need for sizable annotated datasets.
Obtaining annotations for abnormal images proves particularly challenging, especially for rare or
novel conditions (Tschuchnig & Gadermayr, 2022). In contrast, collections of normal medical im-
ages can be accumulated with relative ease. This disparity motivates anomaly detection in medical
images—identifying abnormalities without reliance on annotated anomalous data during training.

Prior works (Shvetsova et al., 2021; Schlegl et al., 2017; Han et al., 2021a; Schlegl et al., 2019b;
Jiang et al., 2019) have explored generative models, including autoencoders and generative adver-
sarial networks (GANs), for unsupervised anomaly detection. These models are trained to learn
feature representations using only normal images. At test time, anomalies are identified as regions
that the models fail to reconstruct properly, by comparing input and reconstructed images in pixel
space. Recent approaches utilize memory banks (Gong et al., 2019; Park et al., 2020), normaliz-
ing flows (Rudolph et al., 2021; Yu et al., 2021; Gudovskiy et al., 2022), self-supervised learning,
and knowledge distillation to achieve stronger image-level anomaly detection performance. Despite
promising results, these works have largely focused on training specialized models for individual
organs and modalities. This methodology overlooks potential similarities across organs and modal-
ities, hinders knowledge transfer, impedes scalable anomaly detection, and leads to fragmented re-
search efforts.
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Figure 1: Illustration of single-task and universal medical anomaly detection models.

Universal anomaly detection is therefore desired (see Figure 1). Recently, You et al. (2022) pio-
neer a unified framework capable of detecting multiple industrial anomalies, sparking subsequent
research in this direction (Lu et al., 2023; Zhao, 2023; Yao et al., 2024). Zhang et al. (2023) develop
a single network for anomaly detection in medical images across two organs (lung and liver) and two
modalities (CT and X-ray). However, these models rely solely on bottom-up processing to identify
the organ and modality associated with each input image. In contrast, prompt-based approaches en-
able users to specify which anatomical structure to analyze in a given image, directing the model’s
attention in a top-down manner. We argue that conditioning universal anomaly detectors on natural
language prompts confers considerable advantages in terms of model interpretability and user inter-
action. These benefits render prompt-guided universal anomaly detection more suitable for practical
clinical adoption.

true anomaly

Figure 2: Illustration of hallucinatory
anomalies. Top row: normal example; bot-
tom row: abnormal example. Red in-
tensity correlates with anomaly magnitude.
Middle column: anomaly maps generated
by an autoencoder-based anomaly detection
model. Note that hallucinatory anomalies ap-
pear in both normal and abnormal images.
Rightmost column: anomaly maps produced
by our method, effectively eliminating these
hallucinatory anomalies.

In this paper, we investigate the task of universal
anomaly detection from natural language expres-
sions, which leverages text to guide multi-modal,
multi-organ anomaly detection in a single model. To
address this task, we propose a prompt-driven mix-
ture of experts framework comprising four key com-
ponents: a vision encoder, a text encoder, a routing
network, and a mixture of hallucination-minimized
expert decoders. Specifically, an input image and
an accompanying text prompt encapsulating organ
and modality information are encoded by the vision
and text encoders, respectively. The resulting rep-
resentations are then combined and fed to the rout-
ing network to select decoder subnetworks (which
we call experts) best suited for the given input.
This design facilitates both cooperation, through
shared representation learning, and specialization,
by matching experts with specific tasks. Conse-
quently, multi-modal, multi-organ images can be dy-
namically routed to appropriate sub-expert networks
based on text prompts. The use of prompts maxi-
mizes the mutual information between experts and
tasks, inducing a strong dependency where each task associates heavily with a small set of experts.
For the experts, we devise a hallucination-aware decoder architecture that outputs a pixel-wise hal-
lucinatory anomaly estimate in addition to a reconstructed image. We define “hallucinatory anoma-
lies” as normal image regions that are erroneously identified as anomalous by an anomaly detection
model (cf. Figure 2). By normalizing reconstruction errors with the predicted hallucinatory anomaly
estimates, we obtain an abnormality score map that amplifies true anomalies while suppressing hal-
lucinatory anomalies in normal regions.

