
Under review as a conference paper at ICLR 2024

ENHANCING ONE-SHOT PRUNED GENERATIVE PRE-
TRAINING LANGUAGE MODELS THROUGH SPARSE-
DENSE-SPARSE MECHANISM

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative pre-trained language models (PLMs) are engineered to be robust in
contextual understanding and exhibit outstanding performance in various natu-
ral language processing tasks. However, their considerable size incurs signifi-
cant computational and storage costs. Modern pruning strategies employ one-shot
techniques to compress PLMs without the need for retraining on task-specific or
otherwise general data; however, these approaches often lead to an indispens-
able reduction in performance. In this paper, we propose SDS, a Sparse-Dense-
Sparse pruning framework to enhance the performance of the pruned PLMs from
a weight distribution optimization perspective. We outline the pruning process in
three steps. Initially, we prune less critical connections in the model with conven-
tional one-shot pruning methods. Next, we reconstruct a dense model featuring
a pruning-friendly weight distribution by reactivating pruned connections with
sparse regularization. Finally, we perform a second pruning round, yielding a su-
perior pruned model compared to the initial pruning. Notably, SDS requires only
a limited number of calibration samples, comparable to typical one-shot pruning
methods, but significantly outperforms them. Experimental results demonstrate
that, under an identical sparsity configuration, SDS outperforms the state-of-the-
art pruning technique SparseGPT and Wanda by decreasing language comprehen-
sion perplexity by an average of 6.4 and achieving an average accuracy improve-
ment of 1.9% across multiple downstream tasks on OPT, GPT, and LLaMA.

1 INTRODUCTION

Generative pre-trained language models (PLMs) (Vaswani et al., 2017), such as ChatGPT, have rev-
olutionized various applications in natural language processing. However, the considerable size of
PLMs results in notable drawbacks such as increased latency and energy consumption. Compression
methods for vision models such as convolutional neural networks, which perform pre-training, com-
pression, and fine-tuning workflow with quantization or pruning (Liang et al., 2021), are ill-suited
for PLMs due to their prohibitive training cost.

Recent pruning research, such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al.,
2023), has introduced effective one-shot compression techniques for PLMs. These methods can
compress up to 50% of the parameters in the fully-connected layers of large PLMs with negli-
gible impact on performance. However, the effectiveness diminishes when applied to undersized
ones, which are usually more fully trained and are considered difficult to compress. For instance,
SparseGPT, the state-of-the-art pruning method, yields a perplexity of 31.58 when applied to prune
50% of the weights in OPT-350m. This score is worse than the 27.66 perplexity observed in OPT-
125m, a smaller dense model with roughly half the parameters of OPT-350m. Furthermore, when
stricter sparsity constraints are employed, such as 2:4 or 4:8 sparse configurations (Mishra et al.,
2021) for computational acceleration, the performance deteriorates even further. Therefore, it is
essential to optimize the poorly pruned PLMs.

From a macroscopic point of view, PLMs are not designed to be aware of subsequent pruning since
they lack pruning-related regularization during pre-training. As a result, pruning PLMs while main-
taining their performance proves challenging, especially for undersized ones.

1

Under review as a conference paper at ICLR 2024

29.5%

GAP

55.4%

GAP

98.9%

GAP

(a) Perplexity on raw-WikiText2 (b) Average acc. on 7 downstream tasks

Figure 1: SDS compensates for the performance drop in SparseGPT-pruned, undersized OPTs.

Neurons in the human brain show sparse-to-dense-to-sparse connectivity as they grow (Herculano-
Houzel et al., 2010). This observation inspired us to perform a sparse-to-dense-to-sparse process to
achieve a better pruning scheme that benefits from sparse regularization. We preliminarily explored
layer-by-layer dense reconstruction to find a performance upper bound. Intriguingly, we discovered
that sparse models could bounce back to performance levels equivalent to their dense counterparts
using only a few unlabeled samples (cf., Table 1). It reveals two key insights: first, pruned PLMs
can be optimized with limited resources; second, the amount of knowledge lost during the pruning
process is negligible. These insights lay the foundation for the work presented in this paper.

We propose a three-step Sparse-Dense-Sparse (SDS) pruning framework to enhance the performance
of pruned generative pre-trained language models. In the first step, we employ conventional one-
shot pruning methods on a PLM to remove irrelevant connections. In the second step, we perform
a dense reconstruction of the sparse model to reactivate the pruned connections, aiming to identify
a dense model with enhanced pruning awareness. This process is aided by a multidimensional
sparse regularization strategy, which optimally guides the weight distribution, rendering it more
pruning-friendly for the subsequent step. In the third step, we apply SparseGPT to further prune
and adjust the weights of the re-dense model. Importantly, SDS requires only a limited number of
unlabeled samples for calibration, identical to conventional one-shot methods. Experimental results
demonstrate that SDS outperforms SparseGPT and Wanda under the same sparsity configuration,
reducing the average perplexity by 6.4 and improving accuracy by 1.9% across multiple downstream
tasks in OPT, GPT, and LLaMA (cf., Figure 1). The main contributions of the paper are summarized
as follows:

• We introduce SDS, a three-step sparse-dense-sparse framework. It involves weight redis-
tribution and pruning, enhancing the performance of the one-shot pruned generative pre-
trained language models.

• We design sparse regularization strategies that improve the effectiveness of re-dense weight
reconstruction as well as find a more pruning-friendly weight distribution.

• Experimental results demonstrate that SDS sets a new state-of-the-art in both language
comprehension and downstream task performance.

Table 1: Pruning PLMs incurs minimal knowledge loss. We apply 2:4 sparse to PLMs with
SparseGPT, and their performance decreases in the raw-WikiText2 task. However, upon reactivat-
ing the sparse weights layer by layer with only 128 samples from C4, a substantial performance
improvement is observed.

PLMs Dense 2:4 Sparse Re-dense
OPT-125m 27.66 60.43 27.94
OPT-350m 22.01 51.11 22.25

2

Under review as a conference paper at ICLR 2024

Initial pruning Re-dense Second pruning

Dense DenseSparse Sparse

Figure 2: An overview of the steps of the SDS framework, which is divided into initial pruning,
re-dense weight reconstruction, and a second round of pruning.

2 SDS: ENHANCING ONE-SHOT PRUNING THROUGH SPARSE-DENSE-SPARSE
MECHANISM

This section presents the Sparse-Dense-Sparse (SDS) framework to perform one-shot pruning for
generative pre-trained language models (PLMs). First, we provide a brief overview of the core
Transformer architecture, which is fundamental to most PLMs. A standard Transformer block con-
sists of two main modules: a multi-head attention (MHA) layer and a feed-forward network (FFN).
Let Xl−1 ∈ Rn×d represent the input of the l-th Transformer block, where n is the sequence length,
and d is the size of the hidden state. The block output Xl ∈ Rn×d can be formulated as:

X = MHA(LayerNorm (Xl−1)) +Xl−1, Xl = FFN(LayerNorm (X)) +X. (1)

MHA consists of h heads, represented as WO ·Concat(head1, head2, . . . , headh), with WO respon-
sible for the output projection. Furthermore, the i-th head can be expressed as:

headi = Attention([WQX]i, [W
KX]i, [W

V X]i,M), (2)

Attention(Q,K,V ,M) = softmax
(
M ⊙ QK⊤

√
dk

)
V , (3)

where Q, K, and V represent the query, key, and value sequences, respectively, and their corre-
sponding projection weights are WQ, WK , and W V . dk is the dimension of the key vectors, and
M is the mask matrix to selectively ignore or give weight to certain tokens in the input sequence.
FFN expands and contracts input dimensions through hidden layers, introducing non-linearities to
enhance representation learning, which consists of two fully-connected layers, with their weights
represented as W FC1, W FC2, respectively.

In this paper, we focus on pruning the weights in fully-connected layers, which are emphasized by
WQ, WK , W V , WO, W FC1 and W FC2 from the outset.

