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Abstract

State-of-the-art medical multi-modal LLMs (med-MLLMs), such as LLAVA-MED
and BIOMEDGPT, primarily depend on scaling model size and data volume, with
training driven largely by autoregressive objectives. However, we reveal that this
approach can lead to weak vision-language alignment, making these models overly
dependent on costly instruction-following data. To address this, we introduce
EXGRA-MED, a novel multi-graph alignment framework that jointly aligns im-
ages, instruction responses, and extended captions in the latent space, advancing
semantic grounding and cross-modal coherence. To scale to large LLMs (e.g.,
LLaMa-7B), we develop an efficient end-to-end training scheme using black-box
gradient estimation, enabling fast and scalable optimization. Empirically, EXGRA-
MED matches LLAVA-MED’s performance using just 10% of pre-training data,
achieving a 20.13% gain on VQA-RAD and approaching full-data performance.
It also outperforms strong baselines like BIOMEDGPT and RADFM on visual
chatbot and zero-shot classification tasks, demonstrating its promise for efficient,
high-quality vision-language integration in medical Al

1 Introduction

Generic Multi-Modal Large Language Models (MLLMs) such as GPT-4V [7], LLaVa [57], and
Next-GPT [97] unify text, image, and audio processing for tasks like captioning and visual reasoning.
A key component in training MLLMs is instruction-following (IF) data [60], which involves complex,
often multi-turn interactions grounded in image content [88]]. In the medical domain, specialized IF
datasets, including medical images, clinical notes, and diagnostic criteria, have been curated to adapt
general-purpose MLLMs while leveraging their pre-learned knowledge and minimizing training costs
[98]. For example, LLaVA-Med [50] samples 600K image-text pairs from PMC-15M [106], using
GPT-4 to generate around 60K multi-modal IF examples. The training involves two pretraining steps:
(1) aligning vision encoders and language decoders via projection layers, and (ii) jointly training the
model (excluding the vision encoder) on medical IF data using an auto-regressive objective. The
resulting model is then fine-tuned for downstream medical tasks.

Following the above approach, most later works have focused on scaling up the amount of medical IF
data [98} 104} 30] or increasing the model size by incorporating larger vision encoders or language
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decoders [96}139]] while relying on the same standard autoregressive learning scheme. Contrary to this,
we question the effectiveness of autoregressive objective functions when learning medical-MLLM
with IF data. Surprisingly, our findings reveal that autoregressive learning is highly data-hungry
during pre-training, i.e., without sufficient medical IF samples, model performance plummets for
downstream tasks, even after fine-tuning. To illustrate this, we pre-trained LLAVA-Med using only
10% of the data and compared it to the version trained on 100%. Both models were fine-tuned on two
medical visual question-answering tasks - VQA-RAD [48]] and PathVQA [31] - and their average
performance on open- and close-ended questions are compared. The results show a dramatic decline:
from 72.64% to 52.39% on VQA-RAD (Figure|[I) and from 64.06% to 56.15% on PathVQA (Table
[I). This underscores the instability of medical-MLLM trained with autoregressive methods and
highlights the problem that these methods require the curation of enough medical IF data to achieve

satisfactory performance.
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To address the limitations of autoregressive train-
ing under limited instruction-following data, we
propose EXGRA-MED, a novel multi-graph align-
ment framework that strengthens cross-modal un-
derstanding in multi-modal large language models
(MLLMs). At the core of our approach is the con-
struction of three modality-specific graphs: one
for visual features extracted by a vision encoder,
and two for different textual variants of the in-
struction. These graphs represent semantic rela-
tionships within and across modalities, and we
formulate a combinatorial multi-graph alignment
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problem to learn consistent triplet-level associa-
tions between the image, its instruction, and a
semantically enriched variant. This alignment ob-

Figure 1: Our EXGRA-MED versus LLaVA-Med
across varying instruction-following (IF) pre-training
data sizes, highlighting the data-hungry behavior

of auto-regressive modeling. Both models are fine-
tuned on the same VQA-RAD training set after the
pre-training stage at each IF rate. At 100% IF pre-
training, ExGra-Med and LLaVA-Med are bench-
marked against other state-of-the-art models, all fine-
tuned on the same VOA-RAD training set (except GPT-
4, which is evaluated without fine-tuning). Circle ra-
dius represents the number of model parameters.

jective is jointly optimized with the autoregressive
language modeling loss, enabling the model to en-
hance semantic depth, coherence, and instruction-
following ability. To generate the enriched in-
struction variant, we use a frozen LLM (GPT-4
[Z]) to produce a contextually extended version of
each instruction that highlights key concept rela-
tionships without altering the original intent. The
vision encoder and language model (LLaMa [93]]) then process the image, instruction, and extension
independently to produce node embeddings used in the alignment step. Unlike naive data augmenta-
tion, our use of GPT-4 enriches supervision and facilitates fine-grained graph-based correspondence
learning across modalities (Figure 3).

Our method stands apart from prior multi-modal alignment approaches for LLMs [72} 51} [16]] in
two key ways. (i) Instead of merely learning projection layers between frozen vision and language
models, we train the LLM directly via a multi-graph alignment framework. (ii) We also extend
pairwise contrastive learning by integrating global structural graph constraints, enabling alignment
not just between individual image-caption pairs but across entire datasets. This graph-based design
captures both feature and relational consistency, critical for handling similar entities in medical data.
While multi-graph alignment is typically non-differentiable [80] and computationally intensive [74]],
we address these challenges using implicit maximum likelihood estimation [70, [63]]. This enables
efficient gradient-based training over large LLMs (e.g., LLaMa-7B) using a barycenter graph [8] for
alignment, allowing our model to scale effectively while preserving strong alignment performance.

In summary, we make the following key contributions:

* We reveal the data-demanding nature of autoregressive modeling in pre-training medical-
MLLM (LLaVa-Med), showing that insufficient instruction-following data leads to signifi-
cant performance drops on downstream tasks, even after fine-tuning.

* We introduce a new multi-graph alignment objective that establishes triplet correlations
among images, their instruction-following context, and their enriched versions. Additionally,
we developed an efficient solver for training with LLMs and outlined theoretical properties
related to distance and the shortest path in the geodesic space of multi-modal graphs.



* We empirically demonstrate that using a small amount of pre-training data, EXGRA-MED
can achieve performance comparable to LLaVa-Med trained on 100% data. Additionally,
when trained on larger datasets, EXGRA-MED outperforms several state-of-the-art med-
MLLMs and multi-modal pre-training algorithms across three Medical VQA tasks, medical
visual chat, and the average zero-shot image classification performance on 23 datasets.

2 Related Work

Medical Multi-Modal LLMs. Recent developments in medical-MLLM like Biomed-GPT [[104]],
MedFlamingo [64], Med-Dr [30], LLAVA-Med [50], and Med-PalLMs [83] 94] are transforming
healthcare by integrating diverse data types and scaling medical instruction data. Biomed-GPT excels
with multiple biomedical modalities, MedFlamingo focuses on few-shot learning for medical visual
question answering, and LLAVA-Med leverages large-scale biomedical image-text pairs for improved
performance. Commonly, these models emphasize scaling medical instruction data and increasing
model parameters to enhance accuracy and applicability in real-world medical scenarios. In contrast,
our approach examines the widely used autoregressive pre-training algorithms and demonstrates that
incorporating enriched context multi-graph alignment of existing instruction samples can significantly
enhance medical-MLLM performance without requiring larger models or extensive datasets.

Visual Instruction Tuning. Visual instruction tuning techniques aim to bridge the gap between frozen
vision-language models and frozen LLMs trained on unimodal data, enabling them to work effectively
in a multi-modal context. These methods involve (i) learning a multi-layer perceptron (MLP) layer to
map embeddings from the vision model to the language model as LLaVa [57], VideoLLM [16]; (ii)
using adapter-based adjustment as LLaMa-adapter [105], Voxposer [33]], or (iii) learning multi-modal
perceiver by gated cross-attention [9] or Q-Former as in BLIP-2 [51]. Pre-training algorithms to
train these models can be combined with both auto-regressive and contrastive learning [72} [102]] or
image-text matching as in [52,51]]. Our algorithm differs from those by focusing on directly training
LLMs rather than lightweight projectors. This requires a fast solver capable of efficiently handling
forward and backward passes through large-scale LLMs with extensive parameters.

Vision-language Pretraining Algorithm. Pre-training algorithms commonly applied for vision-
language models, like CLIP [77], employ various strategies. Among these, generative approaches are
widely used, including masked prediction in language models [24} 85], or autoregressive algorithms
that predict sequential text in LLMs [57,[105]. Another prominent direction focuses on discriminative
methods, which learn contrastive distances between image-text pairs [58} (102, 145]], optimal transport
[LS} 168]], or impose clustering constraints [72l]. Toward multi-modal learning across three or more
modalities, there also exist works such as PAC-S[81]], GeoCLAP [46], and IMAGEBIND [26],
extending the CLIP or InfoNCE [71] to align embeddings across multiple modalities simultaneously.

Our function departs from these by generalizing them into a combinatorial graph-matching formula-
tion across cross-domain graphs. While LVM-Med [62] is the most similar to our approach, it targets
alignment within vision tasks, whereas we align images, instruction-following data, and extended
contextual information. We provide a more comprehensive comparison between EXGRA-MED and
related works in the Appendix.

Scalable Multi-Graph Alignment. Graph alignment across K domains (K > 3) is highly computa-
tionally intensive. Current methods, such as multi-marginal optimal transport [54}[75], Wasserstein
barycenters [69], and multi-adjacency matrix assumptions [[13}89], relax the problem but are limited
to small-scale tasks and require multiple solver steps, making them inefficient for LLM training. In
contrast, our algorithm leverages heuristic solvers [90,80] and modern gradient estimation techniques
for black-box optimization [70,63]], enabling scalable and efficient performance for large language
models. A deeper analysis of this factor is discussed in the Ablation study.

3 Multi-graph Alignment Learning

We denote the vision encoder, projector, and large-language model (LLM) models are
fo(.), he(.), go(.), respectively. Figure [3|illustrates our EXGRA-MED algorithm, which learns
parameters for these models by solving a triplet alignment between modalities in instruction tuning
data. Below, we summarize the notations used before describing each component in detail.

Notation. Given any tensor T = (T; ;) and matrix M = (M}, ;), we use T ® M to denote the
tensor-matrix multiplication, i.e., the matrix (3, ; Ti j ki Mpi,1)i ;. GivenY = [y1,y2,...,yn] €



RN*4, we define E(Y) = & SN y; € R% Moreover, we define the matrix scalar (or inner)
product associated with the Frobenius norm between two matrices M = (M, ;) and N = (N, ;) as

(), de, (M,N) =73, M,;N;; Wewrite [M] = {1,2,..., M} for any natural number M.

3.1 Extended context enriched medical instruction following data

Recent research has demonstrated that incorporating longer context significantly enhances LLMs’
ability to process complex inputs and improves instruction-following by retaining more relevant
information [59, 11, [73]]. Building on this insight, we expand medical instruction-following data by
generating contextually enriched paraphrased versions of existing samples, offering a complementary
perspective to the original dataset. There are two key motivations for incorporating both original and
extended captions in our multi-graph alignment framework. (i) First, aligning with original captions
preserves precise, domain-specific details, while extended captions enhance semantic richness, leading
to more robust image embeddings. (ii) Second, this approach helps the LLM generate contextually
rich yet semantically consistent responses, improving alignment across diverse linguistic forms (Table

@ particular, a typical instruction sample includes O [ron o iemedieman—
{X., (X7, XJ],.... [ XF, XL]} where X, is an input EM&[

and while
keeping the
image, X a question, and X/, an answer at round [ in

Question:What type of tissue is shown

multi-round L of a conversation. In the medical domain, in the image?
B N . . Answer:The image shows a histopathologi-
most of the questions are generic, and the information cal section of an endonasal mass, which
. is a tissue sample taken from inside
answer usually covers the question, so we only focus on the nasal cavity.

