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ABSTRACT

Hallucinations produced by multi-modal large language models (MLLMs) pose
considerable risks as it remains unclear to what extent humans can accurately rec-
ognize them. To address this issue, this paper explores humans’ neural responses
to such hallucinated content across varying time scales. We record EEG from 27
participants while they are viewing contents generated by a multi-modal large lan-
guage models that either include hallucination words or not, and judge whether
each description matched an image. The collected EEG data is analyzed based
on averaged event related potentials (ERP) on hallucination vs non-hallucination
words. Results suggest that multiple cognitive processes, e.g., semantic integra-
tion, inferential processing, memory retrieval, and cognitive load, are engaged
during humans’ recognition of hallucination content. However, when hallucina-
tions are not recognized by human participants, the brain treats them no differ-
ently from non-hallucination content. This indicates that humans already treat
such hallucinations the same as non-hallucination content at a subconscious level.
Furthermore, we conduct a prediction experiment that uses the collected EEG to
detect hallucination contents. This indicates that we can detect whether a user has
been deceived by hallucinations generated by MLLMs with their brain activities.

1 INTRODUCTION

Over the past few years, multi-modal large language models (MLLMs) have made impressive
progress, scaling in size, architecture sophistication, and capability (Team (2025)). These advances
have enabled them to perform a wide spectrum of tasks, from image captioning and generation to
open-ended conversation and multi-modal understanding. However, one of their key drawbacks,
hallucinations, i.e., the tendency to generate content that is plausible in surface form but factually
incorrect or ungrounded, has become a growing concern.

Recently, researchers have begun to examine hallucinations not only as a problem to be solved,
but also as a phenomenon to be understood (Ji et al. (2023); Huang et al. (2025)). Much of the
existing research has approached hallucinations from the model perspective: exploring how aspects
such as the training data, prompt design, decoding or sampling strategies, and internal uncertainty
or confidence measures contribute to the occurrence of hallucinations (Maynez et al. (2020)). There
have also been efforts to detect hallucinated content automatically and to develop mechanisms to
mitigate hallucination in generation, for example, by enhancing retrieval-augmented architectures
or introducing verification steps (Farquhar et al. (2024); Zhang et al. (2024); Lewis et al. (2020)).

As LLMs become more powerful and ubiquitous, many users have come to trust their outputs quite
heavily, even when those outputs may be incorrect and misleading. This over-reliance on model-
generated content can have negative consequences (Sun et al., 2024). Studies in human-AI interac-
tion have begun to highlight these risks, showing that trust in LLMs can lead to undesirable effects
on decision making and user behavior (Klingbeil et al. (2024); Zhai et al. (2024); Kim et al. (2025)).
However, these approaches rely on explicit, post-hoc judgments rather than ongoing, automatic sig-
nals of perception or recognition from human observers (Barros (2025)). Some detection methods
also focus on internal model states rather than how humans process hallucinated content in real time.

However, few studies have examined, from a neuroscience perspective, how human brain activity
patterns differ when viewing hallucinated versus non-hallucinated content generated by multi-modal
large language models. Understanding the neurological mechanisms behind it can illuminate which
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processing stages (early perceptual/attention, semantic integration, or late decision) play critical
roles in detecting hallucinated content. By identifying neural patterns that precede behavioral judg-
ments, such research can allow prediction or early warning of hallucinations beyond what accuracy
and reaction time alone can reveal.

In this paper, we aim to fill the gaps identified above, investigate the neurological mechanisms by
which humans recognize hallucinations, and gain insights for the development of LLMs. Specifi-
cally, we have the following research questions.

• RQ1. Do patterns of brain signals show significant differences when participants are view-
ing hallucination words versus non-hallucination words?

• RQ2. If yes, is this difference modulated by whether the participant correctly recognizes a
hallucination word?

• RQ3. Can we predict whether AI-generated content contains hallucination based on EEG
signals collected during viewing it?

To address these research questions, we collected EEG data from 27 participants. Each participant
viewed textual stimuli generated by an MLLM that included both hallucinated and non-hallucinated
content. On the basis of this paradigm, we conducted averaged event-related potential (ERP) anal-
yses. An ERP is like a “brain fingerprint” that presents the patterns of brain signals in different
groups (i.e., hallucination vs non-hallucination). The ERP analysis reveals a significant difference
in brain signals when participants are processing hallucination words and non-hallucination words.

We further decompose the detected ERP difference into different temporal scales. Results reveal that
multiple cognitive processes, such as semantic-thematic integration, inferential processing, memory
retrieval, and cognitive loading, are engaged in hallucination recognition. However, when partici-
pants failed to detect AI-generated hallucination, we did not observe characteristic neural signatures
of anomaly detection. This neural “silence” suggests that the fluency and contextual congruence of
hallucinated content allow it to bypass the brain’s automatic alarm system, effectively increasing the
likelihood of false belief acceptance. Additionally, we show that EEG signals can be used to predict,
at both the word-level and sentence-level, whether content contains hallucination. This prediction is
reliable only when participants correctly recognize hallucination. In other words, AI-generated hal-
lucinated content has the potential to deceive users from neural processing all the way to behavioral
outcomes.