The SDS framework consists of three steps: initial pruning (Section 2.1), re-dense weight recon-
struction (Section 2.2), and a second round of pruning (Section 2.3). By optimizing weight distri-
bution through these steps, the SDS framework enhances the performance of pruned PLMs. The
overall process of the SDS framework and the evolution of weight distribution during its steps are
depicted in Figures 2 and 3, respectively.

2.1 INITIAL PRUNING

The SDS framework initiates by eliminating the less important connections in PLMs using con-
ventional one-shot pruning methods. SparseGPT (Frantar & Alistarh, 2023) leverages second-order
information for guiding sparse mask selection and modifying weights. Concretely, given a particular
sparsity, SparseGPT compensates for the error that occurs during the pruning of the c-th column of
the weight matrix W dense by modifying the weights of subsequent columns (here we use subscripts
for row and column indexes, omitting the layer number):

3

Under review as a conference paper at ICLR 2024

25

30

35

40

Dense Initial Pruned Second PrunedRe-Dense

P
er

p
le

x
it

y

Figure 3: The evolution of weight distribution within the SDS framework. The weights are
extracted from the FFN in the 12-th transformer block of OPT-125m, with a sparsity level of 50%.
Initially, the dense weights follow a Gaussian distribution. After being pruned by SparseGPT, a
concentrated, bimodal distribution emerges (zero values are omitted in sparse weight distributions
for better clarity). Followed by connection reconstruction with sparse regularization, a three-peaked
distribution materializes. Finally, the second pruning round attenuates the sharp peaks, resulting in
a softer bimodal distribution. The red dotted line represents the perplexity on raw-WikiText2. The
second pruned model achieves a lower perplexity than the initially pruned one.

W sparse
:,c = 1

(
sort

(
W dense

:,c
2

[H−1]
2
c,c

)
> sparsity

)
⊙W dense

:,c , (4)

W dense
:,c+1: = W dense

:,c+1: −
(
W dense

:,c −W sparse
:,c

)2
[H−1]

2
c,c

·H−1
:,c , (5)

where H = XX⊤ is the Hessian matrix, which identifies directions on the model’s loss surface
that have minimal curvature, corresponding to weights that minimally impact the performance.

SparseGPT demonstrates robust performance on over-parameterized models like OPT-175B, achiev-
ing negligible performance degradation. However, its efficacy diminishes when applied to under-
sized (more fully trained) ones. This limitation may arise from the loss of the optimization informa-
tion due to the second-order-only and the Hessian matrix diagonal-only assumption. Concurrently,
the weights in the latter columns face more accumulated errors than the previous ones, leading to an
unbalanced optimization. Generally, during the pre-training phase, there is no sparse regularization
applied to PLMs. This means that the model lacks awareness of the subsequent pruning process.

We incorporate SparseGPT into the SDS framework as the initial step (see Section A.5 for SDS
with the Wanda-based pruning method). In the subsequent steps, we aim to identify a superior
sparse model from the perspective of weight distribution optimization.

2.2 RE-DENSE WEIGHT RECONSTRUCTION

Table 1 demonstrates that there is more than one possible set of dense-weight solutions with similar
performance. To this end, our goal is to find a weight solution that exhibits pruning awareness and
forms a pruning-friendly dense model to serve as a new starting point for pruning. Concretely,
we implement layer-by-layer knowledge distillation with limited unlabeled samples to reactivate
the connections in pruned PLMs. This method guarantees high efficiency while preserving the
multitasking capabilities of the re-dense PLMs.

However, a naı̈ve re-dense weight reconstruction is insufficient. To circumvent ending up with a re-
dense solution resembling the original dense model, we introduce three sparse regularization strate-
gies. a) Sparse inherited traits: the initial pruning cannot be omitted; it provides prior information
about which weights are important for the re-dense weight reconstruction process. b) Data-based
regularization: hard-to-learn samples are used as the inputs of re-dense weight reconstruction to
avoid overfitting aberration. c) Weight-based regularization: typical weight regularization is also
employed to endow the re-dense weights with sparse features, thereby directly increasing the prun-

4

Under review as a conference paper at ICLR 2024

ing friendliness. We choose L1 regularization (Tibshirani, 1996) and L2 regularization, commonly
referred to as weight decay (Loshchilov & Hutter, 2019), to meet the requirement.

According to the above three considerations, the re-dense weight reconstruction process is specified
in the following. Given the original dense weight W dense

l in layer l, the sparse weight W sparse
l from

the initial pruning step, and Xl−1 collected during the forward propagation of the sparse model, the
re-dense weight Ŵ re-dense

l is obtained by:

Ŵ re-dense
l = argminW sparse

l

(∥∥W dense
l Xl−1 −W sparse

l Xl−1

∥∥2
2
+ λ1∥W sparse

l ∥1 + λ2∥W sparse
l ∥22

)
,

(6)

where λ1 and λ2 are used to control the ratio of the L1 and L2 regularization, they are set to be 0.1 by
default. The distribution of Ŵ re-dense

l are shown in Figure 3. Firstly, the parameters obtained through
re-dense weight reconstruction show a clear three-peaked distribution. This distribution displays a
higher sharpness around zero than the original dense model, which is a terrific phenomenon. It
indicates that weights with lower norms suppress irrelevant information for learning, a trait referred
to as pruning-friendliness (Han et al., 2017). Secondly, the re-dense weight reconstruction yields
a model with performance slightly below that of the original dense model but significantly better
than the initial sparse model, aligning with our expectations. On the one hand, we only use a small
amount of unlabeled data during the reconstruction phase. On the other hand, the input Xl−1 is
generated by the sparse model, which is challenging to optimize, thereby avoiding overfitting on
simple samples. There is a more detailed analysis in A.2.

2.3 SECOND PRUNING: SPARSE WEIGHT ADJUSTMENT

Directly adjusting weights in a sparse-to-sparse manner seems intuitive for enhancing a sparse
model’s performance; however, when applied to a model after the initial pruning stage, it only re-
sults in minor performance gains on the lightest models. To begin with, the weights that SparseGPT
has pruned will show a sharp bimodal distribution. Such a stable and spiky distribution with low
variance constrains the optimization potential. In addition, the benefits of knowledge distillation
with unlabeled samples are not superior to those of task-specific fine-tuning.

Considering the aforementioned challenges, we introduce sparse weight adjusting as the concluding
step in the SDS framework. Firstly, the re-dense model obtained with sparse regularization guidance
will inevitably perform inferior to the pre-trained model. As a result, directly pruning it would not
be ideal. Therefore, performance optimization of the second-pruned model is necessary. Secondly,
after the re-dense model is pruned, its distribution tends to moderate, and thus there is more room
for optimization. To elaborate, we first prune the re-dense model using the same method employed
during the initial pruning, yielding W sparse-2nd. Subsequently, weight adjusting is conducted utilizing
a soft sparse mask:

Ŵ SDS
l = M soft

l ⊙
(
argminW sparse-2nd

l

∥∥∥W re-dense
l Xl−1 −W sparse-2nd

l Xl−1

∥∥∥2
2

)
, (7)

where Xl−1 is also collected from the forward propagation of the second pruned model. M soft
l

represents a soft sparse mask, which is dynamically selected by |W sparse-2nd
l | in each iteration.

Due to the inherent awareness of activation information from backpropagation, the magnitude (ab-
smin) Hagiwara (1994) mask selection metric can achieve results similar to the Hessian metric in
SparseGPT and the activation-aware metric in Wanda. In both steps of weight adjustment, the L2
loss is utilized, inherently emphasizing the loss in regions with outliers (Xiao et al., 2023), which
plays a pivotal role in the performance of language models. Therefore, outliers can be protected and
less affected by weight adjustments.