Gxtended Answer: The image depicts a \

extending the answer X ,. We leverage the GPT API with @
a prompt to form an extended context for each X! by: histopathological section of an endo-
nasal mass, which typically consists of

){(ZLe — GPT (Xé,Xl,prompt) Ve [L] (1) epithelialtissue, possibly indicating a

a neoplastic process. This tissue sample

The details for prompt are presented in the Appendix. In is taken from the nasal cavity and may
A .. . show features such as cellular atypia
short, we ask GPT to provide additional explanations for or inflammation, depending on the
underlying pathology. /

concepts that appeared in the original answer X, while
keeping the content consistent. An example output for Figure 2: Tlustration for creating the ex-

1 P . . N
Xa'e is illustrated in Figure .and Tab!e, It’s Woth tended context instruction-following data
noting that other frozen LLMs like Gemini are also valid  powered by GPT-4o.

in our method (Table[d).

3.2 Multi-graph construction on vision-language embedding

Each image X, € R3XHXW ' where (H, W) are the original spatial dimensions, is divided it into
a sequence of visual patches U = [u;]Y.; with N = (H x W) /U with U the patch size. Using a
pre-trained ViT model fy, we extract patch-wise features as V' = fq(U) € R *4v and apply another
projector to map it into the projected embedding Z = hy(V') € RYV*9. We then pool the features
from the image patches to define a global description as Z, = E(Z) € R<. For each language input
X! e {X|, X!} with ¢ € {a,ae}, we assume it has M tokens, i.e., X! = [x;]}, € RM, and
feed it into the LLM model to extract a set of embedding Z! = g, ([x;]}L,) = [e;]}L, € RM*4,
We subsequently concatenate all multi-round L in each single instruction tuning to define Z. =
% Zlel E(Z') which collects average text embedding of original answers (¢ = a) and their longer-
context extended versions (¢ = ae) respectively. Though we adapt simple average pooling feature
mechanisms, it remains an effective approach with a clear observed margin of separation between the
distinct distributions (Table[6]in the Ablation study).

Given a batch size of B instruction-tuning samples, we now construct three graphs G, = (V,, &),
Go = Va4, &), and Goe = (Vae, Eqe) representing for visual image features, text embedding
encoded by LLM for original answers and their extended context embedding extended by GPT.
Specifically, for each triplet pair { X, [X!](®) [XL |®)},. (k € [B]), we add a node representing
X to V,, a node for [X!](® to V., and finally a node for [X!_]*) to V,.. This results in
a set of nodes V, = {XV, . X} V. = {{XYO, . [X®B)} for each ¢ € {a,ac}. We
equip node-level feature matrices for these graphs using their embedding computed above, i.e.,
F, = {Zél), - Zi(,B)}, F. = {Zc(l), ey ZC(B)}. The edges for &,, £, afterward can be created
through the k-nearest neighbors algorithm given the feature node matrices F),, F.. Finally, we can
run a message-passing network mg(.) on three built graphs to learn richer node representations.



This approach has proven effective for representation learning [91) |42]], resulting in aggregated
feature-node matrices as {Zél), - Z§B)} = my(Fs,Es), with s € {v, a, ae}.
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Figure 3: Overview of EXGRA-MED: The large language model g, and the projector hy are trained jointly
by aligning a triplet of modalities - input image, instruction-following data, and extended captions - through
a structure-aware multigraph alignment (Eq.@)). This alignment operates over graphs G,, Ga, and Gae,
representing the visual, instruction, and extended textual information, respectively, via a shared barycenter graph.
The entire model is optimized end-to-end using modern black-box gradient estimation techniques to enable
efficient learning across modalities [70163].

3.3 Second-order graph alignment problem

We first provide background information about the second-order graph alignment problem between
two arbitrary graphs G; = (V1,&1) and Go = (Vs, &), which is known as quadratic assignment
problem. It occurs in several problems in vision and computer graphics to find correspondences
between two graph structures under constraints on the consistency of node features and the graph
structures 101} 29, [25]].

We denote by V' € {0,1}V111V2l, with |V;| = M and [V,| = N, the indicator matrix of matched
vertices, that is, V; ; = 1if a vertex v; € V), is matched with v; € V5 and V; ; = 0 otherwise. That
is, V is a binary matrix with exactly one non-zero entry in each row and column. Similarly, we
set E € {0, 1}‘51H52| as the indicator tensor of match edges, that is, E; 1 ;; = 1if V;; = 1 and
Vi, = 1and E; . ;; = 0 otherwise. This implies that the tensor E is fully determined by the matrix
V, thatis, E; 1, j; = Vi ;Vi,. We also define the vertex affinity matrix and edge affinity tensor as
Av € RWVilIV2l apd AC € RIEN1E] respectively. The set .A(G1, G2) indicates for all admissible pairs
(V,E) that encode a valid matching between Gy and Go.

M N
A(gl,g2>:{Ve{o,l}MxN:Zw,jzl,Zm,j:1}. )
1=1 Jj=1

The second-order graph alignment (SGA) problem now is defined as:

SGA(AY,A°) = argmin (A" +A°@V,V)
VeA(G1,G2)

= argmin ZAﬁjVi,j—F Z A ki Vii Vit 3)
VeA(G1,G2) i.j i,7,k,1

3.4 Scalable Multi-graph Alignment

Our aim is to solve the graph alignment between G,,, G,, and G, to form a triplet constraint between
input image embedding, its original instruction embedding, and the extended version ones. However,
solving a structure-aware graph alignment between K domains (K > 3) is computationally expensive.
One potential solution is to perform pairwise graph alignments (]2( ) times, as shown in Eq. while
applying specific constraints to maintain consistency between correspondences [13|89] (Table 6).
However, these approaches become impractical as K increases, making them unsuitable for large-
scale problems or the integration of multi-modal inputs such as text, images, audio, or medical health
records.

Another direction leverages the barycenter concept from optimal transport [27, [10], which identifies
a central distribution that minimizes the weighted sum of Wasserstein distances to the given input



distributions. We follow this idea to reformulate the alignment of K graphs into K separate alignments
with a barycenter graph. Unlike previous unsupervised methods that estimate the barycenter before
aligning, we directly define the barycenter using known triplet pairs across the three graphs. This
significantly reduces complexity, making our solver more efficient in LLM settings.

Specifically, we define a new barycenter graph Gy, = Vi, Ebr) Where Vp, = {vé},), ey ”1(77]«3)}
with véf) - x" = {ng), [X L)) (XL ]*)} and a correspondence feature node as Fj, =
1 N N
3 {Zs AR s ZﬁB)} with s € {v,a,ae}. The edge set &, is formed similarly to another
graph by running the k-nearest neighbor on feature node Fj,.. We now state the multi-graph alignment

as:

SGA(AY,AS) = argmin = Y (AV+AL®V,,V,), @
VsEA(Qmer) sE{v,a,ae}
where V is the indicator matrix representing for valid mapping between G, and Gy, A? € R [Vorl

and A¢ € RI®II€] be vertex affinity matrix and edge affinity tensor between G and G,.. For e.g.,

5 () 1 53 . . . - .
(Ag)ij =d <Z§ ), 3 D s Zgj)) with d(.) be a distance metric (e.g., cosine distance) measuring

similarity between node i** in G, and node j** in G,..
To address the NP-Hard nature of aligning each graph to the barycenter graph G., which arises from

its combinatorial complexity, we employ efficient heuristic solvers utilizing Lagrange decomposition
techniques [90, [80].

3.5 Backpropagation with Black-box Gradient Estimation

Given V, = SGA(AY,A%) be solution obtained from the solver, we aim to learn feature repre-

sentation for LLMs such that V be identical to true triplet alignments explicitly indicated by the
barycenter graph. By denoting V.* be an optimal mapping between the graph G, to G, we compute
the following total of hamming loss function:

L,V = > (Ve (1=VI)+ (VS (1-VW)). ®)

se{v,a,ae}
However, computing the gradient of the loss function with respect to the matching problem inputs
(AY, A, ie., Vavacl (VS, VS*) , poses a challenge due to the piecewise constant nature of the

graph matching objective in Eq. (@) [76l [79]. To address this, we resort to the IMLE [70, [63], a
method that estimates gradients and enables backpropagation through the alignment algorithm by
taking the difference between solutions of noise-perturbed alignments.

In particular, given (¢, €’) ~ Gumble(0, 1) and for each s € {v, a, ae}, we compute:
oL oL

(<’9A§’ OAS

(AL N ALL) = (A + 6 AS+€) — )\V‘—/SE(VS, V"), with A is a step size.

)zVS—SGA( YW AS,) where V, = SGA (A! + ¢, Al + ¢),

3.6 Graph Distance Properties via Structure Alignment

We provide theoretical insights into the graph-matching problem in Eq.(3). Once the optimal matching
is found, it defines a valid distance metric between graphs (Theorem]I)) based on joint node-edge
representations. Additionally, the geodesic path connecting two graphs (Theorem[2)) can be derived
from these alignments, enabling dynamic formulations in optimal transport and sampling strategies
in representation learning. In particular, we define a discrete distance between two graphs given a
solution to the matching alignment as follows:
d .Go) =  min ( AP Vii+ > A v,»»v.).

saa(G1,G2) v %: ijVii ijzk:l ikt Vi Vil (6)
We provide an informal definition of the space of structured graphs below to introduce the main
theorems. A more formal treatment, including proofs and definitions, is presented in the Appendix.



Definition 1 (Space of all structured graphs). S(F) is the space of all structured graphs defined
over a node metric feature space (F,dy), where each graph is associated with an edge structure

space (S, ds) and a mixing measure p = Zszl w;d(f,,s;) over the product space (F x S).

Theorem 1 (Metric properties). The distance dgca in Eq. (@) defines a metric in S(F).

The dsga distance above is zero if and only if there exists a one-to-one mapping between the graph
vertices that preserves both shortest paths and features and both graphs have the same number of
vertices.

Theorem 2 (Geodesic space). The space S(F) equipped with the dsga distance is geodesic.

4 Experiments

4.1 Implementation Details

Table 1: Fine-tuning performance on MedVQA tasks (pre-trained 10%).Table 3. ExGra-Med versus

Bold indicates the best values among pre-training algorithms (Sec. 4.3) , | [ 2Va-Med when pre-trained
excluding LLaVA-Med.

VQA-RAD SLAKE PathVQA

with extended captions (ext.cap) .

