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ABSTRACT

Understanding how different regional networks of the brain get activated and how
those activations change over time can help in identifying the onset of various neu-
rodegenerative diseases, studying the efficacy of different treatment regimens for
those illnesses, and developing brain-computer interfaces for patients with differ-
ent types of disabilities. To explain dynamic brain networks, an RNN-VAE model
named DyNeMo has recently been proposed. This model can take into account the
whole recorded history of brain states while modeling their dynamics and is able
to better capture the complexities in larger datasets than previous works. In this
paper, we show that the latent representations learned by DyNeMo through unsu-
pervised training are not sufficient for downstream classification tasks and propose
a new semi-supervised model named DyNeMoC that overcomes this shortcom-
ing. The downstream task we study is the classification of visual stimuli from
MEG recordings. We show that both of our proposed variants of DyNeMoC —
DyNeMoC-RNN and DyNeMoC-Transformer — lead to more useful latent rep-
resentations for stimuli classification with the transformer variant outperforming
the RNN one. Learning representations that are directly linked to a downstream
task in this manner could ultimately be used to improve the monitoring and treat-
ment of certain neurodegenerative diseases and building better brain-computer
interfaces.

1 INTRODUCTION

Brain states are regional networks of neurons which spontaneously activate while at rest (Biswal
et al., 1995; Fox & Raichle, 2007; Raichle et al., 2001) and while performing various cognitive tasks
(Kurth-Nelson et al., 2015; Isik et al., 2014; Carlson et al., 2011). A useful imaging modality for
studying the dynamic nature of these brain states is MEG (Lopes da Silva, 2013) because it provides
a direct measure of neuronal activity at a millisecond resolution — a highly desirable property for
studying brain activities at their natural time scale (Proudfoot et al., 2014).

Characterizing the spatio-temporal dynamics of brain states can not only help us in gaining a better
understanding of the underpinnings of cognition (Buzsáki & Draguhn, 2004; Bressler & Menon,
2010) but also has numerous healthcare applications. Functional connectivity (Friston, 1994) of
brain states are being used to study the diagnosis (Josef Golubic et al., 2017; Schoonhoven et al.,
2019; Dimitriadis et al., 2018; Schumacher et al., 2019; Fiorenzato et al., 2019; Dopper et al., 2014;
Mandal et al., 2018; Babiloni et al., 2020) of and intervention (Shigihara et al., 2020b;a) for differ-
ent neurodegenerative diseases. Correct identification of brain states can also lead to better brain-
computer interfaces with implications in patient-care (Liberati et al., 2012; Mudgal et al., 2020).

Historically, sliding window techniques have been used to infer dynamic brain networks from neu-
roimaging data (Wendling et al., 2009; Allen et al., 2012). More recently, there has been a shift
to using unsupervised learning approaches, such as Hidden Markov models (HMMs) (Baker et al.,
2014; Vidaurre et al., 2016; 2017; 2018), and variational autoencoders (VAEs) (Perl et al., 2020)
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for this type of work. One recent development along this line has been the introduction of an un-
supervised RNN-VAE (Chung et al., 2015; Bowman et al., 2015; Fabius & Van Amersfoort, 2014)
named DyNeMo (Gohil et al., 2022) which is a generative model and Bayesian inference scheme
for identifying brain networks.

In this work, we devise a semi-supervised architecture named DyNeMoC that builds on DyNeMo.
We propose two variants of DyNeMoC — DyNeMoC-RNN and DyNeMoC-Transformer — and
conduct experiments on a real-world MEG dataset that contains neural responses to visual stimuli.
We establish that DyNeMoC is better than DyNeMo for learning latent state representations that are
useful for certain downstream tasks of interest such as the classification of visual stimuli. We further
demonstrate that the DyNeMoC-Transformer architecture can far outperform DyNeMoC-RNN in
this aspect. We hypothesize the representations learned by DeNeMoC would also be useful in other
applications if the same brain states are recruited.

2 BACKGROUND

DyNeMo is a VAE (Kingma & Welling, 2013; 2019) with a bidirectional RNN encoder, a unidirec-
tional RNN prior network, and a decoder which is further comprised of state means and covariances.
The core modeling assumption behind it is that neural time series data is generated from a finite set
of J latent brain states, where each state can be represented by a distinct multivariate normal distri-
bution. These states probabilistically mix, i.e. linearly combine with each other with coefficients αjt

at each time step t (such that αjt ∈ [0, 1] and
∑J

j=0 αjt = 1) to generate a time-varying description
of the means and covariances of the data. Here, αjt for each state at time step t is computed by using
the softmax operation on the posterior logits (latent representation) θ produced by the encoder.

