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Scalable and Provably Fair Exposure Control
for Large-Scale Recommender Systems

Anonymous Author(s)

ABSTRACT
Typical recommendation and ranking methods aim to optimize the

satisfaction of users, but they are often oblivious to their impact

on the items (e.g., products, jobs, news, video) and their providers.

However, there has been a growing understanding that the latter is

crucial to consider for a wide range of applications, since it deter-

mines the utility of those being recommended. Prior approaches to

fairness-aware recommendation optimize a regularized objective

to balance user satisfaction and item fairness based on some no-

tion such as exposure fairness. These existing methods have been

shown to be effective in controlling fairness, however, most of them

are computationally inefficient, limiting their applications to only

unrealistically small-scale situations. This indeed implies that the

literature does not yet provide a solution to enable a flexible control

of exposure in the industry-scale recommender systems where mil-

lions of users and items exist. To enable a computationally efficient

exposure control even for such large-scale systems, this work devel-

ops a scalable, fast, and fair method called exposure-aware ADMM
(exADMM). Our algorithm is based on implicit alternating least

squares (iALS), a conventional scalable algorithm for collaborative

filtering, but optimizes a regularized objective to achieve a flexible

control of accuracy-fairness tradeoff. A particular technical chal-

lenge in developing exADMM is the fact that the fairness regularizer

destroys the separability of optimization subproblems for users and

items, which is an essential property to ensure the scalability of

iALS. Therefore, we develop a set of optimization tools to enable

yet scalable fairness control with provable convergence guarantees

as a basis of our algorithm. Extensive experiments performed on

three recommendation datasets demonstrate that exADMM enables

a far more flexible fairness control than the vanilla version of iALS,

while being much more computationally efficient than existing

fairness-aware recommendation methods.

ACM Reference Format:
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1 Introduction
Personalized recommender system has been a core function of

many online platforms such as e-commerce, advertising, dating
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app, and online job markets. In these systems, the items to be

recommended and ranked are products, job candidates, or other

entities that transfer economic benefit, and it is widely recognized

that how they are exposed to users has a crucial influence on their

economic success [33, 44, 50]. It has also been recognized that rec-

ommender systems are responsible for and should be aware of

potential societal concerns in diverse contexts, such as popularity

bias [2, 3, 35, 43, 45], sales concentration in e-commerce [9, 19], filter

bubbles, biased news recommendation in social media sites [23, 40],

and item-side fairness in two-sided markets [1, 10]. In essence, these

concerns all demand a form of exposure control to ensure that each

item receives “fair” exposure to relevant users while not greatly

sacrificing user satisfaction or recommendation accuracy. However,

implementing exposure control poses technical challenges in model

optimization since its objective function often becomes non-trivial

and hard-to-handle in a scalable and efficient way. Building a prac-

tical system, therefore, requires a careful consideration and balance

between computational requirements, user satisfaction, and item

fairness via an effective and scalable exposure control.

Related Work. In the context of fairness-aware recommendation

and ranking, there exist numerous studies on learning fair proba-

bilistic rankings based on pre-trained preferences [7, 16, 17, 32, 44,

49]. The problem is often formulated as a convex optimization on

doubly stochastic matrices with the size of |V| × |V| (where V
is the item set) for each user. Whereas formulating ranking opti-

mization through doubly stochastic matrices is advantageous for

differentiability and convexity, this approach may not be applica-

ble to most industry systems because of the space complexity of

O(|U||V|𝐾) for top-𝐾 recommendation (whereU is the user set).

More recent methods [16, 17, 56] are based on the Frank–Wolfe-

type efficient algorithm [20, 26], which requires a top-𝐾 sorting

of items for each user at each iteration, resulting in a computa-

tional cost of O(|U||V| log𝐾) per training epoch, which is still

prohibitively high. Patro et al. [36] proposed a greedy round-robin

algorithm called FairRec, which also does not scale well because

its round-robin scheduling is not parallelizable. Notably, these post-
processing methods require, a priori, a |U| × |V| (dense) preference
matrix (e.g., a preference matrix estimated by an MF model). The

preference matrix is costly to retain in the memory space or even

impossible to materialize due to its cost of O(|U||V|). Therefore,
these post-processing approaches cannot exploit feedback sparsity,

leading to the time and space costs of O(|U||V|). Note that a simi-

lar approach is also adopted to control popularity bias [3, 52]. In

particular, Abdollahpouri et al. [3] proposed a re-ranking algorithm

based on xQuAD [47], which also suffers from a quadratic compu-

tational cost to the number of items for each user, and thus it is

infeasible for large-scale systems.

In contrast to the post-processing approach, various studies

have explored an in-processing counterpart where a single model

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

is trained to jointly optimize recommendation accuracy and ex-

posure fairness [2, 11, 27, 28, 33, 34, 50, 59, 61, 62, 65]. To repre-

sent a stochastic ranking policy, several studies in information

retrieval [34, 50, 61] rely on the Plackett–Luce (PL) model [37],

which has a cost of O(|U||V|𝐾) per training epoch. When op-

timizing the PL model and the joint objective of ranking quality

and exposure equality, stochastic gradient descent (SGD) is often

applied. Although SGD allows flexible objectives and reduces the

computational cost per training step, it is often difficult to apply in

practice due to its severely slow convergence, particularly when

the item catalogue is large [13, 63].

Compared to often inefficient fairness methods, iALS is a con-

ventional algorithm to enable scalable recommender systems. It has

also been shown by Rendle et al. [38, 39] to performmore effectively

in terms of recommendation accuracy than neural collaborative

filtering (NCF) [22] with a proper hyperparameter tuning. Rendle

et al. [39] reported that MF models with the ALS solver [24] can

be further improved by using a customized Tikhonov regulariza-

tion, which is an extension of the well-known technique proposed

by Zhou et al. [66]. This latest version of iALS [39] shows com-

petitive accuracy with that of state-of-the-art methods, such as

Mult-VAE [29], while substantially improving computational cost

and scalability. This empirical evidence motivates us to extend iALS

to build a first recommendation method that is fairness-aware and

scalable to large-scale systems with over million users and items.

Our Contributions. To enable a scalable and provably fair ex-

posure control for large-scale recommender systems, this work

develops a new recommendation algorithm called exposure-aware
ADMM (exADMM), which is an extension of the celebrated iALS

algorithm to achieve a scalable and flexible exposure-control. This

extension is novel and non-trivial from the technical perspective,

since any fairness regularizer in the objective function introduces

dependency between all users and items because it involves the

exposure allocation to items under the limited exposure budget.

This is a major distinction from traditional personalized item rec-

ommendation since the optimal item rankings for users depend on

each other when aiming for fairness. In particular, this intrinsic

dependency inevitably destroys optimization separability, which is

a crucial property that ensures the scalability of iALS. To overcome

this technical difficulty in building a scalable method to control

item fairness, we develop a set of novel optimization tools based

on the alternating direction method of multipliers (ADMM) [8].

Furthermore, we provide a convergence guarantee for the proposed

algorithm in terms of a non-trivial objective that includes a fairness

regularizer, despite the non-convex and multi-block optimization.

Finally, we provide a comprehensive empirical analysis on three

datasets and demonstrate that exADMM outperforms the vanilla

version of iALS in terms of fairness control while maintaining

its scalability and computational efficiency. In addition, exADMM

achieves similar effectiveness in terms of accuracy-fairness tradeoff

compared to typical fair recommendation methods while being

much more scalable and computationally faster.

Our contributions can be summarized as follows.

• We propose a first scalable method (exADMM) to enable a

flexible control of accuracy-fairness tradeoff for large-scale

recommender systems with over million users and items.

• We develop a set of optimization tools based on ADMM to

enable an extension of iALS to an exposure-controllable

variant with provable convergence guarantees.

• We empirically demonstrate that exADMM achieves similar

scalability to iALS and similarly effective accuracy-fairness

tradeoff compared to existing (computationally inefficient)

fairness methods.

2 Problem Formulation and iALS
This section formulates the typical recommendation problem and

the core technical details of iALS as a basis of our method.

Given usersU = [|U|] and itemsV = [|V|], letR ∈ {0, 1} |U |× |V |
be an implicit feedback matrix whose (𝑖, 𝑗)-element has the value

of 1 when user 𝑖 ∈ U has interacted with item 𝑗 ∈ V; otherwise, it

has a value of 0. We represent the number of observed interactions

by that of non-zero entries in R, which is denoted as nz(R). iALS is
an MF-based method, and its model parameters are 𝑑-dimensional

embeddings, U ∈ R |U |×𝑑 and V ∈ R |V |×𝑑 for users and items,

respectively. These parameters are typically learned by minimizing

the following objective:

𝐿(V,U) = 1

2

R ⊙ (R − UV⊤)
2

𝐹
+ 𝛼0

2

UV⊤
2

𝐹

+ 1

2

Λ1/2
𝑈

U
2

𝐹
+ 1

2

Λ1/2
𝑉

V
2

𝐹
, (1)

where operator ⊙ is the Hadamard element-wise product, and the

second term is the L2 norm of the recovered score matrix UV⊤

(i.e., implicit regularizer [5]) with a weight parameter 𝛼0 > 0.

Λ𝑈 ∈ R |U |× |U | and Λ𝑉 ∈ R |V |× |V | are diagonal matrices (a.k.a.

Tikhonov matrices [66]) representing the weights for L2 regulariza-

tion. Let r𝑖,· and r·, 𝑗 be the (column) vectors that correspond to the 𝑖-

th row and the 𝑗-th column of R, respectively. The frequency-based
weighting strategy sets the weights with internal hyperparameters

𝜆𝐿2 > 0 and exponent 𝜂 ≥ 0 as follows:

(Λ𝑈 )𝑖,𝑖 = 𝜆𝐿2

(r𝑖,·


1
+𝛼0 |V|

)𝜂
, (Λ𝑉 ) 𝑗, 𝑗 = 𝜆𝐿2

(r·, 𝑗


1
+𝛼0 |U|

)𝜂
.

Hereafter, we use 𝜆
(𝑖 )
𝑈

:= (Λ𝑈 )𝑖,𝑖 and 𝜆 ( 𝑗 )𝑉 := (Λ𝑉 ) 𝑗, 𝑗 .
iALS solves the minimization problem in Eq. (1) by alternating

the optimization of V and U. Specifically, in the 𝑘-th step, iALS

updates U and V via

U𝑘+1 = argmin

U
∥R ⊙ (R − U(V𝑘 )⊤)∥2𝐹 + 𝛼0∥U(V𝑘 )⊤∥2𝐹 + ∥Λ

1/2
𝑈

U∥2𝐹 ,

V𝑘+1 = argmin

V
∥R ⊙ (R − U𝑘+1V⊤)∥2𝐹 + 𝛼0∥U𝑘+1V⊤∥2𝐹 + ∥Λ

1/2
𝑉

V∥2𝐹 .