2 DATA COLLECTION

In this section, we describe how we collected EEG and behavioral data from our 27 participants
while they completed the multimodal QA task designed to probe hallucination recognition.

2.1 PARTICIPANTS

A total of 27 volunteers were recruited for this study, comprising 11 males and 16 females, aged be-
tween 19 and 30 years (with an average of 24). The sample comprised mostly college students—but
also included several members of the general public, ensuring some diversity beyond the academic
population. The participants represented a range of disciplines (e.g., computer science, mechanical
engineering, chemistry, environmental engineering), spanning undergraduate to postgraduate levels.
Each individual completed the full experiment in approximately 1.5 hours, which includes 30 min-
utes for equipment setup and task instructions. Prior to participation, all individuals were informed
that their time would be compensated at a rate equivalent to US$11.8 per hour, contingent upon their
completion of the study, to ensure the quality of the data collected for the study.

2.2 TASK PREPARATION

To minimize bias arising from participants’ varying disciplinary backgrounds, we deliberately
adopted a multimodal QA task that demands minimal prerequisite knowledge. Our approach draws
on the AMBER benchmark (Wang et al. (2023))—a multi-dimensional, LLM-free evaluation dataset
for hallucination in MLLMs—which comprises 1,004 images derived from the MSCOCO (Lin et al.
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Figure 1: The overall procedure of our data collection. A) The procedure of stimuli selection. B)
The experimental trial flow consists of five stages: presenting an image (S1), showing a fixation
cross (S2), displaying a sentence word-by-word (S3),the participant making a judgment about the
sentence’s match to the image (S4), and finally proceeding to the next image (S5).

(2014)) and includes detailed annotations for hallucination at the levels of existence, attribute, and
relation. Using this benchmark, we generated responses to generative-style prompts for each image
via a MLLM. The MLLM we chose in our study is Qwen2.5-VL-3B-Instruct (Team (2025); Wang
et al. (2024)). Leveraging both the original hallucination annotations provided by AMBER and our
own manual verification, we selected 60 image–response pairs where the MLLM clearly exhibited
hallucinatory content. For each of these responses, we extracted one sentence containing a hallu-
cination and one sentence free of hallucination, thus forming balanced stimuli for EEG testing. To
ensure that each sentence we selected is not an illusion in itself, we use GPT4-HDM method Su
et al. (2024) and input each sentence into an LLM separately to let it judge whether it violates the
common sense of the real world. Following AMBER’s taxonomy of hallucination types, we catego-
rized the stimuli as follows: 27 entity-related, 13 relation-related, and 26 attribute-related (attribute
category further subdivided into action (5), count (11), and state (10)). Representative cases and the
full selection criteria are documented in our publicly accessible code repository. The procedure of
stimuli selection is shown in Fig 1 A.

2.3 PROCEDURE

Before the main trials, participants first completed an entry questionnaire and signed informed con-
sent regarding privacy and data security. They then received detailed instructions explaining the
primary tasks and the operational procedures, and were explicitly informed that they retained the
right to withdraw from the study at any time without consequence. Following orientation, partici-
pants carried out a series of training trials intended to help them become familiar with the formal
experiment’s flow. Each participant was also asked to select a random seed before the experiment
began, which was used to randomize the order of stimulus categories in order to ensure that across
participants, each hallucination type and image condition would be fairly and evenly presented.

Once these preparatory steps were finished, each trial proceeded through stages S1 through S5 in
sequence, as shown in Fig 1 B. In S1 (Image Presentation), an image is shown for 6000 milliseconds
while participants are told to view it attentively, knowing there will be a later match judgment. In S2
(Fixation), a central fixation cross is displayed for 1000 milliseconds to orient and stabilize visual
attention. In S3 (Sentence Presentation), a sentence description appears word by word: the first
word (e.g., “The”) is shown for 750 milliseconds (Ye et al. (2022)), followed by each subsequent
word for the same duration; the sentence may either contain a hallucination of a different type or be
non-hallucinated. After the full description, in S4 (Judgement) participants are asked whether the
sentence matches the image content via a binary choice (Yes or No), responding using key presses.
Finally, S5 introduces the next trial and cycles back to S1 when participants press the space key.
During the entire experiment, we continuously recorded EEG signals from each participant. Using
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event triggers, we logged the onset times of all key stimulus events, so each segment of EEG could
be aligned precisely to the relevant experimental stage. In addition, for every single sentence shown,
we recorded the participant’s judgment (Yes/No) about whether the description matched the image.

3 RESULT ANALYSIS

In this section, we employ ERP analysis techniques to investigate how brain signal patterns differ
when participants view hallucination versus non-hallucination words, and synthesize these find-
ings to outline the neural mechanisms by which humans recognize hallucinations. The detailed
code can be accessed openly through the url https://anonymous.4open.science/r/
Neural-Correlates-of-AI-generated-Multimodal-Hallucinations-2F7D.