Gohil et al. (2022) trained DyNeMo by minimizing the variational free energy, L = −LL +KL ,
where −LL denotes the negative log-likelihood (NLL) of an observation being generated from the
learned state means and covariances, and KL denotes KL divergence from the prior to the posterior
distribution. Further details regarding DyNeMo can be found in Gohil et al. (2022).

3 METHODOLOGY

In this work, we evaluate the usefulness of the latent representations learned by DyNeMo in a down-
stream classification task. We propose these latent representations can be improved by jointly train-
ing a multilayer perceptron (MLP) classifier with DyNeMo. This approach incentivizes the model
to encode information useful for the downstream task (class labels) into the latent representation.
We call this model DyNeMoC and provide its general architecture and data flow in Figure 1.

The MLP classifier of DyNeMoC is fed the inferred logit courses θ by the encoder as a flattened
vector. We used inferred θ courses instead of inferred α courses here because unlike αjt which are
confined between 0 and 1, θjt could take any real value.

Our updated loss function Lu for the joint network thus became as follows:

Lu = −LL+KL+ wc × CC (1)

where CC is the cross entropy between the actual and predicted labels, and wc is a hyperparameter
controlling the weight of the cross-entropy loss.

Gohil et al. (2022) originally devised DyNeMo with RNNs, particularly LSTMs (Hochreiter &
Schmidhuber, 1997). We label a DyNeMoC model stemming from the original architecture as a
DyNeMoC-RNN. Recognizing the RNNs are essentially sequence-learning networks, we further
created an enhanced version of DyNeMoC based on transformers (Vaswani et al., 2017) which we
call DyNeMoC-Transformer. In this architecture, we used a small-scale BERT (Devlin et al., 2018)
model for the encoder and a small-scale GPT-2 (Radford et al., 2019) model for the prior network.
We opted for small-scale BERT and GPT-2 models because of limited amounts of labelled training
data being available.

The DyNeMo component of the first DyNeMoC-RNN model we designed was similar to the
DyNeMo described in Gohil et al. (2022). This DyNeMoC-RNN model had 2.1M learnable pa-
rameters, and we call it DyNeMoC-RNN-Small. Our DyNeMoC-Transformer model, on the other
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Figure 1: The general architecture and data flow of DyNeMoC

hand, had 9.2M parameters. To do a proper comparison between, DyNeMoC-RNN and DyNeMoC-
Transformer, we designed DyNeMoC-RNN-Large with 9.8M parameters. The particular hyperpa-
rameters of the different DyNeMoC models are provided in Appendix A.2.

4 EXPERIMENTS

4.1 DATASET

In this study, we used a dataset created by Cichy et al. (2016) that contained MEG data collected
from 15 subjects while they were shown images of 118 different object classes (also referred to as
conditions) at 0.9–1s intervals (around 30 times for each object class). We first pre-processed the
MEG data by performing band-pass filtering on it and then downsampling it to 250Hz frequency. We
kept each trial in the range -0.2–0.6s (inclusive). So each trial in this dataset had (0.6 − (−0.2)) ×
250 + 1 = 201 timesteps. We then performed a 70-15-15 train-validation-test split of the dataset
while maintaining the relative balance among the trials in all the conditions for all subjects.

The 306 sensors that were used to record the MEG data in this dataset measure different properties
of magnetic fields at different scales. Moreover, working with covariance matrices of dimensions
(306×306) is also computationally quite expensive. Hence, for each subject, we standardized, PCA-
transformed, and re-standardized their trials to reduce the data dimensions and bring features to the
same scale. We settled for 80 principal components while conducting PCA as these components
explained over 98% of the observed variance in each subject’s data on average. We note that it was
necessary to process each subject’s data separately here because the data among subjects do not
align in sensor-space and PCA-space owing to the structural and functional variety in human brains
as well as the non-uniformity in sensor placement (Zhang et al., 2017). As such, in each of our
experiments, a model was trained and evaluated on one subject only.