Method Overall .
Open  Closed Avg. Open  Closed  Avg. Open Closed Avg. Performance 1S reported on
LLaVA-Med (100%)  63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 7337 -
LLaVA-Med (10%) 43.38/203 61.4/202 52.39)20.3 80.94 /25 80.29/3.1 80.62)28 24.26]13.60 88.03/3.18 56.15/7.91 63.05/103 VQA RAD dOWHStream after
InfoNCE 5030 7757 6848 824  83.07 8278 3459 9145  63.02 7143 fine-tuning.
PLOT 16.86 26.47 21.67 37.81 56.25 47.03 11.79 81.36 46.58 38.42
SigLIP 5699 7794 6747  80.86  80.53  80.69 1808 5085 34465 60.88 Method VQA-RAD
VLAP 5749 7647 6698  80.05 8221 8113 3221 91.16  61.685 69.93 Open  Closed _ Ave,
GeoCLAP 60.68 75.37 68.03 82.64 85.10 83.87 35.12 91.15 63.14  71.68 LLaVA-Med (100%) 63.65 81.62 72.64
PAC-S 57.72 72.79 65.26 83.78 81.49 82.64 35.01 91.36 63.19  70.36 LLaVA-Med (10%) 43.38/20.3 61.4/202 52.39 203
IMAGEBIND 57.31 75.74 66.53 80.79 84.13 82.46 34.61 91.42 63.02  70.67 LLaVA-Med (10%) ext.cap 63.07 75.74 69.41
ExGra-Med 66.02 79.04 72.52 84.92 85.10 85.01 37.25 91.45 64.34 7396 ExGra-Med (10%) 66.02 79.04 72.52
LLaVA-Med (40%) 62.23/1.4 79.41]22 70.82] 1.8
. . . LLaVA-Med (40% T 63.68 79.78 71.73
Table 2: Fine-tuning performance on MedVQA tasks (pre-trained 40%). fromnia doe) " wool  t2rs 740
Bold indicate for best values among pre-training algorithms (Sec. | ex-
- gPp galg ( Table 4: EXGRA-MED results
cluding LLaVA-Med. with different frozen LLMs . It
Method VQA-RAD SLAKE PathVQA overal  shows that Gemini and Qwen is

Open Closed Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (100%) 63.65 81.62 72.64 8344 8341 8343 3678 9133 64.06 73.37
LLaVA-Med (40%) 62.23/1.479.41/2270.82]1884.4211.083.65/0.284.0470.631.86/4.984.996.358.43]5671.09]23

also effective within our method.

InfoNCE 63.11 7757 7034 8268 8389 8329 3358 89.62 616 71.74 Method VQA-RAD SLAKE
PLOT 6436 7941 7189 8338 8293 8316 3511 8959 6235 7246 ExGra-Med (GPT-4), 10% 7252 8501
SigLIP 6302 8125 7214 8126 8029 8077 3601 9086 63435 72.12 e ng‘";:,';‘)i#}ﬁ‘ ne

a-) Vi . o .. 84.7
VLAP 63.17 7904 71.11 8338 8389 8364 3562 9083 63.225 72.66 LLavaMod Gamcine) 10% o B
GeoCLAP 6228 8272 725 8264 852 8392 332 7505 5413 70.18 ExGraMed (GPT4), 40% 7437 8.5
PAC-S 6377 7941 7159 8452 8558 8505 27.11 8534 5623 70.96 ExGra-Med (Gemini), 40% 7326 85.10
IMAGEBIND 6473 7868 7171 8231 84.62 8347 3576 8708 6142 72.20 ExGra-Med with synonyms, 40% 7239 8293
ExGra-Med 66.01 8272 7437 8447 8582 8515 3741 9127 64.34 7457 LLaVa-Med (Baseline) 40% 70.82 84.04

Model Architecture Configuration. We use the LLaMA-7B large language model [93], the
CLIP-ViT-L-Patch14 visual encoder [77], and an MLP projection similar to LLaVA 1.5 [56].
Stage 1 follows the standard LLaVA-Med [50] setup, while stage 2 incorporates our multi-graph
alignment with autoregressive training. For multi-graph alignment, a 2-layer graph convolutional
network is applied to the output of the Projection and LLM Decoder (handling both image and
text modalities). We train for 1 epoch in stage 1 and 3 epochs in stage 2 using the same dataset
as LLava-Med. The model is optimized using Adam [47]] with CosineAnnealingl.R scheduler and
learning rates of 2e — 3 and 2e — 5 for stages 1 and 2, respectively.

Pre-training data. We use the same dataset as LLaVA-Med [50]]. Stage 1 includes 600K image-text
pairs filtered from PMC-15M, converted into instruction-following data with simple image descriptions.
Stage 2 comprises 60K image-text pairs from PMC-15M across five modalities: CXR, CT, MRI,
histopathology, and gross pathology. GPT-4 is then employed to generate multi-round Q&A in a tone
mimicking visual interpretation, converting these pairs into an instruction-following format.

Running-time. We train EXGRA-MED using 4 A100-GPUs per with 80GB for both stages and
complete the training process for stage 1 in 6.5 hours and for stage 2 in 7.5 hours. With original
LLaVA-Med (version 1.5) [50], the training process for stage 1 finishes in 6.5 hours, and for stage 2
finishes in 7 hours. In total, we need an extra 0.5 hour to complete the whole pre-training process
compared to the LLaVa-Med.



4.2 Autoregressive Training is Data-hungry

We highlight the data-intensive nature of autoregressive training by evaluating LLaVA-Med, a state-of-
the-art biomedical multimodal language model. LLaVA-Med follows a two-stage training process:
Stage 1 aligns image-text tokens with biomedical concepts, and Stage 2 fine-tunes the model for
instruction tasks. We pre-trained LLaVA-Med on varying data amounts (10%, 40%, 70%) and fine-
tuned it on the VQA-RAD dataset. As shown in Figure[T] performance drops significantly at 10%
pre-training compared to full training, revealing the autoregressive mechanism’s data dependency
issue in medical-MLLMs. This highlights the challenge of weak connections between visual features
and text embeddings without sufficient instruction-tuning data.

In contrast, our EXGRA-MED specifically learns image-text alignment by enforcing semantic
consistency across images, instruction responses, and extended contexts. Using the same setup as
LLaVA-Med, EXGRA-MED excels even with limited data, achieving 72.52% at just 10% pretraining,
far above LLaVA-Med’s 52.39% and consistently outperforms LLaVA-Med across instruction tuning
rates (40% — 100%).

Impact of Longer Training and Enriched Captions on LLAVA-MED Performance. We
conduct a deeper analysis of the data-hungry phenomenon by examining LLAVA-MED when (i)
trained longer in Stage 2 (with an additional hour) and when (ii) incorporating extended captions in
an autoregressive manner, as done in EXGRA-MED. The experiments were performed using 10%
and 40% pre-training settings, followed by fine-tuning on the VQA-RAD dataset. From the results in
Table[3] we draw two key conclusions. First, extended captions improve LLAVA-MED performance,
particularly in the data-scarce 10% pre-training scenario. However, in both settings, EXGRA-MED
demonstrates superior performance with significant margins, highlighting the effectiveness of its
multi-graph alignment strategy in mitigating the data-hungry issues of the autoregressive mechanism.

4.3 Multi-modal Pre-training Comparison

To further demonstrate the strengths of EXGRA-MED, we compare its performance against other
vision-language pre-training methods currently used for visual instruction tuning to enhance frozen
vision-language models

Datasets. We test pre-trained models on three prominent biomedical VQA datasets: VQA-RAD [48]],
SLAKE [55]], and PathVQA [31]]. VQA-RAD includes 3,515 questions across 315 radiology images,
while SLAKE contains 642 radiology images from various body parts and over 7k QA pairs. PathVQA,
focused on pathology, features Sk images and 32.8k questions. All datasets include open-ended (e.g.,
what, why, where) and closed-ended (yes/no or two-option) question types. We report performance
using recall for open-ended, which evaluates the proportion of ground-truth tokens that appear in the
generated sequences and accuracy for the closed-ended questions.

Baselines. We compare seven approaches, including:

* two modalities-based methods such as InfoNCE-based methods [45] 58], SigLIP [102],
PLOT [15]], VLAP [72]. Among this, SigLIP adapts the Sigmoid loss on image-text pairs to
break the global view of the pairwise similarities for normalization, resulting in scaling in
large batch sizes. PLOT defines optimal transport as a distance between visual image patches
and text embedding. In contrast, VLAP uses assignment prediction to bridge the modality
gap between the visual and LLM embeddings.

* multi-modal learning across three modalities such as image, text, voice, or augmented im-
age—is explored by methods like PAC-S [81]], GeoCLAP [46], and IMAGEBIND [26]. PAC-S
integrates contrastive losses across multiple modality pairs: (image—text), (image—augmented
text), and (text—augmented text). GeoCLAP applies CLIP-style contrastive learning to all
cross-domain pairs, such as audio—text and text—image. Similarly, IMAGEBIND generalizes
the InfoNCE loss to learn unified embeddings across diverse modalities.

We train the baselines under the same settings as EXGRA-MED with varying pre-training data rates
and compare their performance on downstream tasks.

Results. Tables show our performance and baselines under 10%, 40%, and 100% instruction-
tuning data. While most contrastive baselines improve over LLaVA-Med at 10%, EXGRA-MED
consistently outperforms all methods across settings. It excels particularly on open-ended questions
requiring external knowledge and maintains stable gains across all VQA datasets. In contrast, some



Table 5: Comparison with other Med-MLLMs on MedVQA tasks .
All models (except GPT-4) are fine-tuned on the same training set Table 6: ExGra-Med ablation study .
in each VQA task. These Med-MLLMs differ notably in model size,
training data volume, and pre-training strategies - e.g., ExGra-Med
(7B, 60K GPT-4 augmented samples) vs. MedDR (40B, 2M samples).

Results are presented as average scores
on VQA-RAD and SLAKE, using pre-
trained weights on 10%, 40%, 100%.

Method #Para _ VQA-RAD SLAKE PathVQA  gyerall Method VQA-RAD SLAKE

Open Closed Avg. Open Closed Avg. Open Closed Avg. ExGra-Med (Full, 10%, a — 1.0) 7252 85.01
LLaVA-Med 7B 63.65 81.62 72.64 83.44 83.41 83.43 36.78 91.33 64.06 73.37 - (i) ExGra-Med (Full, 10%, o = 0.1) 65.95 82.9
BiomedGPT-B 182M 60.9 813 71.1 843 899 871 28 88 58 7207 - (ii) ExGra-Med (Full, 10%, « = 0.5) 67.72 82.33
M212 - 61.8 81.6 717 747 91.1 829 363 88 62.1572.25 ExGra-Med (Full, 40%) 74.37 84.99
BioMed-CLIP 422M 67.6 79.8 73.7 825 89.7 86.1 - (iii) ExGra-Med w/o ext. context 72.12 81.95
Med-Dr 40B 375 789 582 742 834 788 335 90.2 61.85 66.28 - (iv) ExGra-Med w/o ori. caption 72.58 8231
LLaVA (general) 7B 50  65.1 57.55 782 632 707 7.7 632 35455457 - (v) ExGra-Med w/o message passing 73.90 84.29
GPT-4 200B 395 789 592 33.6 43.6 386 - (vi) ExGra-Med in two stages 72.81 84.14
Med-MoE (Phi2) 3.6B 58.55 82.72 70.64 85.06 85.58 85.32 34.74 91.98 63.36 73.11 ExGra-Med (Full, 100%) 74.91 85.46
Med-MoE (Stable LM) 2B 50.08 80.07 65.08 83.16 83.41 83.29 33.79 91.30 62.55 70.3 - (vii) ExGra-Med w/o barycenter graph  73.88 84.34
ExGra-Med 7B 66.35 83.46 74.91 85.34 85.58 85.46 36.82 90.92 63.87 74.75

ExGra-Med (DCI) 7B 67.03 83.46 75.25 84.88 85.58 85.23 37.77 91.86 64.82 75.1

methods like SigLIP peak at 40% (e.g., 72.14% Avg on VQA-RAD) but drop notably at 100%
(down over 6%), whereas EXGRA-MED improves further to 74.91% (Avg) and 74.75% (Overall).

4.4 Med-VQA Comparison with Medical MLLMs

We now compare EXGRA-MED pre-trained with 100% data against other medical foundation models,
each trained on varying datasets and employing different architectures or model sizes.