Our key contributions are three-fold:
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• This work presents an effort towards prompt-guided multi-organ, multi-modal anomaly
detection within a single network. We collect a large-scale dataset spanning 12,153 images
across 5 imaging modalities (X-ray, MRI, OCT, ultrasound, and CT) and 4 anatomical
structures (lung, brain/head, retina, and breast).

• We propose a novel mixture of experts framework for this task. Our model is capable of
routing images to suitable hallucination-minimized expert decoders in a collaborative yet
specialized manner based on text prompts.

• We benchmark our method against state-of-the-art universal and single-task anomaly de-
tection models. Experimental results demonstrate the superiority of our framework.

2 RELEATED WORK

Single-Task Anomaly Detection. Reconstruction-based methods have emerged as a prominent
approach in unsupervised anomaly detection. Schlegl et al. (2017) pioneer the use of GANs for
this purpose with AnoGAN, later introducing f-AnoGAN (Schlegl et al., 2019a), a faster variant
employing an encoder to map images to a latent space. In addition, various autoencoder architec-
tures are explored, including variational autoencoder (Zimmerer et al., 2018) and vector-quantized
variational autoencoder (Naval Marimont & Tarroni, 2021). To address the overgeneralization prob-
lem, where abnormal images are reconstructed too accurately, Gong et al. (2019) and Park et al.
(2020) introduce memory banks to store normal patterns for comparison during inference. Sev-
eral works (Rudolph et al., 2021; Gudovskiy et al., 2022; Yu et al., 2021) leverage normalizing
flows, enabling exact likelihood estimation for image modeling, and achieve good performance in
anomaly detection. Self-supervised learning (Jing & Tian, 2021) has also been applied to anomaly
detection, typically following two paradigms. One-stage approaches train models to detect syn-
thetic anomalies and directly apply them to real abnormalities (Tan et al., 2021; Schlüter et al.,
2022). Two-stage approaches first learn self-supervised representations on normal data, followed
by constructing one-class classifiers (Li et al., 2021; Sohn et al., 2021). Recently, knowledge dis-
tillation from pre-trained models presents another promising approach for unsupervised anomaly
detection (Salehi et al., 2021; Deng & Li, 2022; Batzner et al., 2024). In these methods, a stu-
dent network distilled by a pre-trained teacher network on normal samples can only extract normal
features, leading to discrepancies when anomalies are encountered during inference. Despite their
successes, the above-mentioned approaches have largely focused on dataset-specific models, poten-
tially overlooking cross-class similarities and becoming resource-intensive as the number of classes
increases.

Universal Anomaly Detection. You et al. (2022) first formulate universal anomaly detection,
proposing a Transformer-based feature reconstruction model using a layer-wise query decoder to
model complex multi-class normal distributions. Lu et al. (2023) present a unified hierarchical
vector quantized Transformer that quantizes visual features to better reconstruct normal patterns.
Yao et al. (2024) propose inter-class Gaussian mixture modeling and intra-class mixed class cen-
ters learning for multi-class anomaly detection. Beyond detection, Zhao (2023) focuse on universal
anomaly localization for industrial applications. In the medical domain, Zhang et al. (2023) develop
a single network capable of detecting anomalies across two organs (lung and liver) and two imaging
modalities (CT and X-ray). The existing methods rely solely on visual features to identify the organ
and modality of each input image through a bottom-up fashion. We propose that introducing text
prompts can guide a universal anomaly detection model’s attention in a top-down manner, leading
to improved performance.

Mixture of Experts. Originally introduced by Jacobs et al. (1991), the mixture of experts frame-
work combines multiple sub-models for conditional computation. Its integration with large language
models has yielded remarkable results in natural language understanding tasks, to name a few,
machine translation (Shazeer et al., 2017) and open-domain question answering (Du et al., 2022;
Artetxe et al., 2022). This success has inspired applications in computer vision. Riquelme et al.
(2021) introduce vision mixture of experts, matching the performance of leading networks while
reducing computational demands during inference in image classification. Hwang et al. (2023)
develop Tutel, a scalable system design and implementation for mixture of experts with dynamic
parallelism and pipelining. Chowdhury et al. (2023) present patch-level routing, dynamically allo-
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Figure 3: Proposed architecture for universal anomaly detection across multi-modal, multi-organ
medical images.