3.1 STATISTIC ANALYSIS

Across the full set of 120 trials per participant, on average participants answered 101.14 items cor-
rectly, yielding a mean overall accuracy of 84.29%. Breaking this down by condition, for the 60
non-hallucination trials the average accuracy was 81.17%, while for the 60 hallucination trials it
was higher, at 87.41% — participants thus performed better on sentences containing hallucination
words than on non-hallucination ones. Considering hallucination categories, the mean recognition
accuracy by type was relation: 90.88%, entity: 89.30%, and attribute: 86.18%. Statistical tests
reveal that the accuracy across all hallucination categories do not differ significantly. While the
accuracies across these categories are fairly similar, the relation type had the highest performance
and the attribute type the lowest, suggesting that relation-based hallucinations may be easier for
participants to detect, whereas attribute-level hallucinations pose greater detection difficulty.

3.2 ERP ANALYSIS

ERP refers to brain voltages that are time-locked to specific events and reflect neural responses
elicited by those events (Blackwood & Muir (1990)). One of its key advantages is the high tem-
poral resolution it offers, and the sequence of ERP peaks provides precise insight into rapid neural
processing stages (Luck et al. (2000)). ERP components are evoked amplitude in different post-
stimulus time windows, e.g., N100, N400 (negative waves within 100ms, 400 ms), and P200, and
P600 (positive waves within 200 ms, 600 ms). These standard ERP markers index different cognitive
operations (Luck et al. (2000)). In our analysis, we employ conventional ERP-processing procedures
including signal preprocessing, defining time windows of interest, and specifying regions of interest
(ROIs) for comparing conditions (Ye et al. (2022); Zhu et al. (2024); Ye et al. (2024)). The method
we use to preprocess the EEG signals is detailed in Appendix A.2.

To disentangle different ERP components, we partitioned the extracted time interval into several
distinct time windows based on the approach introduced by Lehmann & Skrandies (1980). Their
method identifies evoked scalp potential components by examining both their latency and their to-
pographic pattern. In our analysis, we computed the Global Field Power (GFP) over the 50-750 ms
post-stimulus interval, and delineated time windows around the GFP peaks, as shown in Table 1.

To facilitate subsequent analyses, we partitioned the EEG data according to both the stimulus word
type and participants’ recognition performance. We defined three categories: Hallu for hallucina-
tion words that the participant correctly recognized as hallucinated; NoHallu for non-hallucination
words correctly identified as non-hallucinated; and HalluWrong for hallucination words which
participants failed to recognize (i.e., words that were in fact hallucinations but were judged as non-
hallucinations). We plot the grand-average ERP waveforms for different stimulus word types in
central brain region in Figure 2.

3.2.1 HALLU VS. NOHALLU WORDS

We divide the electrodes into seven brain regions according to their placement on the brain topog-
raphy shown in Figure 2. We apply repeated measures ANOVA in a fixed time window for each
brain region. The statistical findings for the various time windows and regions of interest for Hallu
vs. NoHallu words are presented in Table 1. Below, we discuss the characteristic features of each
component and their potential functional roles.
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Table 1: The statistical significance test results for different ERP components across brain regions for
Hallu vs. NoHallu words. Statistical significance at a level of * p<0.05, ** p<0.001, respectively.

Time window ROI RM-ANOVA test results

50–120 ms r-temporal, parietal Hallu <NoHallu *

120–280 ms pre-frontal, r-temporal, occipital Hallu >NoHallu *
frontal, central, l-temporal Hallu >NoHallu **

280–550 ms l-temporal, occipital Hallu <NoHallu *
central, r-temporal Hallu <NoHallu **

550–750 ms
pre-frontal, frontal, l-temporal,r-temporal,

occipital Hallu >NoHallu *

central Hallu >NoHallu **

Figure 2: Comparison of ERP waveforms for different stimulus word types in central brain region.

N100. N100 is an early component in time window around 100 ms (50–120 ms). We employ re-
peated measures ANOVA method and discover significant differences between the grand-averaged
N100 component in r-temporal (F[1,26]=4.615, p<0.05) and parietal (F[1,26]=4.872, p<0.05). The
N100 component is typically interpreted as reflecting very early visual perceptual processing, es-
pecially for low-level visual features (Yang et al. (2022)). It often shows maximal expression in
occipito-parietal regions. Recent work also indicates that the amplitude of N100 is closely linked
with attentional allocation. Larger N100 amplitudes have been observed when stimuli draw more
attention, or when perceptual systems are required to allocate greater resources to processing salient
or unexpected input (Thornton et al. (2007); Rutman et al. (2010)). The results of statistical signifi-
cance testing indicate that during the recognition of hallucination words, participants show enhanced
N100 responses compared to non-hallucination words. This suggests that the process of identify-
ing hallucination words recruits attention very early and imposes a higher cognitive load on the
perceptual system, even before later semantic processing stages.