Baselines. We benchmark eight competitors, both generic or medical foundation models, including
LLaVA [57], LLaVA-Med [50], Med-Flamingo [64], Med-Dr [30], Biomed-GPT [104], M2I2 [S3],
GPT-4o [7] and Med-MoE [39]]. Whilst LLaVA and GPT-40 have no medical background, the others
are pre-trained on a variety of biomedical knowledge. With the exception of LLaVa, which we
reproduced, the results for the other baselines are taken from the literature. Moreover, we also present
an enhanced version, EXGRA-MED + DCI, which integrates multi-scale visual features from vision
encoders [100], potentially benefiting medical image analysis by considering both local (detailed)
and global (contextual) features.

Results. Overall, both versions of EXGRA-MED outperform baseline models (Table E]), with the
DCI variant achieving the best results on PathVQA (64.82% average, 75.1% overall). Compared to
LLaVA-Med, it shows notable gains: +2.01% on VQA-RAD, +2.03% on SLAKE, and +0.76% on
PathVQA. Despite using only 7B parameters, both EXGRA-MED models surpass the 40B Med-Dr
across all datasets.

4.5 Medical Visual Chatbot Evaluation & Zero-shot Image Classification

Medical Visual Chatbot. We present in Section [E] Appendix EXGRA-MED results compared
against several SOTA general and Med-MLLMs such as LLaVA, GPT-40, LLaVA-Med, Med-
Flamingo, Med-Dr, and Biomed-GPT. Among these, we observe that EXGRA-MED is the best model
across question types.

Zero-shot Image Classification as MedVQA. Results are presented in Section [F|of the Appendix.
In short, we outperform other models across all datasets, particularly excelling in microscopy, where
it surpasses RadFM by 8.2%
4.6 Additional Analysis

Table 7: Results of fully finetuning vs LoRA finetuning on VQA-RAD dataset.

Method VQA-RAD Open VQA-RAD Closed VQA-RAD Avg Param
LLaVa-Med (LoRa) 62.06 75.00 68.53 2.1B
ExGra-Med (LoRa) 63.55 79.41 71.48 2.1B
LLaVa-Med (Fully-finetuning) 63.65 81.62 72.64 7B
ExGra-Med (Fully-finetuning) 66.35 83.46 7491 7B

Potentially Hallucination in Extended Captions. We conducted a user study with five general
practitioners from top public hospitals (Appendix Section K). In Stage 2 of pre-training, each expert
evaluated 200 image-text pairs (1,000 total) across five modalities - chest X-ray, CT, MRI, histology,
and others - rating the completeness and accuracy of GPT-4-generated extended captions. As shown



in Figures 10-14, most scores ranged from 3 to 5, with few low ratings, confirming the overall
consistency and quality of the extended outputs. Also, these extended captions are used only during
pre-training to guide latent space alignment. They are excluded during fine-tuning on downstream
tasks. As such, we argue that a small amount of noise in the extended captions should have minimal
impact on overall performance, since they do not directly affect the model’s task-specific adaptations.

Other Factors. We examine ExGra-Med results under following settings:

* (i) generalization to other frozen LLMs (GPT-4, Gemini [92], and Qwen3-8B LLM [99]) to
generate extended captions and how the method works with simple synonyms (Table [).

* ii) contribution of coefficient (o) combine multi-graph alignment with auto-regressive.

* iii) without using extended contexts, i.e., simplifying from the three graph alignment to two
cross-domain alignments (image vs. original captions).

* (iv) without using original captions, i.e., only extended ones are used.
* (v) applying message passing to enhance node features.
* (vi) using multi-graph alignment in both steps (default uses only Step-2).

* (vii) solving three pair-wise graph alignments in multi-graph alignment rather than solving
through a barycenter graph (Eq.(@) in Sec. [3.4).

* (viii) using parameter-efficient finetuning with LoRa [33]] rather than fully finetuning on
downstream tasks.

Tables [4{6] show results (i)-(vii) where the most important factors are highlighted. We further observe
that ExGra-Med generalizes effectively across distinct LLM paraphrase generators such as GPT-4,
Gemini, and Qwen3-8B. The stable performance across these models indicates that ExGra-Med is not
tightly coupled to a specific language model architecture, but instead captures transferable alignment
mechanisms applicable to a wide range of paraphrastic contexts.

In Table[7] we report the results of ExGra-Med and LLaVA-Med on the VQA-RAD dataset for the
(viii) setting. As shown, ExGra-Med consistently outperforms LLaVA-Med even when both models
are fine-tuned using LoRA, demonstrating the robustness of our approach under parameter-efficient
adaptation. Nevertheless, as expected, LoRA-based fine-tuning yields a modest performance drop
compared to full fine-tuning. We believe that to bridge this gap, pre-training on a larger-scale medical
instruction-tuning dataset (e.g., the 21M samples curated from MedTrinity [98]) would allow the
LoRA setup to more closely match the performance of fully fine-tuned models. Additional analyses
on average pooling features, k-nearest neighbors for graph construction (Section [3.2).

Current Limitations and Future Work. While our experiments have primarily focused on the LLaVa
model, it is essential to validate the effectiveness and adaptability of EXGRA-MED with alternative
architectures, such as the Flamingo model [9], which has shown promising results in vision-language
tasks. Expanding the evaluation to include other state-of-the-art models can provide a broader
perspective on the generalizability and robustness of EXGRA-MED. Furthermore, incorporating
vision encoders or large language models (LLMs) that are specifically pre-trained on medical datasets
[19,162, 107,117, [103] presents a compelling opportunity to enhance both performance and domain-
specific understanding. These specialized models are designed to capture the nuanced characteristics
of medical data, which could further enhance the robustness of EXGRA-MED in complex biomedical
scenarios. Moreover, extending our mechanism to the setting of medical visual chain-of-thought
[41,!49] reasoning represents a promising direction for improving both the overall performance and
the trustworthiness of the model.

5 Conclusion

We have shown that enforcing triplet correlations among images, instructions, and extended cap-
tions significantly enhances vision-language alignment - an area where autoregressive models like
LLAVA-MED struggle, particularly under limited data and domain shift, which manifests as a strong
dependence on large-scale pre-training data. To this end, we introduce EXGRA-MED, a multi-graph
alignment algorithm that trains efficiently, matches LLAVA-MED using only 10% of the data, and
outperforms other state-of-the-art models across tasks. These results highlight that selecting an
effective learning algorithm for LLMs is as crucial as scaling model size or data volume.
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A Proofs of the Main Theoretical Results

In this section, we provide detailed technical proofs of our main theoretical results. To accomplish
this, we first introduce the fundamental concepts and materials that will be utilized in the proofs of
Theorems [ and 21

We consider labelled graphs as tuples of the form G = (V, &€, L, L), where the labelling function
Ly :V — F assigns each vertex v; € V to a feature f; = L¢(v;) in some feature space (F,dy).
Similarly, we denote L, : V +— § as a structure function which links each vertex v; € V with its
structure information s; = L4(v;), e.g., edge information, in some structure space (S,ds). By
associating a weight to each vertex, we allow the graph G to be represented by a fully supported

mixing measure p = Zfil wié( fi,s:) OVer the product between feature space and structure space
F x 8. Notably, i is not necessarily a probability measure as the summation of its weights can be
different from one. We have the vertex affinity matrix between two graphs as AY € RM*N where
A} ;= (dy(fi, f;))i,j. Structural similarity is measured by pairwise distances within each graph,

represented by A° € RISIE| with A . = |d(s, sk) — ds(s;, s1)|, where di(-) models node
distance, such as the shortest path. We then define the space of all structured graphs (F x S, d, p)
over a metric feature space (F,dy) as S(F), where (S, d,) is a metric structure space and p =

N . .
> im1 Wil(f, s,y is a mixing measure over F x S.

A.1 Proof of Theorem/[I]
For the sake of simplicity, we denote the labeled graphs G and structured graphs discussed above
only by p the whole structured graph.
To prove Theorem for any two graphs G; and G, in the structured graph space S(F), described
respectively by their mixing measure p1 = Efvil W1i0(f,,,s,,) and piz = Zjvzl W250(fy;,54;)» TESPEC-
tively, we wish to prove the following properties:

1. Positivity: dsga(G1,G2) > 0 for any G; # Go.

2. Equality relation: dsga(G1,G2) = 0 if and only if G, = G».

3. Symmetry: dsga(G1,G2) = dsca(G2, G1)-

4. Triangle inequality: dsga(G1,G3) < dsga(Gi1,G2) + dsga (G2, Gs) for any graph Gs.

Note first that 1. Positivity and 3. Symmetry hold trivially.

Proof of 2. Equality relation. The equality relation immediately follows the following Proposition
[1l which is proved in Appendix [B.T]

Proposition 1 (Equality relation). For any two graphs Gy and Gy in the structured graph space
S(F), described respectively by their mixing measure p; = Zf\il W1i0(fy,,50,) and prz =
Z;‘V:1 W20 (fy;,55;)> it hOlds dsca(G1,G2) = 0 if and only if M = N and there exists a bijection
o : [M] — [M] such that:

El. Vi€ [M]: wi; = was().

E2. Yie[M]: f1; = fgg(i).

E3. Vi k € [M]2 : ds(sh—,slk) = ds(szo-(i),SQO-(k;)).

Proof of 4. Triangle inequality. Let us consider two arbitrary graphs G; and G5, described
respectively by their probability measure p = Zfﬁl W1i0(fy;,51,) and po = Zjvzl W20 ( £y, 50
For any graph Gs described by its probability measure pu3 = Zf; W3k O fa.,55,)» WE define P €

A(G1,G2) and Q € A(G2, G3) as two optimal couplings of the SGA distance between 17 and o and
e and ps, respectively, i.e.,

M N
PGA(gl,Q’Q): PE{O,I}MXNZZPZ‘J:’LUU:LZPZ‘JZU)QZ‘ZI s
i=1 =1
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Q € A(G2,Gs) = Q € {0, 1}V*K ZQM—wgk—l ZQ]k—ng =1

k=1

w2

P ;Q; Qj Q
LI I R D ILE R I SRS
i T W2 P w2j j
By the suboptimality of R, the triangle inequalities of d; and | - |, we have
dsca(G1,03) < Z [ds(fii, f35) + |ds(s14, 516) — ds(835, 831)|] Ri j Rt

We then construct R = (Z i M) " Then it holds that R € A(G1, G3). Indeed, we have

ig.kil
i P,
= [d(fris f37) + |da(s16 s18) — dals37,53)[] Y ;S:] Z dedl
i gkl -
i i P
= > [df(fris fa5) + |da(s16, 518) — da(s37, 530) ] @L@d’l
i,9,k,l,t.d Wat Wad
P; Q15 PraQa,
< Z [df(flwat)+df(f2t,f37)]£7
653 Wat Waq
i,9,k,l,t,d
P; - P
+ Z [|ds (5135 81k) — ds(S2t, S2d)| + |ds(S2¢, S24) — ds (535, 531)]] Pt Qtj PrdQat
ikl t,d Wy Wog
PP .
Z [y (fri, for) + |ds(5145 811) — ds(S2t, 524) ] PiiPra QrjQat
i4.k,l,t,d Wat Wad
P; . P
Z [ds(far, f35) + |ds(s2t, 524) — ds(sgj,SQ’l)”@LQd’l
©,7,k,l Wt Wad
kZ: [y (Fris foo) + 1ds (513, s1) — dis(520, 524)] mPde ?UZZ Z 325

Wad

i P,
Z [ds (fat, fa5) + |ds(s2t, 520) = s(53j753z)\]Qt,de,szZﬂ~
Lt,d T War
Note that we have

Wad Waq

P
ZQt,] Zle Z Pit _ Poa _ |
5 wWat wWat
This is how we achieve the desired result, because

dsca(G1,G3) < Z [dr(fii, for) + |ds (510, 8186) — ds(S2¢, S24)|] Pt Pr.a
ik t,d

+ Z [d ¢ (for, f35) + |ds(s2e, 2d) — ds(835,831)]] Qr,;Qat

ARY
= dsca(G1,G2) + dsca (G2, G3) (since P and Q are the optimal plans).

