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ABSTRACT

The majority of federated learning (FL) approaches aim to learn either a high-
performing global model or multiple personalized models. Although there has
been significant progress in each research direction, the optimization of one of-
ten comes at the expense of the other. In this work, we approach this problem
by investigating how different clusters of clients with varying degrees of data het-
erogeneity may impact the single global model. From this analysis, we discover
a surprising insight: despite a significant distribution mismatch between clusters,
the knowledge shared from low data heterogeneous clusters to high data hetero-
geneous clusters can significantly boost the latter’s personalized accuracy but not
vice versa. By building on this observation, we propose a cluster-based approach
named FedCUAU, in which clients are clustered based on their degree of data het-
erogeneity, and knowledge between each cluster is selectively transferred. We also
offer provable assurance to show that FedCUAU can be used to accurately and ef-
ficiently cluster clients in a one-shot manner. Experimental results on standard FL
benchmarks show that FedCUAU can be plugged into existing FL algorithms to
achieve considerable improvement both the initial and personalized performance.
Empirical results shows that FedCUAU improves FedAvg initial global accuracy
by 1.53% and 1.82% for CIFAR10 and FEMNIST respectively, and personalized
accuracy by 0.29% and 3.81%.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has become an indispensable tool to enable
privacy-preserving collaborative learning in order to improve a single global model or to deliver
better personalized models tailored to the end-user’s local data and context (Arivazhagan et al.,
2019; Hilmkil et al., 2021; Cheng et al., 2021). One of the main challenges of FL is to build
high-performing models given the label distribution skew where the marginal distributions of la-
bels vary drastically across clients. Specifically, as the degree of data heterogeneity among clients
(non-IIDness) increases or decreases, the initial performance of a single global model significantly
degrades or improves respectively (Yurochkin et al., 2019; Qiu et al., 2022). On the contrary, a
greater extent of non-IIDness leads to increased in personalized performance as the local task is
easier, with more samples per class, for individual clients to optimize on (Jiang et al., 2019). Al-
though both metrics are important to cater to different scenarios, the majority of existing works aim
to improve performance on either.

Due to the opposing effects of data heterogeneity, optimizing for both initial and personalized per-
formance using a single global model often comes at a trade-off. For instance, Jiang et al. (2019)
showed that improving the initial accuracy of the global model would hurt the model’s capacity to
personalize. Hence, existing solutions (Oh et al., 2021; Mansour et al., 2020; Matsuda et al., 2022a)
mitigated the problem through model decoupling, in which the global model is split into shared
and personalized layers, and/or using multiple models, each of which is catered to each client or
each cluster of clients. Notably, Oh et al. (2021) showed that model decoupling can lead to better
representation in the shared layers, resulting in a higher initial accuracy, and better personalized
accuracy after fine-tuning the personalized layers. However, unlike model decoupling, the impact of
the collaborative learning among multiple models on both metrics is still not well understood.
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In this work, we first study the impact of data heterogeneity on a single global model in a clus-
tered FL setting by experimenting with clusters of clients of varying degrees of data heterogeneity.
Through this ablation study, we observe that clusters with a higher degree of non-IIDness can ben-
efit from the collaboration with clusters with a lower degree of non-IIDness despite the significant
distribution mismatch, whereas the reverse is often detrimental (Section 4). Motivated by this result,
we then propose leveraging weight divergence between each client’s update (CU) and their aggre-
gated update (AU) in a single FL training round as an effective metric, named CUAU, to cluster
clients based on their degree of data heterogeneity without the collection of any additional infor-
mation (Section 5). Not only do we differ from other clustering approach by technique design,
but more importantly, the solution offers provable assurance of behaviour (Section 5). Lastly, we
present a simple clustered and training FL algorithm, named FedCUAU, which clusters clients based
on our proposed CUAU and holds explicit rules in governing the knowledge shared among clusters
(Section 6).

Unlike previous clustered FL works, in which cluster is based on similar data distributions, Fed-
CUAU clusters based on the degree of non-IIDness. This offers a couple of key advantages: 1)
enables accurate cluster identity estimations to be performed in an efficient one-shot manner and 2)
allows a greater control over the impact of training with non-IID data on both the initial and person-
alized performance. Empirical results on federated image classification show that FedCUAU can be
combined with existing FL methods for considerable gains in both the initial accuracy of a single
global model and the personalized accuracy of local models. Experimental results shows that Fed-
CUAU improves FedAvg initial global accuracy by 1.53% and 1.82% for CIFAR10 and FEMNIST
respectively, and personalized accuracy by 0.29% and 3.81%. More detailed results can be found in
Section 6.3 for other FL methods.