cating image patches to experts through prioritized routing. Ye & Xu (2023) propose a multi-task
mixture of experts model that enables learning multiple representative task-generic feature spaces
and decoding task-specific features in a dynamic manner. Zhao et al. (2023a) leverage the mixture
of experts architecture to learn from weak and noisy labels for detecting anomalies such as mal-
ware. Wang et al. (2024) make use of the mixture of experts framework to merge general knowledge
from the segment anything model (SAM) (Kirillov et al., 2023) with domain-specific knowledge
from task-specific fine-tuned models for volumetric medical image segmentation. In this paper, we
propose a tailored mixture of experts model to address the hallucinatory anomaly problem.

3 METHODOLOGY

We assume that during training, only normal data are available, i.e., D = {(xi,pi, yi = 0)}|D|
i=1,

where yi ∈ {0, 1} is a binary label indicating whether xi is a normal (yi = 0) or abnormal (yi = 1)
image, and pi corresponds to the prompt of xi. We train the proposed model (cf. Fig. 3) using D.
In what follows, we delve into each part of our method.

3.1 SHARED VISION ENCODER

The shared vision encoder maps input images into a common latent feature space that is accessed
by multiple decoder experts. Architecturally, the vision encoder consists of several convolutional
blocks, each comprising Conv-BN-ReLU layers, followed by two fully connected layers. Formally,
given an input image x, the vision encoder f(·) produces a visual feature vector v = f(x).

3.2 TASK-SPECIFIC PROMPT ENCODER

Incorporating critical priors in a top-down manner is vital for directing the model’s attention to ap-
propriate tasks and image regions. To this end, we design a task-specific prompt encoder that takes
textual prompts as input and generates task-specific feature representations. Specifically, we lever-
age the text encoder from CLIP (Radford et al., 2021) to extract linguistic features, as it is pretrained
on a massive corpus of image-text pairs. We then apply a fully connected layer to condense the text
features. Formally, given a prompt p, the output of the prompt encoder is τ = g(p), where g(·)
denotes the prompt encoder.

4
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3.3 MIXTURE OF EXPERTS

3.3.1 ROUTING NETWORK

To adaptively control the contribution of each expert, we make use of a routing network. The con-
catenation of textual and visual features is input to this router to produce expert selections specialized
for each task. We implement the routing network as follows:

s = TopK(softmax([v, τ ]W + b)) , (1)

where s ∈ RN , and N is the number of experts. The TopK operator forces only K experts (K ≤ N)
to be used and skips the others. W and b are learnable parameters. Subsequently, the router chooses
the most task-relevant experts and aggregates their representations for different anomaly detection
tasks. Furthermore, we introduce a loss function that drives our model to learn optimal expert-task
matchings (cf. Section 3.4).

3.3.2 HALLUCINATION-AWARE EXPERTS

To address the critical issue of hallucinatory anomalies in anomaly detection, we design
hallucination-minimized experts. Specifically, for the k-th expert, we set two output channels in its
ultimate block, denoted as µk and σk: the former for reconstructing the input image, and the latter
for predicting per-pixel hallucination propensity. Our motivation stems from the following observa-
tion: Anomaly detectors often produce high reconstruction errors not only in abnormal regions but
also along boundaries of normal areas. These boundary-induced errors generally lead to misidentifi-
cation of anomalies, resulting in what term hallucinatory anomalies (Figure 2). Therefore, we would
like to utilize hallucination quantification to rectify erroneous boundary detections and thus improve
the localization of truly anomalous regions. To this end, we devise such a hallucination-aware de-
coder architecture and a corresponding loss function (see Section 3.4). Finally, the output of the
expert squad is a weighted sum of reconstructions from individual decoder experts, with weights
calculated by the routing network, conditioned on the input image and prompt. This process is
expressed as:

x̂ =

N∑
k=1

skµk . (2)

Similarly, we obtain

u =

N∑
k=1

skσk . (3)