Owing to the alternating strategy, the optimization of U and V
can be divided into independent convex problems for each row of

U and V. Let us use u𝑖 ∈ R𝑑 to denote the (column) vector that

corresponds to the 𝑖-th row of U. Then, its update can simply be

done via the following row-wise independent problem:

u𝑘+1𝑖 = argmin

u𝑖

r𝑖 ⊙ (r𝑖 − V𝑘u𝑖 )
2

2

+ 𝛼0

V𝑘u𝑖
2

2

+ 𝜆 (𝑖 )
𝑈
∥u𝑖 ∥22

=
©«
∑︁
𝑗∈V

𝑟𝑖, 𝑗v𝑘𝑗 (v
𝑘
𝑗 )
⊤ + 𝛼0G𝑘𝑉 + 𝜆

(𝑖 )
𝑈

Iª®¬
−1 ∑︁

𝑗∈V
𝑟𝑖, 𝑗v𝑘𝑗 ,

2
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where G𝑘
𝑉

=
∑
𝑗∈V v𝑘

𝑗
(v𝑗 𝑘 )⊤ = (V𝑘 )⊤V𝑘 is the Gram matrix of

the item embeddings in the 𝑘-th step, where v𝑘
𝑗
∈ R𝑑 denotes the

column vector that corresponds to the 𝑗-th row of V𝑘 . When G𝑘
𝑉

is pre-computed, the expected computational cost for each sub-

problem is reduced to O((nz(R)/|V|)𝑑2 + 𝑑3) (a.k.a. the Gramian

trick [39]), which consists of (i) computation of the Gramian for

interacted items

∑
𝑗∈V 𝑟𝑖, 𝑗 (v𝑘𝑗 ) (v

𝑘
𝑗
)⊤ in O((nz(R)/|V|)𝑑2) and

(ii) solving a linear system H𝑘u𝑘+1
𝑖

=
∑
𝑖∈U 𝑟𝑖, 𝑗v𝑘𝑗 , where H𝑘 =∑

𝑗∈V 𝑟𝑖, 𝑗v𝑘𝑗 (v
𝑘
𝑗
)⊤ + 𝛼0G𝑘

𝑉
+ 𝜆 (𝑖 )

𝑈
I in O(𝑑3). Because the update of

V is analogous to that of U, the total cost of updating U and V is

O(nz(R)𝑑2+(|U|+|V|)𝑑3). This is much lower thanO(|U||V|𝑑2+
(|U| + |V|)𝑑3) due to feedback sparsity, i.e., nz(R) ≪ |U||V|. In
summary, iALS retains scalability, despite its objective involving

all user-item pairs. The crux is that iALS exploits the Gramian trick

and feedback sparsity to avoid the intractable factor O(|U||V|).

3 The exADMM Algorithm
This section develops our proposed algorithm, exADMM, which is

an extension of iALS to enable a scalable exposure control.

3.1 A Regularized Objective for Fairness
The aim of this paper is to enable a scalable control of item exposure

so that individual items can receive attention from users more fairly

while not sacrificing recommendation accuracy much. To this end,

we consider minimizing the following regularized objective.

min

V,U
𝐿(V,U)︸  ︷︷  ︸

typical prediction loss

+ 𝜆𝑒𝑥 · 𝑅𝑒𝑥 (V,U)︸     ︷︷     ︸
fairness regularizer

, (2)

where 𝑅𝑒𝑥 (V,U) is a penalty term to induce exposure equality,

and 𝜆𝑒𝑥 is the weight hyperparameter to control the balance be-

tween recommendation quality and exposure equality. As already

discussed, the scalability of iALS is due to the simplicity of its objec-

tive. To retain this desirable property, we need to carefully define

an exposure regularizer 𝑅𝑒𝑥 (V,U) in a still tractable way.

To define our regularizer, let us denote the predicted score for

user 𝑖 and item 𝑗 by 𝑟𝑖, 𝑗 = (UV⊤)𝑖, 𝑗 , and we predict the item rank-

ing for user 𝑖 according to the decreasing order of {𝑟𝑖, 𝑗 | 𝑗 ∈ V}.
Evidently, there is a monotonic relationship between 𝑟𝑖, 𝑗 and the

amount of exposure that item 𝑗 will receive in a ranked list. Hence,

we can evaluate exposure inequality under a recommendation

model by the variability of items’ scores averaged over the users,

i.e.,
1

|U |
∑
𝑖∈U 𝑟𝑖, 𝑗 (this is for item 𝑗 ). There exist several possible

measures of variability such as Gini indices [4, 17], standard devia-

tion [16], and variance [60]. In this work, we consider the following

second moment of the predicted scores as the regularizer 𝑅𝑒𝑥 .

𝑅𝑒𝑥 (V,U) =
1

|V|
∑︁
𝑗∈V

(
1

|U|
∑︁
𝑖∈U

𝑟𝑖, 𝑗

)
2

=
1

|V|

 1

|U|VU⊤1
2

2

,

where 1 is the |U| × 1 column vector of which the elements are

all 1. The fairness regularizer defined above is the L2 norm of the

average scores predicted for the items. This is considered one of

the reasonable measures of exposure inequality since it takes a

large value for items whose average scores are either extremely

large or small. Moreover, we can draw a clear technical distinction

between our fairness regularizer 𝑅𝑒𝑥 (V,U) and implicit regular-

izer ∥VU⊤∥2
𝐹
of the vanilla iALS in Eq. (1). That is, the implicit

regularizer penalizes the score (UV⊤)𝑖, 𝑗 of each user-item pair

(𝑖, 𝑗) ∈ U ×V independently, whereas our (and any other) penalty

term introduces a structural dependency into the recovered matrix

UV⊤. Unfortunately, this structural dependency destroys the op-

timization separability with respect to the rows of U due to the

averaged user embedding (1/|U|)U⊤1 that appears in its defini-

tion. Optimizing 𝑅𝑒𝑥 is thus not straightforward, particularly in

large-scale settings, which motivates us to develop novel tools to

handle this fairness regularizer in a scalable and provable fashion.

3.2 Scalable Optimization based on ADMM
To enable parallel optimization of our exposure-controllable objec-

tive in Eq. (2), we adopt an approach based on ADMM, which is

an optimization framework with high parallelism [8] and has been

adopted to enable scalable recommendations [14, 25, 51, 53, 54, 64].

To decouple the row- and column-wise dependencies in U intro-

duced by our fairness regularizer, we first reformulate the optimiza-

tion problem by introducing an auxiliary variable s ∈ R𝑑 as

min

V,U,s
𝐿(V,U) + 𝜆𝑒𝑥

2

∥Vs∥2
2
, s.t. s =

1

|U|U
⊤1. (3)

Here, we replaced (1/|U|)U⊤1 in the fairness regularizer with s
while introducing an additional linear equality constraint. This can

be further reformulated to the following saddle-point optimization:

min

V,U,s
max

w
𝐿𝜌 (V,U, s,w),

where

𝐿𝜌 (V,U, s,w)

= 𝐿(V,U) + 𝜆𝑒𝑥
2

∥Vs∥2
2
+ 𝜌

2

 1

|U|U
⊤1 − s +w

2

2

− 𝜌
2

∥w∥2
2
.

𝐿𝜌 is the Lagrangian augmented by the ADMM penalty term with

weight 𝜌 > 0, and w ∈ R𝑑 is the dual variable (i.e., Lagrange

multipliers) scaled by 1/𝜌 . We can perform optimization in the

(𝑘 + 1)-th step by iteratively updating each variable as

V𝑘+1 = argmin

V
𝐿𝜌 (V,U𝑘 , s𝑘 ,w𝑘 ),

U𝑘+1 = argmin

U
𝐿𝜌 (V𝑘+1,U, s𝑘 ,w𝑘 ),

s𝑘+1 = argmin

s
𝐿𝜌 (V𝑘+1,U𝑘+1, s,w𝑘 ),

w𝑘+1 = w𝑘 + 1

|U| (U
𝑘+1)⊤1 − s𝑘+1,

The update of w corresponds to the gradient ascent with respect to

the dual problem maxw minV,U,s 𝐿𝜌 (V,U, s,w) with step size 𝜌 [8].

3.2.1 Update of V. Next, we derive how to update V in the (𝑘 + 1)-
th step, which comprises independent optimization problems for

the rows of V. Suppose that v𝑘+1
𝑗
∈ R𝑑 and r·, 𝑗 ∈ {0, 1} |U | are the

column vectors indicating the 𝑗-th row of V𝑘+1 and the 𝑗-th column

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

of R, respectively. The update can then be performed by solving

the following linear system.

v𝑘+1𝑗 = argmin

v𝑗

{
1

2

r·, 𝑗 ⊙ (r·, 𝑗 − U𝑘v𝑗 )
2

2

+ 𝛼0

2

U𝑘v𝑗
2

2

+
𝜆
( 𝑗 )
𝑉

2

v𝑗
2

2
+ 𝜆𝑒𝑥

2

(
v⊤𝑗 s𝑘

)
2
}

=

(∑︁
𝑖∈U

𝑟𝑖, 𝑗u𝑘𝑖 (u
𝑘
𝑖 )
⊤+𝛼0G𝑘𝑈 +𝜆𝑒𝑥 s𝑘 (s𝑘 )⊤+𝜆 ( 𝑗 )

𝑉
I

)−1∑︁
𝑖∈U

𝑟𝑖, 𝑗u𝑘𝑖 ,

where G𝑘
𝑈

=
∑
𝑖∈U u𝑘

𝑖
(u𝑘
𝑖
)⊤ is the Gramian of the user embeddings

in the 𝑘-th step. Notably, we can pre-compute G𝑘
𝑈
and s𝑘 (s𝑘 )⊤, and

thus the update of V achieves the same complexity as that of iALS.

3.2.2 Update of U. Updating U is the most intricate part of our

algorithm. In the (𝑘 + 1)-th step, our aim is to solve the following

argmin

U

{
𝐿(V𝑘+1,U) + 𝜆𝑒𝑥

2

∥V𝑘+1s𝑘 ∥2
2
+ 𝜌

2

 1

|U|U
⊤1 − s𝑘 +w𝑘

2

2

}
.