P200. P200 is the dominant component in time window around 200 ms (120–280 ms). RM-
ANOVA reveals the significant differences between grand-averaged P300 component in pre-
frontal (F[1,26]=8.575, p<0.05), r-temporal (F[1,26]=4.253, p<0.05), occipital (F[1,26]=11.246,
p<0.05), and frontal (F[1,26]=18.226, p<0.001), central (F[1,26]=15.311, p<0.001), l-temporal
(F[1,26]=14.037, p<0.001). The P200 component is generally understood to reflect early attentional
engagement and decision-related processing. It has been associated with novelty detection, stimu-
lus complexity, and perceptual salience, such that more complex or unexpected stimuli elicit larger
P200 amplitudes (Ghani et al. (2020)). Empirical work shows that P200 amplitude tends to increase
with attentional load and with stimuli that violate perceptual or contextual expectations (Kemp et al.
(2009); Polich (2007)). We observe enhanced P200 responses for hallucination words compared to
non-hallucination words. This suggests that hallucination words impose greater demands on early
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stimulus selection. The processing system flags such words as perceptually or lexically salient,
because they diverge from semantic expectation or evoke conflict.

N400. N400 component is evoked around 400 ms after the stimulus (280-550 ms). Significant
differences are found in l-temporal (F[1,26]=4.786, p<0.05), occipitial (F[1,26]=5.245, p<0.05),
and central (F[1,26]=16.442, p<0.001), r-temporal (F[1,26]=7.929, p<0.001). The N400 compo-
nent is widely understood to index the access and integration of semantic information. It typically
reaches its maximal amplitude at centro-parietal electrode sites, reflecting the brain’s effort to rec-
oncile a word’s meaning with its broader context. Empirical findings show that less predictable
or semantically incongruent words evoke larger N400 responses, consistent with the idea that the
N400 is sensitive to violations of expectation and relates to retrieval from semantic memory (Lau
et al. (2008); Lindborg et al. (2023); Michaelov et al. (2022)). Hallu words conflict with the visual
context, hence they elicit greater N400 amplitudes than NoHallu words. This suggests when the
descriptive content generated by the model diverges from what is visually present or semantically
expected, the cost of semantic integration increases.

P600. P600 waveform mainly appears in time window around 600 ms (550-750 ms). Through
ANOVA, we find significant differences between grand-averaged P600 component in pre-
frontal (F[1,26]=5.874, p<0.05), frontal (F[1,26]=7.268, p<0.05), l-temporal (F[1,26]=7.517,
p<0.05), r-temporal (F[1,26]=8.093, p<0.05), occipitial (F[1,26]=6.561, p<0.05), and central
(F[1,26]=31.558, p<0.001). The P600 (or late positivity) component is classically implicated in
sentence processing tasks and shows its strongest responses at centro-parietal electrode sites. Orig-
inally, the P600 was discovered as an index of syntactic reanalysis and repair, reflecting efforts
to restructure or repair comprehension (Seyednozadi et al. (2021)). More recently, research has
shown that even in sentences that are grammatically correct, semantic conflict or non-typicality
can also provoke a P600, which is referred to as the “semantic P600” (Bornkessel-Schlesewsky &
Schlesewsky (2008); Brouwer et al. (2012)). In the context of hallucination recognition, once a
word is identified as semantically hallucinatory, participants engage controlled reanalysis and deci-
sion/monitoring processes. These processes recruit language-time systems and posterior integration
networks, consistent with the late positivity seen in P600. Thus, detection of hallucination involves
not only early sensory/attentional and semantic mismatch stages, but also later re-evaluation and
integration when the linguistic input conflicts with perceptual or expectation-based models.

3.2.2 HALLUWRONG VS. NOHALLU WORDS

We applied the same statistical analyses—comparing across multiple time-windows and regions of
interest—to ERP responses elicited by HalluWrong versus NoHallu words. Across all examined
components and brain regions, none of these comparisons reached statistical significance. Full test
statistics for each time window and ROI are provided in the Appendix A.3.

3.3 DISCUSSION

Overall, our findings advance understanding of the neural mechanisms by which humans recognize
hallucinated content generated by MLLMs. The ERP results clearly show that various cognitive pro-
cesses are engaged at extremely fine temporal scales. Specifically, differences in early perceptual
attention and cognitive load (P200/N100), semantic-thematic understanding (N400), inferential pro-
cessing, and memory retrieval (P600) mechanisms underlie successful hallucination recognition (ad-
dressing RQ1). These observations are consistent with prior studies of comprehension mechanisms,
which posit that unexpected or incongruent input requires more effortful retrieval and integration of
meaning in memory and draws upon prediction error and expectancy effects (Zhu et al., 2024).

It is worth noting that our results align with, and extend, findings from previous ERP studies. For
example,Ye et al. (2022) explored the neural mechanisms underlying reading comprehension, and
Pinkosova et al. (2022) investigated relevance judgments. They both reported that answer words
(or words highly relevant to the task) elicit larger ERP amplitudes compared to ordinary or low-
relevance words. These patterns suggest that when a stimulus is more directly tied to achieving the
experimental goal, participants tend to allocate more attentional and cognitive resources to those
items. By analogy, our results suggest that participants in our user study tended to devote more
resources to items that were more directly aligned with achieving the experimental task goal, i.e.,
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detection of hallucinated content. While the precise mechanisms driving this attentional allocation
remain beyond the scope of this paper, they represent an intriguing avenue for future research.