A.2 Proof of Theorem

Theorem [2] enables us to characterise the optimal transport problem between two measures as a
curve in the space of measures, with the objective of minimising its total length. Furthermore, this
formulation is beneficial for deriving global minima results for non-convex particles in gradient
descent in an optimisation context, which is a valuable application of gradient flows [20]. By
definition, a geodesic between G; and G- is a shortest path between these two graphs. In particular,
the computation of distances along constant speed geodesic paths is a relatively straightforward
process, as these paths are directly embedded into the real line R as follows: dsga(G1,G2) =
|t —u| " dsca(p(u), p(t)), for all 0 < u # ¢ < 1 and for any path (continuous map) p connect G; to
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Gs such that p(u) = G; and p(t) = Ga. To prove Theorem|A.2} it is necessary to collect fundamental
material using Definition [2from metric geometry for a general metric space (M, d).

Definition 2 (Length and geodesic spaces). Let (M, d) be a metric space and two points x,y € M.
We say that a path (curve) p : [0, 1] — M connect or join x to y if p(0) = x and p(1) =y and p is a
continuous map.

We also define the length L(p) € R of apathp : [0,1] — M as
L(p) :=sup > _ d(p(t:),p(ti+1))
i=1

where we take the supremum over all n > 1 and all n-tuples t1 < ... < t,, in[0,1].

We denote a metric space M as a length space if for all x,y € M, d(z,y) = inf, L(p) where the
infimum is taken over all paths p connecting x to y.

We call a length space as a geodesic space if for all x,y € M, there exists a path p(z,y) : [0,1] — M
such that

d(z,y) = pr(gig) L(p(z,y))-

We also denote the path p(x,y) as a geodesic between x and y.

Finally, we define a path p : [0, 1] — M as a constant speed geodesic if and only if
d(p(u),p(t)) = [t = uld(p(0),p(1)), Vu, t € [0,1].

For the proof of Theorem 2] we first consider an optimal coupling V* for SGA distance between two
graphs G; and G, i.e.,

dSGA(gla g2) - Veir(llgrll g2) O(Ava Ae7 V) = O(AUa Ae7 V*)7

described respectively by their mixing measure py = Zﬁl Woi0(fo;,50,) and py =
ZN:1 w150(f,,,s,,)- Moreover, for any ¢ € [0, 1] we define vy : F x Sg x F x 81 = F x So X &1

J
such that

M N
vi(fo, 50, f1,51) = ((1—=t) fo+tf1,50,51), and p; := #V™* = ZZ V0=t fott f1.501,51,)
i=1j=1
and on the metric space Sg X S1, we define the distance
di = (1 —t)dSO @tdsl : (1 —t)dsO @tdsl ((SOZ', S()j), (31k7 811)) = (1 —t)ds(80i7 slk) +tds(80j, 811)
for any ((s0i, S05), (S1%,511)) € So x Si. Here, we denote # the push-forward operator such that
vi#V*(A) = V*(v;1(A)) for any Borel sets of a g-albegra. For simplicity, we only consider
(F,ds) = (R4, || - ||) where || - || is the Euclidean norm.
Then we aim to prove that (F x So x S1, (1 — t)ds, © tds,, fit)¢cjo,1) is a constant speed geodesic
joining (F x So, dso, o)) and (F x S1,ds1, 1)), for arbitrary elements (F x S, dso, o)) and
(F x 81,ds1, 1)) in the metric space (S(F), dsga)-
To do so, we consider any u, ¢t € [0, 1] such that u # ¢. By definition, we have to prove that

dsca(tbu, pte) = |t — uldsga (to, f1)- @)
Indeed, to prove equation (]Z]), we first recall that

M N
pu = V=D 0 V0w forufisonsi,):

i=1 j=1
M N
Mt = Vt#V* = Z Z ‘/ifjé((lft)fgﬁ*tfl,Soi,slj)7
i=1 j=1
dsca (to, 1) = Z [ (fois f15) + |ds(s0is s18) — ds(505, 51) ] Vi Vil

VRN
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We then define the coupling v** = (puy, X 1) #V* € A(pu, p1¢). By the suboptimality of v*?, it
holds that:

dsca (s 11e) < [ds(foir frs) + [de((s0i 505), (518, 511)) = dul(s0i5 507), (518, 51)) 1955 Vit
04,k

= Z [df((l —t) foi +tf1j, (1 — ) foi + ufij)
04,k
+ (1 = t)ds(s0s, S18) + tds (805, 511) — (1 — w)ds(S0s, S18) — uds(S0;, 811)@ ViV
Z [(t - u)df(fO“ flj) + |(t - U)ds(SOia Slk) - (t - u)ds(50j7 Sll)” ‘/;T]V]:,l
0,4,k 1
|t - u| Z [df(fou flj) + ‘ds(soia Slk,‘) - ds(50j7 Sll)” ‘/l*]V/:,l

i,5.k,1

= [t — uldsca (o, p1)-

Here, we used the fact that d is the Euclidean norm, hence

dy((1=t) foit+t frj, (1—u) foitufij) = [|[(1=2) foittf1;— (1—u) foi—ufij|| = [t—ulds(foi, f17)-

Therefore, we have

dsGa (fiu, i) < [t — uldsca(pto, p1)- (®)
The remaining task is to prove that
dsca(fus i) > [t — uldsca(po, p1)- )

To show that this inequality, we note that via the triangle inequality of dsga and forany 0 < u <t <1,
it holds that

dsca (1o, 1) < dsga(fo, fiu) + dsca(fu, pe) + dsca(fie, 1)
< udsca(to, 1) + (t — w)dsca (po, t1) + (1 — t)dsca (Lo, 11)

= dsca(Hos p11)-
Hence, for any 0 < u <t < 1, we obtain

dsca(10, ) + dsca (s i) + dsca (pe, p1) = udsca (o, p1) + (8 — w)dsga (po, p1) + (1 — t)dsca (to, p11)-
(10

Suppose that
dsca (fus i) < (t —w)dsa (o, pt1)-

Then combining with the fact that

dsca (1o, pu) < udsga (o, 1), and dsga (g, 1) < (1 — t)dsaa (o, p1),
we have

dsca(tto; pu) + dsca(tiu, pit) + dscalpie, p1) < udsca(pio, p1) + (£ — w)dsca(po, pa) + (1 — t)dsca(po, ).
This leads to the contradiction with the equation (I0}) Hence the desired inequality in (9) holds.
Finally, we obtain

dsGa (tu, pt) = |t — u|dsa(po, p1)- (11)

B Proofs of Technical Results

B.1 Proof of Proposition ]|

First, let us suppose that dsga (G1,G2) = 0. We wish to prove the existence of a bijection o satisfying
El, E2, and E3. Indeed, let V' € A(G1, G2) be any admissible transportation plan that encode a valid
matching between G; and G5. Then we define:

1
d(s1i,81k) = 3 [dy(fris fir) + ds(s1i s16)], Vi k € [M]?, (12)

1
d(s2;,521) = 5 [dg(fa), f21) + ds(s25,82)] s Vi, 1 € [M]?. (13)
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Recall that we then define SGM discrepancy as:

d — i AY Vi A ViV | = i O(A”,A°,V
o009 = g \ LAY ¥ 2 AanabiaVit | = i, OLATASY)
= i O;(A”, V) + O4(A%,V)]. 14
VEE%IQIII,QZ)[ f( ) ( ) .

It should be recalled that the vertex affinity matrix A” € RM*M, defined as AY ; = (ds(f1i, f25) )i j»
was introduced in the previous section. The edge affinity tensor, denoted by A, is defined as follows:
A ik = 1ds(s1i, s11) — ds (825, 520) |-

Let V'* be the optimal coupling for dsga(G1, G2). Then we have

Of(AY, V") + O,(A°, V™) = Vei&igrll o [0 (A", V) + Os(A°, V)] = dsga(G1,G2) =0
(15)

Since both Of(A",V*) and O,(A°, V*) are non-negative, we conclude that Of(AY,V*) =
O4(A°, V*) = 0. Now we wish to use the following Lemma|[B.2} which is proved in Appendix

Lemma 1. Given the definition of Zj k1 = |d(s1i,516) — d(s25,521)| where d(sy, s11) and
d(s2;, szl) are provided in equations and , respectively, it holds that

ATV = ST A VEVE = ) Jd(s1 s1e) — d(sag,s2)| ViV =0, (16)
1,5,k,1 i,7,k,l

Moreover, there exists a bijective o : [M] — [N] with M = N satisfies the weight and distance d
preserving isometry as follows:

El. Vie [M]: wi; = way().
E3* Vi k € [M]2 : d(Su, Slk) = d(SQO-(i)’ 520(k))~

Because we have V'* is the optimal coupling w.r.t. the distance d such that

OS(A 7V ) - Vegglgrll Ga) OS(A 7V) - 07 (17)
V* is supported by o and satisfies V* = IMxN x o. Therefore, Of(A”,V*) =
Zl,] df(flzaf2o z)) i,j Z df(flquU (i) )Z Z df(flzaf2a (i) ) = 0. Here’ we used
the fact that
M N
V*e A(gl,gg) =<cVe {07 1}A{XN : Z‘/Z’J =wy; = 1’ZVW =wo; =1
i=1 j=1

Note that d¢( f1i, fa(i)),% € [M] are all non-negative. This leads to dy( f1s, for(;y) = 0, Vi € [M].
This is equivalent to f1; = fog(;), Vi € [M] since d is a metric, which is the desired E2. Therefore,

we also have d¢(f1i, fie) = df(fa0(i), f20(k)), Vi, k € [M]. Combining equations , , and
E3*, we have

1
d(sii,s16) = = [df(fu, fie) + ds(s1i,51%)] 5 (18)

d(520(i)> So (k) = [df(fza@ fooi)) + ds(520(i), S20(k))] > Vi k € [M]?. (19)
This leads to the desired result, i.e., E3. ds(s1i,51%) = ds(S20(i)> S20(k)), Vi, k € [M]?.