As shown in Figure 3, the weight presented after the second pruning will become moderate, i.e.,
the weight distribution of the second-pruned model is smoother and more uniform than that of the
initial pruning step, which means that the model parameters have suitable values in different ranges,
possessing a stronger ability to adapt to unseen data.

The overall process of the SDS framework is shown in Algorithm 1 in A.1.

5

Under review as a conference paper at ICLR 2024

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Models. We primarily work with the Open Pre-trained Transformers (OPTs) (Zhang et al., 2022).
Among them, the 125M, 350M, 1.3B, and 2.7B versions are the undersized ones that we chiefly
focus on. The modules to be pruned are the computationally intensive self-attn.q proj,
self-attn.k proj, self-attn.v proj, self-attn.out proj, fc1, and fc2 layers
constructed from fully-connected layers (see Section A.5 for experiments on GPT and LLaMA).

Calibration. For the data used in calibration, we adhere to the approach outlined in SparseGPT,
selecting 128 segments of 2048 tokens each from the initial partition of the C4 dataset (Raffel et al.,
2020). This dataset, sourced from a broad array of internet text, guarantees that our experiments are
zero-shot, as no task-specific information is exposed during our optimization process.

Datasets and evaluation. Regarding evaluation metrics, our primary emphasis is on perplexity,
which remains a challenging and reliable metric well suited for evaluating the language modeling
capability of compressed models (Frantar & Alistarh, 2022; Frantar et al., 2022; Yao et al., 2022).
We consider raw-WikiText2 (Merity et al., 2017) test sets for perplexity validation. To explore the
impact of compression on other downstream tasks, we also provide zero-shot accuracy results for
COPA (Wang et al., 2019), Lambada (Paperno et al., 2016), OpenBookQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), RTE (Wang et al., 2018), StoryCloze (Sharma et al., 2018) and Winogrande
(Sakaguchi et al., 2019).

Setup. We implement the SDS framework in PyTorch (Paszke et al., 2019) and use the HuggingFace
Transformers library (Wolf et al., 2020) for managing models and datasets. We follow SparseGPT
to prune the pre-trained model in the initial pruning step. In the re-dense weight reconstruction
step, we use 128 samples as inputs to perform layer-by-layer knowledge distillation: the number of
distillation epochs is 200, the learning rate is 0.1, the loss function is L2 loss, and the regularization
strategy contains L1 regularization and weight decay with a ratio of 0.1. After the current layer is
reconstructed, the initial pruned layer’s output is directly used as the input of the next layer, without
an additional forward propagation to obtain the reconstructed layer output as the input of the next
layer. In the second pruning step, we again use SparseGPT to prune the re-dense model and use the
same configuration as in the previous step but without regularization to further adjust the weights of
the pruned model with a soft sparse mask. The SDS framework uses the same samples throughout,
meaning that there is no sample overload.

3.2 RESULTS

Varying sparsity levels. We conduct experiments with varying sparsity levels for unstructured
pruning; the results are depicted in Figure 4. It can be observed that the Sparse-Dense-Sparse (SDS)
framework is effective in optimizing the performance of pruned PLMs at either high or low sparsity.

Performance on language modeling. We focus on three sparsity configurations: 50% sparsity
for model compression, 2:4 and 4:8 sparsity for both compression and real-world computational
acceleration on specialized hardware. We conduct a comprehensive performance evaluation using
raw-WikiText2, measuring perplexity for each step of the SDS framework, as shown in Table 2.

OPT-125m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sparsity

2e1

1e2

1e3

1e4

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

Magnitude
SparseGPT
SDS

OPT-350m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Sparsity

2e1

1e2

1e3

1e4

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

Magnitude
SparseGPT
SDS

Figure 4: Sparsity vs. Perplexity in OPTs.

6

Under review as a conference paper at ICLR 2024

Table 2: Perplexity on raw-WikiText2. SDS represents the initially pruned model, which is also
our baseline (SparseGPT). SDS represents the dense model obtained in the re-dense weight recon-
struction step. SDS represents the model obtained in the second round of pruning.

PLM Dense Sparsity The workflow of the SDS framework
SDS SDS SDS

OPT-125m 27.66
50% 36.85 31.78 34.23
2:4 60.43 44.46 51.30
4:8 44.77 37.82 41.66

OPT-350m 22.01
50% 31.58 24.78 29.36
2:4 51.11 31.58 46.23
4:8 39.59 26.15 34.18

OPT-1.3b 14.62
50% 17.46 17.39 17.40
2:4 23.90 20.00 23.02
4:8 19.95 18.06 19.54

OPT-2.7b 12.46
50% 13.48 12.50 13.42
2:4 17.18 13.77 17.36
4:8 14.98 12.88 14.81

The superiority of the SDS framework is especially pronounced in OPT-125m and OPT-350m. Av-
eraging across these models, SDS surpasses SparseGPT by 7.1% at 50% sparsity, 18.5% at 2:4,
and 7.5% at 4:8 configurations. These results robustly affirm that SDS yields significantly superior
performance over undersized models in various sparsity configurations. In OPT-1.3b and OPT-2.7b,
the SDS framework still holds a performance over the SparseGPT baseline. Specifically, at 50%
sparsity, SDS outperforms SparseGPT by approximately 0.5% and 0.8% for OPT-1.3b and OPT-
2.7b, respectively. In the 2:4 sparsity configuration, SDS marginally lags behind SparseGPT for
OPT-2.7b; this phenomenon may be attributed to the high sensitivity of perplexity as an evaluation
metric. Importantly, zero-shot evaluations on downstream tasks (cf., Table 3) validate that SDS is
not inferior to SparseGPT, solidifying SDS as a robust choice to prune PLMs.

Zero-shot performance on downstream tasks. Downstream tasks offer a more nuanced view,
allowing us to test the model’s capability across a range of different linguistic and reasoning chal-
lenges. Therefore, we conducted an empirical study to compare the performance of different sparse
configurations of the pruned OPTs on a wide range of downstream tasks. Our primary focus is
evaluating zero-shot performance, a setup where the models are not fine-tuned and make predictions
based on constant parameters. We chose seven representative downstream tasks for this evaluation:
COPA, Lambada, OpenbookQA, PIQA, RTE, StoryCloze, and Winogrande. Experimental results
are shown in Table 3.

Experimental results highlight the consistent superiority of the SDS framework over the SparseGPT
baseline across various downstream tasks and model sizes. On average, for the 50% sparsity level,

Table 3: Multitasking zero-shot performance. Accuracy (%) was obtained by zero-shot evaluation
and averaging over seven downstream tasks, including COPA, Lambada, OpenbookQA, PIQA, RTE,
StoryCloze, and Winogrande.

Sparsity Method OPT-125m OPT-350m OPT-1.3b OPT-2.7b
0 Dense 50.82 54.12 60.83 62.81

50%
SparseGPT 48.85 52.33 55.89 61.14

SDS 50.80 54.51 58.42 61.78

2:4
SparseGPT 47.56 48.34 53.57 58.48

SDS 49.61 50.50 56.67 59.96

4:8
SparseGPT 48.29 49.85 54.95 60.24

SDS 49.67 52.25 57.92 61.48

7

Under review as a conference paper at ICLR 2024

SDS surpasses SparseGPT by approximately 1.83%. This performance gain is even more pro-
nounced at the 2:4 sparsity configuration, where SDS exceeds SparseGPT by an average of about
2.2%. At the 4:8 sparsity configuration, SDS maintains a lead, outperforming SparseGPT by an
average margin of approximately 1.75%.

In summary, our evaluations convincingly demonstrate the robustness and efficacy of the SDS frame-
work across a variety of sparsity configurations. Both language modeling and zero-shot downstream
multitask performance metrics affirm the consistent superiority of SDS over the SparseGPT baseline.
Therefore, SDS is an efficient and effective pruning method for PLMs.