Cichy et al. (2016) reported that for the different conditions in the dataset, they observed the earliest
onset of significant neuronal activity at 77ms and the last peak point at 326ms. Hence, in all of our
experiments, the input to the classifier was the 50–350ms (inclusive) windows of the trials directly
or in the form of θ or α courses.
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Table 1: Summarized classification accuracies on the test sets of different subjects

Subject SVM
Baseline

MLP
Baseline

DyNeMo
RNN-Small

+
MLP

DyNeMo
RNN-Large

+
MLP

DyNeMo
Transformer

+
MLP

DyNeMoC
RNN-Small

DyNeMoC
RNN-Large

DyNeMoC
Transformer

Mean (Std. Err.) 0.20 (0.04) 0.21 (0.05) 0.07 (0.02) 0.06 (0.02) 0.06 (0.01) 0.29 (0.07) 0.30 (0.07) 0.40 (0.09)

4.2 BASELINES

SVM and MLP baselines: We trained a linear SVM (Noble, 2006) (which Cichy et al. (2016) also
used) for each subject with a multi-class classification objective (different from the binary classifi-
cation investigated in Cichy et al. (2016)) by directly feeding it the time window 50–350ms of the
trials as input. Furthermore, we trained MLPs with 1024 hidden units, 2 layers, GELU activations
(Hendrycks & Gimpel, 2016), and 0.5 dropout (Srivastava et al., 2014) on the same inputs.

Two-step baselines: For each hyperparameter configuration of each variant of DyNeMoC, we first
trained its DyNeMo component in an unsupervised way and then used the flattened α63:137 vectors
(corresponding to 50–350ms) to train the MLP components separately. This baseline model was
meant to help us understand how useful the latent representations learned by DyNeMo are when it
is trained with its original objective.

4.3 RESULTS

We present the summary of test accuracies of the different models in Table 1 and the detailed subject-
wise test accuracies in Table 4 of Appendix A.4. We first note that the two-step baseline models
had very poor accuracies. This established that a completely unsupervised training of DyNeMo
cannot lead to latent representations that are effective for downstream classification. This might also
indicate that these representations might be incomplete for other tasks and healthcare applications.

Now, all the DyNeMoC models outperformed all baselines models across all subjects, except for
Subject 3 (see Table 4) where all models performed poorly (which might indicate a data collection
error or protocol issue for that individual). Moreover, the DyNeMoC-Transformer model achieved
far superior test accuracies than the DyNeMoC-RNN-Large model which had a greater number of
parameters. This is expected as the transformer variant processed trials as a whole rather than one
time step at a time like the RNN one did and utilized the self-attention mechanism (Vaswani et al.,
2017) for finding relationships between timesteps which the RNN one did not.

Overall, our results demonstrate that our proposed semi-supervised approach — DyNeMoC, in gen-
eral, and DyNeMoC-Transformer, in particular – is a simple, robust, and very effective approach for
learning useful latent representations from noisy data for downstream classification and potentially
other healthcare applications.

5 CONCLUSION

In this work, we investigated an RNN-VAE model named DyNeMo which has been designed to
model dynamic brain networks. Specifically, we evaluated the utility of the latent brain network
description provided by DyNeMo in a downstream classification task. We found that the latent rep-
resentations obtained from the unsupervised model alone were not sufficient to properly perform
the task, which may also apply to other healthcare-related tasks of interest. We, therefore, proposed
a semi-supervised architecture named DyNeMoC that jointly trained DyNeMo and an MLP classi-
fier to optimize for both the variational free energy and cross-entropy. We showed this was crucial
for improving the performance of the classification. We further demonstrated that the transformer
variant of DyNeMoC outperformed the RNN one. Finally, we note that we focused on improv-
ing individual classification accuracies because, for healthcare applications, such as personalized
treatment of neurodegenerative diseases like Alzheimer’s and Parkinson’s and the construction of
customized brain-computer interfaces, we are interested in making individualized predictions. We
believe that we can leverage information across individuals by training models with multiple sub-
jects and fine-tuning. This could also potentially help improve the individual subject predictions.
We leave this for future work.
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Maestú, and Ernesto Pereda. How to build a functional connectomic biomarker for mild cog-
nitive impairment from source reconstructed meg resting-state activity: the combination of roi
representation and connectivity estimator matters. Frontiers in neuroscience, 12:306, 2018.