The issue here is that the penalty term of ADMM (the fourth term of

RHS) destroys the separability regarding the rows of U. We resolve

this using a proximal gradient method [18, 30, 42]. Specifically, we

consider a linear approximation (i.e., the first-order Taylor expan-

sion around the current estimate U𝑘 ) of the objective except for the
ADMM penalization. This yields the following objective:

U𝑘+1 = argmin

U

{
⟨U − U𝑘 ,∇U𝑔(V𝑘+1,U𝑘 , s𝑘 )⟩𝐹 +

1

2𝛾

U − U𝑘
2

𝐹

+ 𝜌
2

 1

|U|U
⊤1 − s𝑘 +w𝑘

2

2

}
,

where 𝑔(V,U, s) = 𝐿(V,U) + (𝜆𝑒𝑥/2) ∥Vs∥2
2
. Here, we introduce a

regularization term (1/2𝛾)∥U − U𝑘 ∥2
𝐹
, which is referred to as the

proximal term [42]. By completing the square, the above update can

be rearranged into the following parallel and non-parallel steps:

U𝑘+1 = argmin

U

𝜌

2

 1

|U|U
⊤1 − s𝑘 +w𝑘

2

2

+ 1

2𝛾

U −
(
U𝑘 − 𝛾∇U𝑔

𝑘
)2

𝐹

= prox
𝑘
𝛾︸︷︷︸

non-parallel

(U𝑘 − 𝛾∇U𝑔
𝑘︸         ︷︷         ︸

parallel

),

where

prox
𝑘
𝛾 (Ũ) = argmin

U

𝜌

2

 1

|U|U
⊤1 − s𝑘 +w𝑘

2

2

+ 1

2𝛾

U − Ũ
2

𝐹

=

(
𝜌

|U|2
11⊤ + 1

𝛾
I
)−1

(
1

𝛾
Ũ + 𝜌

|U|1(s
𝑘 −w𝑘 )⊤

)
.

∇U𝑔
𝑘
is used to represent ∇U𝑔(V𝑘+1,U𝑘 , s𝑘 ) for brevity. Note that

the term U𝑘 −𝛾∇U𝑔
𝑘
corresponds to a gradient descent with respect

to the iALS objective.
1
Therefore, we can update U in two row-wise

parallel and non-parallel steps, that is, (i) gradient descent Ũ𝑘+1 =

U𝑘 − 𝛾∇U𝑔
𝑘
and (ii) proximal mapping U𝑘+1 = prox

𝑘
𝛾 (Ũ𝑘+1).

1
Note that ∇U𝑔 (V,U, s) is equivalent to the gradient of 𝐿 (V,U) with respect to U
because we can ignore the constant exposure penalty (𝜆𝑒𝑥 /2) ∥Vs∥2

2
.

Parallel gradient computation. The gradient ∇U𝑔(V𝑘+1,U𝑘 , s𝑘 )
can be independently computed for each row of U as follows:

∇u𝑖𝑔
𝑘 =

©«
∑︁
𝑗∈V

𝑟𝑖, 𝑗v𝑗 𝑘+1
(
v𝑘+1𝑗

)⊤
+ 𝛼0G𝑘+1𝑉 + 𝜆 (𝑖 )

𝑈
Iª®¬ u𝑘𝑖 −

∑︁
𝑗∈V

𝑟𝑖, 𝑗v𝑘+1𝑗 .

Similar to iALS, we can efficiently compute the gradient by pre-

computing the Gramian G𝑘+1
𝑉

= (V𝑘+1)⊤V𝑘+1. Thus, the gradient
descentU𝑘−∇U𝑔

𝑘
can be performed in parallel with respect to users

while maintaining efficiency by exploiting the Gramian trick and

feedback sparsity. It should be noted that we can avoid computing

the inverse Hessian in O(𝑑3) unlike the U step of iALS.

Efficient proximal mapping. The proximal mapping step re-

quires a costly inversion of the |U| × |U| matrix in O(|U|3) for
a naive computation. This is problematic because, in practice, 𝜌

and 𝛾 may increase/decrease during iterations [8]. However, we

can indeed compute the inverse matrix efficiently by leveraging the

Sherman-Morrison formula [48] (a special case of the Woodbury

matrix identity [58]), which yields the following(
𝜌

|U|2
11⊤ + 1

𝛾
I
)−1

= − (𝛾I) (𝜌/|U|2)11⊤ (𝛾I)
1 + (𝜌/|U|2)1⊤ (𝛾I)1

+ 𝛾I

= 𝛾
©«−

1

|U|2
(

1

|U | +
1

𝜌𝛾

) 11⊤ + I
ª®®¬ .

Therefore, we can derive the proximal mapping prox
𝑘
𝛾 as the fol-

lowing closed-form solution:

prox
𝑘
𝛾 (U) =

©«
−1

|U|2
(

1

|U | +
1

𝜌𝛾

) 11⊤ + I
ª®®¬
(
U+ 𝜌𝛾|U|1(s

𝑘−w𝑘 )⊤
)
.

(4)

The naive computation of prox
𝑘
𝛾 is still computationally costly due

to the multiplication of |U|× |U| and |U|×𝑑 matrices in O(|U|2𝑑).
Let us here define Û = U + (𝜌𝛾/|U |)1(s𝑘 −w𝑘 )⊤ for simplicity, and

we can further rewrite Eq. (4) as follows:

prox
𝑘
𝛾 (U) = −

1

|U|2
(

1

|U | +
1

𝜌𝛾

) · 1 (
Û⊤1

)⊤
+ Û.

Thus, we can perform this matrix multiplication efficiently by (i)
computing each row of Û in parallel (i.e., û𝑖 = u𝑖 + (𝜌𝛾/|U |) (s𝑘 −
w𝑘 )), (ii) computing the accumulated user embedding t = Û⊤1, and
then (iii) adding −|U|−2 (1/|U | + 1/𝜌𝛾)−1 · t to each row of Û. Thus,

the cost of the matrix-matrix multiplication in Eq. (4) is reduced

to O(|U|𝑑), which is more efficient than O(|U|2𝑑) of the naive
implementation. The computational efficiency is advantageous even

when 𝜌 and 𝛾 are fixed during optimization.

3.2.3 Update of s. We can perform the update of s by computing

the following solution:

s𝑘+1 = argmin

s

{
𝜆𝑒𝑥

2

V𝑘+1s
2

2

+ 𝜌
2

 1

|U| (U
𝑘+1)⊤1 − s +w𝑘

2

2

}
= 𝜌

(
𝜆𝑒𝑥G𝑘+1𝑉 + 𝜌I

)−1

(
1

|U| (U
𝑘+1)⊤1 +w𝑘

)
.

4
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Algorithm 1 exADMM

Require: Implicit feedback matrix R
1: ∀𝑖 ∈ U, u0

𝑖
∼ N(0, (𝜎/

√
𝑑 )I) , ∀ 𝑗 ∈ V, v0

𝑗
∼ N(0, (𝜎/

√
𝑑 )I) ,

2: s0 ← (1/|U | ) (U0 )⊤1, w0 ← ®0
3: for 𝑘 = 0, . . . ,𝑇 − 1 do
4: G𝑘

𝑈
← ∑

𝑖 u𝑘
𝑖
(u𝑘

𝑖
)⊤, G𝑘

𝑠 ← s𝑘 (s𝑘 )⊤ // O( |U |𝑑2 ) and O(𝑑2 )
5: for 𝑗 = 1, . . . , |V | do // parallelizable loop
6: G𝑘

𝑗
← ∑

𝑖 𝑟𝑖,𝑗u𝑘𝑖 (u𝑘𝑖 )
⊤

// O( (nz(R)/|V | )𝑑2 )

7: v𝑘+1
𝑗
←

(
G𝑘

𝑗
+ 𝛼0G𝑘

𝑈
+ 𝜆𝑒𝑥G𝑘

𝑠 + 𝜆
( 𝑗 )
𝑉

I
)−1 ∑

𝑖 𝑟𝑖,𝑗u𝑘𝑖 // O(𝑑3 )
8: end for
9: G𝑘+1

𝑉
← ∑

𝑗 v𝑘+1
𝑗
(v𝑘+1

𝑗
)⊤ // O( |V |𝑑2 )

10: for 𝑖 = 1, . . . , |U | do // parallelizable loop
11: G𝑘+1

𝑖
← ∑

𝑗 𝑟𝑖,𝑗v𝑘+1𝑗
(v𝑘+1

𝑗
)⊤ // O( (nz(R)/|U | )𝑑2 )

12: ∇u𝑖𝑔
𝑘+1 ←

(
G𝑘+1
𝑖
+ 𝛼0G𝑘+1

𝑉
+ 𝜆 (𝑖 )

𝑈
I
)

u𝑘
𝑖
− ∑

𝑗 𝑟𝑖,𝑗v𝑘+1𝑗
// O(𝑑2 )

13: û𝑘+1
𝑖
← u𝑘

𝑖
− 𝛾∇u𝑖𝑔

𝑘+1 + 𝜌𝛾

|U| (s
𝑘 − w𝑘 ) // O(𝑑 )

14: end for
15: t← ∑

𝑖 û𝑘+1
𝑖

// O( |U |𝑑 )
16: for 𝑖 = 1, . . . , |U | do // parallelizable loop
17: u𝑘+1

𝑖
← û𝑘+1

𝑖
− |U |−2 (1/|U| + 1/𝜌𝛾 )−1 t // O(𝑑 )

18: end for
19: t← 1

|U|
∑

𝑖 u𝑘+1
𝑖

// O( |U |𝑑 )

20: s𝑘+1 ← 𝜌

(
𝜆𝑒𝑥G𝑘+1

𝑉
+ 𝜌I

)−1
(
t − w𝑘

)
// O(𝑑3 )

21: w𝑘+1 ← w𝑘 + t − s𝑘+1 // O(𝑑 )
22: end for
23: return U,V

We can reuse the Gramian G𝑘+1
𝑉

for this step following its pre-

computation in the U step. The computation cost here is thus

O(|U|𝑑+𝑑3), which includes (i) the computation of (1/|U|)(U𝑘+1)⊤1
and (ii) the solution of a linear system of size 𝑑2

.

3.3 Complexity Analysis
Algorithm 1 shows the detailed implementation of exADMM. First,

the user and item embeddings are initialized with independent nor-

mal noise with a 𝜎/
√
𝑑 standard deviation [39]. In line 10 of Algo-

rithm 1, we pre-compute G𝑘
𝑉
=

∑
𝑗∈V v𝑘

𝑗
(v𝑘
𝑗
)⊤, which can be done

in parallel for each item and be reused in the update of U and s. The
averaged user vector t = (1/|U|)(U)⊤1 can be reused for the s and
w steps, hence, we compute this in line 20. Consequently, the compu-

tational costs for updating V, U, s, and w are (i) O(nz(R)𝑑2+|V|𝑑3),
(ii) O(nz(R)𝑑2 + |U|𝑑2), (iii) O(|U|𝑑 + 𝑑3), and (iv) O(𝑑), respec-
tively. Therefore, the overall cost is O(nz(R)𝑑2 + |U|𝑑2 + |V|𝑑3),
which is indeed even lower than O(nz(R)𝑑2 + (|U| + |V|)𝑑3) of
iALS. This is because we avoid solving the linear system when

updating U by applying the proximal gradient method with the

efficient prox
𝑘
𝛾 .