3.3 ABLATION STUDY

Table 4: Comparison of different configurations of the SDS framework. We compare the lan-
guage understanding perplexity and accuracy of OPT-125m on eight tasks in a 2:4 sparse configu-
ration. The gray characters represent the skipped steps; DD stands for dense data, which uses the
activations generated by the dense model as inputs for weight adjustment; SD stands for sparse data,
which uses the activations generated by the sparse model as inputs for weight adjustment; KD stands
for KD-aware data, which uses the activations of the model after weight adjustment as inputs for the
next layer of weight adjustment; WR represents weight regularization; MSD stands for multiple
sparse data, which means that different samples are used for each step of the SDS process.

Method Wiki.↓ COPA↑ Lamb.↑ BookQ.↑ PIQA↑ RTE↑ Story.↑ Wino.↑ Avg(acc.)↑
1: Dense 27.66 66 39.16 28.0 62.02 50.18 60.03 50.36 50.82
2: SDS 60.43 62 27.55 25.8 57.24 53.79 55.38 51.14 47.56
3: SDS w DD 58.63 62 27.03 26.0 58.11 52.35 55.25 50.75 47.36
4: SDS w SD 58.56 62 20.96 26.4 58.65 51.62 56.21 50.98 46.69
5: SDS w KD 56.82 63 30.04 26.2 58.76 53.79 55.63 49.64 48.15
6: SDS 57.98 62 26.68 26.2 59.30 48.74 56.27 50.98 47.17
7: SDS w/o WR 51.96 63 30.04 26.2 58.92 51.95 56.46 51.38 48.29
8: SDS w DD 57.72 62 26.99 26.0 59.30 54.15 55.19 51.46 47.87
9: SDS w KD 57.32 61 29.15 26.4 59.51 54.01 54.17 51.38 47.95

10: SDS w SD 51.30 65 31.57 27.8 59.85 54.15 57.42 51.46 49.61
11: SDS w MSD 52.06 64 30.35 27.0 60.01 50.18 57.16 52.57 48.75

To validate the effectiveness of the step composition and the sparse regularization of the Sparse-
Dense-Sparse (SDS) framework, we conducted a series of ablation experiments as shown in Table
4. The first two rows represent the dense and sparse baseline, respectively.

Rows 3 to 5 verify the effect of only performing once pruning and sparse weight adjustment. Overall,
SDS was only able to outperform SparseGPT on three tasks completely. Comparing the different
input data used in the SDS case, SDS w KD can outperform SparseGPT on seven tasks, which is
considered better than choosing the other two data types. Thus it can be concluded that SDS mode
has limited optimization for SparseGPT and selection of data with low loss (KD) is more suitable
for SDS mode than selection of data with high loss (DD or SD).

Row 6 verifies the effect of the second round pruning of the dense model after injecting it directly
with sparse regularization, skipping the initial pruning, i.e. sparse inherited traits. SDS outperforms
the performance of SparseGPT on five tasks, but it does not yet reach the superior performance of
SDS w SD. This observation demonstrates that sparse inherited traits are effective.

Rows 7 to 10 verify the role of weight-based and data-based regularization in SDS, respectively.
Unlike SDS, SD is a more suitable data choice for SDS, and this harder data serves the purpose of
regularization while avoiding the challenge of learning hard data in multiple steps. Also, it can be
argued that sparse inherited traits and data regularization dominate in sparse regularization compared
to weight regularization. A.3 provides an analysis from a distributional perspective.

Row 11 shows the impact of using different samples at each step of the SDS process. The optimiza-
tion is closer to SDS w SD, but only two tasks outperform it. In the short term, the addition of more

8

Under review as a conference paper at ICLR 2024

samples does not improve the performance of SDS, which may be caused by the failure to learn
sufficiently about each batch of samples as well as the varying quality of the samples, but confirms
that SDS does not need to rely on additional samples. The effect of introducing more samples and
implementing SDS optimization in iterations can be referenced in Section A.4.

4 RELATED WORKS

Pruning for language model compression. The surging complexity of Transformer-based lan-
guage models, which now feature up to hundreds of billions of parameters, has accentuated the
urgent need for effective and efficient model pruning methods (Han et al., 2016; 2015; Hassibi et al.,
1993; Mishra et al., 2021; Pool & Yu, 2021b; Ma et al., 2023; Liu et al., 2023). These pruning
methods can be broadly classified into structured and unstructured approaches. Structured prun-
ing is more hardware-friendly, as it directly prunes entire segments of weights, thereby removing
consecutive computations. As an example, LLM-Pruner (Ma et al., 2023) has been proposed for
structured pruning of PLMs, which employs a gradient-based approach to selectively remove non-
critical structure groups, aiming to reduce the model size while retaining the performance of PLMs.
In contrast to the static pruning used in LLM-Pruner, DejaVu (Liu et al., 2023) introduces a dynamic
pruning method that prunes different positions of the model based on contextual input information.
Additionally, unstructured pruning is also receiving interest, particularly as hardware advancements
increasingly support the acceleration of sparse patterns such as 2:4 or 4:8 sparse (Mishra et al.,
2021). Techniques such as SparseGPT (Frantar & Alistarh, 2023) extend the OBS (Hassibi et al.,
1993) methodology to prune weights column by column, allowing the modification of values in the
unpruned columns to compensate for the pruning errors. Syed et al. (2023) enhances SparseGPT
by incorporating minimal iterative task fine-tuning during the pruning process, demonstrating per-
formance improvements at high sparsity levels. Wanda (Sun et al., 2023) introduces a simple yet
effective no-retraining-needed pruning strategy that prunes weights based on their magnitudes and
corresponding activations. LoSparse (Li et al., 2023) enhances model compression by approxi-
mating a weights matrix as the sum of a low-rank matrix and a sparse matrix (Hu et al., 2022),
synergizing the benefits of both low-rank approximations and pruning techniques.

Weight distribution optimization. Various techniques have been employed to understand and opti-
mize weight distributions in the quest for more efficient neural networks. The Dense-Sparse-Dense
training method (Han et al., 2017) provides a three-step flow: an initial dense training to learn con-
nection weights, a sparsity-inducing phase that prunes unimportant connections, and a final re-dense
step. This process improves performance across various network architectures and underscores the
importance of parameter distribution in achieving better local optima. Regularization methods serve
as pivotal tools for optimizing the parameter distribution. Dropout (Srivastava et al., 2014) is a form
of ensemble learning to the neural networks. It implicitly changes the parameter distribution by ran-
domly zeroing out weights during training, encouraging a sparse representation. Yoshida & Miyato
(2017) focuses on constraining the spectral norm of weights matrices to improve the generalization
capabilities of neural networks. This method plays a crucial role in shaping the parameter space,
making it more amenable to sparse approximations.

In this paper, the proposed Sparse-Dense-Sparse (SDS) framework first regularizes the weights into
a pruning-friendly dense distribution and prunes the models, aiming to enhance the language com-
prehension and multitasking performance of the state-of-the-art pruning method SparseGPT.

5 CONCLUSION

We introduced the Sparse-Dense-Sparse (SDS) framework for optimizing pruned generative pre-
trained language models (PLMs), consisting of initial pruning, re-dense weight reconstruction, and
a second pruning round. The SDS framework focuses on weight distribution optimization and in-
corporates sparse regularization elements—including inherited traits, data-based regularization, and
weight-based regularization. As a result, SDS not only enhances the model’s pruning friendliness
but also achieves state-of-the-art pruning results. Experimental results show that SDS surpasses
SparseGPT and Wanda by reducing language comprehension perplexity by an average of 6.4 and
increasing the overall accuracy by 1.8% across seven downstream tasks on OPT, GPT, and LLaMA.
The SDS framework presents a different choice for the effective and efficient pruning of PLMs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework
for accurate post-training quantization and pruning. In NeurIPS, 2022.
URL http://papers.nips.cc/paper_files/paper/2022/hash/
1caf09c9f4e6b0150b06a07e77f2710c-Abstract-Conference.html.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 10323–10337. PMLR, 2023. URL https://proceedings.mlr.press/
v202/frantar23a.html.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022. doi: 10.
48550/arXiv.2210.17323. URL https://doi.org/10.48550/arXiv.2210.17323.