2 RELATED WORK

Global Model FL. Since FedAvg (McMahan et al., 2017) was proposed as a practical alternative to
FedSGD (Shokri & Shmatikov, 2015) to FL, there has been a surge of works that aim to tackle the
significant performance degradation when applying FedAvg in non-IID settings. Zhao et al. (2018)
showed that this performance drop could be attributed to the difference of weights, starting from
the same weight initialization, between a model trained using FedAvg and a model trained cen-
trally using SGD. They proved that this weight divergence is bounded by the earth mover’s distance
(EMD) which increases as the degree of non-IIDness increases, and proposed sharing a small per-
centage of IID data for local training to reduce this divergence, hence improve performance. Apart
from data sharing, FedProx (Li et al., 2020) used a regularization term to minimize the Euclidean
distance between the local model and the global model. Besides Euclidean distance, MOON (Li
et al., 2021a) reduced the weight divergence by maximizing the agreement of the local model’s and
global model’s representations using contrastive learning. SCAFFOLD (Karimireddy et al., 2020)
proposed using control variates to shift the local model update towards the estimated true optimum
trained using centralized SGD. CCVR (Luo et al., 2021) decoupled the model and showed that fine-
tuning the classifier using IID features can improve initial accuracy regardless of the degree of data
heterogeneity. To preserve privacy, the authors used features drawn from a Gaussian Mixture Model,
which is estimated using the clients’ local data statistics.

Personalized FL. The goal of personalized FL is to maximize the local model’s performance on each
client. To this end, fine-tuning from a global model locally on each client can achieve competitive
results (Matsuda et al., 2022a;b; Chen et al., 2022; Jiang et al., 2019). Nonetheless, dedicated
works have been proposed to improve personalization better. FedMe (Matsuda et al., 2022a) and
FML (Shen et al., 2020) used deep mutual learning (Zhang et al., 2018) to transfer knowledge
between the local and global model. Similar to FedProx, Ditto (Li et al., 2021b) utilized a L2

term between the local models and global model. Apart from L2, the use of Moreau envelopes
has also been shown to be effective in pFedMe (T Dinh et al., 2020). Meta-learning algorithms
such as MAML (Finn et al., 2017) have also been adopted in Per-FedAvg (Fallah et al., 2020)
and FedMeta (Chen et al., 2018) for local optimization. Besides algorithmic changes, many works
proposed decoupling the model layers into shared and personalized layers. FedPer (Arivazhagan
et al., 2019), FedRep (Collins et al., 2021), and FedBABU (Oh et al., 2021) shared the earlier layers
in order to learn better representations and kept the deeper layers private to each client as the deeper
layers have been shown to be easily biased to the local distribution (Luo et al., 2021; Zhuang et al.,
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2021). Conversely, LG-FedAvg (Liang et al., 2020) demonstrated substantial efficiency gains by
only sharing the deeper layers and thus learning the representations locally.

Clustered FL. Clustered FL typically entails grouping clients into clusters, where each cluster learns
its own model in a federated manner. In HypCluster (Mansour et al., 2020), the client is assigned the
cluster model with the lowest loss when evaluated over its own local data. Therefore, each client has
to evaluate models in all clusters every round. To reduce communication costs, IFCA (Ghosh et al.,
2020) proposed clustering only the deeper layers of the model. Besides estimating cluster identities
on the client-end, numerous works proposed to cluster on the server given the clients’ trained local
model or gradients either in a one-shot or iterative manner. Ghosh et al. (2019) and FedMe (Matsuda
et al., 2022a) applied K-means to the weights of the clients’ models or to the outputs of these models
using unlabeled data respectively. CFL (Sattler et al., 2020) utilized the cosine similarity while
FL+HC (Briggs et al., 2020) adopted various distance metrics between the clients’ gradients for
clustering. Ultimately, these works aim to group clients with similar data distributions within a
cluster. To allow knowledge transfers among clusters, FedFOMO (Zhang et al., 2021) learns a
weighted sum of other clients’ local models for each local model, and FedEM Marfoq et al. (2021)
learns a weighted sum of a set of multiple models representing independent distributions.

