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Abstract

We resolve the main challenge of federated bandit policy design via exploration-exploitation
trade-off delineation under data decentralization with a local privacy protection argument.
Such a challenge is practical in domain-specific applications and admits another layer of
complexity in applications of medical decision-making and web marketing, where high-
dimensional decision contexts are sensitive but important to inform decision-making. Exist-
ing (low dimensional) federated bandits suffer super-linear theoretical regret upper bound
in high-dimensional scenarios and are at risk of client information leakage due to their in-
ability to separate exploration from exploitation. This paper proposes a class of bandit
policy design, termed Fedego Lasso, to complete the task of federated high-dimensional
online decision-making with sub-linear theoretical regret and local client privacy argument.
Fedego Lasso relies on a novel multi-client teamwork-selfish bandit policy design to per-
form decentralized collaborative exploration and federated egocentric exploration with log-
arithmic communication costs. Experiments demonstrate the effectiveness of the proposed
algorithms on both synthetic and real-world datasets.

1 Introduction

Federated bandits (Huang et al., 2021; Dubey & Pentland, 2020) is an emerging setting of decentralized
sequential decision making that emphasizes on collaborate bandit learning and data decentralized decision
making. Designing effective decentralized sequential decision making strategies requires resolving the fun-
damental exploration-exploitation trade-off under data decentralization with local privacy protection, that is,
clients do not submit their raw data in any circumstance and one client should not have any chance to infer
decision rule of another client based on shared information. In principle, clients in collaborate bandit learn-
ing stage should be coordinated to explore available actions and gain information to inform future decision
making. In decentralized decision making stage, one client’s decision should not depend on other client’s
information to avoid risk of indirect information leakage. Thus, coordinate exploration and privacy protected
exploitation are central challenges in federated version of exploration-exploitation trade-off. However, such
trade-off admits another layer of complexity in the presence of high-dimensional decision context, especially
in applications of medical decision making or web marketing (Bastani & Bayati, 2020). Consequently, fed-
erated high-dimensional decision making problems lead challenges on both learning and decision making.
On learning, the agent should adopt estimation method to handle high-dimensional context with designing
smart sampling scheme; on decision making, the agent should only utilize local clients information to give
final decision to meet the purpose of federation. As a result, designing a bandit sampling scheme smartly is
the key to minimize the regret while protect local client privacy with data decentralization.
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Table 1: Regret guarantee comparison for federated bandit with linear feedback functions. M : number of
clients; K : number of arms; T : time horizon; d : dimension of the decision context.

Bandit algorithms Regret (High-d d = O(T ) ) Communication cost
Centralized (Dimakopoulou et al. (2017)) O(T

√
KM log3(KMT )) O(Md2KT )

Decentralized (Amani & Thrampoulidis (2020)) O(T 3/2
√
M log(MT )) O(dM2)

Fed-PE (Huang et al. (2021)) O(T
√
KM log(KMT )) O

(
Md2K log T

)
Async-LinUCB (Li & Wang (2021)) O(T 3/2(log T )2) O(dM log T )
Byzantine-Robust (Jadbabaie et al. (2022)) O(T 7/4M) O(T 1/2)
Lasso Bandit(Bastani & Bayati (2020)) O((logM + log T )2Ks2

0) No communication
Teamwork Lasso (Wang & Cheng (2020)) O(M(log T )2Ks2

0) O(KMd log2(T/Kq))
Fedego Lasso(This work) O((logM) (log T )2

Ks2
0) O(KMd log2(T/Kq))

Existing works on federated bandits (Huang et al., 2021; Li & Wang, 2021; Jadbabaie et al., 2022), un-
fortunately, only protect the local privacy of data but not the local privacy of ‘information’. That is, one
client’s decision making, in current arts of federated bandits, are using other client’s information. While
their method protect local data privacy, they share the resulting information freely to inform collaborate
decision making at the risk of indirect information leakage. More frequent the clients communicate with the
central server, more risk on indirect information leakage. Such risk of information leakage is from the Upper
Confidence Bound (UCB) approach (Auer, 2002; Li et al., 2010) utilized in current federated bandits works.
The reason is that the UCB approach cannot handle exploration and exploitation separately. In addition,
Table 1 shows that existing federated (low-dimensional) bandit works suffer super-linear regret in the region
of high-dimensional scenario, where the decision horizon T scales with the decision context dimension d, i.e.
T = O(d) Bastani & Bayati (2020).

To avoid super-linear regret in the high-dimensional scenario require rethinking on exploration and exploita-
tion. Our strategy is to design the decision making policy with (i) decentralized collaborative exploration
and (ii) federated egocentric exploitation. In (i), we coordinate all clients to commit same decision no matter
their current decision context to study that decision’s efficacy. Such coordination prevents leakage of deci-
sion information and results in decentralized collaborative exploration. In (ii), we allow clients to commit
their own reward-maximizing decision to minimize the regret. Such selfish decision protect client decision
information and results in federated egocentric exploitation.