3.4 TRAINING OBJECTIVES

In each iteration, we sample a data batch B = {(xi,pi)}|B|
i=1. Let ci denote the category of organ

and modality for the i-th image. First, we optimize the matching between experts and tasks by
minimizing the discrepancy between the router’s prediction and ci:

Lrn = − 1

|B|

|B|∑
i=1

ci log(si) . (4)

Next, we optimize the reconstruction process while accounting for potential hallucinatory anomalies,
which is a key contribution of our hallucination-minimized experts:

Lre =
1

|B|M

|B|∑
i=1

N∑
j=1

((xi,j − x̂i,j)
2e−u2

i,j + u2
i,j) , (5)

where j is a spatial index, and M indicates the number of pixels. During training on normal
images, the first loss term discourages our model from predicting very small hallucination scores for
pixels with high reconstruction errors, as reducing hallucination propensity amplifies the impact of
already large reconstruction errors. Conversely, the second loss term drives hallucination scores in
other regions to be small. Therefore, the two loss terms jointly optimize our model to estimate low
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hallucination scores in regions with accurate reconstructions, while predicting relatively high scores
near boundaries in normal images. Finally, the loss in our model is defined as:

L = αLrn + βLre , (6)

where α and β are two coefficients balancing the two loss terms.

3.5 ANOMALY SCORING

During inference on a test image, the mean of pixel-wise reconstruction errors has been widely
adopted as an anomaly score for the image. In this work, we use an anomaly score calculation
method based on our hallucination-minimized expert model. We leverage the first term in Eq. 5 to
compute the anomaly score. Specifically, (xi − x̂i) represents the reconstruction error map gener-
ated by our model, while ui denotes the corresponding hallucination quantification map. Through
training on normal data, we have developed a model capable of estimating high hallucination values
when significant reconstruction errors occur in normal regions. Consequently, during inference on
both normal and abnormal images, reconstruction errors in normal regions can be effectively rec-
tified using the first term in Eq. 5. This results in an anomaly map that accurately localizes true
anomalous regions. The final anomaly score for the test image is computed as the mean value of this
anomaly map.

4 EXPERIMENTS

4.1 DATA

To evaluate our approach, we compile a comprehensive, multi-modal, multi-organ universal anomaly
detection dataset by integrating five medical imaging datasets: the RSNA Pneumonia Detection
Challenge dataset1, the Brain Tumor MRI dataset2, the Large-scale Attention-based Glaucoma
(LAG) dataset (Li et al., 2019), the Breast Ultrasound Images (BUSI) dataset (Al-Dhabyani et al.,
2020), and the HeadCT dataset3.

RSNA: This chest X-ray dataset contains 8,851 normal and 6,012 lung opacity images. Follow-
ing Cai et al. (2022), we use 3,851 normal images for training and a balanced test set of 1,000
normal and 1,000 abnormal images.

Brain Tumor: This dataset consists of 2,000 MRI slices without tumors, 1,621 with gliomas, and
1,645 with meningiomas. We categorize glioma and meningioma slices as anomalies. The normal
instances are sourced from Br35H5 and Saleh et al. (2020), while the anomalous cases are from
Saleh et al. (2020) and Cheng et al. (2015). In line with Cai et al. (2022), our experimental setup
includes 1,000 normal slices for training and a test set of 600 normal and 600 abnormal slices
(equally split between glioma and meningioma).

LAG: This dataset comprises 3,143 normal retinal fundus images and 1,711 abnormal retinal fundus
images with glaucoma. Following Cai et al. (2022), we use 1,500 normal images as training samples
and 811 normal and 811 abnormal images as test examples.

BUSI: The dataset includes 133 normal breast ultrasound images, 437 images with benign nodules,
and 210 images with malignant nodules. We use 99 normal images for training, with the remaining
images used for evaluation.

HeadCT: This dataset comprises 100 normal head CT slices and 100 slices with hemorrhage. We di-
vide these images into two groups: 90 normal images for training and 10 normal with 100 abnormal
images for testing.