3 PRELIMINARIES

3.1 PROBLEM SETUP

In this section, we formally define the problem of centralized federated image classification. We
consider a L class classification problem defined over a compact space X and a label space Y = [L],
where [L] = {1, ..., L}. The data point {x, y} distributes over X ×Y following the distribution p. A
function f : X → S maps x to the probability simplex S, S = {z|

∑L
i=1 zi = 1, zi ≥ 0,∀i ∈ [L]}

with fi denoting the probability for the ith class. f is parameterized over the hypothesis class w,
which is the weights of the neural network. L(w) is the loss function, and we assume the widely
used cross-entropy loss:

L(w) = E[
L∑

i=1

Iy=i log fi(x,w)] =

L∑
i=1

p(y = i)E[log fi(x,w)]. (1)

FL methods are designed to handle multiple devices1 collecting data and a central server coordinat-
ing the global learning objective across the network. Assume there are total N devices in the clients
pool, and K clients are randomly selected for local training in each round, with E steps of local
update. In particular, the objective of FL is to minimize:

min
w

f(w) =

N∑
k=1

qkFk(w) = E[Fk(w)] (2)

where qk ≥ 0 and
∑

k qk = 1. The local objectives measure the local empirical risk over possibly
differing data distribution Dk, i.e., Fk(w) = Exk∼Dk

[fk(w, xk)], with nk samples available at each
device k. Hence, qk is set as qk = nk

n , where n =
∑

k nk is the total data samples.

Let w0 be a set of randomly initialized weights. We then further define wt =
∑K

k=1 wt,k to be the
aggregated weight at round t where wt,k is the weight of client k. Hence, the client update (CU) for
client k at round t is CUt,k = wt,k − wt−1 and the aggregated update (AU) for all K participating
clients is AUt = wt − wt−1. After training for T rounds, the objective of personalization is to
minimize f(wT ) using local dataset xk ∼ Dk. In our work, we focus on optimizing both the initial
global performance and the personalized performance for each client.

3.2 EXPERIMENTAL SETUP

Datasets & Data Partitioning. Experiments are conducted on two image classification tasks of dif-
ferent complexity: CIFAR10 (Krizhevsky et al., 2009) and FEMNIST (Caldas et al., 2018). FEM-
NIST consists of a total of 3597 clients of varying number of samples and class labels as defined

1we use the terms devices and clients interchangeably.
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Table 1: Initial and personalized accuracy of a single global model trained by different predefined
clusters using FedAvg on CIFAR10. We report the mean and standard deviation of the initial accu-
racy and the personalized accuracy for each cluster, along with the average personalized accuracy
across clusters, across 3 separate runs.

Train Clusters Initial Acc C1 Per. Acc C2 Per. Acc C3 Per. Acc C4 Per. Acc Per. Acc
Incrementally adding Clusters with a Greater Degree of Non-IIDness

C1 82.76±0.39 82.29±0.26 83.35±0.81 81.56±0.74 81.84±0.39 82.26±0.18
C1+C2 83.97±0.25 83.77±0.20 85.04±0.14 83.95±0.67 87.17±0.54 84.98±0.28

C1+C2+C3 83.85±0.21 83.57±0.23 85.15±0.13 84.77±0.36 89.97±0.12 85.87±0.13
C1+C2+C3+C4 82.68±0.07 82.80±0.62 85.91±0.16 85.55±0.31 92.95±0.06 86.80±0.13

Incrementally adding Clusters with a Lower Degree of Non-IIDness

C4 63.22±0.62 68.69±0.58 74.76±0.25 76.77±0.40 91.31±0.32 77.88±0.37
C3+C4 77.27±0.61 78.03±0.26 82.60±0.66 83.47±1.18 92.61±0.40 84.18±0.54

C2+C3+C4 80.76±0.33 81.04±0.16 84.64±0.36 84.83±0.68 92.72±0.16 85.81±0.25
C1+C2+C3+C4 82.68±0.07 82.80±0.62 85.91±0.16 85.55±0.31 92.95±0.06 86.80±0.13

in Caldas et al. (2018). For CIFAR10, we set of the number of clients to 100 and follow the latent
Dirichlet allocation (LDA) partition method (Hsu et al., 2019; Yurochkin et al., 2019; Qiu et al.,
2022), allocating the same number of train and test samples to each client. Specifically, we draw
local class labels y ∼ Dir(α) for each client to form local distribution p, hence, the degree of data
heterogeneity is parameterized by α. As α → ∞, local class labels become more uniform (IID),
and as α → 0, these labels become less uniform (non-IID).