Elise G.P. Dopper, Serge A.R.B. Rombouts, Lize C. Jiskoot, Tom den Heijer, J. Roos A. de Graaf,
Inge de Koning, Anke R. Hammerschlag, Harro Seelaar, William W. Seeley, Ilya M. Veer,
Mark A. van Buchem, Patrizia Rizzu, and John C. van Swieten. Structural and functional
brain connectivity in presymptomatic familial frontotemporal dementia. Neurology, 83(2):
e19–e26, 2014. ISSN 0028-3878. doi: 10.1212/WNL.0000000000000583. URL https:
//n.neurology.org/content/83/2/e19.

Otto Fabius and Joost R Van Amersfoort. Variational recurrent auto-encoders. arXiv preprint
arXiv:1412.6581, 2014.

Eleonora Fiorenzato, Antonio P Strafella, Jinhee Kim, Roberta Schifano, Luca Weis, Angelo
Antonini, and Roberta Biundo. Dynamic functional connectivity changes associated with de-
mentia in Parkinson’s disease. Brain, 142(9):2860–2872, 07 2019. ISSN 0006-8950. doi:
10.1093/brain/awz192. URL https://doi.org/10.1093/brain/awz192.

5

https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1093/cercor/bhs352
http://arxiv.org/abs/1810.04805
https://n.neurology.org/content/83/2/e19
https://n.neurology.org/content/83/2/e19
https://doi.org/10.1093/brain/awz192


Published as a conference paper at ICLR 2023

Michael D Fox and Marcus E Raichle. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nature reviews neuroscience, 8(9):700–711, 2007.

Karl J. Friston. Functional and effective connectivity in neuroimaging: A synthesis. Human Brain
Mapping, 2(1-2):56–78, 1994. doi: https://doi.org/10.1002/hbm.460020107. URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/hbm.460020107.

Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin.
Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint
arXiv:1903.10145, 2019.

Chetan Gohil, Evan Roberts, Ryan Timms, Alex Skates, Cameron Higgins, Andrew Quinn, Usama
Pervaiz, Joost van Amersfoort, Pascal Notin, Yarin Gal, Stanislaw Adaszewski, and Mark Wool-
rich. Mixtures of large-scale dynamic functional brain network modes. NeuroImage, 263:119595,
2022. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2022.119595. URL https:
//www.sciencedirect.com/science/article/pii/S1053811922007108.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/abs/1606.
08415.

R. Hindriks, M.H. Adhikari, Y. Murayama, M. Ganzetti, D. Mantini, N.K. Logothetis, and G. Deco.
Can sliding-window correlations reveal dynamic functional connectivity in resting-state fmri?
NeuroImage, 127:242–256, 2016. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.
2015.11.055. URL https://www.sciencedirect.com/science/article/pii/
S1053811915010782.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Leyla Isik, Ethan M Meyers, Joel Z Leibo, and Tomaso Poggio. The dynamics of invariant object
recognition in the human visual system. Journal of neurophysiology, 111(1):91–102, 2014.

Sanja Josef Golubic, Cheryl J Aine, Julia M Stephen, John C Adair, Janice E Knoefel, and Selma
Supek. Meg biomarker of alzheimer’s disease: Absence of a prefrontal generator during auditory
sensory gating. Human Brain Mapping, 38(10):5180–5194, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma and Max Welling. An introduction to variational autoencoders. arXiv preprint
arXiv:1906.02691, 2019.

Zeb Kurth-Nelson, Gareth Barnes, Dino Sejdinovic, Ray Dolan, and Peter Dayan. Temporal struc-
ture in associative retrieval. Elife, 4:e04919, 2015.
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A APPENDIX

A.1 PRIOR WORK

The usage of sliding windows used to be the predominant technique for studying neural dynamics.
This technique (and other methods that build upon it) is, however, limited by the necessity of manu-
ally specifying the temporal window, i.e., the time scale at which the neural activities of interest take
place (Hindriks et al., 2016). This manual specification usually needs to deal with the critical trade-
off in two conflicting criteria: the time window being too long leads to missing fast dynamics and
the time window being too short leads to insufficient data for making reliable network estimation.