Major Contributions. We deliver a novel architecture for federated high-dimensional online decision
making and associated algorithms. Following that, we highlight our major contributions. (i) Fedego Lasso
Algorithm. Federated-egocentric Lasso algorithm (Fedego Lasso) exploits Lasso regression to learn sparse
local reward models and to inform future decision without compromising local data privacy. In particular,
it enables each client to compute a personalized, low-dimensional local reward model, which we refer to as
the client private Lasso, that utilizes client’s unique decisions, actions and observations of local data. (ii)
Convergence Rate and Regret bound. We establish convergence results of three type of Lasso estimates
implemented in the proposed Fedego Lasso algorithms (Lemma 3.1, 3.4 and 3.6). Such convergence guar-
antees is not trivial given the non-i.i.d. properties of dataset collected during online decision making process
(Remark 1.2). With these convergence rate results, we establish a theoretical regret upper bound (Theorem
3.7) for the algorithm performance of Fedego Lasso. (iii) Empirical Results. Through a combination
of synthetic and real datasets (PharmGKB, Medical MNIST) we show the benefits of Fedego Lasso in (a)
benefits of federation architecture and (b) benefits of recruiting more clients on further regret reduction and
faster error rate convergence in real-world tasks including personalize dosage searching and medical image
labeling.

Benefits of Fedego Lasso. We list benefits of Fedego Lasso over standard linear contextual bandit
learning (that learns a single reward model with no central server to share and no high dimensional decision
context). (I) More efficient, effective and secure decision making procedure. By sharing the online-learned
Lasso regression, each client can make more efficient and effective local updates at each communication
round. Such update is beneficial in committing its own individual decision making. Besides, our federation
architecture reduce the risks of indirect data leakage or inverse decision rule recovery. This is unlike standard
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linear contextual bandit learning where in a heterogeneous setting requires several rounds of model updates
to recover oracle policy, and thus hurts performance. (II) Provable federation architecture for online decision
making with high-dimensional decision context. Existing works on linear contextual bandit-based online
decision making with high-dimensional decision context focus on the effect of sparsity-inspired methods
on explore-exploit trade-off. Current state of related literature does not have work designing federation
architecture to further facilitate explore-exploit trade-off in bandit learning. To our knowledge, this is the
first provable federation architecture for online decision making with high-dimensional decision context that
demonstrates the benefit of cooperation.

3 Key Enhancements in Practical Applicability of Fedego Lasso over Teamwork Lasso and Lasso
Bandit. Compared to Teamwork Lasso in Wang & Cheng (2020) and Lasso Bandit in Bastani & Bayati
(2020), our Fedego Lasso bridges the gap between data privacy restrictions and the need for effective decision
making in joint data utilization scenarios. The first is to allow data sharing in multi-institutional contexts.
While Teamwork Lasso assumes "complete data sharing" scenario, which is not the case in reality, Fedego
Lasso enhances data sharing by allowing clients keeping their data in house and only share the regression
coefficients to do joint decision making. The second is to address privacy concerns from federation. The policy
in Lasso Bandit and Fedego Lasso are infeasible in healthcare field due to the restriction from HIPAA
regulations, which prevents client to share their data directly to the third party(e.g. central server). Our
Fedego Lasso are HIPAA-compliant, since we only share the regression coefficient but not the original data
to the third party. The last enhancement is to enable privacy compliant joint decision making. Both Lasso
Bandit and Fedego Lasso neglects privacy regulation on data usage, leading risk of violating HIPPA law.
We design the policy of Fedego Lasso to align the modern data sharing standard, making our algorithms
with broader applicability in reality.

Technical advancements on Lasso Bandit and Teamwork Lasso. Here we discuss our technical
advancements on extending the theoretical analysis in Lasso Bandit and Teamwork Lasso to secure loga-
rithm expected regret in federated learning case. The first technical contribution is a finer control on the
convergence rate of the federated Lasso β̂] ( equation 5), c.f. Lemma 3.4. This relies on redefining the "good
event" in the federated learning case to ensure the probability bound on the "bad event" is independent of the
number of client M . Such independence builds on a right lower bound (c.f. equation 3) on the phase length
q such that the aggregated estimate β̂] to have non-asymptotic convergence rate of order O(1/M). Another
key technical contribution is a finer control the convergence rate of the egoistic Lasso β̂[ (equation 6) such
that the contributions to regret is of order O(log T ). This relies on finding a right regularization level for the
Lasso procedure to make sure the non-asymptotic convergence rate of β̂[ is of O(1/M) order, c.f. Lemma
3.6. In conclusion, we refine the proof on the non-asymptotic convergence rate on the Lasso procedure in
Lasso Bandit and Teamwork Lasso such that the final regret of Fedego Lasso secure logarithmatic regret.

1.1 Related works

Federated bandits. Recent works have called attention to the topic of federated bandits. Shi et al.
(2021) examine efficient client-server communication and coordination methods for federated MAB with
personalization, using heterogeneous reward distributions at local clients. Zhu et al. (2021); Li et al. (2020);
Dubey & Pentland (2020) discuss how to protect local data privacy in federated bandits via differential
privacy. Unfortunately, existing methods to solve federated linear contextual bandit suffer super-linear regret
in high-dimensional scenario (d = O(T )), since their cumulative regret scales linearly in context dimension
d (Table 1). Our work advances these prior efforts by relaxing low dimension reward model assumptions to
the case with high-dimensional decision context.

Lasso bandits. Bastani & Bayati (2020) first introduced linear contextual bandit with high-dimensional
covariate and proposed the Lasso bandit algorithm. Follow-up works such as Wang et al. (2018) and Wang
& Cheng (2020) improved the regret bounds and extended it to different problems. In contrast, another line
of literature (Kim & Paik, 2019; Hao et al., 2020; Oh et al., 2021; Li et al., 2022) proposed different style
of algorithms for solving high dimensional bandit problems. However, these efforts consider a completely
different bandit problems where K contexts are observed at each round and only one underlying parameter
β is present for all arms. One way to possibly transfer results in Bastani & Bayati (2020) and its follow
ups into the other line of research, and compare them, is to concatenate all the parameter βk’s for different
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arms into one long vector β̃ (see notations in Section 1.2), and assume that the K contexts generated in
each round are always “one-hot” with the same feature for all the arms. Our works advances the setting
in Bastani & Bayati (2020) by designing federation architecture to ensure local data privacy security while
delineating explore-exploit tradeoff in online decision making with high-dimenstional decision context.