Masafumi Hagiwara. A simple and effective method for removal of hidden units and weights.
Neurocomputing, 6(2):207–218, 1994. doi: 10.1016/0925-2312(94)90055-8. URL https:
//doi.org/10.1016/0925-2312(94)90055-8.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural network. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada, pp. 1135–1143, 2015. URL https://proceedings.neurips.cc/paper/
2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun
(eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/
1510.00149.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Va-
jda, Manohar Paluri, John Tran, Bryan Catanzaro, and William J. Dally. DSD: dense-sparse-dense
training for deep neural networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=HyoST_9xl.

Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain surgeon and general network
pruning. In Proceedings of International Conference on Neural Networks (ICNN’88), San Fran-
cisco, CA, USA, March 28 - April 1, 1993, pp. 293–299. IEEE, 1993. doi: 10.1109/ICNN.1993.
298572. URL https://doi.org/10.1109/ICNN.1993.298572.

Suzana Herculano-Houzel, Bruno Mota, Peiyan Wong, and Jon H Kaas. Connectivity-driven white
matter scaling and folding in primate cerebral cortex. Proceedings of the National Academy of
Sciences, 107(44):19008–19013, 2010.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse ap-
proximation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan

10

http://papers.nips.cc/paper_files/paper/2022/hash/1caf09c9f4e6b0150b06a07e77f2710c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1caf09c9f4e6b0150b06a07e77f2710c-Abstract-Conference.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://doi.org/10.48550/arXiv.2210.17323
https://doi.org/10.1016/0925-2312(94)90055-8
https://doi.org/10.1016/0925-2312(94)90055-8
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://openreview.net/forum?id=HyoST_9xl
https://doi.org/10.1109/ICNN.1993.298572
https://openreview.net/forum?id=nZeVKeeFYf9

Under review as a conference paper at ICLR 2024

Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 20336–20350. PMLR, 2023. URL https://proceedings.mlr.press/
v202/li23ap.html.

Tailin Liang, John Glossner, Lei Wang, and Shaobo Shi. Pruning and quantization for deep neural
network acceleration: A survey. CoRR, abs/2101.09671, 2021. URL https://arxiv.org/
abs/2101.09671.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. AWQ: activation-
aware weight quantization for LLM compression and acceleration. CoRR, abs/2306.00978, 2023.
doi: 10.48550/arXiv.2306.00978. URL https://doi.org/10.48550/arXiv.2306.
00978.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivas-
tava, Ce Zhang, Yuandong Tian, Christopher Ré, and Beidi Chen. Deja vu: Contextual spar-
sity for efficient llms at inference time. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 22137–22176. PMLR, 2023. URL
https://proceedings.mlr.press/v202/liu23am.html.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. CoRR, abs/2305.11627, 2023. doi: 10.48550/arXiv.2305.11627. URL https:
//doi.org/10.48550/arXiv.2305.11627.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Asit K. Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. CoRR,
abs/2104.08378, 2021. URL https://arxiv.org/abs/2104.08378.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 1325–
1334. IEEE, 2019. doi: 10.1109/ICCV.2019.00141. URL https://doi.org/10.1109/
ICCV.2019.00141.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. CoRR, abs/1606.06031, 2016. URL http:
//arxiv.org/abs/1606.06031.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

11

https://proceedings.mlr.press/v202/li23ap.html
https://proceedings.mlr.press/v202/li23ap.html
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2101.09671
https://doi.org/10.48550/arXiv.2306.00978
https://doi.org/10.48550/arXiv.2306.00978
https://proceedings.mlr.press/v202/liu23am.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/arXiv.2305.11627
https://doi.org/10.48550/arXiv.2305.11627
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/2104.08378
https://doi.org/10.1109/ICCV.2019.00141
https://doi.org/10.1109/ICCV.2019.00141
http://arxiv.org/abs/1606.06031
http://arxiv.org/abs/1606.06031
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

Under review as a conference paper at ICLR 2024

Jeff Pool and Chong Yu. Channel permutations for N: M sparsity. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 13316–13327, 2021a. URL https://proceedings.neurips.cc/paper/2021/
hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html.

Jeff Pool and Chong Yu. Channel permutations for N: M sparsity. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 13316–13327, 2021b. URL https://proceedings.neurips.cc/paper/2021/
hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Rishi Sharma, James Allen, Omid Bakhshandeh, and Nasrin Mostafazadeh. Tackling the story
ending biases in the story cloze test. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pp. 752–757, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2119. URL https:
//aclanthology.org/P18-2119.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, 2014. doi: 10.5555/2627435.2670313. URL https://dl.acm.org/doi/10.
5555/2627435.2670313.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. CoRR, abs/2306.11695, 2023. doi: 10.48550/arXiv.2306.11695. URL
https://doi.org/10.48550/arXiv.2306.11695.

Aaquib Syed, Phillip Huang Guo, and Vijaykaarti Sundarapandiyan. Prune and tune: Improving
efficient pruning techniques for massive language models. In Krystal Maughan, Rosanne Liu,
and Thomas F. Burns (eds.), The First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR
2023, Kigali, Rwanda, May 5, 2023. OpenReview.net, 2023. URL https://openreview.
net/pdf?id=cKlgcx7nSZ.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/ARXIV.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar

12

https://proceedings.neurips.cc/paper/2021/hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6e8404c3b93a9527c8db241a1846599a-Abstract.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/P18-2119
https://aclanthology.org/P18-2119
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://doi.org/10.48550/arXiv.2306.11695
https://openreview.net/pdf?id=cKlgcx7nSZ
https://openreview.net/pdf?id=cKlgcx7nSZ
https://doi.org/10.48550/arXiv.2302.13971

Under review as a conference paper at ICLR 2024

Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023b. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language un-
derstanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP 2020
- Demos, Online, November 16-20, 2020, pp. 38–45. Association for Computational Linguistics,
2020. doi: 10.18653/v1/2020.emnlp-demos.6. URL https://doi.org/10.18653/v1/
2020.emnlp-demos.6.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 38087–38099.
PMLR, 2023. URL https://proceedings.mlr.press/v202/xiao23c.html.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. CoRR, abs/1705.10941, 2017. URL http://arxiv.org/abs/1705.
10941.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022. doi:
10.48550/arXiv.2205.01068. URL https://doi.org/10.48550/arXiv.2205.01068.

13

https://doi.org/10.48550/arXiv.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/W18-5446
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.mlr.press/v202/xiao23c.html
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html
http://arxiv.org/abs/1705.10941
http://arxiv.org/abs/1705.10941
https://doi.org/10.48550/arXiv.2205.01068

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 THE SPARSE-DENSE-SPARSE FRAMEWORK

Algorithm 1 The sparse-dense-sparse (SDS) framework
Input: Pre-trained dense model Wdense = {W dense

1 ,W dense
2 , ...,W dense

l }
Output: Final pruned model ŴSDS = {Ŵ SDS

1 , Ŵ SDS
2 , ..., Ŵ SDS

l }
Initial pruning

Require: Original unlabeled samples X; sparsity
1: for each W dense in Wdense do
2: W sparse = empty(W dense)
3: H = XX⊤

4: s = sort
(

W dense2

diag(H−1)2

)
5: M = 1 (s > sparsity)
6: for c = 1 to column size(W dense) do
7: W sparse

:,c = M:,c ⊙W dense
:,c ▷ Prune one column with mask M

8: W dense
:,c+1: = W dense

:,c+1: −
(W sparse

:,c −W dense
:,c)