On the other hand, when participants failed to detect the hallucinated content, we did not observe the
typical neural activity associated with anomaly detection. This neural “silence” suggests that, due to
their high linguistic fluency and contextual coherence, hallucinated outputs produced by advanced
models can successfully evade the brain’s automatic alerting mechanisms, thereby paving the way
for the formation of false beliefs. This pattern implies that recognition (or conscious awareness) is a
key trigger for abnormal neural responses. Mere exposure to hallucinated content does not suffice to
induce the enhanced ERP effects (addressing RQ2). This aspect distinguishes the present task from
many prior word-recognition or anomaly detection tasks.

The findings from our study offer valuable insights for AI and cognitive neuroscience. First, from
the AI perspective, the discovery that neural patterns of hallucination only emerge when humans
correctly recognize them suggests that truthfulness and consistency in models could be improved by
incorporating mechanisms analogous to human recognition. These insights could guide the design of
more robust hallucination detection and mitigation systems, especially in applications where human
users rely on the model’s outputs under limited oversight. Second, our study also suggests that
the brain’s ability to distinguish hallucinated content depends heavily on context and recognition,
implying that studying hallucination purely from the model side may miss important human factors.
For tasks involving domain-specific or expert knowledge, detection systems based on EEG or other
neural signals will likely need to be collected among populations that have relevant background
knowledge. Lastly, from a human-computer interaction standpoint, conscious awareness is essential
for triggering anomalous neural responses, suggesting that user interfaces with active interventions
may help reduce the risk of users accepting hallucinated content uncritically. Design strategies
should emphasize helping users notice and identify when content seems incongruent.

4 PREDICTION EXPERIMENTS

To explore whether EEG signals can act as signals to predict whether the content generated by an
MLLM contains hallucinations, we conducted word-level and sentence-level prediction experiments
on the dataset we collected. In this section, we detail the procedures and results of experiments.

4.1 EXPERIMENTAL SETUP

Task Definition We formalize the prediction task as follows. Let a stimulus sentence contain
l words, and for each word, we extract EEG features during its presentation. We denote the se-
quence of word-level EEG features X = [x1, x2, . . . , xl] ∈ Rl×d as input, where d is the di-
mension of the extracted features. The model produces two outputs: word-level prediction vector
yw = [yw,1, yw,2, . . . , yw,l] ∈ {0, 1}l and sentence-level prediction ys ∈ {0, 1}. For evaluation, we
selected AUC as a metric.

Feature Selection To build input features for our prediction models, we combined Frequency-
Band-based Features (FBFs) with Event-Related Potential-based Features (ERPFs). FBFs capture
global spectral information, while ERPFs focus on specific, behaviorally relevant time windows
indicated by our ERP analyses. We selected four brain regions (central, l-temporal, r-temporal,
and occipital) that consistently showed strong effects in our significance tests. For each of those
four regions, we computed differential entropy for five standard EEG frequency bands. Differential
entropy is widely used to quantify complexity in EEG signals, and has been shown to be effective
for classification tasks such as emotion recognition (Chen et al. (2019); Duan et al. (2013)). Based
on the ERP components that were significant in the previous section, we selected a set of time
points within those time window and divided each into five equal segments. We concatenated the
frequency-domain and the time-domain features to create a 760-dimensional input vector.

Data splitting strategies To examine whether the model’s performance is consistent across differ-
ent participants and whether it generalizes robustly across varying participant data distributions, we
employed two data splitting strategies. Within-subject paradigm means that for each participant in-
dividually, we perform ten-fold cross-validation on their data, and then average performance across
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Table 2: The classification results of word-level and sentence-level prediction. † indicates the re-
sult is significantly different with p-value<0.05 compared to the best model. * indicates including
HalluWrong words in the training.

Models word-level sentence-level
AUCwithin AUCcross AUCwithin AUCcross

SVM 0.9393 0.8631 0.9601† 0.9494†
RF 0.9069† 0.7924† 0.9622† 0.9384†

GBDT 0.9190† 0.8362† 0.9647 0.8531†
MLP 0.9125† 0.8272† 0.9655 0.9824

attention 0.9113† 0.7955† 0.9673 0.9846
SVM* 0.5187† 0.5033† 0.5518† 0.5391†

folds. Across-subject paradigm means that we hold out one participant’s data as the test set and train
the model on the other 26 participants’ data.

Model selection We selected support vector machine (SVM), random forest (RF), multi-layer
perceptron (MLP), gradient boosting decision tree (GBDT), and an attention-based model. Our
rationale for not selecting more complex or highly specialized neural architectures is twofold: 1) this
task is novel, and to our knowledge, no dedicated model has previously been designed specifically;
2) our goal in this work is to demonstrate the effectiveness of EEG as an implicit feedback signal
for predicting hallucinated content. More sophisticated architectures to push maximal performance
remain a promising direction for future work. For more model and training details, please refer to
the code and Appendix A.4.