Comparison with Teamwork Lasso Bandit in Wang & Cheng (2020). Our bandit sampling policy
design (Figure 1) and client-center communication scheme (Figure 2) advances the "alternating two stage"
design in Wang & Cheng (2020) in the regard of client privacy protection. Previous work Wang & Cheng
(2020) on batch decision making also solves the federated decision making problem in this paper, by setting
their Teamwork Lasso Bandit with a batch of clients. However, such approach requires all clients share
their raw data to server to train a central Lasso to inform decision, while our Fedego Lasso allows clients
keep their data, only share their individual Lasso estimates, and use aggregated Lasso to inform decision.
Such fundamental difference of our Fedego Lasso advances Teamwork Lasso Bandit in Wang &
Cheng (2020) into a more private exploration and exploitation design. For exploration stage
(Blue; Figure 1), while Wang & Cheng (2020) access all clients’ raw data for a teamwork Lasso estimate, our
Fedego Lasso do not touch client’s raw data but only their individual Lasso estimate for a federated Lasso
estimate (Federation step at Figure 2). For exploitation stage (Red; Figure 1), while Wang & Cheng (2020)
access all clients’ raw data for a selfish Lasso estimate, our Fedego Lasso allows clients to do egocentric
decision by keeping their local estimate private and do not share to center or other clients. While Wang &
Cheng (2020) raise algorithmic privacy concerns in the scope of federated decision making, our work makes
contributions to federated high-dimensional decision making problems.
1.2 Notations and basic problem formulation
Here we give problem formulation and define the bandit algorithms regret and the Lasso estimator.

Federated high-dimensional online decision making problems. We investigate a federated linear
contextual bandits scenario in which M clients are pulling the same set of K arms, represented by [K] :=
1, 2, . . . ,K. Each client m ∈ [M ] at each time t ∈ [T ] pulls an arm k ∈ [K] based on historical information.
The expected reward of pulling arm k at decision context x is the inner product 〈x, βk〉 between x and the
reward parameter βk. Additionally, there is a sparsity parameter s0 ∈ [d], defined as the smallest integer
such that for all k ∈ [K], ‖βk‖0 ≤ s0.
Regret of bandit algorithms π. A bandit algorithm π of client m pulls arm π

(m)
t at decision step t. The

objective is to design bandit algorithms π that minimizes the expected cumulative regret among all clients,
defined as: Regret(T ) = E

[∑M
m=1

∑T
t=1

(〈
x

(m)
t , β

k
(m),∗
t

− β
π

(m)
t

〉)]
, where k(m),∗

t ∈ [K] is a context-specific

optimal arm such that : ∀l 6= k
(m),∗
t , 〈x(m)

t , β
k

(m),∗
t
〉 ≥ 〈x(m)

t , βl〉.

In this work, we approach the above federated high-dimensional online decision making problems with LASSO
regressions.
Definition 1.1. (Lasso regression estimator) Given a dataset D = {(X,Y )}, where Y is a |D|-dimension
response vector andX is a |D|×d decision context matrix from the dataset D. The Lasso regression estimator
with regularization level λ ≥ 0 is defined as

β̂ (D, λ) ≡ arg min
β

{
|Y −Xβ‖2

2/|D|+ λ‖β‖1
}
. (1)

Remark 1.2. (Non-i.i.d. properties of dataset D.) Due to the nature of online decision making, the
Lasso estimate is trained on datasets D that cannot satisfy typical distributional (or i.i.d.) assumptions in
the literature of federated learning. The key reason is that the decision at certain time steps are depend-
ing on previous history, leading to dependency between decision and historical data. Therefore, standard
convergence theory is not applicable for analyzing Lasso trained on the dataset D. Fortunately, it is still
possible to analyze and design the statistical properties of the trained Lasso estimate if we carefully design
the bandit policy to coordinate the exploration across clients and exploitation within clients during whole
online decision making process. See Figure 1 and Section 3.1 for bandit sampling design and Section 3.2 for
formal convergence results of trained Lasso estimates.
Remark 1.3. (One the usefulness of Lasso regression estimate) We use Lasso since our application is in
e-commerce and medical setting. In such setting, the context vector is often high-dimensional, but only
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Client 1

Client m

Client M

…

…

…
Figure 1: Centralized teamwork-selfish sampling policy. In the teamwork stage (Blue), all clients pull
prescribed arms, no matter the current decision context, to form collaborate exploration for a quick recovery
of arm reward parameters. In the selfish stage (Red), all clients pull the arm with highest estimated reward
for current decision context to form egocentric exploitation for maximizing their own cumulative reward.
Each stage has length Kq, where K is number of arm and q is the teamwork unit length (See Section 3.1 for
details.)
few number of variable are decisive. Lasso captures such property by assuming the sparse structure of the
regression coefficients. With such sparsity structure of regression coefficient, we leverage the technique in
high-dimensional statistic in our theory (Theorem 3.7). The Lasso bandit Bastani & Bayati (2020) paper
explains that in medical applications, we might want to identify a small number of biomarkers that are
associated with a certain disease. In e-commerce applications, we might want to select a small number
of features that are relevant for predicting user behavior. Both of these problems can be formulated as
a sparse linear regression problem, where we want to minimize the number of non-zero coefficients in the
regression model. Lasso is particularly useful in these cases because it performs both feature selection and
regularization simultaneously. By penalizing the L1 norm of the regression coefficients, Lasso encourages
sparsity and tends to produce models with a small number of non-zero coefficients. This can lead to better
generalization performance and easier interpretability of the resulting model. Therefore, the motivation for
using Lasso is to take advantage of its ability to perform feature selection and regularization simultaneously,
which is particularly useful for applications where sparsity is assumed.