1https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
2https://www.kaggle.com/datasets/masoudnickparvar/

brain-tumor-mri-dataset
3https://www.kaggle.com/datasets/felipekitamura/head-ct-hemorrhage
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RSNA Brain Tumor LAG
AUC F1 ACC AUC F1 ACC AUC F1 ACC

Single-Task Anomaly Detection

AE 68.33 67.85 52.90 80.88 84.79 82.33 78.19 74.91 72.87
MemAE 68.65 67.95 53.45 77.44 79.92 76.33 80.78 76.16 74.72
CFLOW-AD 70.26 70.20 62.05 36.35 66.67 50.00 43.38 66.67 50.00
FastFlow 76.00 73.68 67.95 85.62 80.41 77.58 77.40 75.42 71.52
GAN Ensemble 82.10 75.30 74.30 66.60 68.40 64.00 61.30 67.10 52.50
CutPaste 55.82 66.69 50.05 58.45 67.61 54.25 53.86 66.83 50.62
NSA 82.13 75.87 74.30 83.20 79.00 76.17 72.67 73.57 67.57
MorphAEus 80.87 75.74 72.80 64.68 70.43 60.67 79.03 78.89 74.17
SQUID 70.38 72.40 65.95 41.33 66.67 50.00 55.76 66.89 52.03
EfficientAD 74.88 73.12 68.20 78.41 76.20 72.00 73.63 72.93 68.74

Universal Anomaly Detection

UniAD 80.05 72.05 74.44 70.35 71.51 60.42 70.55 71.45 63.44
HVQ-Trans 82.72 76.21 73.75 82.14 76.54 71.50 74.62 74.38 66.52
MADDR 82.56 77.11 75.00 87.07 82.57 83.42 81.42 77.42 74.85
HGAD 78.84 75.66 72.40 90.07 85.67 84.83 76.85 77.79 72.01
Ours 83.51 78.54 75.95 93.48 89.51 89.00 84.77 80.66 78.48

BUSI HeadCT MEAN
AUC F1 ACC AUC F1 ACC AUC F1 ACC

Single-Task Anomaly Detection

AE 88.78 98.18 96.48 89.10 96.04 92.73 81.06 84.35 79.46
MemAE 85.93 98.32 96.77 85.70 96.04 92.73 79.70 83.68 78.80
CFLOW-AD 73.69 97.51 95.15 83.10 95.65 91.82 61.36 79.34 69.80
FastFlow 82.58 97.73 95.59 72.40 96.15 92.73 78.80 84.68 81.07
GAN Ensemble 44.80 97.40 95.00 40.20 95.20 90.90 59.00 80.68 75.34
CutPaste 57.26 97.44 95.01 57.50 95.24 90.91 56.58 78.76 68.17
NSA 74.47 87.17 96.48 93.03 95.24 90.91 81.10 82.17 81.09
MorphAEus 72.83 97.51 95.15 48.80 95.24 90.91 69.24 83.56 78.74
SQUID 66.95 97.51 95.15 75.60 95.69 91.82 62.00 79.83 70.99
EfficientAD 88.26 98.32 96.77 74.90 95.69 91.82 78.02 83.25 79.51

Universal Anomaly Detection

UniAD 81.10 97.44 95.01 82.50 95.69 91.82 76.91 81.63 77.02
HVQ-Trans 85.48 98.03 96.18 90.90 95.69 91.82 83.17 84.17 79.95
MADDR 85.70 94.98 90.75 86.00 60.14 48.18 84.55 78.44 74.44
HGAD 75.66 97.96 96.04 72.20 96.15 92.73 78.72 86.65 83.60
Ours 87.22 98.63 97.36 91.60 98.02 96.36 88.12 89.07 87.43

Table 1: Quantitative comparison of our model against other single-task and universal anomaly
detection methods on five datasets. Performance is measured by AUC, F1 score, and ACC. The best
results for each dataset and metric are highlighted in bold.

4.2 EVALUATION METRICS

Given that unsupervised anomaly detection methods typically generate continuous-valued predic-
tions, we primarily use the area under a receiver operating characteristic (ROC) curve (AUC) as our
evaluation metric due to its threshold-independent nature. Additionally, we report F1 score and ac-
curacy. For these metrics, we determine the optimal threshold based on the best F1 score, following
the approach of Zhao et al. (2023b).