4.2 RESULTS

Table 2 presents the results of the word-level and sentence-level prediction classification. It shows
that several models achieved strong performance, with SVM attaining the highest word-level perfor-
mance and the attention-based model performing best at the sentence-level prediction. As expected,
the cross-subject AUC scores are generally lower than the within-subject ones, likely due to inter-
subject variability in EEG signals. Differences in brain anatomy, electrode placement, cognitive
strategies, and noise make generalization across individuals more challenging (Apicella et al., 2024).
Another consistent trend is that sentence-level classification outperforms word-level classification.
This is plausible because sentence-level prediction allows the model to integrate information across
all constituent words, capturing contextual dependencies and cumulative signals. The attention-
based model in particular can exploit sequential dependencies via its internal weighting mechanism,
which helps it better aggregate subtle signals across words. The results indicate that the EEG signals
we collected carry meaningful information for predicting hallucinated vs non-hallucinated content.
We further experimented by including HalluWrong words into the training data for SVM. The results
(shown in the last rows of Table 2) demonstrate a significant drop in performance, which indicates
that only when participants correctly recognize hallucinations do the EEG signals carry discrimina-
tive information. Including misrecognized hallucination words will degrade the model’s ability to
generalize.

Overall, our experiments validate that, at both the word and sentence levels, EEG is a viable implicit
feedback signal for detecting hallucination in generated content. However, this prediction is reliable
only when participants correctly recognize hallucination. (addressing RQ3)

5 RELATED WORK

5.1 HALLUCINATION IN LLMS

Hallucination in LLMs denotes fluent but ungrounded or factually incorrect outputs (Ji et al., 2023).
Prior work separates intrinsic drivers from extrinsic causes and advances two main strands: de-
tection and mitigation. For detection, post-hoc verification with retrieval/KBs checks factuality in
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knowledge-intensive tasks (Lewis et al., 2020), while black-box consistency methods flag unstable
generations without instrumenting the model (Manakul et al., 2023). AMBER offers an LLM-
free, type-controlled benchmark, and object-level studies document captioning-specific hallucina-
tions (Wang et al., 2023; Rohrbach et al., 2018). Mitigation commonly uses retrieval-augmented
generation (RAG) to inject verifiable evidence during decoding (Lewis et al., 2020). Complementary
strategies include self-critique and verifier pipelines to reject dubious claims and improved cross-
modal alignment in MLLMs to curb object and attribute hallucinations (Manakul et al., 2023; Wang
et al., 2023; Rohrbach et al., 2018). Despite progress, most evaluations remain outcome-based,
leaving open when and how humans neurally register hallucinations.

5.2 NEUROSCIENCE & AI

Event-related potentials (ERPs) provide time-resolved markers of cognitive processing (Luck,
2014). N100 and P200 index perceptual and attentional allocation; P300 relates to task-relevant
salience; N400 tracks semantic integration and expectancy violations; and P600 reflects late reanal-
ysis and monitoring, including “semantic P600” effects (Bornkessel-Schlesewsky & Schlesewsky,
2008). Computational–neuroscience links show partial convergence between language-model rep-
resentations and brain activity, and surprisal robustly correlates with N400 amplitude in sentence
comprehension (Schrimpf et al., 2021; Frank et al., 2013). Beyond language, EEG studies of
short-video polarization demonstrate that cognitive impact may be invisible to surface behaviors yet
measurable in neural signals, and that EEG features can predict exposure to polarized content (Du
et al., 2025a;b). Building on these insights, we compare ERPs elicited by hallucinated versus non-
hallucinated words and condition effects on recognition.

6 CONCLUSION

In summary, this paper makes the following three contributions. 1) We collected and will release
an EEG dataset from 27 participants, in which subjects viewed text generated by MLLM, including
both hallucinated and non-hallucinated content. 2) We performed ERP analyses to probe the neural
mechanisms of human recognition of MLLM-generated hallucinations and found that early atten-
tion and perceptual processing, semantic-thematic integration, inferential reasoning, and memory
retrieval are all involved at very fine temporal resolution. Meanwhile, due to their high linguistic
fluency and contextual coherence, hallucinated outputs produced by advanced models can success-
fully evade the brain’s automatic alerting mechanisms, thereby paving the way for the formation of
false beliefs. 3) We demonstrated that it is possible to predict whether content contains hallucina-
tions with EEG at both the word-level and sentence-level, but that reliable prediction depends on
correct recognition of hallucinated content by participants.

Despite the promising findings, this study has several limitations that must be acknowledged. 1) Al-
though we have a relatively large number of participants (n = 27), which helps statistical reliability,
each participant in our dataset viewed relatively few hallucination words, since the EEG data collec-
tion equipment is not portable and the sessions are time-consuming. 2) Our setup was constrained to
a laboratory setting. We made efforts to approximate real-world conditions, but there remains a gap
between them. Factors such as ambient noise, participant movement, multitasking, and variations in
attention in real life are not fully captured in our data.

Our experimental findings suggest that the prediction of hallucinated content may depend on whether
participants have relevant domain-specific knowledge. In future studies, it would be valuable to
conduct experiments within groups possessing specialized backgrounds (e.g. experts in medicine,
law, science) to assess how prior knowledge modulates EEG signatures of hallucination recogni-
tion. This might reveal whether prediction models need to be tailored for knowledge domains, and
whether neural markers differ across expert vs novice observers. Although our study examined
several categories of hallucination (relation, entity, attribute), a more fine-grained investigation is
needed to understand how different kinds of semantic and perceptual violations produce distinct
neural effects. This would help map which categories are most difficult to detect, in which brain
regions and at what latencies, thereby informing both cognitive theory and model design.