2 Federated online decision making
This section elaborates a horizontal federated learning (as defined in Yang et al. (2019)) version of bandit
problems with high-dimensional decision context and linear arm rewards (as introduced by Bastani & Bayati
(2020) and others). The three main challenges arise from federated contextual bandits are (A) Model local
dataset heterogeneity. (B) Tighten local data and decision rule privacy security. (C) Coordinate efficient
central communication. Section 2.1 established our framework to resolve these challenges.
2.1 Resolution to federated high-dimensional bandit challenges
A. Client local bandit models for local dataset heterogeneity. To account for the intrinsic correlation
between rewards associated with different clients pulling the same arm, we assume the local bandit model of
client m that the expected reward of pulling arm k is a linear function of the decision context xt; formally,

r(xt) ≡ 〈βk, xt〉+ ε
(m)
t . (2)

The parameter βk ∈ Rd is a constant but unknown vector for each arm k ∈ [K]. The noise process
{(ε(m)

t ,F (m)
t )}t∈[T ] is assumed to be a σ−subGaussian martingale difference sequence (that is, E[ε(m)

t |
F (m)
t−1 ] = 0 andE[exp(λε(m)

t )|F (m)
t−1 ] ≤ exp(σ2λ2/2) for all real λ). See Section 2.2 for essential statistical

regularity assumptions for analyzing federated contextual bandit algorithms. The local dataset heterogeneity
is depicted naturally by the local bandit model equation 2, since clients have their own decision context
sequence {x(m)

t }Tt=1, resulting heterogeneous reward distributions.

B. Federation with decision rule hiding to tighten local privacy security. Our proposal to resolve
local data privacy dilemma is via Teamwork-Selfish sampling policy (Figure 1). By local data privacy, we
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meant that one client should not have any chance to infer decision rule of another client based on shared
information. To protect local data privacy, we design federation architecture and hide clients’ decision rules
from central server. Our approach, in the spirit of the doubling trick (Besson & Kaufmann, 2018), do not
require the agents to share to the server their datasets, no matter the datasetes are collected from Teamwork
mode or Selfish mode. The only information to share is the Lasso estimates trained on datasets collected
during Teamwork mode at certain pre-specified decision points. Thus, the Teamwork-Selfish bandit policy
resolves the local data privacy security challenge.

C. Horizontal federation to coordinate efficient communication. In horizontal federated-learning
system, M clients with same online decision making task collaboratively learn a model with the help of
server. We resolve explore-exploit dilemma via client-center communication protocol (Figure 2), established
at Section 3.3. In our scheme, each client trains two Lasso estimates, one from Teamwork dataset (for
exploration) and the other from Teamwork-Selfish aggregation dataset (for exploitation). Our strategy is to
introduce two different modes for agent: Teamwork mode and Selfish mode. Clients only upload their Lasso
estimates at the end of the Teamwork mode, thus the communication cost is log(T/Kq). Our approach,
which in spirit is an applications of horizontal federated learning architecture (Yang et al., 2019), coordinates
efficient communication between clients and center to perform near-optimal decision making and achieve
logarithmic regret performance. Consequently, the communication protocol (Figure 2) resolves the local
data privacy security challenge.

2.2 Statistical Regularity Conditions
In section 2.2, we list essential statistical regularity assumptions towards convergence rate analysis of Lasso
regression estimator (Definition 1.1) and regret analysis of algorithms. We note that these assumptions are
standard in the literature of high-dimensional decision making (Bastani & Bayati, 2020).
Assumption 2.1. For all clients m ∈ [M ], there exists C0 ≥ 0 such that for arms k1 6= k2 in A, the
distribution of decision context X satisfy P(|〈X,β(m)

k1
− β(m)

k2
〉| ∈ (0, κ)) ≤ C0κ for given κ > 0.

Assumption 2.1 is known as Margin Condition in the classification literature Tsybakov et al. (2004). Such
condition ensures only a minor fraction of decision context is sampled near the classification boundary
{x : 〈x, βk1 − βk2〉 = 0} in which efficacy of both arms are indistinguishable (Rusmevichientong & Tsitsiklis,
2010; Wang & Cheng, 2020).
Assumption 2.2. For all clients m ∈ [M ], there exists a optimality gap constant h and two mutually
exclusive arm subsets Aopt and Asub with [K] = Aopt ∪ Asub such that (a) For each arm k in Asub, it holds
for every decision context x ∈ X that 〈βk, x〉 < maxa∈A\{k}〈βa, x〉 − h and (b) For each arm k in Aopt, there
exists a constant p∗ > 0 of minimal sampling probability such that mink∈Aopt P(X ∈ Uk) ≥ Mp∗ where
Uk ≡ {x ∈ X |〈βk, x〉 > maxa∈A\{k}〈βa, x〉 − h}.