3.4 Convergence Analysis
The objective defined in Eq. (3) has more than two variables (i.e.,

three-block optimization), which are coupled (e.g., U,V in the iALS

loss function). However, multi-block ADMM does not retain a con-

vergence guarantee in general [12]. Various algorithms have been

developed for optimization separability and provable convergence

under coupled variables [15, 30, 57]. For instance, Liu et al. [30]

Table 1: Statistics of the datasets.

Dataset # of Users # of Items # of Interactions

ML-20M 136,677 20,108 10M

MSD 571,355 41,140 33.6M

Epinions 6,287 3,999 0.13M

proposed a variant of ADMM for non-convex problems, which com-

pletely decouples variables by introducing linear approximation

when updating all the coupled ones, thereby enabling parallel gradi-
ent descent. By contrast, exADMM applies linearization only to the

U step and works in an alternate way. This strategy enables second-

order acceleration in the update of V and s, whereas this partial
linearization might impair convergence at first glance. Nonethe-

less, the following provides a convergence guarantee for exADMM,

which is our main theoretical contribution.
2

Theorem 3.1. Assume that there exist constants 𝐶𝑉 ,𝐶𝑈 ,𝐶s > 0

such that ∥V𝑘 ∥2
𝐹
≤ 𝐶𝑉 , ∥U𝑘 ∥2𝐹 ≤ 𝐶𝑈 , ∥s

𝑘 ∥2
2
≤ 𝐶𝑠 for ∀𝑘 ≥ 0. For

𝜌 ≥ max

(
24𝜆2

𝑒𝑥𝐶𝑉𝐶s
𝜆
𝑉

, 1

2
+
√︃

1

4
+6𝜆2

𝑒𝑥𝐶
2

𝑉

)
and𝛾 ≤ 1√

|U | ( (1+𝛼0 )𝐶𝑉 + ¯𝜆𝑈 )+1
,

where ¯𝜆𝑈 = max𝑖∈U 𝜆
(𝑖 )
𝑈

and 𝜆𝑉 = min𝑗∈V 𝜆
( 𝑗 )
𝑉

, the augmented
Lagrangian 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) converges to some value, and residual
norms ∥V𝑘+1−V𝑘 ∥𝐹 , ∥U𝑘+1−U𝑘 ∥𝐹 , ∥s𝑘+1−s𝑘 ∥2, and ∥w𝑘+1−w𝑘 ∥2
converge to 0. Furthermore, the gradients of 𝐿𝜌 with respect to V, U,
s, and w converge to 0.

Theorem 3.1 illustrates that the sequence {U𝑘 ,V𝑘 , s𝑘 ,w𝑘 } will
converge to the feasible set, in which s = (1/|U|)U⊤1 in Eq. (3)

holds. Moreover, the derivative of the augmented Lagrangian with

respect to the primal variables (i.e., V, U, and s) will converge to
zero, which implies that the limit points of {U𝑘 ,V𝑘 , s𝑘 ,w𝑘 } should
be the saddle points, i.e., the KKT points of Eq. (3) if there exist.

Notably, the above convergence relies on the fact that the objective

is strongly convex with respect to each variable when the other vari-

ables are fixed. This property is inherited from iALS, and therefore

exADMM takes advantage of iALS in both scalability and conver-

gence guarantee while enabling flexible control of accuracy-fairness

tradeoff via a (seemingly) hard-to-optimize regularizer 𝑅𝑒𝑥 (V,U).

4 Empirical Evaluation
This section empirically compares exADMM with iALS and ex-

isting fair recommendation methods regarding their effectiveness

in accuracy-fairness control and scalability. Our experiment code

is available at https://anonymous.4open.science/r/exADMM-57E4

and will be made public on Github upon publication.

4.1 Experiment Design
Datasets. Our experiments use MovieLens 20M (ML-20M) [21],

Million Song Dataset (MSD) [6], and the Epinions dataset (Epin-
ions) [31]. Following the standard protocol to evaluate recommen-

dation effectiveness [29, 39], we generate implicit feedback datasets

by binarizing the raw explicit feedback data by keeping interactions

with ratings of four or five for ML-20M and Epinions. For MSD, we
2
The proofs of the theorem and related lemmas are provided in Appendix A.

5
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Table 2: Comparison of the Scalability of Compared Methods

Methods Time Complexity Space Complexity Is it parallelizable across users? Is it parallelizable across items?

iALS O
(
nz(R)𝑑2 + (|U| + |V|)𝑑3

)
O ((|U| + |V|)𝑑) " "

Mult-VAE O (|U||V|𝑑) O (|V|𝑑) " %

FairRec O (|U||V|(𝑑 + log𝐾)) O (|U||V|) % %

Multi-FR O (nz(R) |V| + |U||V|𝑑) O (|V|𝑑) " %

exADMM (ours) O
(
nz(R)𝑑2 + |V|𝑑3

)
O ((|U| + |V|)𝑑) " "

use all the recorded interactions as implicit feedback. Note that,

for Epinions, we only retain users and items with more than 20

interactions following conventional studies [2, 3]. Table 1 shows

the statistics of the resulting implicit feedback datasets.

Our empirical evaluation procedure follows a strong general-

ization setting, in which we utilize all interactions of 80% of the

users for training and consider the remaining two sets of 10% of the

users as holdout splits. In the validation and testing phases, each

model predicts the preference scores of all items for each user on

the validation and test sets.

ComparedMethods. Since our aim is to develop a scalablemethod

to enable accuracy-fairness control, we compare ourmethod against

an efficient but unfair method and fair but inefficient methods.

Specifically, we first include the vanilla version of iALS as a scal-

able baseline, which does not consider item fairness. Therefore,

against this baseline, our aim is to achieve better accuracy-fairness

control and similar scalability. In addition to iALS, we include Mult-

VAE [29], a state-of-the-art deep recommendation method, as a

reference to provide the best achievable recommendation accu-

racy on each dataset. Besides, we consider fairness-aware recom-

mendation methods such as the MF-based in-processing method

called Multi-FR [59]. We also consider a post-processing method

called FairRec [36] combined with the vanilla iALS algorithm to pre-

train user-item preference matrix for it. We thus call this baseline

iALS+FairRec. Against these fairness-aware baselines, our aim is to

achieve a similarly flexible and effective accuracy-fairness control

by our algorithm, which is much more scalable and computationally

efficient. Table 2 summarizes the time complexity, space complexity,

and parallelizablity of each method where we can see that Mult-

VAE, Multi-FR, and FairRec are particularly not scalable because

their complexity depends on the problematic factor of |U||V|.
Throughout the experiments, we train iALS and exADMM for

𝑇 = 50 training epochs, Multi-VAE for 𝑇 = 200 epochs, and Multi-

FR for 𝑇 = 500 epochs with a constant standard deviation 𝜎 = 0.1

for initialization. We tune {𝜆𝐿2, 𝛼0} for iALS and iALS+FairRec,

{𝜆𝐿2, 𝛼0, 𝜆𝑒𝑥 , 𝜌, 𝛾} for exADMM, and {𝑝, 𝜏, 𝜌𝑑 } for Multi-FR (where

𝑝, 𝜏, 𝜌𝑑 are the user patience, temperature of smooth rank functions,

and dropout rate). To ensure that 𝜆𝑒𝑥 and 𝜌 are scale independent

of |U|, we reparametrize 𝜆𝑒𝑥 and 𝜌 by 𝜆𝑒𝑥 = 𝜆∗𝑒𝑥 · |U|2 and 𝜌 =

𝜌∗ · |U|2, respectively, and tune 𝜆∗𝑒𝑥 and 𝜌∗ instead of the original

ones. We implement iALS, iALS+FairRec, and exADMM based on

the efficient C++ implementation provided by Rendle et al. [39]
3
,

which is multi-threaded and uses Eigen
4
. For a fair comparison, we

use frequency-based re-scaling of Λ𝑈 and Λ𝑉 [39] for both iALS

3
https://github.com/google-research/google-research/tree/master/ials

4
https://eigen.tuxfamily.org

and exADMM. Note that we adopt Denoising Auto-Encoder [29] as

a backbone model of Multi-FR because it can make predictions for

holdout users without costly SGD iterations in the testing phase.

Mult-VAE and Multi-FR are implemented with PyTorch running on

a single NVIDIA P100 GPU.

EvaluationMetrics. Weuse the normalized cumulative gain (nDCG)

as the measure of recommendation accuracy. To formally define

this accuracy metric, letV𝑖 ⊂ V be the held-out items that user 𝑖

interacts with and 𝜋𝑖 (𝑘) ∈ V be the 𝑘-th item in the ranked list to

be evaluated for 𝑖 . Then, we can define nDCG@𝐾 as

nDCG@𝐾 (𝑖, 𝜋𝑖 ) =
DCG@𝐾 (𝑖, 𝜋𝑖 )
DCG@𝐾 (𝑖, 𝜋∗

𝑖
) , (5)

where DCG@𝐾 (𝑖, 𝜋𝑖 ) =
𝐾∑︁
𝑘=1

I{𝜋𝑖 (𝑘) ∈ V𝑖 }
log

2
(𝑘 + 1) ,

and 𝜋∗
𝑖
is an ideal ranking for user 𝑖 . Note here that we can inter-

pret models of user examination (i.e., item exposure) behind accu-

racy measures [41, 46]. Specifically, we can interpret the weight

𝑜 (𝑖, 𝑗 ;𝜋𝑖 ) ≥ 0 for each item 𝑗 in the metric as the exposure that

the item receives in the ranked list for user 𝑖 , that is, 𝑜 (𝑖, 𝑗 ;𝜋𝑖 ) =
I{𝜋−1

𝑖
( 𝑗) ≤ 𝐾}/log

2
(𝜋−1

𝑖
( 𝑗) + 1) for DCG@𝐾 .

In addition to the accuracy metric, we use Gini@𝐾 to measure

the exposure inequality based on the Gini index (or Gini mean dif-

ference) [4], which is widely used to evaluate exposure inequality in

related research [17, 59]. Specifically, Gini@𝐾 is defined as follows:

Gini@𝐾 (o) = 1

2 ∥o∥
1
|V|2

∑︁
𝑗∈V

∑︁
𝑙∈V
|𝑜 𝑗 − 𝑜𝑙 |, (6)

where o ∈ R |V | is an |V|-dimensional vector, whose 𝑗-th ele-

ment 𝑜 𝑗 indicates the total exposure given to item 𝑗 , i.e., 𝑜 𝑗 =∑
𝑖 𝑜 (𝑖, 𝑗 ;𝜋𝑖 ). In our experiments, we define 𝑜 (𝑖, 𝑗 ;𝜋𝑖 ) = I{𝜋−1

𝑖
( 𝑗) ≤

𝐾}/log
2
(𝜋−1

𝑖
( 𝑗) + 1) following the examination model of the DCG

metric. Note that a lower value of Gini@K indicates that recom-

mendations are more fair towards the items, but to do so without

sacrificing accuracy and scalability is particularly challenging.