9
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7 ETHICS AND PRIVACY

To protect participants’ privacy and physical health, our user study adheres to strict ethical guide-
lines for human research, with approval from the ethics committee1. In accordance with ethical
standards, we have taken several steps to protect participants’ privacy, including data anonymization
and obtaining informed consent from all participants. Additionally, participants are thoroughly in-
formed about the study’s objectives, procedures, and potential outcomes. The EEG data collection
method employed in this research is non-invasive and poses no risk to participants.

8 REPRODUCIBILITY STATEMENT

We are committed to full reproducibility of this work. The dataset in EEG-ImageNet will be publicly
released after the review stage. All code, including data preprocessing, model training, and evalua-
tion scripts, will be made available at github link. The architectural and implementation details of
all models are documented in the Appendix A.4.

REFERENCES

Andrea Apicella, Pasquale Arpaia, Giovanni D’Errico, Davide Marocco, Giovanna Mastrati, Nicola
Moccaldi, and Roberto Prevete. Toward cross-subject and cross-session generalization in eeg-
based emotion recognition: Systematic review, taxonomy, and methods. Neurocomputing, 604:
128354, 2024.

Sebastian Barros. I think, therefore i hallucinate: Minds, machines, and the art of being wrong.
arXiv preprint arXiv:2503.05806, 2025.

DHR Blackwood and Walter J Muir. Cognitive brain potentials and their application. The British
Journal of Psychiatry, 157(S9):96–101, 1990.

Ina Bornkessel-Schlesewsky and Matthias Schlesewsky. An alternative perspective on “semantic
p600” effects in language comprehension. Brain research reviews, 59(1):55–73, 2008.

Harm Brouwer, Hartmut Fitz, and John Hoeks. Getting real about semantic illusions: rethinking the
functional role of the p600 in language comprehension. Brain research, 1446:127–143, 2012.

Dong-Wei Chen, Rui Miao, Wei-Qi Yang, Yong Liang, Hao-Heng Chen, Lan Huang, Chun-Jian
Deng, and Na Han. A feature extraction method based on differential entropy and linear discrim-
inant analysis for emotion recognition. Sensors, 19(7):1631, 2019.

Bangde Du, Ziyi Ye, Monika Jankowska, Zhijing Wu, Qingyao Ai, Yujia Zhou, and Yiqun Liu. Eeg
reveals the cognitive impact of polarized content in short video scenarios. Scientific Reports, 15
(1):18277, 2025a.

Bangde Du, Ziyi Ye, Zhijing Wu, Monika Jankowska, Qingyao Ai, and Yiqun Liu. Understanding
the effect of opinion polarization in short video browsing. In Proceedings of the 48th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 906–916,
2025b.

Ruo-Nan Duan, Jia-Yi Zhu, and Bao-Liang Lu. Differential entropy feature for eeg-based emotion
classification. In 2013 6th international IEEE/EMBS conference on neural engineering (NER),
pp. 81–84. IEEE, 2013.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625–630, 2024.

Stefan L Frank, Leun J Otten, Giulia Galli, and Gabriella Vigliocco. Word surprisal predicts n400
amplitude during reading. 2013.

Usman Ghani, Nada Signal, Imran Khan Niazi, and Denise Taylor. Erp based measures of cognitive
workload: A review. Neuroscience & Biobehavioral Reviews, 118:18–26, 2020.
1detailed information will be released after review

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
computing surveys, 55(12):1–38, 2023.

Andrew H Kemp, Patrick J Hopkinson, Daniel F Hermens, Donald L Rowe, Alexander L Sumich,
C Richard Clark, Wilhelmus Drinkenburg, Nadia Abdi, Rebecca Penrose, Alexander McFarlane,
et al. Fronto-temporal alterations within the first 200 ms during an attentional task distinguish
major depression, non-clinical participants with depressed mood and healthy controls: A potential
biomarker? Human brain mapping, 30(2):602–614, 2009.

Sunnie SY Kim, Jennifer Wortman Vaughan, Q Vera Liao, Tania Lombrozo, and Olga Russakovsky.
Fostering appropriate reliance on large language models: The role of explanations, sources, and
inconsistencies. In Proceedings of the 2025 CHI Conference on Human Factors in Computing
Systems, pp. 1–19, 2025.
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A APPENDIX

A.1 APPARATUS

The stimuli are presented on a desktop computer that has a 27-inch monitor with a resolution of
2560× 1440 pixels and a refresh rate of 60 Hz. Participants are required to use the keyboard to in-
teract with the platform. EEG signals are captured and amplified using a Scan NuAmps Express sys-
tem (Compumedics Ltd., VIC, Australia) and a 64-channel Quik-Cap (Compumedical NeuroScan).
A laptop computer functions as a server to record EEG signals and triggers using Curry8 software.
Throughout the experiment, electrode-scalp impedance is maintained under 50kΩ, and the sampling
rate is set at 1000 Hz.