Model Architecture & Training Details. Following previous work (Horvath et al., 2021), a
ResNet-18 (He et al., 2016) architecture is used for CIFAR-10. For FEMNIST, we employed the
CNN first proposed in (Caldas et al., 2018). For both datasets, the models are trained with SGD
and the number of local client epochs is set to 1. For CIFAR-10, the starting learning rate, η1, for
CIFAR-10 and FEMNIST is set to 0.1 and 0.01 and the total number of FL rounds, T is set to 500
and 200 respectively. For CIFAR-10, we dropped η by 0.1 at round 250 and 375, and for FEMNIST,
an exponential LR decay is set per round: ηt = η1 exp(

t
T log(η1/ηT )) where the learning rate of

the last round is ηT = 0.006. The number of participating clients per round, K, is set to 10 and 35
for CIFAR-10 and FEMNIST respectively. Lastly, we fine-tune each client using 5 epochs with LR
ηT starting from the trained FL model, wT , to obtain the personalized accuracy on all experiments.

4 IMPACT OF DATA HETEROGENEITY ON CLUSTERS’ PERFORMANCE

Table 2: Degree of non-IIDness for each cluster
for ablation studies.

Cluster α Num. of Clients
C1 1000 25
C2 1 25
C3 0.5 25
C4 0.1 25

In this section, we study the impact of differ-
ent clusters of varying data heterogeneity on a
single global model using FedAvg McMahan
et al. (2017). In many previous FL works Hsu
et al. (2019); Yurochkin et al. (2019); Qiu et al.
(2022), the entire dataset is partitioned using
a single parameter α to indicate the degree of
non-IIDness as described in Section 3.2. In-
stead, we divide the CIFAR10 dataset, along
with the number of clients, uniformly into four
clusters and use a different alpha for each clus-
ter as shown in Table 2; e.g. clients in C1 have
a label distribution close to uniform and clients in C4 have a highly skewed label distribution. This
results in a wider range of marginal label distributions at a global level with varying degrees of
non-IIDness in each cluster, a scenario that is common in real-world scenarios.

We run two sets of experiments as shown in Table 1. The first set trains the global model from
random initialization, starting with the cluster with the lowest degree of non-IIDness, C1, and hence
only using 25% of the training set. We then incrementally add the other clusters into the pool and
repeat the experiment. Each experiment is run 3 times using random seeds and the trained model is
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used to evaluate both the initial and personalized accuracy on the entire test set. The two clusters with
a lower degree of non-IIDness, C1 & C2, resulted in the highest initial accuracy and personalized
accuracy for clients in C1. These accuracies fall when we include training data from clusters with a
higher degree of non-IIDness, C3 & C4. This performance degradation motivates the line of work
that aims to tackle the effects of data heterogeneity in single global FL. In contrast, the personalized
accuracy for clients in C2, C3, & C4 improve as data within the same data heterogeneity regime is
added to the training set.

We then ask if adding lower degrees of non-IIDness or even close to IID distributions would degrade
the personalization accuracy for clients with greater degrees of non-IIDness? Similar to the first set
of experiments, we start off with C4 instead and incrementally add more data from clients in C3,
C2, & C1. Surprisingly, doing so improve both initial and personalized accuracy for all clusters,
although it is worse in initial accuracy than the model trained with C1 & C2 only, 50% of the data.
Based on this observation, we conclude that knowledge shared from lower degrees of non-IIDness
distributions can improve the personalized accuracy for clients with higher degrees of non-IIDness
distributions but the reverse is detrimental. Hence, we can leverage this insight to better control
the impact of training with non-IID data on both the initial and personalized accuracy by clustering
clients based on their degree of data heterogeneity.

5 CUAU: WEIGHT DIVERGENCE OF CLIENT UPDATES

In Section 4, given the ground-truth degree of non-IIDness of each cluster, we show how varying
degrees of data heterogeneity affects performance. However, in the FL setting, due to privacy, this
information is not made public by the clients to the server. To this end, we propose CUAU, which is
the weight divergence between the client update (CU) and the aggregated update (AU) of all clients
in an FL round to estimate the degree of non-IIDness. In this section, we prove that the CUAU is
bounded by the earth mover’s distance (EMD) between the data distribution of the client and the
population distribution and hence can be an accurate measure of data heterogeneity.

0 100 200 300 400 500
Round

0.00

0.02

0.04

0.06

0.08

0.10

W
ei

gh
t D

iv
er

ge
nc

e C1
C2
C3
C4

Figure 1: Mean CUAU of all clients in each cluster
evaluated after every FL training round.