2

[H−1]2c,c
·H−1

:,c ▷ Error compensation

9: end for
10: X ←W sparseX ▷ Error accumulation
11: end for

Re-dense weight reconstruction
Require: Pre-trained dense model Wdense = {W dense

1 ,W dense
2 , ...,W dense

l };
Initial pruned sparse model Wsparse = {W sparse

1 ,W sparse
2 , ...,W sparse

l };
Original unlabeled samples X; learning rate η;
L1 regularization ratio λ1; L2 regularization ratio λ2

1: for i = 1 to l do
2: while not converged do

3: W
re-dense(t)
i = W

re-dense(t−1)
i − η∇

∥∥∥W dense
i X −W

re-dense(t−1)
i X

∥∥∥2
2

−ηλ1∇
∥∥∥W re-dense(t−1)

i

∥∥∥
1
− ηλ2∇

∥∥∥W re-dense(t−1)
i

∥∥∥2
2

4: end while
5: X ←W sparse

i X ▷ Error accumulation
6: end for

Second pruning: sparse weight adjustment
Require: Pre-trained dense model Wdense = {W dense

1 ,W dense
2 , ...,W dense

l };
Re-dense trained model Wre-dense = {W re-dense

1 ,W re-dense
2 , ...,W re-dense

l };
Original unlabeled samples X; learning rate η; sparsity

1: Repeat the pruning process and yield Wsparse-2nd = {W sparse-2nd
1 ,W sparse-2nd

2 , ...,W sparse-2nd
ℓ }

2: for i = 1 to l do
3: while not converged do
4: s = sort

(∣∣∣W SDS(t)
i

∣∣∣)
5: M = 1 (s > sparsity)

6: W
SDS(t)
i = M ⊙

(
W

SDS(t−1)
i − η∇

∥∥∥W dense
i X −W

SDS(t−1)
i X

∥∥∥2
2

)
7: end while
8: X ←W sparse-2nd

i X ▷ Error accumulation
9: end for

14

Under review as a conference paper at ICLR 2024

A.2 ERROR ACCUMULATION AND DATA REGULARIZATION

Dense
𝑋

Dense

w KD aware

w error accum

Sparse Sparse

Updated

(a) KD-data

Dense
𝑋

Dense

w/o KD aware

w error accum

Sparse Sparse

Updated

(b) SD-data
Dense

𝑋
Dense

w KD aware

w/o error accum

SparseSparse

Updated

(c) DD-data

Dense
𝑋

Dense

w/o KD aware

w/o error accum

Sparse Sparse

Updated

(d) DD-data

Figure 5: Four data selection paradigms in weight adjust-
ment. Straight lines represent forward propagation and dashed
lines represent knowledge distillation.

The input data used in weight
adjustment can be categorized in
two ways: whether to perform er-
ror accumulation and whether to
be aware of the knowledge dis-
tillation (KD) process. Figure 5
presents four different data selec-
tion ways for weight adjustment.

(a) Weight adjustment with KD
aware and error accumulation,
this paradigm corresponds to
KD-data in our ablation study
(cf., section 3.3): after apply-
ing KD to the sparse layer, a
subsequent forward propagation
is needed to generate inputs for
the next layer. These inputs are
solely based on the former layer’s
outputs, thus accumulating errors. Since KD aims to reduce loss, this extra forward propagation
simplifies the data, making it easier for the subsequent layer to learn. (b) Weight adjustment with
error accumulation but without KD aware, this paradigm corresponds to SD-data in our ablation
study: unlike paradigm (a), this approach abandons the additional forward propagation to account
for changes in the layer updated by KD. This results in the next layer of learning from data corre-
sponding to a higher loss, making learning more challenging than in paradigm (a). (c) and (d) are
two ways of adjusting the weights without accumulating errors. The presence or absence of KD
awareness has a minimal impact on either, as the optimization direction is constrained by the same
dense model in both cases. The DD-data paradigm in our ablation study employs paradigm (d).

From the perspective of data difficulty, DD-data is the most difficult because it requires each layer
to compensate for the errors accumulated in all previous layers. This difficulty is more prominent
in the KD process under sparsity constraints. In the ablation study (cf., section 3.3), neither one nor
two times optimization of the sparse model using DD-data was able to achieve excellent results,
verifying the above observation. KD-data is the easiest because the weights of the sparse model
are updated in the direction of lower loss during knowledge distillation. The use of KD-data has
yielded relatively good results only in single-step optimization of the sparse model due to the fact
that simple data carries less data regularization and a relatively low upper bound for optimization.
SD-data is relatively moderate in difficulty and comes with data regularization and hence achieved
an ideal result in SDS’s optimization of the sparse model. The reason why SD-data did not achieve
an ideal result in the single-step optimization could be the challenge of the difficult data.

Table 5: Effect of data selection on pruning. The language
modeling perplexity of the OPT-125m model was evaluated
on raw-WikiText2 using a calibration set sourced from C4.

Method 50% sparse 2:4 sparse 4:8 sparse
SparseGPT w DD 37.32 61.81 44.77
SparseGPT w SD 36.85 60.43 44.77

Not only the weight adjustment but
also the pruning process faces the
issue of data selection; in the ab-
sence of weight adjustment, the
only data available for the prun-
ing process are DD-data and SD-
data (KD-data degenerates into
SD-data). DD-data can be consid-
ered as ideal data, and SD-data can
be considered as real data (the ab-
sence of knowledge distillation makes the data difficulty perspective less appropriate). The effect of
SparseGPT pruning using different data is shown in Table 5.

According to the experimental results, the availability of both data is guaranteed. Besides, based
on the fact that SD-data is better than DD-data, it is possible to conclude that real data is more
appropriate than ideal data for calibration in pruning.

15

Under review as a conference paper at ICLR 2024

A.3 DISTRIBUTION ANALYSIS

Figure 6 visualizes the impact of several pertinent optimizations performed on pruned PLMs from
the perspective of distribution changes.

PPL=27.66

PPL=36.85

PPL=39.79 PPL=35.05PPL=32.55

PPL=31.78 PPL=34.23

PPL=36.85 PPL=26.99 PPL=36.02

PPL=35.41PPL=29.22

PPL=36.85

PPL=72.36PPL=193.36

PPL=35.58

SparseGPT

SparseGPT

Wanda

Dense Weight Adjust w Reg.

SparseGPT

Magnitude Sparse Adjust

Sparse Adjust

Re-dense w/o Reg.

Re-dense w Reg.

Re-dense w Reg.

SparseGPT &

Sparse Adjust

SparseGPT &

Sparse Adjust

SparseGPT &

Sparse Adjust

Wanda &

Sparse Adjust

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Changes in distributions during optimization of pruned PLMs. The distribution ob-
servations are from the last layer of OPT-125m with 50% pruning. (a) represents the process of first
pruning the model by magnitude (absmin) (Hagiwara, 1994) and then optimizing the pruned model
using SD-data. (b) represents the SDS w KD in the ablation study (cf., section 3.3). (c) represents
the SDS. (d) represents the SDS w KD. (e) represents the SDS w SD. (f) represents the SDS w SD
and with Wanda as the pruning method. Zero values are omitted in sparse weight distributions for
better clarity.

Magnitude-based one-shot pruning method is ineffective on PLMs primarily because it focuses only
on the absolute value of the weights. This simplistic approach tends to create a truncated bimodal
distribution of the model weights, concentrating them at extreme positive and negative values. Dis-
tribution truncation can lead to model instability, as removing near-zero weights disrupts the model’s
ability to make subtle, nuanced adjustments. Due to the large amount of information lost in the
pruning process, the model’s performance can only be recovered to a limited extent after weight
adjustment. In contrast, modern pruning methods like SparseGPT take into account higher-order

16

Under review as a conference paper at ICLR 2024

rather than zero-order information, which manages to maintain an untruncated bimodal distribution
similar to what magnitude pruning plus subsequent weight adjustment would achieve. However,
they do it in a single step and are able to achieve better performance.