A.2 PREPROCESS

We preprocess the EEG data using several steps: first, we re-reference all recorded signals offline
using the linked-mastoids method to reduce reference bias (Yao et al. (2019)); second, we apply
notch, high-pass, and low-pass filters to eliminate environmental interference, slow voltage drift, and
high-frequency noise respectively; third, we extract epochs of interest and compute their averages
to obtain ERP waveforms. The epochs are defined from 200 ms before the presentation of each
stimulus word to 800 ms after, covering the expected time window for relevant neural responses.

A.3 ERP ANALYSIS

Table 3: The statistical significance test results (F score) for different ERP components across brain
regions for HalluWrong vs. NoHallu words.

F[1,26] pre-frontal frontal central l-temporal r-temporal parietal occipital

50-120 ms 1.0762 2.2069 0.1047 0.0786 0.5500 1.5207 3.3269
120-280 ms 1.6805 3.3903 0.5743 1.1759 0.0202 3.3387 3.6863
280-550 ms 0.0173 0.0340 0.3558 0.2935 0.1930 0.5038 2.9955
550-750 ms 0.0556 0.0056 1.4622 0.1463 0.1536 3.0617 1.0923

Table 4: The statistical significance test results (p value) for different ERP components across brain
regions for HalluWrong vs. NoHallu words.

p value pre-frontal frontal central l-temporal r-temporal parietal occipital

50-120 ms 0.3095 0.1499 0.7489 0.7816 0.4652 0.2290 0.0801
120-280 ms 0.2067 0.0775 0.4556 0.2885 0.8881 0.0796 0.0750
280-550 ms 0.8963 0.8553 0.5562 0.5928 0.6642 0.4844 0.0958
550-750 ms 0.8155 0.9407 0.2379 0.7053 0.6984 0.0924 0.3060

Tables 3 and Table 4 present the statistical significance test results (F scores and p values, respec-
tively) for different ERP components across brain regions, comparing HalluWrong vs. NoHallu
words. The results indicate that for all ERP components and in all examined regions of interest, the
differences between HalluWrong and NoHallu words are not statistically significant.

A.4 MODELS

The model structures and hyperparameters are as follows. For all models, the input features first
undergo a preprocessing pipeline, which includes mean imputation for any missing values, followed
by standard scaling to normalize the data.

SVM (Support Vector Machine) We use a Radial Basis Function (RBF) kernel. The regularization
parameter C is set to 1. The model is configured to output probability estimates for classification.
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Table 5: The recall results of word-level and sentence-level prediction. † indicates the result is
significantly different with p-value<0.05 compared to the best model. * indicates including Hal-
luWrong words in the training.

Models word-level sentence-level
Recallwithin Recallcross Recallwithin Recallcross

SVM 0.5740† 0.3669† 0.6610† 0.4655†
RF 0.2629† 0.1169† 0.0404† 0.0162†

GBDT 0.4104† 0.2132† 0.4602† 0.0346†
MLP 0.6141† 0.3487† 0.8952† 0.8244

attention 0.6617 0.4421 0.9310 0.7407†
SVM* 0.1370† 0.2340† 0.2771† 0.2349†

RF (Random Forest) We set the number of trees in the forest to 100. All other parameters are kept
at their default values as specified in the scikit-learn library.

GBDT (Gradient Boosting Decision Trees) We set the number of boosting stages to 100 and the
learning rate to 0.1. All other parameters are set to their default values.

MLP (Multi-Layer Perceptron) We implement a network using PyTorch. The architecture consists
of a single hidden layer with 100 units, which uses a ReLU activation function. A dropout layer
with a probability of 0.5 is applied after the activation function for regularization. The output layer
is a linear layer that maps to the two output classes.

Attention-based model We use a Transformer Encoder architecture implemented in PyTorch. The
input features are first projected into an embedding space with a dimension of 128. This is followed
by a 2-layer Transformer Encoder. Each encoder layer utilizes a multi-head attention mechanism
with 8 attention heads and a dropout rate of 0.5. A final linear layer maps the encoder’s output to
the class scores.

Training Configuration for Deep Models For both deep learning models (MLP and Attention-based),
we use the cross-entropy loss function and the Adam optimizer with a learning rate of 10−3. The
models are trained for 300 epochs with a batch size of 32.

A.5 MORE RESULTS

Table 5 shows the recall results of word-level and sentence-level prediction.

A.6 THE USE OF LARGE LANGUAGE MODELS

In this work, we leveraged large language models (LLMs) to assist in manuscript preparation, in-
cluding refining the text for clarity and style, as well as facilitating literature retrieval. All LLM-
generated suggestions were carefully reviewed, edited, and integrated by the authors to ensure sci-
entific accuracy and consistency with our own writing voice. Meanwhile, the dataset on which
our experiments depend was generated using an open-source multimodal large language model
(MLLM), i.e., Qwen2.5-VL-3B. We adopted Qwen2.5-VL-3B to produce image-based descrip-
tions from which we selected hallucinated and non-hallucinated content stimuli for our EEG ex-
periment. We acknowledge the ongoing discourse around the ethical use of LLMs in scholarly writ-
ing—particularly regarding transparency, originality, and accountability. We transparently report the
use of LLM assistance and reaffirm that all substantive intellectual contributions (e.g. experimental
design, data analysis, interpretation) originated from the authors.
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