In Zhao et al. (2018), weight divergence is
formulated as the difference of the aggre-
gated weights of FL (wFL) relative to weights
optimized in a centralized manner (w(cen)):
∥wFL − w(cen)∥/∥w(cen)∥. The authors
showed that the EMD between the data distri-
bution of the client and the population distribu-
tion is the root cause of this weight divergence
through Proposition 3.1 in their paper. w(cen),
however, is not available as the server does not
have any client data to train on. Therefore, we
build on their proposition shown below:
Proposition 1. Given all N clients are se-
lected for training, each with nk samples fol-
lowing distribution pk for client k ∈ [K]. If
∇Ex|y=i log fi(x,w) is λx|y=i-Lipchitz for each
class i ∈ [L], then we have the following in equality:

CUAUk = ∥CUT,k −AUT ∥ ≤nk

n

(
(ak)

T ∥wT−1 − w
(cen)
T−1 ∥

+ η

L∑
i=1

∥pk(y = i)− p(y = i)∥
T∑

t=0

(ak)
tgmax(w

(cen)
ET−t)

)
+Const.

(3)
where η stands for the learning rate; Const. is the term independent of selected client k;
w

(cen)
ET−t is the weights trained in a centralized setting after E optimization steps; gmax(w) =

maxLi=1∥∇Ex|y=i log fi(x,w)∥ and ak = 1 + η nk

n

∑L
i=1 pk(y = i)λx|y=i.

Detailed proof of Proposition 1 can be found in Appendix A. Based on Proposition 1, we have
following remarks.
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Remark 1. ∥CUT,k − AU∥ can be seen as the weight divergence between each client update and
the weight divergence induced by two parts. The first is the weight divergence after the (T − 1)

round ∥wT−1−w
(cen)
T−1 ∥ and the second is the probability distance for the data distribution on client

k compared with the actual distribution for the whole population, i.e.,
∑L

i=1 ∥pk(y = i)−p(y = i)∥.
Remark 2. When all clients start from the same initialized weights, ∥pk(y = i)−p(y = i)∥ becomes
the main cause of divergence, which is the earth mover’s distance (EMD) of the data distribution of
client k and the population data distribution.

Based on Proposition 1, we validate that CUAU is a good metric to quantify the degree of heterogene-
ity of each client. To demonstrate this in practice, we adopt the same CIFAR10 cluster experimental
setup presented in Section 1 and compute the CUAU of all clients after every FL training round. We
then take the mean CUAU of all clients in each cluster and plot them in Figure 1. As the degree of
non-IIDness increases from C1 to C4, the CUAU increases. Hence, we can accurately and efficiently
estimate clusters using CUAU in a one-shot manner.

6 FEDCUAU: CLUSTERED FL USING WEIGHT DIVERGENCE

Motivated by our analysis (Section 4), we propose a clustered FL algorithm that clusters clients
based on their degree of data heterogeneity, measured using CUAU (Section 5), with the goal of
improving both the initial and personalized accuracy. A model is initialized for each cluster and
knowledge is then shared among clusters in an unidirectional approach from the lowest to the highest
degree of non-IIDness, e.g. client updates from C1 is used to update the weights of all other clusters
as shown in Figure. 2. The initial accuracy is then computed using the model of the cluster with
the lowest data heterogeneity and the personalized accuracy is obtained from each client’s assigned
cluster model.

6.1 EFFICIENCY CONSIDERATIONS OF FEDCUAU
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Figure 2: Knowledge shared among clusters.

Recent works have shown that the deeper lay-
ers of the model are easily biased to the lo-
cal distribution Luo et al. (2021); Oh et al.
(2021); Zhuang et al. (2021); Ghosh et al.
(2020). In other words, as the degree of non-
IIDness increases, the feature similarity among
local models decreases greatly in deeper layers.
This is illustrated in Figure 3, where we group
the ResNet18 layers into a few components:
the first convolution layer (conv1), the ResNet
blocks (RB1-4), and the last fully-connected
(fc) layer. We then plot the mean cosine sim-
ilarity between all pairs of local models in each
cluster, using the setup defined in Section 4,
for each component. Additionally, we show
that there is a greater change in each compo-
nent to fit the local data distribution as shown
in Figure 3 (right), which shows the mean up-
date magnitude of the weights of each compo-
nent before and after fine-tuning.