4.2 Results and Discussion
Accuracy-Fairness Tradeoff. First, we evaluate and compare

how well each method can control the tradeoff between recom-

mendation accuracy (nDCG@K) and exposure fairness (Gini@K)

in Figure 1 on the three datasets and three different values of 𝐾 . In

the figures, we report the Pareto frontier of exADMM, Multi-FR,

and iALS+FairRec with various hyperparameter settings obtained

6

https://github.com/google-research/google-research/tree/master/ials
https://eigen.tuxfamily.org
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Figure 1: Tradeoff between recommendation accuracy (nDCG@K) and exposure equality (Gini@K) achieved by each method.
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Figure 2: Distribution of item exposure achieved by our
method with different hyperparameter (𝜆𝑒𝑥 ) settings.

through a grid search.
5
Note that neither iALS nor Mult-VAE con-

tains a fairness regularizer and a corresponding hyperparameter to

control accuracy-fairness tradeoff in their objective, and thus we

tune their hyperparameters regarding nDCG@K in the validation

split and report nDCG@K and Gini@K in the test split as (blue

and yellow) dots. This is why these typical methods achieve better

accuracy than fairness-aware methods including exADMM, but it

is also true that they produce substantial unfairness among items

according to their Gini@K. It should also be noted that Multi-FR

is infeasible on ML-20M and MSD, and iALS+FairRec is infeasible

on MSD. This is due to their excessive time and space complexity,

which depend on |U||V|. As a result, their results are not shown
in the figures corresponding to these datasets.

From the figures, we can first see that exADMM achieves a sim-

ilar accuracy-fairness tradeoff compared to Multi-FR on Epinions
even though exADMM is much more scalable. Next, the compar-

isons between exADMM and iALS+FairRec (which has much larger

time and space complexity compared to ours) are complicated, and

it is not straightforward to determinewhichmethod performs better

in terms of accuracy-fairness tradeoff. However, an interesting trend

5
Hyperparameters range from 𝜆𝐿2 ∈ [1e−4, 1.0], 𝛼0 ∈ [1e−4, 1.0], 𝜆∗𝑒𝑥 ∈
[1e−10, 1e−4], 𝜌∗ ∈ [1e−10, 1e−4], 𝛾 = {0.001, 0.01, 0.05}, 𝛽 ∈ [0.1, 1.0], and
𝑝 ∈ [0.6, 1.0], 𝜏 ∈ [1e−3, 1.0], 𝜌𝑑 = [0.1, 0.9]. For iALS+FairRec, we first select
the best setting of 𝛼0 and 𝜆𝐿2 in iALS in terms of nDCG@K and then tune the hy-

perparameters of FairRec, namely, the length of rankings 𝐾 and the scale 𝑙 ∈ (0, 1]
of the minimum allocation constraint for each item 𝑙 · (𝐾 · |U | )/|V | . We search

each parameter in a logarithmic scale unless otherwise noted. For all methods, we use

𝑑 = 32 for Epinions, 𝑑 = 256 for ML-20M , and 𝑑 = 512 for MSD.
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Table 3: Computation Time (seconds) to Complete Training and Inference of Compared Methods

Epinions ML-20M MSD

𝐾 = 5 𝐾 = 20 𝐾 = 10 𝐾 = 50 𝐾 = 10 𝐾 = 50

Methods Train Inference Train Inference Train Inference Train Inference Train Inference Train Inference

iALS 1.7 0.1 1.7 0.1 237.5 4.2 237.5 4.2 2,743.7 39.4 2,743.7 39.4

Mult-VAE 72.6 0.5 72.6 0.5 1,872.6 14.7 1,872.6 14.7 22,580.1 145.2 22,580.1 145.2

FairRec 1.7 0.3 1.7 0.3 237.5 23.3 237.5 30.1 878.2 NA 878.2 NA

Multi-FR 4,011.3 0.5 4,011.3 0.5 NA NA NA NA NA NA NA NA

exADMM (ours) 1.7 0.4 1.7 0.4 98.0 9.5 98.0 9.5 1,533.1 89.6 1,533.1 89.6

emerges from our empirical results on Epinions and ML-20M (Fair-

Rec is infeasible on MSD). That is, exADMM is likely to achieve a

better accuracy-fairness tradeoff than iALS+FairRec when we need

to achieve high recommendation accuracy, while iALS+FairRec is

likely to perform better in terms of the tradeoff when we need

to enforce a strong fairness requirement. This interesting differ-

ence can be attributed to the fact that exADMM is an in-processing
method while FairRec is a post-processing method. Overall, it is

remarkable that exADMM, which is much more scalable, achieves

a competitive effectiveness in terms of accuracy-fairness control

compared to Multi-FR and iALS+FairRec, which do not consider

scalability.

To visualize how flexibly exADMM can control exposure dis-

tribution via its hyperparameter (𝜆𝑒𝑥 ), Figure 2 illustrates the cu-

mulative item exposure (called the Lorenz curve) induced by ex-

ADMM with several different values of 𝜆𝑒𝑥 on Epinions (top row),

ML-20M (mid row), and MSD (bottom row). Each curve in the fig-

ures shows the cumulative item exposure relative to the case when

𝜆𝑒𝑥 = 0.0 (i.e., the vanilla version of iALS), and this is why 𝜆𝑒𝑥 = 0.0

(iALS) always has flat lines. In addition to the curve for 𝜆𝑒𝑥 = 0.0,

we present curves induced by three other values of 𝜆𝑒𝑥 (small,

medium, and large) for each dataset. Specifically, we use 𝜆𝑒𝑥 = 2e−4

(small), 𝜆∗𝑒𝑥 = 3e−3 (medium), and 𝜆∗𝑒𝑥 = 9e−2 (large) for Epin-
ions, 𝜆𝑒𝑥 = 1e−10, 𝜆∗𝑒𝑥 = 1e−7, and 𝜆∗𝑒𝑥 = 3e−6 for ML-20M , and

𝜆𝑒𝑥 = 1e−12, 𝜆∗𝑒𝑥 = 1e−10, and 𝜆∗𝑒𝑥 = 1e−3 for MSD. Note that ex-
ADMM with the largest 𝜆∗𝑒𝑥 retains an acceptable recommendation

accuracy for every dataset; nDCG@20 = 0.069, nDCG@50 = 0.336

on ML-20M and nDCG@50 = 0.236 on MSD, while those of iALS
models are nDCG@20 = 0.080 on Epinions, nDCG@50 = 0.384 on

ML-20M and nDCG@50 = 0.260 on MSD.
Figure 2 demonstrates that exADMM achieves fairer exposure

distribution compared to iALS (𝜆𝑒𝑥 = 0.0). We can also see that

we can flexibly and accurately control the item exposure distribu-

tion via the hyperparameter 𝜆𝑒𝑥 of our method. That is, we can

see a monotonic relationship between 𝜆𝑒𝑥 and fairness of expo-

sure distribution, suggesting that 𝜆𝑒𝑥 of exADMM works as an

appropriate parameter to control item fairness. To sum up, Fig-

ures 1 and 2 demonstrate that exADMM enables more effective

and flexible accuracy-fairness tradeoff compared to iALS and also

performs competitively compared to Multi-FR and FairRec, which

are computationally much more demanding. exADMM can also

effectively and readily control the item exposure distribution via a

scalar parameter 𝜆𝑒𝑥 as demonstrated in Figure 2.

Computational Complexity. Finally, we empirically evaluate

the computational efficiency of methods in terms of both training

and inference. Table 3 reports the average elapsed time to complete

training and inference of each method on the three datasets and two

values of 𝐾 . Note that the “NA" values that we see for Multi-FR and

FairRec indicate that their training and/or inference are infeasible.

From the table, it is evident that exADMM achieves compu-

tational efficiency equivalent to or sometimes even better than

iALS across all datasets and all values of 𝐾 , which implies that

our method is able to control the accuracy-fairness tradeoff while

retaining scalability.
6
We also observe that Mult-VAE needs approx-

imately 15-40 times longer training time compared to exADMM.

This issue of Mult-VAE will be exacerbated as the item space grows,

given its time complexity of O (|U||V|)𝑑). The training procedure
of Multi-FR is about 2,350 times slower than that of exADMM

on Epinions. Besides, Multi-FR is infeasible on ML-20M and MSD.
FairRec suffers from longer inference time compared to iALS and

exADMM, and onMSD, its inference becomes infeasible. Therefore,

even though Multi-FR and FairRec show their usefulness in terms

of exposure control on datasets with a limited size, due to their

inefficiency and large complexity (as in Table 2), they are impracti-

cal for most industry-scale systems, which can even be larger than

MSD. This empirical observation demonstrates that exADMM is the

first method that enables an effective control of accuracy-fairness

tradeoff and is scalable to systems of practical size.

5 Conclusion
The feasibility of exposure-controllable item recommendation is

indispensable for solving immediate problems of accuracy-fairness

tradeoff, however, it has been disregarded in academic research.

Therefore, this work studies and develops a novel scalable method,

which we call exADMM, to enable flexible exposure control. De-

spite the technical difficulty in handling the exposure regularizer

in parallel, the proposed algorithm achieves this while maintaining

scalability with yet provable convergence guarantees. Empirical

evaluations are promising and demonstrate that our method is the

first to achieve flexible control of accuracy-fairness tradeoff in a

scalable and computationally efficient way. Our work also raises

several intriguing questions for future studies such as extensions to

more refined fairness regularizers beyond the mere second moment,

a scalable post-processing approach to control fairness, a scalable al-

gorithm to achieve exposure fairness in two-sided preferences [55],

a scalable control of impact-based fairness [44].

6
exADMM can be faster than iALS due to its slightly improved computational com-

plexity as discussed in Section 3.3 and summarized in Table 2.
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A Proofs of Convergence Guarantee
A.1 Proof of 3.1

Proof of Theorem 3.1. In the proof, we use the following lemma on the smoothness of 𝑔:

Lemma A.1. For any V,V′ ∈ R |V |×𝑑 , s, s′ ∈ R𝑑 , and U,U′ ∈ R |U |×𝑑 , function 𝑔 satisfies the following inequalities:

∥∇V𝑔(V,U, s) − ∇V𝑔(V′,U, s)∥𝐹 ≤
√︁
|V|

(
(1 + 𝛼0) ∥U∥2𝐹 + 𝜆𝑒𝑥 ∥s∥

2

2
+ ¯𝜆𝑉

)
∥V − V′∥𝐹 ,

∥∇U𝑔(V,U, s) − ∇U𝑔(V,U′, s′)∥𝐹 ≤
√︁
|U|

(
(1 + 𝛼0)∥V∥2𝐹 + ¯𝜆𝑈

)
∥U − U′∥𝐹 ,

∥∇s𝑔(V,U, s) − ∇s𝑔(V,U′, s′)∥2 ≤ 𝜆𝑒𝑥 ∥V∥2𝐹 ∥s − s′∥2,
∥∇s𝑔(V,U, s) − ∇s𝑔(V′,U, s)∥2 ≤ 𝜆𝑒𝑥 (∥V∥𝐹 + ∥V′∥𝐹 )∥s∥2∥V − V′∥𝐹 ,

where ¯𝜆𝑈 = max𝑖∈U 𝜆
(𝑖 )
𝑈

and ¯𝜆𝑉 = max𝑗∈V 𝜆
( 𝑗 )
𝑉

.