4.3 IMPLEMENTATION DETAILS

All experiments are conducted using PyTorch on a single NVIDIA RTX 3090Ti GPU. We preprocess
all images by resizing them to 256× 256 pixels and train for 250 epochs using the Adam optimizer
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RSNA Brain Tumor LAG BUSI HeadCT

Figure 4: Visualization of exemplar anomaly maps generated by the proposed model.

with a learning rate of 5e-4 and a batch size of 64. The shared encoder contains four convolutional
layers (each with a 4 × 4 convolution, stride 2), whose channel sizes are 16-32-64-64, followed by
two fully connected layers with output sizes of 2048 and 16, respectively. Each decoder consists
of four deconvolutional layers with the same kernel size and stride as the encoder, and the channel
sizes are set to 64-32-16-2. All layers except the output layer are followed by batch normalization
(BN) and ReLU. The routing network consists of a fully connected layer, the output size of which
matches the number of decoders. For competing methods, we utilize their publicly available codes
and adhere to their default training configurations.

4.4 COMPARISON WITH STATE-OF-THE-ART METHODS

We evaluate our proposed method against state-of-the-art approaches, including both single-task
and universal anomaly detection models, across all datasets. The competing single-task models
include AE, MemAE (Gong et al., 2019), FastFlow (Yu et al., 2021), GAN Ensemble (Han et al.,
2021b), CutPaste (Li et al., 2021), CFLOW-AD (Gudovskiy et al., 2022), NSA (Schlüter et al.,
2022), SQUID (Xiang et al., 2023), MorphAEus (Bercea et al., 2023), and EfficientAD (Batzner
et al., 2024). For universal models, we compare against UniAD (You et al., 2022), HVQ-Trans (Lu
et al., 2023), MADDR (Zhang et al., 2023), and HGAD (Yao et al., 2024).

Table 1 presents the comparative results. Our approach achieves the highest F1 scores across all
five datasets, surpassing the best single-task models by 2.67%, 4.72%, 1.77%, 0.31%, and 1.87% on
RSNA, BrainTumor, LAG, BUSI, and HeadCT, respectively. We also attain the highest accuracies
across all datasets. In terms of AUC, our model outperforms the best single-task anomaly detection
models on four datasets (RSNA: 1.38%, BrainTumor: 7.86%, LAG: 3.99%, HeadCT: 2.5%), while
trailing the top performer on BUSI by 1.56%. Overall, our approach achieves the best average AUC,
F1 score, and accuracy across the five datasets, leading the best single-task model by 7.06%, 4.39%,
and 6.36%, respectively.

Furthermore, our framework consistently outperforms competing universal anomaly detection mod-
els. Compared to MADDR (Zhang et al., 2023), we achieve better average AUC (+3.56%), F1 score
(+10.63%), and accuracy (+12.77%). Against HGAD (Yao et al., 2024), our approach demonstrates
average improvements of 9.39%, 2.43%, and 3.82% in AUC, F1, and accuracy, respectively.

For qualitative analysis, we demonstrate our method’s anomaly localization capability through ex-
ample anomaly maps in Figure 4.

4.5 DISCUSSION

To provide insights into key components, we analyze our framework from the following four per-
spectives.

4.5.1 EXPERTS WITH VS. WITHOUT HALLUCINATION QUANTIFICATION

Compared to the model lacking hallucination quantification, our approach improves average AUC,
F1 score, and accuracy by 7.27%, 5.06%, and 6.44% across datasets, respectively. Detailed gains for
each dataset and evaluation metric are provided in the Table 2. Figure 5 shows anomaly score dis-
tributions, indicating discriminative power. Less overlap between normal and abnormal histograms
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HQ TP RSNA Brain Tumor LAG
AUC F1 ACC AUC F1 ACC AUC F1 ACC

- ✓ 67.10 67.82 52.75 76.71 80.11 76.25 77.09 73.38 69.54
✓ - 82.29 77.55 75.25 84.65 80.28 79.17 82.22 77.96 74.91
✓ ✓ 83.51 78.54 75.95 93.48 89.51 89.00 84.77 80.66 78.48

BUSI HeadCT MEAN
AUC F1 ACC AUC F1 ACC AUC F1 ACC

- ✓ 87.16 98.33 97.36 91.30 97.06 94.55 79.87 83.34 78.09
✓ - 83.56 98.55 97.21 91.10 97.03 94.55 84.76 86.27 84.22
✓ ✓ 87.22 98.63 97.36 91.60 98.02 96.36 88.12 89.07 87.43

Table 2: Ablation study quantifying the impact of each component in the proposed method on
all datasets. We report the performance of our full model, as well as variants with the following
components ablated: hallucination quantification (HQ) and text prompting (TP).