Assumption 2.2 is known as the Arm Optimality Condition (Bastani & Bayati, 2020; Wang & Cheng, 2020).
Such condition separates arms into an optimal subset Aopt and a suboptimal subset Asub, in the sense that (a)
all sub-optimal arms are strictly sub-optimal for every decision context and (b) each optimal arm k ∈ Aopt

is strictly optimal for some decision context ( Uk at Assumption 2.2).
Assumption 2.3. For a client m, there exists a constant φ0 > 0 such that for each optimal arm k ∈ Aopt,
its population covariance matrix Σk ≡ E[XX>|X ∈ Uk] belongs to the compatibility set with respect to the
true parameter βk. That is, Σk ∈ C(supp(βk), φ0), where

C(I, φ) ≡
{
A ∈ Rp×p�0 | ∀v ∈ Rp ‖vI‖2

1 ≤ |I|(v
>Av)/φ2 if ‖vIc‖1 ≤ 3 ‖vI‖1} .

Assumption 2.3 is referred to as the Compatibility Condition in high-dimensional statistics (Bühlmann &
Van De Geer, 2011). It ensures that the Lasso regression estimator trained on samples X ∈ Uk converges to
the true parameter βk with high probability as the number of samples grows to infinity.

3 Fedego Lasso algorithms
Algorithm 1 presents our solutions, the Fedego Lasso bandit algorithms, to the federated online decision
making problems established at Section 2. There are 3 key components in our design of Fedego Lasso algo-
rithms: the teamwork-selfish bandit sampling strategy (Figure 1), the clients-central server communication
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protocol (Figure 2) and local data privacy preserving. Section 3.1 establishes the teamwork-selfish bandit
sampling strategy to implement sparsity-award collaborate exploration. Section 3.2 illustrates how Fedego
Lasso protect local clients privacy. Section 3.3 establishes the communication protocol of resulting Lasso
estimates between clients and central server towards optimal regret performance of online decision making
task.

Algorithm 1 Fedego Lasso: client m
Require: Decision horizon T , number of arms K, optimality gap h(m), Teamwork stage T.
for t = 1 · · ·T do

Observe the decision context x(m)
t

if t ∈ T(Teamwork mode) then
π(x(m)

t ) = ColExplore(x(m)
t , t) (Alg 2)

end if
if t /∈ T (Selfish mode) then

K̂ = FedScreen(x(m)
t , {β̂]k,t}Kk=1, h

(m)) (Alg 3; where β̂]k,t is the central federated Lasso estimate
defined at equation 5)

π(x(m)
t ) = EgoCommit(K̂, {β̂[,(m)

k,t }Kk=1) (Alg 4; where {β̂[,(m)
k,t is the private egoistic Lasso estimate

defined at equation 6)
end if
Pull the arm π(x(m)

t ), receive reward r(m)
t .

end for
Return: Cumulative reward R(T ) =

∑T
t=1 r

(m)
t .

3.1 Teamwork-Selfish bandit sampling

This section presents the three key elements implementing the teamwork-selfish bandit sampling strategy
(Figure 1): sampling mode, resulting datasets and their Lasso estimates.

Sampling modes: Teamwork and Selfish. Every local client agent has two sampling modes: Teamwork
mode (Blue block in Figure 1) and Selfish mode (Red block in Figure 1). In the Teamwork mode, all clients
runs collaborate exploration, aiming at a quick recover of the arm reward parameter set {βk}Kk=1. In Selfish
mode, clients run egocentric exploitation individually, aiming at an optimal decision for their own current
decision context. The design of alternating sampling guarantees the convergence of Lasso while optimizing
algorithm performance.

Datasets: teamwork set T and selfish set S. Every local client agent maintains two datasets: teamwork
dataset T and selfish dataset S. In general, datasets T (m) and S(m) collect samples from Teamwork and
Selfish mode respective for the client m. In particular, notations T (m)

[t],k and S(m)
[t],k denote the teamwork and

selfish dataset respectively from pulling arm k during decision period [t] = {1, 2, · · · , t}. Such maintenance is
to separate the data source. Technically, the teamwork set’s decision is public due to agreement of all clients.
The selfish set’s decision is private and only accessible by the client itself. Theoretically, the teamwork set’s
samples are independently distributed since in which the decisions are independent of the previous history,
while in selfish set the samples are dependent since the decisions are dependent on the history.

Estimates: teamwork Lasso β̂] and private Lasso β̂[ Every local client agent maintains two Lasso
estimates: client teamwork Lasso and local private Lasso. In principle, the client teamwork Lasso β̂] = β̂(T )
is from running Lasso regression (Definition 1.1) on the Teamwork dataset; in contrast, local private Lasso
β̂[ = β̂(T ∪ S) is trained on the aggregation dataset of Teamwork and Selfish set. Such maintenance is to
to separate federation and decision making. In Fedego Lasso algorithm, all local clients upload their client
teamwork Lasso to central server at the end of each Teamwork mode to facilitate federation. At each decision
step in Selfish mode, all clients commit final decisions based on local private Lasso estimate.
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3.2 Decision rules in Teamwork and Selfish mode
This section presents the three key subroutines implemented in the Fedego Lasso bandit algorithms (Algo-
rithm 1): collaborate exploration (Algorithm 2), federated screening (Algorithm 3) and egocentric commit-
ment (Algorithm 4).

A. ColExplore: Collaborate exploration

Here we introduce 3 key quantities in the Collaborate exploration stage in Algorithm 1. The phase length q
determines the block size of each stage in Figure 1, reflecting the communication frequency. The Teamwork
stage T is the teamwork stage (blue block) in Figure 1, in which the decision in this stage only depends on
the timestamp but not depends on previous response history. Last, the sample collected at the teamwork
stage is used to learn the Lasso regression coefficient for each client and to be shared to the central server.