We prove the first part of the theorem. We decompose the difference of 𝐿𝜌 before and after a single epoch update into that before and

after each alternating step.

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) =
(
𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘 ,w𝑘 ) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )

)
+

(
𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘 ) − 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘 ,w𝑘 )

)
+

(
𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘 )

)
. (7)

Lemma A.1 implies the upper bound on each term in the RHS:

Lemma A.2. The update of V and U in the (𝑘 + 1)-step satisfies

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘 ,w𝑘 ) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) ≤
√︁
|U|((1 + 𝛼0)𝐶𝑉 + ¯𝜆𝑈 ) − 1/𝛾

2

∥U𝑘+1 − U𝑘 ∥2𝐹 −
𝜆𝑉

2

∥V𝑘+1 − V𝑘 ∥2𝐹 .

Lemma A.3. The update of s in the (𝑘 + 1)-th step satisfies

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘 ) − 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘 ,w𝑘 ) ≤ −
𝜌

2

∥s𝑘+1 − s𝑘 ∥2
2
.

Lemma A.4. The update of w in the (𝑘 + 1)-th step satisfies

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘 ) ≤
3𝜆2

𝑒𝑥𝐶
2

𝑉

𝜌
∥s𝑘+1 − s𝑘 ∥2

2
+ 6𝜆2

𝑒𝑥𝐶𝑉𝐶𝑠

𝜌
∥V𝑘+1 − V𝑘 ∥2𝐹 .

By using Eq. (7) and Lemmas A.2 to A.4, under the assumptions 𝜌 ≥ max

(
24𝜆2

𝑒𝑥𝐶𝑉𝐶s
𝜆
𝑉

, 1

2
+

√︃
1

4
+ 6𝜆2

𝑒𝑥𝐶
2

𝑉

)
and 𝛾 ≤ 1√

|U | ( (1+𝛼0 )𝐶𝑉 + ¯𝜆𝑈 )+1
,

we have

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )

≤
√︁
|U|((1 + 𝛼0)𝐶𝑉 + ¯𝜆𝑈 ) − 1/𝛾

2

∥U𝑘+1 − U𝑘 ∥2𝐹 −
𝜆𝑉

2

∥V𝑘+1 − V𝑘 ∥2𝐹 −
𝜌

2

∥s𝑘+1 − s𝑘 ∥2
2

+
3𝜆2

𝑒𝑥𝐶
2

𝑉

𝜌
∥s𝑘+1 − s𝑘 ∥2

2
+ 6𝜆2

𝑒𝑥𝐶𝑉𝐶𝑠

𝜌
∥V𝑘+1 − V𝑘 ∥2𝐹

=

√︁
|U|((1 + 𝛼0)𝐶𝑉 + ¯𝜆𝑈 ) − 1/𝛾

2

∥U𝑘+1 − U𝑘 ∥2𝐹 +
(
−
𝜆𝑉

2

+ 6𝜆2

𝑒𝑥𝐶𝑉𝐶𝑠

𝜌

)
∥V𝑘+1 − V𝑘 ∥2𝐹 +

(
−𝜌

2

+
3𝜆2

𝑒𝑥𝐶
2

𝑉

𝜌

)
∥s𝑘+1 − s𝑘 ∥2

2

≤ −1

2

∥U𝑘+1 − U𝑘 ∥2𝐹 −
𝜆𝑉

4

∥V𝑘+1 − V𝑘 ∥2𝐹 −
1

2

∥s𝑘+1 − s𝑘 ∥2
2
≤ 0. (8)

Therefore, 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) is monotonically decreasing.

Here, we obtain the following lower bound on 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ):

Lemma A.5. V𝑘 ,U𝑘 , s𝑘 , and w𝑘 updated by xADMM satisfy

𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) ≥
𝜌 − 𝜆𝑒𝑥𝐶𝑉

2

 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

.
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Thus, when 𝜌 ≥ 𝜆𝑒𝑥𝐶𝑉 holds, 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) is lower bounded by 0. Therefore, owing to its monotonic decrease, 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )
converges to some constant value, and 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) converges to 0. From Eq. (8) and the fact that

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) converges to 0, ∥V𝑘+1 − V𝑘 ∥𝐹 , ∥U𝑘+1 − U𝑘 ∥𝐹 , and ∥s𝑘+1 − s𝑘 ∥2 also converge to 0. Finally,

from Lemma A.4, we have:

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘 ) = 𝜌 ∥w𝑘+1 −w𝑘 ∥2
2

≤
3𝜆2

𝑒𝑥𝐶
2

𝑉

𝜌
∥s𝑘+1 − s𝑘 ∥2

2
+ 6𝜆2

𝑒𝑥𝐶𝑉𝐶𝑠

𝜌
∥V𝑘+1 − V𝑘 ∥2𝐹 ,

and then we can also state that ∥w𝑘+1 −w𝑘 ∥2 converges to 0.

We next prove the second part of the theorem. Since V𝑘+1 minimizes 𝐿𝜌 (V,U𝑘 , s𝑘 ,w𝑘 ), it holds that ∇V𝐿𝜌 (V𝑘+1,U𝑘 , s𝑘 ,w𝑘 ) = 0, and we

obtain the following inequality from Lemma A.1:

∥∇V𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )∥𝐹 = ∥∇V𝐿𝜌 (V𝑘+1,U𝑘 , s𝑘 ,w𝑘 ) − ∇V𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )∥𝐹
= ∥∇V𝑔(V𝑘+1,U𝑘 , s𝑘 ) − ∇V𝑔(V𝑘 ,U𝑘 , s𝑘 )∥𝐹
≤

√︁
|V|

(
(1 + 𝛼0)𝐶𝑈 + 𝜆𝑒𝑥𝐶𝑠 + ¯𝜆𝑉

)
∥V𝑘+1 − V𝑘 ∥𝐹 .

Since ∥V𝑘+1 − V𝑘 ∥𝐹 converges to 0, ∇V𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) converge to 0. Similarly, we have:

∥∇U𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )∥𝐹

=

∇U𝑔(V𝑘 ,U𝑘 , s𝑘 ) +
𝜌

|U|2
11⊤U𝑘 + 𝜌

|U|1(w
𝑘 − s𝑘 )⊤


𝐹

=

∇U𝑔(V𝑘 ,U𝑘 , s𝑘 ) − ∇U𝑔(V𝑘 ,U𝑘−1, s𝑘−1) + 𝜌

|U|1(w
𝑘 −w𝑘−1)⊤ − 𝜌

|U|1(s
𝑘 − s𝑘−1)⊤ − 1

𝛾
(U𝑘 − U𝑘−1)


𝐹

≤ ∥∇U𝑔(V𝑘 ,U𝑘 , s𝑘 ) − ∇U𝑔(V𝑘 ,U𝑘−1, s𝑘−1)∥𝐹 +
1

𝛾
∥U𝑘 − U𝑘−1∥𝐹 +

𝜌

|U| ∥1(w
𝑘 −w𝑘−1)⊤∥𝐹 +

𝜌

|U| ∥1(s
𝑘 − s𝑘−1)⊤∥𝐹

≤
√︁
|U|

(
(1 + 𝛼0)𝐶𝑉 + ¯𝜆𝑈

)
∥U𝑘 − U𝑘−1∥𝐹 +

1

𝛾
∥U𝑘 − U𝑘−1∥𝐹 +

𝜌

|U| ∥1(w
𝑘 −w𝑘−1)⊤∥𝐹 +

𝜌

|U| ∥1(s
𝑘 − s𝑘−1)⊤∥𝐹 ,

where the second equality follows from the fact that U𝑘 minimizes
𝜌
2
∥ 1

|U |U
⊤1 +w𝑘−1 − s𝑘−1∥2

2
− 𝜌

2
∥w𝑘−1∥2

2
+ 1

2𝛾 ∥U − U𝑘−1∥2
𝐹
+ ⟨U −

U𝑘−1,∇U𝑔(V𝑘 ,U𝑘−1, s𝑘−1)⟩𝐹 . Since ∥U𝑘 −U𝑘−1∥𝐹 , ∥w𝑘 −w𝑘−1∥2 converge to 0, this inequality implies that ∇U𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) converges
to 0.

Because s𝑘 minimizes 𝐿𝜌 (V𝑘 ,U𝑘 , s,w𝑘−1), we also have

∥∇s𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )∥2 = ∥∇s𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘−1) − ∇s𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )∥2
= 𝜌 ∥w𝑘 −w𝑘−1∥2 .

Thus, since ∥w𝑘 −w𝑘−1∥2 converges to 0, ∇s𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) converges to 0.

Finally, it holds that

∥∇w𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )∥2 = 𝜌

 1

|U| (U
𝑘 )⊤1 − s𝑘


2

= 𝜌 ∥w𝑘 −w𝑘−1∥2,

and hence ∇w𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) converges to 0. □

A.2 Proof of Lemma A.2
Proof. From the definition of 𝐿𝜌 (V,U, s𝑘 ,w𝑘 ), we have:

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘 ,w𝑘 ) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )

= 𝑔(V𝑘+1,U𝑘+1, s𝑘 ) + 𝜌
2

w𝑘 + 1

|U| (U
𝑘+1)⊤1 − s𝑘

2

2

− 𝜌
2

∥w𝑘 ∥2
2
− 𝑔(V𝑘 ,U𝑘 , s𝑘 ) − 𝜌

2

w𝑘 + 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

+ 𝜌
2

∥w𝑘 ∥2
2

= 𝑔(V𝑘+1,U𝑘+1, s𝑘 ) − 𝑔(V𝑘+1,U𝑘 , s𝑘 ) + 𝑔(V𝑘+1,U𝑘 , s𝑘 ) − 𝑔(V𝑘 ,U𝑘 , s𝑘 ) + 𝜌
2

w𝑘 + 1

|U| (U
𝑘+1)⊤1 − s𝑘

2

2

− 𝜌
2

w𝑘 + 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

.