Now, let us suppose that M = N there exists a bijection o : [M] — [N] satisfying E1, E2,
and E3. We wish to prove that dsga(G1,G2) = 0. Then we can consider the transportation plan
V* = Iyxn X 0, i.e.,, V*is associated with ¢ — 4 and j — o(i¢). Using El, it holds that
V* € A(G1, G2). Moreover, via E2 and E3, we also have

dsca(G1,G2) = VGE&,’?@) O(A",A%, V) < ZAngz*y + ”zk:l"‘”,k Vi Vi

—de Jri, f25) Vit + Z |ds (5105 818) — ds(525, 520) Vi Vil

4,J i,7,k,1
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= de fris fao (i) Visj + Z |ds (514, 51%) — ds(820(i) S20 (k)| Vi Vies = 0.
i,J 0,5kl
This leads to the desired result that dsga (G1,G2) = 0.
B.2 Proof of Lemmal[l]

By definitions and the triangle inequalities of the metric d¢ and d, we have

AT V) =D Jd(s15,s18) — d(s25, 52) [V Vi

i,4,k,1
1 1 .o
= Z |§ [dy(friy fik) + ds (514, 518)] — 3 [y (f2j, far) + ds (25, 520)] V5 Vi
ikl
1 1
=> 3 [ (fris fix) — dp(f2;, fo1)] + 3 [ds (514, 81%) — ds (525, 520)]| Vi Vi
ikl
1 * * 1 * *
<3 Z |y (f1is f1r) — dy(fog, fa) | Vi Vi + 3 Z |ds(s1i, s1%) — ds (825, 520)| Vi Vieu
1,55kl ©,9,k,l
1 * * 1 e *
=3 > ldg(fris Fak) = dg(fog Fa) Vi Vi + §Os(A V)
ikl
1 . .
=5 D ldp(fi fur) = dy(fag. for)| Vi5VE (since O (A, V™) = 0). (20)
i3kl
Using the triangle inequality of the metric d¢ again, we have
dy(fri, fir) < dy(fri, f25) + df(f25, far) + dy(far, fir)s
dy(f2j, far) < dy(fog, fri) + dy(fris fie) + dg(fir, far)-
This is equivalent to
dg(fri fie) — dg(f25, for) < dy(fris f25) + dp(firs f2)s
dy(fags for) — dy(fris fir) < df(flquj + df (fir, far)- (1)
We consider two sets Iy = {i,j,k,1 : df(fll,flk f2J7f2l < 0} and I, = {3,j,k,1 :
d¢(faj, far) — ds(frs, f1x) < 0}. Combining equations (20| ) 20) and (21, it holds that
e 1
Os(A°,Vv*) < 3 D ldg(frir fik) = dg(fozs ) ViV
ikl
1 * *
=5 > (dg(fags fa) — d(fris i)l Vi Vi
i,k l€D;
1 * *
+3 > (dp(fuis fre) = dg(Fog ) Vi Vi
i,k €T
1 * *
< 3 Z [ (f1is fog) + dg(fir, fa)]l Vi Vi
i,k l€l1
1 * *
t5 D s fog) +dg(fus )] ViV
i,k €2
== Z [df (fris fog) + dy(Fir, for)] Vi Vi
i,7,k,l
M . M « I
=5 de(f1i7f2j)vi,j T de(flk,le)vk,l =MO;(A", V") =0. (22)
,J k,l
Hence, O, (Ke, V*) = 0 since Oy (Ke, V*) > 0. Here, we have V'* is the optimal coupling such that
O (A", V*) = in  O,(A°,V). 23
( ) vemn ( ) (23)

24



Hence, in accordance with Theorem 5.1 from [65} 166, there exists an isomorphisms between the
metric spaces associated with G; and G, described respectively by their mixing measure p; =

Zﬁl W1i0(f,,,51,) and pig = Z;V=1 W270(f,;,5,;)- This means that there exists a bijective with
weight preserving isometry o : [M] — [N]. This implies that M = N and there exists a bijective
o : [M] — [N] satisfies the weight and distance d preserving isometry as follows:

El. Vi € [M] : wi; = Wag(s)-
E3*. Vi, k € [M]2 2 d(s14, 81k) = d(SQU(Z‘), Sga(k)).

C Examples of Extended Contexts Generated Using GPT-4

We present several examples of enriched captions generated using the GPT-4 API in Table|8| These
extended captions offer multiple advantages: (i) they enrich the model’s ability to associate images
with detailed, domain-specific descriptions that go beyond conventional captions; (ii) they better
reflect real-world medical workflows, where clinicians utilize domain expertise, thereby facilitating
multi-scale understanding by bridging local and global features while reducing ambiguity in learning;
and (iii) from a representation learning perspective, these captions diversify the embedding space
and capture hierarchical relationships between input images and captions, potentially enhancing
performance in complex pre-training tasks.

D Expanded Discussion of Related Work

D.1 Graph Perspective and Optimal Transport for Alignment Problems

EXGRA-MED formulates the graph alignment to solve the node-to-node correspondences under edge
constraints indeed can be formulated using optimal transport, namely fused Gromov-wasserstein
optimal transport (FGW-OT) [69,61]. However, two main challenges hinder us from using optimal
transport in EXGRA-MED:

* First, performing the forward pass to compute alignment between graph pairs using optimal
transport is computationally expensive [69], making it impractical for scaling to large-scale
LLM training with hundreds of thousands of samples. This obstacle is further challenged
in EXGRA-MED, where three separate graph alignment problems have to be solved, sig-
nificantly incurring computational costs. In contrast, adopting a graph-based formulation
enables the use of heuristic solvers specifically designed for combinatorial graph matching
[90} 80]], providing an efficient solution to address the high computational complexity of
graph alignment.

* Second, our training loss (Hamming loss in Eq.(5) requires gradients from graph alignments
to learn feature representations. Using optimal transport would necessitate backpropagation
through its Sinkhorn iterations [23]] (50-100), adding substantial computational cost and GPU
memory usage for storing intermediate variables. Our graph-based formulation addresses
the second challenge by leveraging modern gradient estimation techniques for black-box
optimization [70], making the backward step efficient for LLM training.

D.2 Combinatorial Alignment for Representation Learning

Combinatorial graph alignment is a key problem in computer vision, aiming to establish correspon-
dences between elements of two discrete sets, such as image key points or 3D mesh vertices. It is
widely used in tasks like 3D vision [14]], tracking [36], and shape model learning [32]]. In contrastive
learning, LVM-MED [62] is the most relevant to our EXGRA-MED toward learning feature represen-
tation by back-propagation through a combinatorial training loss. However, there are key differences
between them:

* Motivation: EXGRA-MED identifies the data-intensive nature of auto-regressive modeling
in LLaVa-Med and addresses it by introducing a multi-graph alignment approach across
vision, image captions, and extended captions. LVM-MED, in contrast, is designed as a
single-modality pre-trained model (vision) that learns through contrastive learning between
images and their augmented versions.
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Table 8: Example of a conversation extended with enriched caption explanations.

Original Conversation

Enriched Context

INSTRUCTION The image is a CT scan of
the abdomen and pelvis,
focusing on the adrenal
glands.

User What is the organ shown in the image?

The organ depicted in the image is the
adrenal glands, which are located on

top of each kidney. In this CT scan

of the abdomen and pelvis, the adrenal
glands appear as small, triangular-shaped
structures that play a crucial role in
hormone production, including cortisol

and adrenaline, which are vital for stress
response and metabolism.

User What do the black arrows indicate?

INSTRUCTION The black arrows in the
image are pointing to
the bilateral adrenal
enlargement, which means
that both adrenal glands
are larger than normal.

The black arrows in the image indicate
bilateral adrenal enlargement, which
signifies that both adrenal glands are
enlarged beyond their normal size. This
condition can be associated with various
clinical implications, such as hormonal
imbalances or underlying diseases, and may
require further evaluation to determine
the cause.

User Are both adrenal glands enlarged?

INSTRUCTION Yes, both adrenal glands
appear to be enlarged
in the CT scan. This
bilateral adrenal
enlargement may be due
to various causes, and
further evaluation by a
healthcare professional is
necessary to determine the
underlying reason for this
finding.

Yes, both adrenal glands are enlarged

in the CT scan. This bilateral adrenal
enlargement can result from various
conditions, including: - Adrenal adenomas
- Cushing’s syndrome - Hyperplasia -
Metastatic disease Further evaluation

by a healthcare professional is essential
to identify the specific cause of this
finding.

INSTRUCTION The patient is a
23-year-old female.

User ‘What is the age and gender of the patient?

The patient is a 23-year-old female,
indicating her age and gender clearly.
This information is essential for
understanding her demographic profile
in a clinical context.

User What is the main finding in the chest x-ray?

INSTRUCTION The main finding in
the chest x-ray is
lymphadenopathy, which
refers to the enlargement
of lymph nodes.

The main finding in the chest x-ray

is lymphadenopathy, which indicates

the enlargement of lymph nodes. This
condition may suggest underlying issues
such as infection, malignancy, or
autoimmune disorders, warranting further
investigation to determine the cause and
appropriate management.

User What is the patient’s medical condition?

INSTRUCTION The patient has
respiratory symptoms and a
confirmed HIN1 infection.
Additionally, the patient
has a history of crack
addiction.

The patient is diagnosed with respiratory
symptoms and has a confirmed HiIN1
infection. Additionally, the patient has
a significant history of crack addiction,
which may impact their overall health and
treatment options.

* Optimization Solver: EXGRA-MED integrates multiple modalities (vision, captions, and
extended contexts) into a barycenter graph-based solver, making it computationally efficient.
LVM-MED relies on pairwise graph matching, which becomes computationally expensive
for large-scale models. To assess this impact in terms of performance, we conducted an
ablation study replacing our barycenter graph with a pairwise-based solver. As shown in
Table[6] (bottom row), this alternative approach resulted in lower records.

* Graph Construction: EXGRA-MED works in the vision-language domain, making aug-
mentation complex since captions must remain semantically meaningful. It introduces
extended contexts generated by LLMs (e.g., GPT-4, Gemini) to enhance representation
learning. LVM-MED in the other direction works with the vision domain and thus can
define two graphs - one based on input images and another on their augmented versions.
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* Theoretical Analytic: EXGRA-MED introduces new theoretical insights, proving that
its multi-graph distance is a valid metric and demonstrating that the shortest path in the
geodesic space of multi-modal graphs enhances learning. Opposingly, LVM-MED lacks
theoretical contributions, focusing primarily on empirical performance.

* Performance Comparison: We compared EXGRA-MED, which leverages a triplet align-
ment between images, captions, and extended captions, against the LVM-MED solver, which
employs contrastive learning between images and captions. Both models were pre-trained
on 40% of the data and fine-tuned on two downstream tasks: VQA-RAD and SLAKE. The
results show that EXGRA-MED consistently outperforms LVM-MED, achieving scores of
74.37 vs. 72.12 on VQA-RAD and 84.99 vs. 81.95 on SLAKE.

E Medical Visual Chatbot

Datasets. Following LLaVA-Med’s settings, we evaluate EXGRA-MED on a biomedical multimodal
conversational dataset with 193 questions (143 conversational, 50 descriptive) across five medical
domains: Chest X-ray, MRI, Histology, Gross, and CT.

Table 9: Medical visual chatbot evaluation . Results are reported using GPT-4 as the scorer.

Method #Para Question Type Domain Overall
Conver. Descr. CXR MRI Hist. Gross CT
LLAVA 7B 3940 26.20 41.60 33.40 38.40 32.91 33.40 36.1

LLAVA-Med 1.0 7B 47.4 3399 51.31 36.32 45.61 41.09 44.87 43.93
LLAVA-Med 1.5 7B 46.78 34.58 54.58 36.5 41.85 40.3 45.02 43.62
MedFlamingo 83B 2858 13.89 26.93 21.34 22.09 32.71 22.25 24.77

Med-Dr 40B  35.61 19.28 38.98 26.28 29.10 35.40 28.30 31.38
Biomed-GPT 182M  20.71 17.99 27.53 18.50 17.18 14.72 22.08 20.01
GPT-40 200B 42.04 25.47 42.77 39.74 38.68 31.40 35.59 37.75
ExGra-Med 7B 48.49 34.32 58.37 36.82 46.05 45.19 38.24 44.82

ExGra-Med (DCI) 7B 48.99 34.01 59.9 32.34 51.88 42.53 38.28 45.11

Baselines. We evaluate with several SOTA multimodal large language models, including general
models like LLaVA and GPT-4o0, as well as medical-focused models such as LLaVA-Med and its
variants, Med-Flamingo, Med-Dr, and Biomed-GPT. We use the officially provided weights for all
comparison baselines without additional reproduction steps. The details of the evaluation protocol
using GPT-4 as a scorer are presented in the Appendix section.