Algorithm 2 ColExplore(x, t)
Input: decision context x, decision step t
Output: π(x) ≡ (t mod K)

A.(1)Phase length q. A key technical challenge is to determine the phase length q to ensure Lasso estimator
convergence is fast enough to informal optimal decision making.

q ≥ qteamwork ≡ max{ 20
Mp∗

,
4C2(φ1)2

Mp∗
,

512x2
max log d

C1(φ)M2p2
∗h

2 }(4 + logM) (3)

A.(2) Planning of Teamwork stage T. Each block in Figure 1 contains Kq decision steps. The planning of
teamwork stage is T = ∪blog2(T/Kq)c

n=1 Tn, where the nth Teamwork stage is

Tn = [(2n − 1)Kq + 1 : 2nKq].

A.(3) Client teamwork Lasso. The client teamwork Lasso for client m at time step t is defined by running
Lasso regression (Definition 1.1) in the teamwork dataset T (m)

[t],k ; formally,

β̂
],(m)
k,t ≡ β̂(T (m)

[t],k , λ1). (4)

Lemma 3.1 justifies the convergence of client teamwork Lasso equation 4.
Lemma 3.1. (Deviation inequality of client teamwork Lasso) For all arms k ∈ [K], the client teamwork
Lasso estimate equation 4 satisfies

P
(
‖β̂],(m)

k,t − βk‖1 > h/4xmax

)
≤ 5/Mt4

if λ(m)
1 = φ2

0Mp∗h/64s0xmax and q ≥ qteamwork.

Proof. See Section A. Lemma 3.1 generalizes the forced sampled Lasso in Bastani & Bayati (2020) into
horizontal federated learning scheme. The key difference is to redefine the length of exploration qteamwork
to ensure faster concentration. Finding qteamwork is non-trivial due to the centralized exploration scheme.
Our found solution is to inflate the length of exploration by a logM factor, that is, qteamwork = O(q0 logM),
where q0 is the exploration length in Bastani & Bayati (2020).
Remark 3.2. (On the concern of the situation that a proportion of clients explore the same arms) In current
design of Collaborate exploration scheme, a subset of customers may keep exploring the same arms. Such
possibility raise concerns on fairness of the decision making procedure. In particular, it is challenging to
ensure fairness in the allocation of experimental resources. These customers may miss the opportunity to
try their best arm, bearing the experimental costs for joint research. To address this issue, a significant
challenge we anticipate is to "define a regret formulation that sufficiently reflects decision fairness." Are there
minority groups among the clients? How can we ensure that the results of joint decision-making benefit
everyone instead of some clients bearing the costs while others enjoy the outcomes? These are non-trivial
questions and challenges we expect to encounter.
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B. FedScreen: Federated screening.

At each time step in Selfish mode, the client screen available arms with central federated Lasso. In this
stage, the goal of Algorithm 3 is to screen out sub-optimal arms for a given decision context. The screening is
based on the central federated Lasso regression estimate equation 5, whose statistical accuracy is supported
by Lemma 3.4. After the screening, we are sure that the remaining candidate arms are located in the Aopt
in Assumption 2.2 and contribute at most h in the formal regret.

Algorithm 3 FedScreen(x, {β̂k}Kk=1, h)
Input: decision context x, federated estimates {β̂k}Kk=1 (central federated Lasso estimate equation 5),
optimality gap h
Output: the candidate set K̂(x) ≡ {k ∈ A : 〈x, β̂k〉 ≥ maxl∈A〈x, β̂l〉 − h/2}

Central federated Lasso. After receiving all clients’ teamwork Lasso estimates, the central server performs
federation by computing the central federated Lasso. The central federated Lasso for arm k at decision step
t is defined as the average of all client Teamwork Lasso estimates; formally

β̂]k,t ≡
1
M

M∑
m=1

β̂
],(m)
k,t . (5)

Remark 3.3. Note that the central federated Lasso is the average of teamwork Lasso estimates, which are
trained on i.i.d. samples, and therefore has convergence guarantees. Such analytical advantage is due to our
policy design that all agents explore the efficacy of pre-specified arms during Teamwork mode (Blue block
in Figure 1).
Lemma 3.4. For all arms k ∈ [K], if t ≥ (Kq)2, the central federated Lasso estimate equation 5 satisfies

P
(
‖β̂]k,t − βk‖1 > h(m)/4xmax

)
≤ 5/t4.

Proof. See Section B. The key is due to our tighter control of client teamwork Lasso (Lemma 3.1). Such
control ensure the deviation probability of equation 5 is independent of client number M .
Remark 3.5. One can directly apply force estimator deviation inequality in Bastani & Bayati (2020), but
the resulting deviation probability will depends on client number M due to union bound. Our technical
contribution is to remove such dependency on M by inflating the exploration length by logM factor.

C. EgoCommit: Egocentric commitment

Given the resulted set of optimal arm candidates K̂(x(m)
t ) for decision context x(m)

t from the federated
screening (Algorithm 3), the client agent m commits to the arm with the highest estimated expected reward
estimated by the private egocentric Lasso equation 6.