(9)
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Denoting the Gram matrix of U by G𝑈 = U⊤U, we have

⟨∇V𝑔(V,U, s) − ∇V𝑔(V′,U, s),V − V′⟩𝐹

=
∑︁
𝑗∈V

〈(∑︁
𝑖∈U

𝑟𝑖, 𝑗u𝑖u⊤𝑖 + 𝛼0G𝑈 + 𝜆𝑒𝑥 ss⊤ + 𝜆 ( 𝑗 )
𝑉

I

)
v𝑗 −

∑︁
𝑖∈U

𝑟𝑖, 𝑗u𝑖 −
(∑︁
𝑖∈U

𝑟𝑖, 𝑗u𝑖u⊤𝑖 + 𝛼0G𝑈 + 𝜆𝑒𝑥 ss⊤ + 𝜆 ( 𝑗 )
𝑉

I

)
v′𝑗 +

∑︁
𝑖∈U

𝑟𝑖, 𝑗u𝑖 , v𝑗 − v′𝑗

〉
=

∑︁
𝑗∈V

〈(∑︁
𝑖∈U

𝑟𝑖, 𝑗u𝑖u⊤𝑖

)
(v𝑗 − v′𝑗 ), v𝑗 − v′𝑗

〉
+

∑︁
𝑗∈V

〈
𝛼0G𝑈 (v𝑗 − v′𝑗 ), v𝑗 − v′𝑗

〉
+

∑︁
𝑗∈V

〈
𝜆𝑒𝑥 ss⊤ (v𝑗 − v′𝑗 ), v𝑗 − v′𝑗

〉
+

∑︁
𝑗∈V

〈
𝜆
( 𝑗 )
𝑉
(v𝑗 − v′𝑗 ), v𝑗 − v′𝑗

〉
=

∑︁
𝑗∈V

∑︁
𝑖∈U

𝑟𝑖, 𝑗 (u⊤𝑖 (v𝑗 − v′𝑗 ))
2 + 𝛼0

∑︁
𝑗∈V

∑︁
𝑖∈U
(u⊤𝑖 (v𝑗 − v′𝑗 ))

2 + 𝜆𝑒𝑥
∑︁
𝑗∈V
(s⊤ (v𝑗 − v′𝑗 ))

2 +
∑︁
𝑗∈V
∥𝜆 ( 𝑗 )
𝑉
(v𝑗 − v′𝑗 )∥

2

2

≥ 𝜆𝑉
∑︁
𝑗∈V
∥v𝑗 − v′𝑗 ∥

2

2
= 𝜆𝑉 ∥V − V′∥2𝐹 ,

where 𝜆𝑉 = min𝑗∈V 𝜆
( 𝑗 )
𝑉

. Thus, the function 𝑔 is 𝜆𝑉 -strongly convex with respect to V. We also have

𝑔(V𝑘+1,U𝑘 , s𝑘 ) − 𝑔(V𝑘 ,U𝑘 , s𝑘 ) ≤ ⟨∇V𝑔(V𝑘+1,U𝑘 , s𝑘 ),V𝑘+1 − V𝑘 ⟩𝐹 −
𝜆𝑉

2

∥V𝑘+1 − V𝑘 ∥2𝐹

= −
𝜆𝑉

2

∥V𝑘+1 − V𝑘 ∥2𝐹 , (10)

where the last equality follows from the fact that V𝑘+1 minimizes 𝑔(V,U𝑘 , s𝑘 ); hence ∇V𝑔(V𝑘+1,U𝑘 , s𝑘 ) = 0 holds. Moreover, since U𝑘+1

minimizes
𝜌
2

w𝑘 + 1

|U | (U)
⊤1 − s𝑘

2

2

− 𝜌
2
∥w𝑘 ∥2

2
+ 1

2𝛾 ∥U − U𝑘 ∥2
𝐹
+ ⟨U − U𝑘 ,∇U𝑔(V𝑘+1,U𝑘 , s𝑘 )⟩𝐹 , we have:

𝜌

2

w𝑘 + 1

|U| (U
𝑘+1)⊤1 − s𝑘

2

2

− 𝜌
2

∥w𝑘 ∥2
2
+ 1

2𝛾
∥U𝑘+1 − U𝑘 ∥2𝐹 + ⟨U

𝑘+1 − U𝑘 ,∇U𝑔(V𝑘+1,U𝑘 , s𝑘 )⟩𝐹

≤ 𝜌

2

w𝑘 + 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

− 𝜌
2

∥w𝑘 ∥2
2
. (11)

By combining Eqs. (9) to (11), we obtain:

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘 ,w𝑘 ) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 )

≤ 𝑔(V𝑘+1,U𝑘+1, s𝑘 ) − 𝑔(V𝑘+1,U𝑘 , s𝑘 ) − ⟨U𝑘+1 − U𝑘 ,∇U𝑔(V𝑘+1,U𝑘 , s𝑘 )⟩𝐹 −
1

2𝛾
∥U𝑘+1 − U𝑘 ∥2𝐹 −

𝜆𝑉

2

∥V𝑘+1 − V𝑘 ∥2𝐹 . (12)

On the other hand, under the assumption in Theorem 3.1, from Lemma A.1, the function 𝑔(V𝑘+1,U, s𝑘 ) is
√︁
|U|

(
(1 + 𝛼0)𝐶𝑉 + ¯𝜆𝑈

)
-smooth

with respect to U. Then, for any U,U′, we have:

𝑔(V𝑘+1,U′, s𝑘 ) − 𝑔(V𝑘+1,U, s𝑘 ) − ⟨∇U𝑔(V𝑘+1,U, s𝑘 ),U′ − U⟩𝐹 ≤
√︁
|U|((1 + 𝛼0)𝐶𝑉 + ¯𝜆𝑈 )

2

∥U − U′∥2𝐹 . (13)

By combining Eq. (12) and Eq. (13), we obtain the following inequality:

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘 ,w𝑘 ) − 𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) ≤
√︁
|U|((1 + 𝛼0)𝐶𝑉 + ¯𝜆𝑈 ) − 1/𝛾

2

∥U𝑘+1 − U𝑘 ∥2𝐹 −
𝜆𝑉

2

∥V𝑘+1 − V𝑘 ∥2𝐹 .

□

A.3 Proof of Lemma A.3
Proof. Let us define ℎ𝑘 (s) = 𝑔(V𝑘+1,U𝑘+1, s) + 𝜌

2

w𝑘 + 1

|U | (U
𝑘+1)⊤1 − s

2

2

− 𝜌
2
∥w𝑘 ∥2

2
. We have:

⟨∇ℎ𝑘 (s) − ∇ℎ𝑘 (s′), s − s′⟩

=

〈
∇s𝑔(V𝑘+1,U𝑘+1, s) − 𝜌

(
w𝑘 + 1

|U| (U
𝑘+1)⊤1 − s

)
− ∇s𝑔(V𝑘+1,U𝑘+1, s′) + 𝜌

(
w𝑘 + 1

|U| (U
𝑘+1)⊤1 − s′

)
, s − s′

〉
=

〈
∇s𝑔(V𝑘+1,U𝑘+1, s) − ∇s𝑔(V𝑘+1,U𝑘+1, s′) + 𝜌 (s − s′), s − s′

〉
≥ 𝜌 ∥s − s′∥2

2
,

12
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where the inequality follows from the convexity of 𝑔(V𝑘+1,U𝑘+1, ·). Consequently, ℎ𝑘 is a 𝜌-strongly convex function. Therefore, we have:

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘 ) − 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘 ,w𝑘 )

= ℎ𝑘 (s𝑘+1) − ℎ𝑘 (s𝑘 ) ≤ ⟨∇ℎ𝑘 (s𝑘+1), s𝑘+1 − s𝑘 ⟩ − 𝜌
2

∥s𝑘+1 − s𝑘 ∥2
2
= −𝜌

2

∥s𝑘+1 − s𝑘 ∥2
2
,

where the last equality follows from that s𝑘+1 minimizes ℎ𝑘 (s), i.e., ∇ℎ𝑘 (s𝑘+1) = 0. □

A.4 Proof of Lemma A.4
Proof. From the definition of 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w) and the update rule of w𝑘 , we have:

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘 )

=
𝜌

2

w𝑘+1 + 1

|U| (U
𝑘+1)⊤1 − s𝑘+1

2

2

− 𝜌
2

∥w𝑘+1∥2
2
− 𝜌

2

w𝑘 + 1

|U| (U
𝑘+1)⊤1 − s𝑘+1

2

2

+ 𝜌
2

∥w𝑘 ∥2
2

= 𝜌 ⟨w𝑘+1 −w𝑘 ,
1

|U| (U
𝑘+1)⊤1 − s𝑘+1⟩ = 𝜌 ∥w𝑘+1 −w𝑘 ∥2

2
. (14)

On the other hand, since s𝑘+1 minimizes the convex function ℎ𝑘 (s), the first-order optimality condition implies:

∇ℎ𝑘 (s𝑘+1) = ∇s𝑔(V𝑘+1,U𝑘+1, s𝑘+1) − 𝜌
(
w𝑘 + 1

|U| (U
𝑘+1)⊤1 − s𝑘+1

)
= ∇s𝑔(V𝑘+1,U𝑘+1, s𝑘+1) − 𝜌w𝑘+1 = 0.

Thus, it holds that

w𝑘+1 =
1

𝜌
∇s𝑔(V𝑘+1,U𝑘+1, s𝑘+1). (15)

By combining Eq. (14), Eq. (15), and Lemma A.1, we obtain:

𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘+1) − 𝐿𝜌 (V𝑘+1,U𝑘+1, s𝑘+1,w𝑘 )

=
1

𝜌
∥∇s𝑔(V𝑘+1,U𝑘+1, s𝑘+1) − ∇s𝑔(V𝑘 ,U𝑘 , s𝑘 )∥22

=
1

𝜌
∥∇s𝑔(V𝑘+1,U𝑘+1, s𝑘+1) − ∇s𝑔(V𝑘+1,U𝑘 , s𝑘 ) + ∇s𝑔(V𝑘+1,U𝑘 , s𝑘 ) − ∇s𝑔(V𝑘 ,U𝑘 , s𝑘 )∥22

≤ 1

𝜌

(
∥∇s𝑔(V𝑘+1,U𝑘+1, s𝑘+1) − ∇s𝑔(V𝑘+1,U𝑘 , s𝑘 )∥2 + ∥∇s𝑔(V𝑘+1,U𝑘 , s𝑘 ) − ∇s𝑔(V𝑘 ,U𝑘 , s𝑘 )∥2

)
2

≤ 1

𝜌

(
𝜆𝑒𝑥 ∥V𝑘+1∥2𝐹 ∥s

𝑘+1 − s𝑘 ∥2 + 𝜆𝑒𝑥
(
∥V𝑘+1∥𝐹 + ∥V𝑘 ∥𝐹

)
∥V𝑘+1 − V𝑘 ∥𝐹 ∥s𝑘 ∥2

)
2

≤ 3

𝜌

(
𝜆2

𝑒𝑥 ∥V𝑘+1∥4𝐹 ∥s
𝑘+1 − s𝑘 ∥2

2
+ 𝜆2

𝑒𝑥

(
∥V𝑘+1∥2𝐹 + ∥V

𝑘 ∥2𝐹
)
∥V𝑘+1 − V𝑘 ∥2𝐹 ∥s

𝑘 ∥2
2

)
≤ 3𝜆2

𝑒𝑥

𝜌

(
𝐶2

𝑉 ∥s
𝑘+1 − s𝑘 ∥2

2
+ 2𝐶𝑉𝐶𝑠 ∥V𝑘+1 − V𝑘 ∥2𝐹

)
,

where the third inequality follows from (𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2) for 𝑎, 𝑏, 𝑐 ∈ R. □