Evaluation Protocol We evaluate the ability of models to serve as a medical visual chatbot as
follows: each of the 193 novel questions in the dataset has a corresponding ground-truth answer. We
generate responses to each question from the LMM. Next, we ask GPT-4 to score the helpfulness,
relevance, accuracy, and level of detail of the response from the LMM relative to the ground-truth
answer. The score is, therefore, on a scale of 0 to 100, where a higher score indicates better overall
performance. During our project, we were unable to access the GPT-4 version used by LLaVA-Med
due to deprecation. Therefore, we opt for the GPT-40 version as a judge. We also use this GPT version
to reproduce the results reported in the LLaVA-Med paper and observe a decrease in performance.
This may be due to the fact that GPT-40 serves as a better judge than the previous version and thus
judge the model’s response harder.

Results Table [9]shows the experimental results of EXGRA-MED alongside competitive methods,
with the highest scores in bold. Our two method variants—based on LLaVA 1.5 with and without
the DCI technique—outperform others on conversation samples and achieve comparable results to
LLaVA-Med 1.5 on description samples. In evaluations across five medical domains, our methods
surpass the baselines in three (CXR, Histology, and Gross), positioning EXGRA-MED as the state-of-
the-art overall. These findings highlight how the multi-graph alignment strategy and extended answer
contexts enhance VQA chatbot performance in the biomedical domain.

Qualitative results are shown in Table [I0] where EXGRA-MED’s generated responses are compared
against a series of example questions and image contexts. The top and middle parts of the figure
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illustrate a detailed description of a chest X-ray image, while the bottom part showcases a conversa-
tional exchange regarding the origin and extent of a mass found in a medical image. As demonstrated,
EXGRA-MED effectively provides clinically relevant answers with high-level details, enhancing
the interpretability and usability of its outputs. In cases where the given image and/or question is
ambiguous, as shown in the middle dialogue, EXGRA-MED should produce a clear explanation
without adding any additional information or showing any signs of hallucinations.

Table 10: Examples of the medical visual chatbot. Top: a detailed description for a Chest X-Ray
(CXR) image; Middle: a detailed description for a CT scan image; Bottom: a conversation exchange
regarding a medical condition.

Detailed Description

Caption  Chest X-ray: Normal with no signs of metastatic lesions
User  Walk through the important details of the image

EXGRA-MED  The image is a chest X-ray (CXR) taken on the 1st postoperative
day. It provides a view of the patient’s chest, including
the lungs, heart, and surrounding structures. Since this
is a postoperative image, it may be used to assess the
patient’s condition after a surgical procedure, monitor for any
complications, or evaluate the effectiveness of the treatment.

Caption  Viral Sialadenitis. Axial computed tomography in a 14-year-old
female with bilateral parotid pain and swelling demonstrates
symmetric enlargement of the parotid glands with subtle stranding
in the adjacent fat (white arrows). Blood work was positive for
parainfluenza virus.

User Offer a thorough analysis of the image

EXGRA-MED  As an AI, I cannot view the actual image, but I can help you
interpret the image based on the visual aspects you describe. If
you have any questions about the content or context of the image,
feel free to ask, and I’1l1l do my best to provide assistance.

Answer (Short)  Chest X-ray showing dilated cardiomyopathy

Conversation

Caption A computed tomography scan shows that the mass arises from the
posterior costal arc of the eighth rib on the patients left side
and does not involve the medulla.

User What is the origin of the mass?
EXGRA-MED The mass appears to be originating from the right lung.
User Does the mass involve the medulla?

EXGRA-MED According to the image, the mass does not appear to involve
the medulla. The medulla is a part of the brainstem, and its
involvement would indicate that the mass has extended to this
area. In this case, the mass seems to be affecting other parts
of the brainstem and cerebellum.

Answer (Short) -

F Zero-shot Image Classification as MedVQA

Datasets. We assess the generalization of EXGRA-MED on zero-shot image classification by adapting
public datasets from [34]. We convert image classification tasks into visual question answering, where
the model selects the correct answer from input options based on the given image (Figure[9). We focus
on three key data modalities prevalent in our pre-training: Microscopy, Computed Tomography
(CT), and Chest X-Ray (CXR). This evaluation spans several downstream tasks, including 8 datasets
for Microscopy, 4 for CT, and 11 for CXR, totaling 23 datasets.

Baselines. We use checkpoints from LLaVa-Med, Med-Flamingo, and RadFM [96] for zero-shot
inference on the collected datasets. Notably, RadFM is pre-trained on 16/ 2D and 3D medical scans,
while EXGRA-MED is trained on just 600K instruction-following data. For baseline models, we
follow the prompts proposed by [34]], with detailed evaluations using third-party software to align
model outputs with ground-truth answers.

Evaluation method. Following [34], we use Question-answering Score as a metric to report the
performance of the models. Specifically, we combine the question expression and all candidate
options to construct the prompt. Our prompt template therefore is as follows:

““This is a medical question with several Options, and there is only one
correct answer among these options. Please select the correct answer for

28



OmniMedVQA Benchmark
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Figure 4: EXGRA-MED performance on 23 zero-shot image classification tasks within three data
modalities.

the question. Remember, you can only select one option. The Question
is:(Question). ### The candidate Options are:(Options).

The MLLM receives this prompt and the corresponding image and is asked to generate a response.
We then utilize difflib, a standard Python package to compare two strings, to calculate the similarity
of the response with each of the candidate options and pick the option with the largest similarity as
the final prediction. The accuracy is computed by comparing the prediction with the ground-truth
answer.

Results. Figure]illustrates the average performance of EXGRA-MED across Microscopy, CT, and
Chest X-Ray modalities, with the total number of images and question-answer items listed below.
Detailed results for each dataset within these modality groups are provided in Tables [T} [I3] and[T2]
Overall, EXGRA-MED still outperforms other models across all datasets, especially excelling in the
microscopy modality, where it exceeds the runner-up, RadFM, by 8.2%. We attribute these benefits
to the strong alignment between visual features and language embeddings achieved through triplet
constraints, which compel the model to capture deeper semantic relationships.

Figure 9] provides several examples of microscopy and CT images. The top section displays three
microscopy images along with their respective question-option pairs, while the bottom section
presents three CT image samples with their question-option pairs. The ground truth correct options
are highlighted in blue. In total, the number of images and question-answering items across the three
groups of various medical image modalities are shown in Figure f]

Results We provide detailed results for datasets on each data modality in Tables [TT} [T3] and[12]

G LLM Prompting for GPT-4 to Generate Extended Captions

We illustrate in Figure[5]how to leverage the GPT-4 API to analyze and extend the original answers.
For detailed responses in specific cases, refer to Table[§]

H Additional Results for Multi-modal Pre-training Comparison

H.1 MedVQA datasets

We train and evaluate ExGra-Med on three biomedical VQA datasets, including VQA-RAD, SLAKE,
and PathVQA. The dataset statistics are summarized in detail in Table [T4]
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Table 11: Performance comparison on various microscopy image datasets.

Microscopy Method
Image Dataset LLaVA-Med Med-Flamingo RadFM  Ours
CRC100k [43] 24.74 17.18 27.48  28.06
ALL Challenge [28] 29.24 13.20 39.88  27.49
BioMediTech [67] 39.14 16.08 47.84  46.97
Blood Cell [3] 21.11 15.25 16.95  29.87
BreakHis [86] 23.27 13.62 18.26  33.74
NLM-Malaria [5] 30.67 6.76 3243  66.67
HuSHeM [82] 16.85 18.18 11.36  25.84
MHSMA [38] 29.64 39.66 38.41  39.70
Avg. 26.83 17.49 29.08  37.29

Table 12: Performance comparison across CXR datasets.

CXR Dataset Method

LLaVA-Med Med-Flamingo RadFM  Ours
RUS CHN [6] 28.05 20.19 29.88  41.88
Mura [78] 20.70 2591 4347  30.19
Pulmonary Chest MC [37] 21.05 27.03 10.81 47.37
MIAS [87] 25.35 38.30 2837  42.96
Pulmonary Chest Shenzhen [37] 26.35 32.54 36.95 19.93
COVIDx CXR-4 [95] 28.25 25.83 48.14  22.68
Knee Osteoarthritis [18] 11.20 22.24 6.19 8.69
Chest X-Ray PA [12] 29.06 38.04 38.28 49.41
CoronaHack [22] 19.74 33.67 2299 4781
Covid-19 tianchi [4] 16.67 45.26 33.68 30.21
Covid19 heywhale [21] 22.03 56.31 2337  29.28
Avg. 23.18 32.01 28.84  33.67

Table 13: Performance comparison on various CT (Computed Tomography) datasets.

CT Dataset Method

LLaVA-Med Med-Flamingo RadFM  Ours
Chest CT Scan [1] 25.72 20.00 25.06  20.09
SARS-CoV-2 CT [84] 28.79 40.92 44.55 3495
Covid CT [2] 22.61 21.72 28.79  37.19
OCT & X-Ray 2017 [44] 27.21 28.08 29.46  47.89
Avg. 26.08 27.68 3197 35.03

* VQA-RAD dataset is a collection of 2248 QA pairs and 515 radiology images which are evenly
distributed over the chest, head, and abdomen. Over half of the answers are closed-ended
(i.e., yes/no type), while the rest are open-ended with short phrase answers.

* SLAKE dataset contains 642 radiology images and over 7000 diverse QA pairs. It includes
rich modalities and human body parts such as the brain, neck, chest, abdomen, and pelvic
cavity. This dataset is bilingual in English and Chinese, and in our experiments, we only
considered the English subset.

PathVQA dataset contain pathology images. It has a total of 32795 QA pairs and 4315
pathology images. The questions in this dataset have two types: open-ended questions such
as why, where, how, what, etc. and closed-ended questions.
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System Prompt

You possess in-depth biomedical knowledge in checking the quality of the answer to a given
instruction. From the given input, which is a pair of instruction and answer, your task involves
the following steps:

1. Explain why the given answer is not good for its instruction. Please analyze based on
the Helpfulness, Relevance, Accuracy, Level of Detail, and Structure fields.

2. Generate a better answer based on the reasons pointed out above, while preserving the
same content. To achieve that, you may want to adjust the level of details, add bullet
points, or use comprehensive words, etc. Because these answers are about biomedical
knowledge, you must keep all the medical terminology and important words in the new
better answer. The new better answer should be in a tone that you are also seeing the
image and answering the question.

3. Output a JSON object containing the following keys (note that double quotes should not
be used): { "explanation": { "helpfulness":<comment on helpfulness, max 20 tokens>,
"relevance":<comment on relevance, max 20 tokens>, "accuracy":<comment on accuracy,
max 20 tokens>, "detail":<comment on detail, max 20 tokens>, "structure":<comment on
structure, max 20 tokens> 1},

"revision": <improved version of the answer, max 2x tokens of input if > 2 tokens,
otherwise max 20 tokens> }

Figure 5: Instructions provided to the system for analyzing the quality of answers based on different
criteria and generating a revised response in JSON format.

Table 14: Dataset statistics for 3 medical VQA datasets: VQA-RAD, SLAKE, and PathVQA.

VQA-RAD SLAKE PathVQA
Train Test Train  Val Test  Train Val Test

# Images 313 203 450 96 96 2599 858 858

#QAPairs 1797 451 4919 1053 1061 19755 6279 6761
# Open 770 179 2976 631 645 9949 3144 3370
# Closed 1027 272 1943 422 416 9806 3135 3391

Dataset

H.2 Results

Tables and (16| present the results using 70% and 100% of the data. Overall, EXGRA-MED
demonstrates a steady improvement and consistently outperforms other pre-training methods across
nearly all settings.

Table 15: Performance fine-tuning on MedVQA downstream datasets (pre-training 70%). Bold
indicate for best values among pre-training algorithms except for LLaVA-Med (pre-trained on 100%).

VQA-RAD SLAKE PathVQA
Open Closed  Avg. Open Closed Avg. Open Closed Avg.