Based on this observation, we make two mod-
ifications to reduce the cost of FedCUAU (Figure: 2) 1) similar to IFCA Ghosh et al. (2020), we
decouple the model and share the weights of earlier layers among clusters. We denote the shared
weights as ws and each cluster-specific weights as wCi where i is the cluster ID. 2) We compute
CUAU in a one-shot manner using a randomly initialized model based on the client and aggregated
updates of the last fc layer. Hence, during the clustering stage, we can significantly reduce the
communication cost from the server to each client by only sending the computation graph structure,
along with its initialization definition and the fixed random seed. Additionally, each client only
needs to send its updated fc layers back to the server.
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Figure 3: (left) Mean cosine similarity of representations between local models for each group of
layers in each cluster. (right) Mean weight update magnitude before and after fine-tuning to the local
data distribution in each cluster.

6.2 FEDCUAU ALGORITHM

Our proposed algorithm is shown in Algorithm 1. FedCUAU consists of two main stages. The first
stage clusters the clients, in a one-shot manner, using CUAU, which is the weight divergence between
each client’s update (CU) and the aggregated update (AU). To this end, we initialize the model and
sample all N clients in the client pool, performing a local update on all layers of the model for each
client (lines 2-5,16-19). It is worth noting that the communication cost can be significantly reduced
if the server sends the computation graph structure of the model, the initialization definition, and
the seed instead of the model parameters themselves to all clients (Section 6.1). After which, we
compute AU by taking the weighted mean of all CUs and use it to compute each client’s CUAU (lines
6-8). This step can be efficiently calculated by just using the update of the last fc layer as described
in Section 6.1. The clients are then clustered based on percentile points (line 9). Specifically, let
Pi/C (for i = 1, ...,C) be the ith percentile points of the set of CUAU, where C is the total number
of clusters defined, then client k ∈ Ci if Pi−1/C < CUAUk ≤ Pi/C . The clusters are sorted in
ascending order by data heterogeneity, with C1 representing the lowest degree of non-IIDness and
CC representing the highest.

After the clients are clustered, the weights are reinitialized with its shared layers, ws, and each
cluster’s layers, wCi

t,k (line 10). For each of T training rounds, the server randomly sample K clients
and sends the model parameters, along with each client’s cluster ID (line 11-13). Each client then
updates the shared layer and the last cluster’s specific layer wCC for E mini-batches (line 21).
Subsequently, each client freezes the shared layer and updates the cluster layers which ID is bigger
or equal to his cluster ID as illustrated in Figure. 2 before sending the parameters back to the server
(line 22-25). The server aggregates the weights and proceeds to the next round (line 14). Although
FedAvg is used as an example to illustrate FedCUAU in Algorithm 1, other existing FL algorithms
can also be easily adapted as shown in Section 6.3.

During testing, the initial global accuracy is computed using a single model, C1’s model, and the
personalized accuracy is computed using the client’s assigned cluster model.

6.3 PERFORMANCE OF FEDCUAU

As our proposed FedCUAU focuses on cluster estimation and the information flow among clusters,
it can be easily adapted and used to further boost the performance of existing FL algorithms. In
this section, we adopted four popular FL algorithms: FedAvg (McMahan et al., 2017), FedProx (Li
et al., 2020), FedBABU (Oh et al., 2021) and FedPer (Arivazhagan et al., 2019) and run them with
and without FedCUAU on CIFAR-10 and FEMNIST.

Details of our CIFAR-10 and FEMNIST setup can be found in Section 4 and Caldas et al. (2018)
respectively. We set the number of clusters C = 2 for all experiments in this section, where C1
represents the cluster with the lower degree of non-IIDness. Note that the clusters defined in this
section is estimated using CUAU which differs from the clusters defined in Section 4 and Table 2,
which is clustered using the ground-truth data heterogeneity. For CIFAR-10, we set the cluster-
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Algorithm 1 FedCUAU: N is total number of clients. n is the total number of data samples; client k has
nk data samples. T is the total number of rounds. The number of local training steps is E and the number
of clients participating in each round is K. wt is the aggregated weights at round t. C is the total number of
clusters.
1: procedure FEDCUAU
2: Initialize w0 ▷ Initialize model without cluster-specific layers
3: b← {}
4: for k = 1, ..., N do
5: nk, w0,k ← CLIENTUPDATE(w0)
6: AU ← 1

N

∑N
k=1

nk
n
w0,k

7: for k = 1, ..., N do
8: CUAUk ← ∥CUk −AU∥
9: if Pi−1/C < CUAUk ≤ Pi/C then b[k]← i ▷ Cluster Assignment

10: Initialize w0 ← {ws
t,k, w

Ci
t,k for i, ...,C} ▷ Initialize model with cluster-specific weights

11: for t = 1, ..., T do
12: for all k in K do ▷ Randomly select K clients
13: nk, wt,k ← CLUSTERCLIENTUPDATE(wt,k, b[k])
14: wt+1 = 1