All RSNA Brain Tumor LAG BUSI HeadCT

Figure 5: Distributions of anomaly scores for normal (grayish green) and abnormal (red) images in
test sets for all datasets and for each dataset. Top: Anomaly score distributions obtained from our
model without hallucination consideration. Bottom: Abnormality score distributions produced by
our full model. x-axis: anomaly score from 0 to 1; y-axis: count.

enables stronger discrimination. The improved quantitative metrics and separation of distributions
demonstrate the efficacy of our hallucination-minimized experts.

4.5.2 UNIVERSAL ANOMALY DETECTION WITH VS. WITHOUT TEXT PROMPTS

Under the same architecture (utilizing hallucination-minimized experts), incorporating prompts
yields significant performance improvements: an average increase of 3.35% in AUC, 2.80% in F1
score, and 3.21% in accuracy. Detailed gains for each dataset and metric are presented in Table 2.
Moreover, in Appendix B, we provide a visualization comparing the feature distribution obtained
from our full model against that of the prompt-less method.

4.5.3 SELECTION OF HYPERPARAMETER K

Our experiments with varying values of K, as presented in Table 3, reveal that optimal perfor-
mance is achieved when K equals the number of experts (K = N ). This finding suggests that the
full ensemble of experts provides complementary knowledge or capabilities that are synergistically
leveraged when all are active.

4.5.4 RELATION BETWEEN EXPERTS AND TASKS

Figure 6 visualizes the frequency of experts being selected for each task. The x-axis and y-axis rep-
resent experts and tasks, respectively. The visualization reveals sparsity and task-specificity in expert

9
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K
RSNA Brain Tumor LAG

AUC F1 ACC AUC F1 ACC AUC F1 ACC

1 79.24 74.97 72.35 92.71 89.19 88.17 77.62 73.52 69.36
2 80.90 76.02 73.60 92.88 88.85 88.58 76.32 74.52 69.05
3 82.44 77.24 75.45 93.38 90.38 89.83 80.67 76.16 73.37
4 82.86 77.18 74.40 91.84 87.40 87.33 81.29 77.52 75.65
5 83.51 78.54 75.95 93.48 89.51 89.00 84.77 80.66 78.48

BUSI HeadCT MEAN
AUC F1 ACC AUC F1 ACC AUC F1 ACC

1 85.79 98.55 97.21 91.20 98.04 96.36 85.31 86.85 84.69
2 85.80 98.63 97.36 94.10 96.59 93.64 86.00 86.92 84.45
3 88.57 98.70 97.50 81.80 96.08 92.73 85.37 87.71 85.78
4 87.08 98.30 97.36 91.40 97.00 94.55 86.89 87.63 85.86
5 87.22 98.63 97.36 91.60 98.02 96.36 88.12 89.07 87.43

Table 3: Performance analysis for varying values of K on diverse datasets, showing the impact of
K on model performance.

1 2 3 4 5

lung
 X-ray

brain
 MRI

retina
 OCT

breast
 ultrasound

head
 CT

0.2

0.4

0.6

0.8

Figure 6: Heatmap visualization depicting the probability of each expert being selected for different
tasks. The y-axis enumerates all tasks (organs and imaging modalities), while the x-axis represents
the five experts in our model. Intensity of color correlates with selection frequency.

selection. For a given task, only a few experts are activated with high weights. In addition, similar
tasks tend to activate the same experts, indicating task-specificity in the expert-task relationship.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a prompt-driven mixture of experts framework for universal anomaly
detection across organs and modalities via natural language conditioning. Through encoders, routing
networks, and the proposed hallucination-aware expert decoders, our method leverages both vision
and text to detect anomalies within a single model. Extensive experiments on a diverse medical
image dataset with over 12K images demonstrate state-of-the-art performance. The natural language
prompts also enable model interpretability and user interaction. In the future, we plan to expand the
framework to additional organs and modalities, investigate few-shot anomaly detection with limited
normal images, and deploy the system in clinical settings to assist medical professionals.
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Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In IPMI, 2017.
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APPENDIX

A DATASET

Task Text Prompts

1 Chest X-ray image to evaluate the lungs.
2 Brain MRI slice.
3 Retinal fundus image.
4 Breast ultrasound image.
5 Head CT slice.