LLaVA-Med (100%) 63.65  81.62  72.64 83.44 8341 83.43 36.78 91.33 64.06 73.37
LLaVA-Med (70%) 65.9612.31 81.62)0 73.7911.13 84.16T0.72 83.170.24 83.671024 37.3970.61 92.2710.94 64.83T0.77 74.170.64

Method Overall

InfoNCE 64.18 7794  71.06 70.9 82.69 76.80 33.58 88.5 61.04  69.63
PLOT 60.13 7831 69.22 82.48 83.89 83.185 29.23 85.7 57478 69.96
SigLIP 61.68  78.68  70.18 82.04 83.17 82.61 34.43 90.3 62.37  71.72
VLAP 64.08  79.41 71.75 84.94 85.1 85.02 36.44 91.51 63.98 73.58
ExGra-Med 67.12 8199 74.56 84.81 84.86 84.84 37.26 91.77 64.52  74.64

Table 16: Performance fine-tuning on MedVQA downstream datasets (pre-training 100%).

VQA-RAD SLAKE PathVQA
Open Closed Avg. Open Closed Avg. Open Closed Avg.
LLaVA-Med (100%) 63.65 81.62 72.64 83.44 83.41 8343 3678 91.33 64.06 73.37

Method Overall

InfoNCE 66.01 7941 72771 83.23 8341 83.32 3501 89.53 6227 7277
PLOT 63.58 7721 704 8244 8486 83.65 3445 8997 6221 72.09
SigLIP 57.11 7426 65.69 85.07 83.41 84.24 36.47 8938 62925 70.95
VLAP 60.93 79.78 7036 84.74 83.17 83955 3586 89.65 62.755 72.36
ExGra-Med 66.35 8346 7491 8534 8558 8546 3682 90.92 63.87 7475
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I Further Ablation Studies

I.1 K Nearest Neighbor in the Graph Construction Step

We conduct experiments to assess the impact of different K values in the graph construction step.
Table [17] presents model performance on the VQA-RAD dataset along with the training time for
Step-2 pre-training using 10% of the data for each K value. Our findings indicate that K = 5
achieves the best balance between performance and efficiency.

Table 17: Impact of Nearest Neighbors Count on Graph Construction. Performance is reported on
VQA-RAD with running time measures on Stage-2 pre-training step on 10% data.

Settings VQA-RAD
Open Close Avg. RunTime
ExGra-Med (Full), K=3 559 739 649 1h

ExGra-Med (Full), K =5 66 79.04 7252 1h4’
ExGra-Med (Full), K=7 5552 73.16 64.37 1h17°

Table 18: Comparison of pre-training algorithms with different feature embedding methods. Models
are pre-trained on 40% of the data and evaluated on the average performance across three medical
visual question-answering datasets.

Method VQA-RAD SLAKE PathVQA
EXGRA-MED 74.37 84.99 64.34
InfoNCE (avg.feature) 70.34 83.29 61.6
PLOT (optimal transport) 71.89 83.16 62.4

L2 Feature representation analysis using average pooling for visual and language tokens
We investigate using average pooling token features in EXGRA-MED with two experiments:

* We trained EXGRA-MED on 70% of the pre-training data, randomly sampling 1000 unseen
image-text pairs. The trained model extracted features using average pooling, and a box
plot (Figure[6) visualized the central tendency, spread, and skewness of 1000 positive and
negative pairs. The results show: (i) the median similarity for positive pairs is significantly
higher than for negative pairs, indicating clear separation; (ii) while some overlap exists in
the interquartile ranges (IQRs), the shift in central tendency confirms the distinction; and
(iii) outliers are present, particularly among negative pairs, but they minimally overlap with
the core distribution of positive pairs.

Boxplot of Positive and Negative Similarity Score for Unseen Data
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Figure 6: Visualization of similarity values between positive and negative pairs based on features
computed by EXGRA-MED.
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* We compare against two pre-training algorithms, InfoNCE [45, 58] and PLOT [15]]. Both
utilize the same contrastive loss, but InfoNCE relies on cosine distance with averaged
features, while PLOT directly computes optimal transport over sets of visual and text tokens.
The results for these baselines are summarized in Table[I8] We observe that using a more
sophisticated distance metric, such as optimal transport, provides a slight improvement
(around 1%) over the averaging approach. However, the performance gain is relatively
modest. Based on the above evidence, we conclude that using average pooling for distance
feature extraction is a reasonable and practical approach.

J Qualification Test on the GPT-generated Extended Captions

We adopt the GPT-4 as a tool for paraphrasing image captioning due to its improved performance
compared with GPT-3.5, especially in healthcare [40]. During our implementations, we also randomly
checked for a hundred samples and found consistency between extended context and original ones.
However, we also sought help from five general practitioners currently working at top public hospitals
in Vietnam (for anonymity reasons, we will update their affiliations after the review process has been
completed).

In particular, we randomly chose 1000 samples in Stage 2 of pre-training, covering five data modalities:
chest X-ray, CT scan, MRI, histology, and others. Each doctor is assigned a specific data modality
given their expertise, including 200 image-text pairs and corresponding captions. We then build an
annotation tool for them to verify data where each sample is asked with two questions (i) whether the
extended caption covers the original caption; and (ii) whether new concepts appearing in extended
captions are correct. For (i) and (ii), doctors can rate with five levels (from 1 to 5), each indicating an
increasing level of correctness (Figures [7H8).

We provide statistical correctness evaluated by general doctors for these domains in Figures [[0]TT][T2]
[13] and[T4] It can be seen that most rating scores fall between 3 and 5, with only a small number of
samples rated 1 or 2, validating the overall consistency of GPT-4 outputs. While concerns may arise
regarding the impact of low-scoring extended captions (rated 1 or 2) on the LLM, it’s important to
note that these extended captions are utilized solely for contrastive learning during pre-training to
align the model’s latent space representations. They are not used in auto-regressive training, which
involves predicting target ground-truth tokens. Additionally, the model is fine-tuned with the given
training samples from downstream tasks after pre-training (no extended captions are used). Thus, we
argue that the presence of a small number of noisy extended captions should not significantly affect
the performance of the LLM.

B ExGra-Med Rating: ct scan B

@ Image

Textbox Textbox Textbox

There could be various causes for a paraspinal
abscess. Some common causes include bacterial
infections, such as Staphylococcus aureus or
Streptococcus species, which can spread from nearby
structures or through the bloodstream. Other

Aparaspinal abscess can arise from several causes,
including; - Bacterial infections, particularly from
Staphylococcus aureus or Streptococeus species,
which may spread from adjacent structures or via the
bloodstream. - Injury or trauma to the paraspinal

21769293_F1#1.json

Textbox

possible causes include injury or traumato the area,
complications from surgery, or the spread of infection
from a nearby source, such as a spinal infection or

area. - Surgical complications that lead to infection. -
Spread of infection from nearby sources, such as
spinal infections or discitis. For an accurate diagnosis

What could be the cause of the abscess?

discitis. It is important to consult a healthcare
professional for a thorough evaluation and proper
diagnosis of the underlying cause of the abscess.

and evaluation of the underlying cause, consulting a

Does the extended answer contain the original answer?
healthcare professional i essential.

Very Poor Poor Moderate

Good O Excellent

In case of the extended answer contains NEW
INFORMATION, is it correct?

Very Poor Poor Moderate
Good O Excellent

Textbox

Next

Figure 7: (Part 1) Demonstration of our annotation tool for general practitioners to validate the quality
of extended captions generated by GPT-4.
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LoGra-Med Rating Guidelines

1: Very Poor Consistency

Description: The extended caption significantly diverges from the original meaning, includes incorrect or irrelevant medical information, or introduces significant factual errors.

© Examples:

Contradicts the original caption.

Adds details that are medically implausible or incorrect.

Does not maintain any coherence with the original content.

2: Poor Consistency

o Description: The extended caption retains some elements of the original caption but includes inaccuracies or overly speculative content. The new details are loosely related to the original or contextually irrelevant.
o Examples:

o Partial preservation of the original meaning.

© Contains minor factual errors or misinterpretations.

o Unnecessarily diverges into unrelated topics.

w

: Moderate Consistency

Description: The extended caption mostly aligns with the original caption but includes minor inaccuracies, redundant information, or slightly irrelevant expansions. The medical context remains intact but could be improved.

o Examples:

Retains the main idea but adds unnecessary or repetitive details.

Expansion is overly generic and lacks depth in medical relevance.

4: Good Consistency

° iption: Th ded caption is well-aligned with the original caption, provides accurate and relevant additional details, and enhances the context without deviating from the medical focus.

© Examples:
o Adds valuable, medically relevant information that complements the original.

© Maintains high factual accuracy and stays within the context.

5: Excellent Consistency
o Description: The extended caption perfectly aligns with the original, enriching the content with precise, relevant, and insightful details. It enhances understanding without introducing errors or deviating from the topic.

© Examples:

Seamlessly extends the original caption with meaningful medical context.

Fully accurate and maintains clarity and relevance.

Figure 8: (Part 2) A detailed guideline for scoring, ranging from 1 to 5, is provided.
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e

Q: What are the types of cells de-
picted in this image?

A: Neutrophils

B: Melanocytes
C: Lymphocytes
D: Hepatocytes

Q: What is the diagnosis of the
histopathology in this image?

A: Breast hyperplasia without
atypia histopathology

B: Normal breast histopathology

C: Benign breast histopathology

D: Fibrocystic breast histopathol-
ogy

Q: What is the probable diagnosis
depicted in this image?
A: Chronic myeloid leukemia
B: Multiple myeloma
C: Hodgkin’s lymphoma
D: Acute lymphoblastic leukemia

Q: What is the diagnosis of the
cancer seen in this image?

A: Adenocarcinoma of the right
hilum, T3 N1 MO, Stage IIb

B: Mesothelioma of the right
hilum, T2 N1 MO, Stage IIb

C: Large cell carcinoma of the left

hilum, T2 N2 MO, Stage Illa

D: Non-small cell carcinoma of
the left hilum, T2 NO MO, Stage [

Q: Is COVID-19 apparent in this
CT scan image?
A: No

Q: Which imaging technique was
utilized to obtain this image?
A: Ultrasound

C: Magnetic Resonance Imaging
(MRI)
D: Thermography

Figure 9: Examples from the OmniMedVQA dataset: microscopy (top) and CT images (bottom) with
corresponding questions and options, with the correct answers highlighted in blue.
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Figure 10: Statistical correctness of extended captions generated by GPT-4 on Chest X-rays.
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Correctness of new information for CT Scan
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Figure 11: Statistical correctness of extended captions generated by GPT-4 on CT scans.
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Figure 12: Statistical correctness of extended captions generated by GPT-4 on MRI.
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Figure 13: Statistical correctness of extended captions generated by GPT-4 on mixed domains.
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Figure 14: Statistical correctness of extended captions generated by GPT-4 on histology samples.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We provided experiments to support our claims.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included it at the end of the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions are already stated.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we provided experiment descriptions in the main paper and appendix. Further-
more, we will release our GitHub implementation if the paper is accepted.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

39



Answer: [Yes]

Justification: We will publish the code when the paper is accepted or through an anonymous
link if some reviewers ask for it.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provided details for experiments in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct experiments on diverse datasets and follow the protocol used by
previous works for fair comparisons.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This information is included in our results.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our paper follows the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work helps to reduce the carbon footprint when training large models
using ViT. There is no negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited papers and resources used in our experiment.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t have experiments involving crowdsourcing or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use LLM to paraphrase the caption in the medical instruction-following
dataset, which will be used to do cross-alignment among modalities, improving model
feature representations. The details for this step are provided in the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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