K

∑K nk∑K nk
wt,k

15: return wT

16: procedure CLIENTUPDATE(wt,k)
17: for e = 1, ..., E do
18: wt,k ← wt,k − η∇f(wt,k)

19: return nk, wt,k

20: procedure CLUSTERCLIENTUPDATE(wt,k, i)
21: nk, {ws

t,k, w
CC
t,k } ← CLIENTUPDATE({ws

t,k, w
CC
t,k })

22: for j = i, ..., (C − 1) do
23: for e = 1, ..., E do
24: wCj

t,k ← {w
s
t,k, w

Cj
t,k} − η∇f({ws

t,k, w
Cj
t,k}) ▷ Update cluster-specific weights

25: return nk, wt,k

Table 3: Initial and personalized accuracy comparison for both Cifar10 and FEMNIST on various FL
strategies. Averaged personalized accuracy is the fine-tuning accuracy over all clients in the client
pool. FedCUAU boosts the performance of existing FL algorithms on both initial global accuracy
and personalized accuracy. There is no initial accuracy for FedPer as it does not maintain a global
model for evaluation. All experiments are repeated for 3 runs.

Baseline + FedCUAU
Dataset Algorithm Init. Acc Per. Acc (avg) Init. Acc Per. Acc (avg)

CIFAR-10

FedAvg 82.49±0.30 86.85±0.26 83.75±0.08 87.14±0.32
FedProx 82.39±0.16 86.56±0.30 83.00±0.32 86.84±0.29

FedBABU 83.69±0.29 88.24±0.41 84.51±0.14 88.51±0.44
FedPer - 83.77±0.58 - 84.20±0.55

FEMNIST

FedAvg 78.62±0.43 74.73±0.13 80.12±0.56 78.54±0.08
FedProx 79.51±1.30 75.18±0.19 80.70±0.85 78.75±0.17

FedBABU 78.70±0.25 76.39±0.20 80.29±0.50 78.89±0.21
FedPer - 56.49±5.63 - 59.83±3.48

specific weights, wCi, for cluster i to be the last ResNet block (RB4) and the fc layer. Similarity,
we set wCi to be the last convolution and fc layer for FEMNIST. Since the last fc layer is frozen
in FedBABU and kept private in FedPer, we set wCi to be RB4 and the last convolution layer for
CIFAR10 and FEMNIST respectively. Lastly, for FedProx, we use 0.001 for the hyperparameter of
the regularization term.

Table 3 shows the results of FedCUAU in conjunction with the aforementioned FL algorithms on
both the initial test accuracy and personalized test accuracy. All results are repeated for 3 separate
runs. Note that there is no global model to evaluate the initial accuracy on for FedPer as the fc
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Table 4: Initial comparison for both Cifar10 and FEMNIST on various FL strategies for both cluster
weights; and personalized accuracy breakdown comparison for both initial and personalized accu-
racy for both cluster and cluster weights. There is no initial accuracy for FedPer as it does not
maintain a global model for evaluation. All experiments are repeated for 3 runs.

Dataset Algorithm Cluster Init. Acc C1 Per. Acc C2 Per. Acc Per. Acc

CIFAR-10

FedAvg+FedCUAU wC1 83.75±0.08 84.70±0.28 87.00±0.20 85.85±0.24
wC2 82.49±0.30 84.12±0.15 89.59±0.36 86.85±0.26

FedProx+FedCUAU wC1 83.00±0.32 84.26±0.41 86.88±0.13 85.57±0.27
wC2 82.39±0.16 83.70±0.42 89.42±0.17 86.56±0.30

FedBABU+FedCUAU wC1 84.51±0.14 85.56±0.40 91.22±0.50 88.39±0.45
wC2 83.69±0.29 85.03±0.35 91.46±0.47 88.24±0.41

FedPer+FedCUAU wC1 - 80.00±0.54 88.60± 0.34 84.30±0.22
wC2 - 79.15±0.70 88.39±0.57 83.77±0.58

FEMNIST

FedAvg+FedCUAU wC1 80.12±0.56 85.61±0.03 84.34±0.15 84.06±0.17
wC2 78.62±0.43 78.00±0.13 71.46±0.12 74.73±0.13

FedProx+FedCUAU wC1 80.70±0.85 85.54±0.09 84.24±0.19 83.12±0.10
wC2 79.51±1.30 78.40±0.13 71.96±0.25 75.18±0.19