As shown in Figure 6b, the model has a relatively sharp bimodal peak in its distribution after being
pruned by SparseGPT, which challenges the model’s generalization ability, optimization space and
stability. Direct adjustment of the pruned model’s weights yields limited performance and optimiza-
tion of the weight distribution. Therefore, it is necessary to consider the SDS process.

Before attempting the SDS process, Figures 6c and 6d show the trend of weight distribution changes
for only injecting regular regularization or sparse inherited traits into the model, respectively. Both
find a new dense solution to some extent: a dense model with a smoother distribution and more
zeros can be found by using data-based regularization and weight-based regularization for dense
weight adjustment, and a dense model that converges to a multi-peaked distribution with more zeros
is obtained after re-dense reconstruction of the sparse model without regular regularization. After a
second round of pruning, both approaches lead to a recovery in the model’s performance. However,
they are not as effective as the SDS process that uses a combination of data-based regularization,
weight-based regularization, and sparse inherited traits, as shown in Figure 6e and Figure 6f. This
illustrates the effectiveness and mutual reinforcement effect of regularization techniques in the SDS
framework. An interesting phenomenon is that when regular regularization is not used, it is possible
to reconstruct the pruned model to equal or even higher performance than the original dense model.
This is perhaps due to the absence of regularization techniques, which allowed the re-dense model
to overfit the behavior of the original dense model. The limited performance improvement of the
re-dense model after a second round of pruning also supports the above deduction.

A.4 ITERATIVELY IMPLEMENTING SPARSE-DENSE-SPARSE OPTIMIZATION

0 2 4 6 8 10
Iteration

55

60

Pe
rp

le
xi

ty Static SDS
Dynamic SDS

250 500 750 1000 1250
Nsamples

55

60

Pe
rp

le
xi

ty

Dynamic SDS
SparseGPT

Figure 7: The impact of iteratively applying sparse-dense-sparse optimization, specifically con-
trasting the outcomes when employing either identical samples (Static SDS) or varied samples
(Dynamic SDS) throughout the process. OPT-125m is utilized in this experiment with a pruning
configuration of 2:4 sparsification. The left figure illustrates a comparison between static and dy-
namic SDS results across multiple iterations. The right figure demonstrates a comparison between
SparseGPT and SDS, depicting variations in performance as the size of the calibration set changes.

Grounded in SDS, we would like to verify whether iteratively applying the sparse-dense-sparse
optimization can further improve the performance of the model. On the one hand, we examine the
impact on model performance of using exactly the same samples as a calibration set in the iterations
(Static SDS) so that the number of samples used in the optimization remains 128. On the other
hand, we examine the effect of using different samples in each iteration on the model’s performance
(Dynamic SDS), i.e., at iteration i, the optimization uses a sample size of i× 128.

As shown left in Figure 7, implementing SDS once (Iteration 1) compared to SparseGPT (Iteration 0)
can bring huge improvements, whether using the same or different calibration samples. However, as
the number of iterations increased, implementing the SDS optimization multiple times with the same
calibration samples failed to improve the model’s performance. This is because the model that is
optimized excessively on the same batch of samples is prone to overfitting, leading to performance
degradation. When different samples were used, superior results to a single implementation of
SDS were produced. This demonstrates that data diversity can positively affect the iterative SDS
optimization process. However, the not strictly monotonically increasing performance with iteration
also seems to emphasize that the inclusion of high-quality samples may have resulted in substantial
contributions.

17

Under review as a conference paper at ICLR 2024

Table 6: Perplexity on raw-WikiText2. SparseGPT and Wanda form the components of the SDS
framework, represented as SDS-SparseGPT and SDS-Wanda, respectively. The calibration set utilized is
C4.
Sparsity Method OPT-125m OPT-350m OPT-1.3b OPT-2.7b GPT2-s GPT2-m GPT2-l GPT2-xl

0 Dense 27.66 22.01 14.62 12.16 29.95 21.71 19.33 17.41

50%

SparseGPT 36.85 31.58 17.46 13.48 47.46 28.06 23.55 19.91
SDS-SparseGPT 34.23 29.36 17.40 13.42 45.76 27.91 23.32 19.62

Wanda 39.79 41.88 18.36 14.38 46.71 29.29 24.89 20.83
SDS-Wanda 35.05 33.07 17.23 13.74 40.32 27.39 23.15 19.78

2:4

SparseGPT 60.43 51.11 23.90 17.18 73.11 40.41 32.49 25.97
SDS-SparseGPT 51.30 46.23 23.02 17.36 64.31 38.24 31.33 25.05

Wanda 82.47 113.17 27.32 20.94 123.66 61.70 52.39 32.60
SDS-Wanda 59.17 73.56 23.94 18.02 63.57 41.11 31.11 25.35

4:8

SparseGPT 44.77 39.59 19.95 14.98 53.14 32.84 26.77 22.70
SDS-SparseGPT 41.66 34.18 19.54 14.81 50.90 32.41 26.29 22.27

Wanda 53.97 62.49 21.96 16.80 73.73 41.12 32.58 25.14
SDS-Wanda 43.58 47.31 19.82 15.45 51.05 33.55 26.16 22.11

The right side of Figure 7 demonstrates that more samples can bring more substantial performance
gains to the SDS iterative optimization process compared to SparseGPT. While using different sam-
ples can result in a better-performing model, these samples still come from the same distribution,
and there is still a risk of overfitting by having the model optimized with them as the calibration
set many times. Therefore, optimizing with a small number of unlabeled samples less frequently
remains our primary intention, and iteratively implementing sparse-dense-sparse optimization is an
optional approach that we do not recommend.

A.5 SDS WORKS WELL ON OTHER MODELS AND PRUNING METHODS

The general applicability of SDS in other undersized PLMs and Wanda pruning method. To
verify the general applicability of the SDS framework, we additionally chose to perform experimen-
tal validation on the GPT2 (Radford et al., 2019) models and the Wanda pruning method.

Among them, the GPT2 model covers four versions of model instances, including small (s), medium
(m), large (l), and xlarge (xl) ones, with parameter sizes ranging from 124M to 1.5B approximately.

The Wanda pruning method considers both weights and activations as a saliency metric S for finding
an efficient sparse mask:

Sij = |Wij | · ∥Xj∥2 , (8)

where | · | denotes the absolute value operator, and ∥Xj∥2 computes the l2 norm of the jth features
gathered across token dimension. The final saliency score is ascertained by the multiplication of
these two scalar values. Compared to SparseGPT, Wanda is able to achieve large model pruning
similar to SparseGPT without weight modification, which contributes to the simplicity of Wanda.

Tables 6 and 7 show the results of the complete language modeling perplexity and downstream
multi-task zero-shot experiments, respectively.

Based on the results of the empirical evaluation, it is evident that the Sparse-Dense-Sparse (SDS)
approach significantly outperforms both SparseGPT and Wanda methods across multiple sparsity
configurations and model sizes. In terms of language modeling perplexity, SDS demonstrates a
clear advantage, improving on average by around 11% over SparseGPT across various sparsity con-
figurations and model sizes. It also shows significant improvements over Wanda, with an average
gain of roughly 18% in perplexity metrics. In the multitask zero-shot experiment, the superiority of
SDS is further evidenced; it outperforms SparseGPT by an average of 2.5% and surpasses Wanda
by an average of 3.1%.