A.5 Proof of Lemma A.5
Proof of Lemma A.5. Under the assumption in Theorem 3.1, the function𝑔(V𝑘 ,U𝑘 , s) is 𝜆𝑒𝑥𝐶𝑉 -smooth with respect to s from Lemma A.1,

and then we have, for any s, s′,

𝑔(V𝑘 ,U𝑘 , s′) − 𝑔(V𝑘 ,U𝑘 , s) − ⟨∇s𝑔(V𝑘 ,U𝑘 , s), s′ − s⟩ ≤ 𝜆𝑒𝑥𝐶𝑉

2

∥s − s′∥2
2
. (16)
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By combining Eq. (15) and Eq. (16), we obtain:

𝐿𝜌 (V𝑘 ,U𝑘 , s𝑘 ,w𝑘 ) = 𝑔(V𝑘 ,U𝑘 , s𝑘 ) +
𝜌

2

w𝑘 + 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

− 𝜌
2

∥w𝑘 ∥2
2

= 𝑔(V𝑘 ,U𝑘 , s𝑘 ) + 𝜌 ⟨w𝑘 , 1

|U| (U
𝑘 )⊤1 − s𝑘 ⟩ + 𝜌

2

 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

= 𝑔(V𝑘 ,U𝑘 , s𝑘 ) − ⟨∇s𝑔(V𝑘 ,U𝑘 , s𝑘 ), s𝑘 −
1

|U| (U
𝑘 )⊤1⟩ + 𝜌

2

 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

≥ 𝑔(V𝑘 ,U𝑘 , 1

|U| (U
𝑘 )⊤1) + 𝜌 − 𝜆𝑒𝑥𝐶𝑉

2

 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

≥ 𝜌 − 𝜆𝑒𝑥𝐶𝑉
2

 1

|U| (U
𝑘 )⊤1 − s𝑘

2

2

,

where the last inequality follows from 𝑔(V,U, s) ≥ 0 for any v, U, and s. □

A.6 Proof for Lemma A.1
Proof. For fixed U, s, for all V,V′, we have the following

∥∇V𝑔(V,U, s) − ∇V𝑔(V′,U, s)∥𝐹

=
∑︁
𝑗∈V


(∑︁
𝑖∈U

𝑟𝑖, 𝑗u𝑖u⊤𝑖 + 𝛼0G𝑈 + 𝜆𝑒𝑥 ss⊤ + 𝜆 ( 𝑗 )
𝑉

I

)
(v𝑗 − v′𝑗 )


2

≤
∑︁
𝑗∈V

∑︁
𝑖∈U
∥𝑟𝑖, 𝑗u𝑖u⊤𝑖 (v𝑗 − v′𝑗 )∥2 +

∑︁
𝑗∈V

∑︁
𝑖∈U
∥𝛼0u𝑖u⊤𝑖 (v𝑗 − v′𝑗 )∥2 +

∑︁
𝑗∈V
∥𝜆𝑒𝑥 ss⊤ (v𝑗 − v′𝑗 )∥2 +

∑︁
𝑗∈V
∥𝜆 ( 𝑗 )
𝑉
(v𝑗 − v′𝑗 )∥2

=
∑︁
𝑗∈V

∑︁
𝑖∈U

𝑟𝑖, 𝑗 |u⊤𝑖 (v𝑗 − v′𝑗 ) | · ∥u𝑖 ∥2 + 𝛼0

∑︁
𝑗∈V

∑︁
𝑖∈U
|u⊤𝑖 (v𝑗 − v′𝑗 ) | · ∥u𝑖 ∥2 + 𝜆𝑒𝑥

∑︁
𝑗∈V
|s⊤ (v𝑗 − v′𝑗 ) | · ∥s∥2 +

∑︁
𝑗∈V
∥𝜆 ( 𝑗 )
𝑉
(v𝑗 − v′𝑗 )∥2

≤
∑︁
𝑗∈V

∑︁
𝑖∈U

𝑟𝑖, 𝑗 ∥u𝑖 ∥22∥v𝑗 − v′𝑗 ∥2 + 𝛼0

∑︁
𝑗∈V

∑︁
𝑖∈U
∥u𝑖 ∥22∥v𝑗 − v′𝑗 ∥2 + 𝜆𝑒𝑥

∑︁
𝑗∈V
∥s∥2

2
∥v𝑗 − v′𝑗 ∥2 + ¯𝜆𝑉

∑︁
𝑗∈V
∥v𝑗 − v′𝑗 ∥2

≤
(
(1 + 𝛼0)

∑︁
𝑖∈U
∥u𝑖 ∥22 + 𝜆𝑒𝑥 ∥s∥

2

2
+ ¯𝜆𝑉

) ∑︁
𝑗∈V
∥v𝑗 − v′𝑗 ∥2

≤
√︁
|V|

(
(1 + 𝛼0) ∥U∥2𝐹 + 𝜆𝑒𝑥 ∥s∥

2

2
+ ¯𝜆𝑉

)
∥V − V′∥𝐹 ,

where
¯𝜆𝑉 = max𝑗∈V 𝜆

( 𝑗 )
𝑉

. Note that the second inequality follows from the Cauchy–Schwarz inequality.

In addition, we have, for a fixed V, for all s, s′ and U,U′,

∥∇U𝑔(V,U, s) − ∇U𝑔(V,U′, s′)∥𝐹

=
∑︁
𝑖∈U

©«
∑︁
𝑗∈V

𝑟𝑖, 𝑗v𝑗v⊤𝑗 + 𝛼0

∑︁
𝑗∈V

v𝑗v⊤𝑗 + 𝜆
(𝑖 )
𝑈

Iª®¬ u𝑖 −
∑︁
𝑗∈V

𝑟𝑖, 𝑗v𝑗 − ©«
∑︁
𝑗∈V

𝑟𝑖, 𝑗v𝑗v⊤𝑗 + 𝛼0

∑︁
𝑗∈V

v𝑗v⊤𝑗 + 𝜆
(𝑖 )
𝑈

Iª®¬ u′𝑖 +
∑︁
𝑗∈V

𝑟𝑖, 𝑗v𝑗


2

=
∑︁
𝑖∈U

©«
∑︁
𝑗∈V

𝑟𝑖, 𝑗v𝑗v⊤𝑗 + 𝛼0

∑︁
𝑗∈V

v𝑗v⊤𝑗 + 𝜆
(𝑖 )
𝑈

Iª®¬ (u𝑖 − u′𝑖 )


2

≤
∑︁
𝑖∈U

∑︁
𝑗∈V

(𝑟𝑖, 𝑗v𝑗v⊤𝑗 ) (u𝑖 − u′𝑖 )


2

+
∑︁
𝑖∈U

∑︁
𝑗∈V

(𝛼0v𝑗v⊤𝑗
)
(u𝑖 − u′𝑖 )

 + ∑︁
𝑖∈U

𝜆 (𝑖 )
𝑈
(u𝑖 − u′𝑖 )


2

=
∑︁
𝑖∈U

∑︁
𝑗∈V

𝑟𝑖, 𝑗

v𝑗v⊤𝑗 (u𝑖 − u′𝑖 )


2

+ 𝛼0

∑︁
𝑖∈U

∑︁
𝑗∈V

v𝑗v⊤𝑗 (u𝑖 − u′𝑖 )


2

+
∑︁
𝑖∈U

𝜆 (𝑖 )
𝑈
(u𝑖 − u′𝑖 )


2

=
∑︁
𝑖∈U

∑︁
𝑗∈V

𝑟𝑖, 𝑗 |v⊤𝑗 (u𝑖 − u′𝑖 ) |
v𝑗


2
+ 𝛼0

∑︁
𝑖∈U

∑︁
𝑗∈V
|v⊤𝑗 (u𝑖 − u′𝑖 ) |

v𝑗


2
+

∑︁
𝑖∈U

𝜆 (𝑖 )
𝑈
(u𝑖 − u′𝑖 )


2

≤
∑︁
𝑖∈U

∑︁
𝑗∈V

𝑟𝑖, 𝑗
v𝑗

2

2

u𝑖 − u′𝑖


2
+ 𝛼0

∑︁
𝑖∈U

∑︁
𝑗∈V

v𝑗
2

u𝑖 − u′𝑖


2
+

∑︁
𝑖∈U

𝜆 (𝑖 )
𝑈
(u𝑖 − u′𝑖 )


2
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≤ (1 + 𝛼0)
©«
∑︁
𝑗∈V
∥v𝑗 ∥22

ª®¬
∑︁
𝑖∈U
∥u𝑖 − u′𝑖 ∥2 + ¯𝜆𝑈

∑︁
𝑖∈U
∥u𝑖 − u′𝑖 ∥2

≤
√︁
|U|

(
(1 + 𝛼0)∥V∥2𝐹 + ¯𝜆𝑈

)
∥U − U′∥𝐹 ,

where the second inequality follows from the Cauchy–Schwarz inequality.

Here, for a fixed V, for all s, s′ and U,U′, we have:

∥∇s𝑔(V,U, s) − ∇s𝑔(V,U′, s′)∥2 =
𝜆𝑒𝑥V⊤Vs − 𝜆𝑒𝑥V⊤Vs′


2

= 𝜆𝑒𝑥 ∥V⊤V(s − s′)∥2
≤ 𝜆𝑒𝑥 ∥V⊤V∥𝐹 ∥s − s′∥2
≤ 𝜆𝑒𝑥 ∥V∥2𝐹 ∥s − s′∥2,

where the first/second inequality follows from the Cauchy–Schwarz inequality.

Finally, for fixed U and s, for all V,V′, we have:

∥∇s𝑔(V,U, s) − ∇s𝑔(V′,U, s)∥2 = 𝜆𝑒𝑥 ∥V⊤Vs − V′⊤V′s∥2
= 𝜆𝑒𝑥 ∥(V⊤ (V − V′) + (V − V′)⊤V′)s∥2
≤ 𝜆𝑒𝑥 ∥V⊤ (V − V′)s∥2 + 𝜆𝑒𝑥 ∥(V − V′)⊤V′s∥2
≤ 𝜆𝑒𝑥 ∥V⊤ (V − V′)∥𝐹 · ∥s∥2 + 𝜆𝑒𝑥 ∥(V − V′)⊤V′∥𝐹 · ∥s∥2
≤ 𝜆𝑒𝑥 (∥V∥𝐹 + ∥V′∥𝐹 ) · ∥s∥2∥V − V′∥𝐹 ,

where the second/third inequality follows from the Cauchy–Schwarz inequality. □
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