FedBABU+FedCUAU wC1 80.29±0.50 85.76±0.16 82.35±0.18 82.80±0.17
wC2 78.70±0.25 78.44±0.14 72.02±0.26 76.39±0.20

FedPer+FedCUAU wC1 - 66.68±1.61 60.26±3.30 63.47±2.45
wC2 - 60.00±5.92 53.00±5.34 56.49±5.63

layers are kept private on each client. As expected, FedCUAU improves existing FL algorithms by
a considerable margin on both accuracy metrics. Initial accuracy of FedAvg improves by 1.53% &
1.82% for CIFAR10 & FEMNIST respectively, while personalized accuracy of FedAvg improves
by 0.29% & 3.81%.

We investigate the gain seen in Table 3 by computing both the initial accuracy and personalized ac-
curacy of both clusters using each cluster-specific weights as shown in Table 4. For CIFAR-10, each
cluster’s personalized accuracy is higher than the other for FedAvg, FedProx and FedBABU, verify-
ing the effectiveness of clustering using FedCUAU. For FedPer, personalized accuracy is higher with
wC1 for both clusters; learning a representation with less heterogeneous clients can better adapt with
the private personalized layers, resulting from the fact that FedPer is already a personalized strategy
with a client specific personalized layer, which means that the share part of the model can benefit
more from the cluster weights trained by less heterogeneous clients.

Similarly, both initial and personalized accuracies are higher using C1’s model for all FEMNIST
experiments despite only using 50% of the total data to train wC1. We hypothesize that this is due
to the feature heterogeneity among clients as the handwriting differs among clients. Nonetheless,
the significant improvement in C1’s personalized accuracy resulted in an increase in the overall
personalized accuracy shown in Table 3.

7 CONCLUSION

In this work, we focus on the clustering of clients in order to improve performance using existing FL
algorithms. Through our experiments, we showed that data from lower data heterogeneity clusters
could be used to improve the personalization of clients in higher data heterogeneity clusters. Hence,
by restricting the knowledge shared from higher to lower data heterogeneity clusters, we mitigate the
performance degradation caused by non-IID data on both the initial accuracy and the personalization
of lower data heterogeneity clusters. We also showed that using the weight divergence between each
client update and the aggregated update of all clients in an FL round is an effective and efficient
measure of heterogeneity and leveraged it in our one-shot clustering algorithm. Despite the gains of
FedCUAU, we are still facing with other challenges in FL that might limit FedCUAU’s applicability,
e.g. quantity skew or feature distribution shift. Hence, a possible avenue for future work would be
to explore how clustering can tackle the other areas of data heterogeneity.
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A PROOF OF PROPOSITION 1

Proof. Based on the definition, assume that each client perform E local optimization steps, wT,k is
the weights after local training at communication round T at client k. We also write the w

(cen)
ET as

the weight after ET steps of optimization in centralized manner.

Based on definition of CUk and AU , we have:

∥CUT,k −AUT ∥ = ∥wT,k − wT ∥
= ∥(wT,k − w(cen))− (wT − w(cen))∥

= ∥(wT,k − w(cen))− (
1

N

N∑
i=1

wT,i − w(cen))∥

≤ ∥(wT,k − w(cen))∥+ ∥( 1
N

N∑
i=1

wT,i − w(cen))∥

Based on Proposition 3.1 in Zhao et al. (2018), assuming that only 1 is selected, the first part of the
right hand side can be bounded by:

∥(wT,k − w(cen))∥ ≤ nk

n
(ak)

T ∥wT−1 − w
(cen)
T−1 ∥

+ η
nk

n

L∑
i=1

∥pk(y = i)− p(y = i)∥
T−1∑
t=1

(ak)
tgmax(w

(cen)
ET−t−1)

where gmax(w) = maxLi=1∥∇Ex|y=i log fi(x,w)∥ and ak = 1 + η
∑L

i=1 pk(y = i)λx|y=i.

Also use the same proposition, assuming that all N clients are selected for training, then the second
part of the right hand side can be bounded by:

∥( 1
N

N∑
i=1

wT,i − w(cen))∥ ≤
N∑

k=1

nk

n

(
(ak)

T ∥wT−1 − w
(cen)
T−1 ∥

+ η

L∑
i=1

∥pk(y = i)− p(y = i)∥
T−1∑
t=1

(ak)
tgmax(w

(cen)
ET−t−1)

)
= Const.

Since it is summed over all clients, it is independent of the particular client. Hence, it can be written
as Const. in Proposition 1.
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