Table 4: The text prompt corresponding to each task.
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RSNA Brain Tumor LAG BUSI HeadCT

Figure 7: Sample test images from the dataset used in our study. Normal images are shown on the
top, while abnormal images are displayed on the bottom.

lung 5851
brain/head 2400
retinal fundus 3122
breast 780

lung

brain/head

retinal fundus

breast

X-ray 5851
MRI 2200
OCT 3122
ultrasound 780
CT 200

X-ray

MRI

OCT

ultrasound

CT

Figure 8: Organ (left) and modality (right) distributions in the dataset.

Figure 7 presents 10 example images from the anomaly detection tasks: 5 normal and 5 abnormal.
The first row displays normal images, while the second row shows images containing anomalies. We
visualize the distribution of organs and imaging modalities across our entire dataset in Figure 8. Fur-
thermore, Table 4 presents the corresponding text prompts for each task, providing a comprehensive
overview of the language prompts used to guide our model across various tasks.

B ADDITIONAL EXPERIMENTAL RESULTS

Figure 9 visualizes feature distributions, where the ablated, prompt-less model struggles to accu-
rately differentiate between tasks. In contrast, our full model effectively separates the distributions,
enhancing anomaly detection across medical modalities and organs while improving interpretability.

We demonstrate our method’s capability to localize abnormal regions for different anomaly detection
tasks. As illustrated in Figure 10, Figure 11, Figure 12, and Figure 13, reconstruction errors of
two competing methods are relatively large at some normal region boundaries. In contrast, our
approach significantly reduces reconstruction errors at these boundaries through our hallucination
quantification mechanism, thereby accurately pinpointing true abnormal regions.

In these figures, the first and second rows present normal examples, while the third and fourth rows
show abnormal examples.
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RSNA
BrainTumor
LAG
BUSI
HeadCT

RSNA
BrainTumor
LAG
BUSI
HeadCT

Figure 9: t-SNE visualization of feature distributions for five datasets. Left: Model without text
prompts. Right: Full model with text prompts. Colors denote different datasets.

Figure 10: Anomaly localization visualization on the RSNA dataset. The columns are organized
as follows: original images, anomaly maps generated by MemAE (Gong et al., 2019), anomaly
maps generated by NSA (Schlüter et al., 2022), reconstruction error maps obtained by our method,
hallucination quantification maps obtained by our method, and final anomaly maps generated by
integrating the reconstruction error and hallucination quantification maps.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 11: Anomaly localization visualization on the Brain Tumor dataset. The columns are orga-
nized as follows: original images, anomaly maps generated by MemAE (Gong et al., 2019), anomaly
maps generated by NSA (Schlüter et al., 2022), reconstruction error maps obtained by our method,
hallucination quantification maps obtained by our method, and final anomaly maps generated by
integrating the reconstruction error and hallucination quantification maps.
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Figure 12: Anomaly localization visualization on the BUSI dataset. The columns are organized
as follows: original images, anomaly maps generated by MemAE (Gong et al., 2019), anomaly
maps generated by NSA (Schlüter et al., 2022), reconstruction error maps obtained by our method,
hallucination quantification maps obtained by our method, and final anomaly maps generated by
integrating the reconstruction error and hallucination quantification maps.
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Figure 13: Anomaly localization visualization on the HeadCT dataset. The columns are organized
as follows: original images, anomaly maps generated by MemAE (Gong et al., 2019), anomaly
maps generated by NSA (Schlüter et al., 2022), reconstruction error maps obtained by our method,
hallucination quantification maps obtained by our method, and final anomaly maps generated by
integrating the reconstruction error and hallucination quantification maps.
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