Algorithm 4 EgoCommit(K̂(x), {β̂k}Kk=1)
Input: candidate set K̂(x), decision context x, private estimates {β̂k}Kk=1 (private egoistic Lasso estimate
equation 6)
Output: π(x) ≡ arg maxk∈K̂(x)〈x, β̂k〉

Private egoistic Lasso. The private egoistic Lasso for client m at time step t is defined by running Lasso
regression (Definition 1.1) in the teamwork-selfish aggregate dataset T (m)

[t],k ∪ S
(m)
[t],k; formally,

β̂
[,(m)
k,t ≡ β̂

(
T (m)

[t],k ∪ S[t],k, λ
(m)
2,t

)
. (6)

Lemma 3.6 justifies the convergence of private egoistic Lasso equation 6.
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k=1
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{ ̂β♯
k,t}K

k=1
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{ ̂β♯
k,t}K

k=1

Central Federated  
Lasso
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{ ̂β♯
k,t ≡ 1

M

M

∑
m=1

̂β♯,(m)
k,t }K

k=1

Figure 2: Federated client-center communication. At the end of each Teamwork stage (Blue block in Figure
1), all clients uploads their current teamwork Lasso estimate (defined at equation 4) to the central server.
Then, the central server perform federation to compute the federated Lasso estimates (defined at equation 5).
Last, the central server broadcast the federated Lasso estimates to all clients for their upcoming federated
screening procedure in the Selfish stage (Red block in Figure 1) .

Lemma 3.6. For all optimal arms k ∈ Aopt, set λ(m)
2,t = φ2

0
32s0

√
M log dMt
C1(φ0)p∗t

and t ≥ C5. Then, the private
egocentric Lasso estimate equation 6 satisfies

P(‖β̂[,(m)
k,t − βk‖1 > 16

√
(log dMt)/(p3

∗C1 (φ0)Mt))
≤ 2((Mt)−1 + exp(−p2

∗C
2
2M

2t/32)).

Proof. See Section C. The key is to refine the estimation error of Lasso estimator.

3.3 Clients-Central Server Communication
Figure 2 presents the three key events in the clients-central server communication protocol: upload, federation
and broadcast. In the following we discuss the contribution of such horizontal federated learning architecture
to bandit learning and local data privacy security.

Upload: Clients upload local teamwork Lasso to server. At the end of each round of the Teamwork
mode, all clients upload their current client Teamwork Lasso estimates equation 4 to the central server
to facilitate the federation. The local teamwork Lasso have difference convergence level due to local data
heterogeneity. The collaborate exploration between clients in Teamwork mode ensuring decisions of a client
will not compromise to the other client. Such advantage is due to design of Teamwork-Selfish sampling
strategy, all clients do experiment for collaborate exploration during Teamwork mode.

Federation: Server compute central federated Lasso. The central sever do averaging to mitigate
statistical error of received teamwork Lasso estimates. The outcome estimate is called central federated
Lasso (defined at equation 5). The federation event helps security by ensuring internal potential privacy
leakage from the central server since clients do not upload any dataset but only their local teamwork Lasso
estimates.

Broadcast: Server broadcast federated Lasso to clients. After federation, the central server broad-
casts to clients the central federated Lasso equation 5, helping client to do valid screening procedure to
exclude sub-optimal arms and find out the candidates of optimal arms. Such screening procedure is termed
federated screening and elaborated at Algorithm 3. The broadcast event helps security by the fact that one
client cannot infer other clients’ decisions based on the federated Lasso, since the final decision is based on
private egocentric Lasso (Eq. 6) as in Algorithm 4. Such a feature helps us avoid internal potential privacy
leakage from one client to the other.
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(a) Synthetic Data (b) PharmGKB (c) Medical MNIST

Figure 3: Comparison of the performances of Lasso bandit in Bastani & Bayati (2020), Teamwork Lasso
bandit, and Fedego Lasso bandit algorithms. Fig (a). Average cumulative regrets per client on synthetic
data. Fig (b). Error rates on the PharmGKB dataset. Fig(c). Average cumulative regrets per client on the
Medical MNIST dataset.

(a) Synthetic Data (b) PharmGKB (c) Medical MNIST

Figure 4: The performances when the number of clients increase. Fig (a). Average cumulative regrets per
client on synthetic data. Fig (b). Error rates on the PharmGKB dataset. Fig(c). Average cumulative regrets
per client on the Medical MNIST dataset.

3.4 Communication cost and Regret guarantee of Fedego Lasso

The following theorem bounds the regret of Fedego Lasso bandit algorithm (Algorithm 1).
Theorem 3.7. The communication cost of Fedego Lasso is O(log2(T/Kq)). The regret of Fedego Lasso
bandit algorithms π over decision horizon [T ] satisfies

Regretπ(T ) = O(logM [log T + log d]2)

Proof. See Section D for details. The result supports that Fedego Lasso is the first federated bandit
algorithms (compared to others in Table 1) that secures sub-linear regret in high-dimensional scenario.
Additionally, if we transfer the problem into the setting of Kim & Paik (2019); Hao et al. (2020); Li et al.
(2022) as mentioned in Section 1.1, both regret bounds in their works and our work are logarithmic in the
dimension d. However, their regret bounds are either of order O(

√
T ) or O(T 2/3), while our regret bound

is logarithmic in T and the dimension d. The advantage comes from not only our unique algorithm design,
but also the difference in problem setting and the assumptions in Section 2.2

4 Empirical results
While the theoretical regret analysis (Theorem 3.7) provides worst-case guarantees for Fedego Lasso, we
now examine their performance on a variety of tasks empirically. Examination is conducted using both
synthetic and real-world data.