An alternative approach that overcomes the shortcomings of sliding windows is the usage of gener-
ative models such as HMM-based models which can describe neural activity as a dynamic sequence
of discrete brain states where each state is characterized by distinct network activity patterns. An
HMM can be trained in an unsupervised way, and the learned state sequence of the HMM can be
connected to task timings post-hoc to reveal task-induced neural dynamics (Vidaurre et al., 2016).
However, HMM-based models are limited by the Markov assumption that the activation of states at
a particular time point only depends on the activation of states at the previous time point. This disre-
gards the rich dynamic courses that states undergo to arrive at a particular probabilistic configuration
at a given moment of time.

As described in Gohil et al. (2022), DyNeMo was designed to overcome the shortcomings of HMM-
based models.

A.2 MODEL ARCHITECTURES AND TRAINING

Table 2: Architectures of DyNeMoC Models

DyNeMoC
RNN-Small

DyNeMoC
RNN-Large

DyNeMoC
Transformer

Encoder - Network Type LSTM LSTM BERT
Encoder - Hidden Size 128 416 128

Encoder - Layers 1 2 1
Encoder - Attention Heads 1

Prior Network - Network Type LSTM LSTM GPT2
Prior Network - Hidden Size 128 416 64

Prior Network - Layers 1 2 1
Prior Network - Attention Heads 1

MLP - Hidden Size 1024 1024 1024
MLP - Layers 2 2 2

MLP - Dropout 0.5 0.5 0.9
Total # of Parameters 2.1M 9.8M 9.2M
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In all our experiments, we fixed the number of latent states to 20 and trained all the models three
times for 200 epochs (of which the first 100 had tanh KL annealing (Fu et al., 2019)). Moreover,
we used the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 1e-3 and set the batch
size to 64. The rest of the hyperparameters were the same as in Gohil et al. (2022).

A.3 CHOOSING THE VALUE OF CROSS-ENTROPY COEFFICIENT

To select the appropriate value for the cross-entropy coefficient wc, we trained DyNeMoC-RNN-
Small on the 1st subject with wc ranging between 1 to 106. As shown in Table 3, the validation
accuracy became competitive from wc = 103 onward and was the highest at wc = 104. This made
sense as the free energy term in the loss function of DyNeMoC was also in the order of 104.

Table 3: Classification accuracies of DyNeMoC-RNN-Small for different values of
wc on the validation set of the 1st subject

wc 100 101 102 103 104 105 106

Accuracy 0.030 0.041 0.068 0.311 0.379 0.351 0.324

Hence, we set wc to 104 in all of our experiments.

A.4 ADDITIONAL RESULTS

Table 4: Classification accuracies on the test sets of different subjects

Subject SVM
Baseline

MLP
Baseline

DyNeMo
RNN-Small

+
MLP

DyNeMo
RNN-Large

+
MLP

DyNeMo
Transformer

+
MLP

DyNeMoC
RNN-Small

DyNeMoC
RNN-Large

DyNeMoC
Transformer

1 0.257 0.261 0.060 0.062 0.075 0.359 0.368 0.520
2 0.136 0.116 0.078 0.037 0.063 0.186 0.187 0.273
3 0.066 0.061 0.030 0.016 0.027 0.049 0.064 0.056
4 0.311 0.326 0.112 0.049 0.065 0.520 0.504 0.668
5 0.521 0.576 0.230 0.156 0.139 0.687 0.691 0.820
6 0.248 0.288 0.091 0.067 0.094 0.388 0.413 0.568
7 0.307 0.334 0.165 0.124 0.137 0.498 0.521 0.668
8 0.121 0.154 0.032 0.063 0.034 0.145 0.158 0.192
9 0.275 0.294 0.068 0.046 0.046 0.415 0.415 0.559
10 0.182 0.234 0.121 0.101 0.044 0.324 0.308 0.438
11 0.117 0.163 0.024 0.028 0.028 0.168 0.210 0.274
12 0.074 0.080 0.016 0.012 0.004 0.087 0.095 0.117
13 0.036 0.042 0.013 0.018 0.009 0.051 0.049 0.057
14 0.184 0.177 0.048 0.018 0.046 0.313 0.352 0.458
15 0.133 0.110 0.023 0.038 0.037 0.169 0.180 0.256

Mean (Std. Err.) 0.20 (0.04) 0.21 (0.05) 0.07 (0.02) 0.06 (0.02) 0.06 (0.01) 0.29 (0.07) 0.30 (0.07) 0.40 (0.09)
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