18

Under review as a conference paper at ICLR 2024

Table 7: Multitasking zero-shot accuracy comparison. Accuracy (%) is obtained by zero-shot
evaluation and averaging over seven downstream tasks, including COPA, Lambada, OpenbookQA,
PIQA, RTE, StoryCloze, and Winogrande.
Sparsity Methpd OPT-125m OPT-350m OPT-1.3b OPT-2.7b GPT2-s GPT2-m GPT2-l GPT2-xl

0 Dense 50.82 54.12 60.83 62.81 50.07 53.58 56.51 58.40

50%

SparseGPT 48.85 52.33 55.89 61.14 47.27 52.82 53.47 57.22
SDS-SparseGPT 50.80 54.51 58.42 61.78 48.37 53.33 54.34 58.00

Wanda 48.46 48.90 56.18 59.36 46.50 52.01 53.65 56.03
SDS-Wanda 49.78 51.40 57.58 60.92 49.05 53.34 54.88 57.36

2:4

SparseGPT 47.56 48.34 53.57 58.48 46.47 50.17 50.85 53.57
SDS-SparseGPT 49.59 50.50 56.67 59.96 47.62 50.65 52.45 56.25

Wanda 45.69 44.77 52.86 55.51 42.32 47.38 48.92 51.37
SDS-Wanda 47.09 46.69 54.44 58.98 46.55 51.48 52.77 54.68

4:8

SparseGPT 48.29 49.85 54.94 60.24 46.32 51.04 52.53 55.77
SDS-SparseGPT 49.67 52.25 57.92 61.48 48.00 52.15 53.45 55.85

Wanda 46.28 46.41 55.04 58.21 44.63 49.15 51.17 54.18
SDS-Wanda 47.70 48.61 56.12 59.91 47.07 52.04 54.44 56.90

The general applicability of SDS in larger and stronger PLMs. The LLaMA model is considered
to be more adequately trained and harder to compress (Touvron et al., 2023a;b), and we choose
the LLaMA model to further validate the effectiveness of the SDS framework. Specifically, we
take the 7b-sized models of LLaMA and LLaMA2 with 2:4 sparse as the pruning configuration
and SparseGPT/Wanda as the base pruning method to verify the language modeling perplexity and
multi-task performance of the SDS-optimized pruned models, as shown in Table 9.

Analysis of SDS methods in LLaMA-7b and LLaMA2-7b models shows an average perplexity re-
duction of approximately 10.90% and an accuracy increase of around 2.46%. These findings demon-
strate the SDS’s effectiveness in enhancing larger and stronger PLMs’ precision and efficiency.

In summary, these findings confirm the superiority of the SDS framework. SDS shows strong per-
formance enhancement effects either for undersized or larger pruned models, making it an efficient
and effective strategy for model pruning and performance optimization.

Table 8: Time consuming of SDS optimization. There are
time consumption of single-device serial optimization, multi-
device parallel optimization, and theoretical ultimate parallel
optimization as the weight adjustment type.

Type 125M 1.3B 2.7B 7B
Serial ∼ 22 min. ∼ 3.8 hours ∼ 7.4 hours ∼ 34.2 hours
Parallel ∼ 4 min. ∼ 25 min. ∼ 1 hours ∼ 4.5 hours
Theoretical <1 min. ∼ 6 min. ∼ 8 min. ∼ 39 min.

Execution efficiency of the SDS
framework. Table 8 demonstrates
the time required to perform SDS
optimization. SDS employs a
layer-by-layer knowledge distilla-
tion strategy, allowing for parallel
processing of individual layer opti-
mizations. The time consumption
for layer-serial SDS optimization
using a single 32GB Nvidia V100
GPU ranges from 22 minutes to 34
hours as the model grows larger.
Since SDS optimization uses SD-data (cf., Section A.2), which is available in advance, and SDS
does not need to perform an additional forward propagation for each optimized layer, each layer
in the network can perform optimization in parallel. On eight 32GB Nvidia V100 GPUs, we can
optimize layers within individual GPUs serially and layers between GPUs in parallel, so it only took
us from 4 minutes to 4.5 hours to perform the SDS optimization. With GPU device redundancy or
GPU memory redundancy, the granularity of parallelism can be as low as a single layer, thus yield-
ing the theoretically fastest optimization time consumption, ranging from 1 minute to 39 minutes.
In summary, the process of running SDS is efficient.

19

Under review as a conference paper at ICLR 2024

Table 9: 2:4 Pruned LLaMA performance. SparseGPT and Wanda form the components of the
SDS framework, represented as SDS-SparseGPT and SDS-Wanda, respectively. The calibration set utilized
is C4.

PLM Method Wiki.↓ COPA↑ BookQ.↑ PIQA↑ RTE↑ Story.↑ Wino.↑ Avg(acc.)↑

LLaMA-7b

Dense 5.68 84 42.4 77.48 53.43 75.94 67.01 66.71
SparseGPT 11.23 80 35.4 70.62 59.57 69.89 59.98 62.58
SDS-SparseGPT 9.97 79 35.6 71.65 59.57 71.67 61.80 63.22

Wanda 11.54 80 36.4 68.88 58.12 69.00 60.06 62.08
SDS-Wanda 9.73 82 36.8 70.57 57.60 70.27 62.04 63.21

LLaMA2-7b

Dense 5.47 87 40.8 77.04 61.73 77.59 67.01 68.53
SparseGPT 10.82 83 35.6 71.33 63.90 71.23 63.30 64.73
SDS-SparseGPT 10.02 84 37.2 71.44 64.09 71.99 63.88 65.43

Wanda 12.14 79 34.6 70.08 59.57 69.70 60.22 62.20
SDS-Wanda 10.39 81 36.8 70.62 64.25 71.8 63.06 64.59

Even so, SDS optimization is still more time-consuming than SparseGPT or Wanda. However, the
optimization of pruned PLMs focuses more on the performance and efficiency after the optimization
is completed and the complexity of the optimization process itself is often tolerable.

A.6 A DISCUSSION IN WEIGHT INITIALIZATION

In this paper, we enhance the performance of the pruned model by injecting sparse regularization
to provide pruning-aware capabilities. Injecting awareness of subsequent operations into the model
during pre-training or fine-tuning or reconstruction process, e.g., awareness of pruning, quantization,
low-rank decomposition, etc., is considered efficacious.

Overall, the awareness of subsequent operations will be reflected in the weight initialization of the
model. Some techniques that may be used to optimize weight initialization are as follows.

Channel permutation. When two neighboring weights exist, the channels of the two can be re-
arranged without changing the inputs and outputs (Pool & Yu, 2021a). Specifically, the channels
in the inner product direction of the first weight can be permuted arbitrarily. Computational equiv-
alence is guaranteed if the non-inner-product directions of the second weight are permuted in a
manner consistent with the former. Channel permutation has the potential to distribute important
and non-important weights more evenly, avoiding situations where all m weights are important or
all m weights are unimportant in an n:m sparsity configuration. Channel permutation needs to pick
an ideal result among several permutation candidates obtained from the search.

Weight equalization and bias correction. Weight equalization can reduce the performance loss in
quantization due to scale differences in layers or channels (Nagel et al., 2019). Specifically, weight
equalization multiplies each channel of the current layer by a set of scale factors to compress the
span of weight values, while the weights of the previous layer need to be divided by the same scale
factors in order to ensure computational equivalence. The bias corresponding to the weights can
also be corrected to improve the model’s performance, and related methods include scale smoothing,
backpropagation, and so on. In the context of the need to protect outliers for quantizing PLMs, the
above techniques have led to advanced quantization techniques such as SmoothQuant (Xiao et al.,
2023) and AWQ (Lin et al., 2023).

The practical deployment of the model cannot be separated from the organic combination of various
model compression techniques, and we hope that the idea of weight initialization can bring more
model optimization inspirations for academia and industry.

20

	Introduction
	SDS: enhancing one-shot pruning through sparse-dense-sparse mechanism
	Initial pruning
	Re-dense weight reconstruction
	Second pruning: sparse weight adjustment

	Experiments
	Experimental settings
	Results
	Ablation study

	Related works
	Conclusion
	Appendix
	The sparse-dense-sparse framework
	Error accumulation and data regularization
	Distribution analysis
	Iteratively implementing sparse-dense-sparse optimization
	SDS works well on other models and pruning methods
	A discussion in weight initialization