A. Experiment setup. We compare Fedego Lasso bandit with the vanilla Lasso bandit algorithm in
(Bastani & Bayati, 2020) and the Teamwork Lasso bandit algorithm Wang & Cheng (2020) on the three
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datasets. We run each algorithm for 10 independent trials on each dataset and plot the average results with
two standard deviations. Additional experimental details are provided in Appendix F. (a).Synthetic Data.
The sparse parameters {β(m)

k }Kk=1 for each client is generated from randomly sampled support, and then the
nonzero parameter values are generated from the uniform distribution on [0,1]. The decision context are
drawn randomly from a multivariate normal distribution. (b).Real data: PharmGKB. The first real-world
task is personalized dosage searching. The Pharmacogenomics Knowledge Base (PharmGKB) dataset was
used by Bastani & Bayati (2020) to support the superiority of Lasso bandit over the other bandit algorithms.
We inherit their settings and investigate the error rates of the two algorithms when giving warfarin dosages
based on patient-level decision context such as demographics, diagnosis, and medications. (c).Real data:
Medical MNIST. The second real-world task is to collaborate classification of Medical MNIST images. To
extract the useful features vectors from the medical images, we first train a fully-connected neural network
on the dataset till it reaches good training and testing accuracies. At each round of the bandit problem, an
image is sampled from the dataset and fed into the neural network. The covariates for the bandit algorithms
are the output of an intermediate layer of the neural network. We define the instantaneous regret by whether
the image is correctly classified.

B. Benefits of federation architecture. Figure 3 supports the benefits of federation architecture enjoyed
by the proposed Fedego Lasso over the other baselines. In synthetic data scenario, Fedego Lasso enjoys
substantial regret reduction in Figure 3.(a). In the task of personalized dosage searching, Fedego Lasso
enjoys faster error rate convergence in Figure 3.(b). In the task of medical image labeling, Fedego Lasso
again enjoys substantial regret reduction in Figure 3.(c). These empirical evidences supports the benefits of
the proposed federation architecture.

C. Benefits of large number of clients. Figure 4 supports the benefit of having large number of clients
in federated bandit learning. In the synthetic data and the task of medical image labeling, Fedego Lasso
enjoys further regret reduction by recruiting more clients in bandit learning, as supported by Figure 4.(a)
and (c). In the task of personalized dosage searching, Fedego Lasso with more clients enjoy faster error
rate convergence, as in Figure 4.(b).

5 Conclusion
We build a novel architecture on federated linear contextual bandits model with high-dimensional decision
context. Such architecture delivers a unified federated bandit framework that resolves local dataset het-
erogeneity, local data and decision rule privacy security and explore-exploit tradeoff simultaneously. The
associated algorithm Fedego Lasso utilizes the sparse structure of local bandit models to recover the global
parameters and inform efficient federated exploration with effective egocentric exploitation. Theoretical
analysis supports that Fedego Lasso secures sub-linear regret in the order of O(logM(log T )2) with a com-
munication cost in the order of O(log2(T/Kq)).

References
Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conversions and applica-
tion to sparse stochastic bandits. In Artificial Intelligence and Statistics, pp. 1–9, 2012.

Alekh Agarwal, John Langford, and Chen-Yu Wei. Federated residual learning. arXiv preprint
arXiv:2003.12880, 2020.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem. In
Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings, 2012.

Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In Artificial
intelligence and statistics, pp. 99–107. PMLR, 2013a.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In Inter-
national Conference on Machine Learning, pp. 127–135. PMLR, 2013b.

Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.

12



Published in Transactions on Machine Learning Research (07/2023)

Sanae Amani and Christos Thrampoulidis. Decentralized multi-agent linear bandits with safety constraints.
arXiv preprint arXiv:2012.00314, 2020.

Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-preserving deep learning via
additively homomorphic encryption. IEEE Transactions on Information Forensics and Security, 13(5):
1333–1345, 2017.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2):235–256, 2002.

Hamsa Bastani and Mohsen Bayati. Online decision making with high-dimensional covariates. Operations
Research, 68(1):276–294, 2020.

Lilian Besson and Emilie Kaufmann. What doubling tricks can and can’t do for multi-armed bandits. arXiv
preprint arXiv:1803.06971, 2018.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Machine Learning, 5(1):1–122, 2012.

Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods, theory and applica-
tions. Springer Science & Business Media, 2011.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared representations
for personalized federated learning. arXiv preprint arXiv:2102.07078, 2021.

Maria Dimakopoulou, Susan Athey, and Guido Imbens. Estimation considerations in contextual bandits.
arXiv preprint arXiv:1711.07077, 2017.

Abhimanyu Dubey and Alex Pentland. Differentially-private federated linear bandits. arXiv preprint
arXiv:2010.11425, 2020.

Alexander Goldenshluger and Assaf Zeevi. A linear response bandit problem. Stochastic Systems, 3(1):
230–261, 2013.

Botao Hao, Tor Lattimore, and Mengdi Wang. High-dimensional sparse linear bandits. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Sys-
tems, volume 33, pp. 10753–10763. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/7a006957be65e608e863301eb98e1808-Paper.pdf.

Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits. In Thirty-
Fifth Conference on Neural Information Processing Systems, 2021.

Ali Jadbabaie, Haochuan Li, Jian Qian, and Yi Tian. Byzantine-robust federated linear bandits. arXiv
preprint arXiv:2204.01155, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Gi-Soo Kim and Myunghee Cho Paik. Doubly-robust lasso bandit. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.
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A Proof of Lemma 3.1

The proof strategy is to use Lemma E.1 on the dataset (T (m)
[t],k ). We first prove three lemmas for bounding

probability of bad events. Then we combines these results to gain deviation inequality of Teamwork Lasso
under FedEgo bandit sampling scheme.

The following lemma gives a high-probability lower bound of the optimal allocation rate in the dataset
(T (m)

[t],k ).

Lemma A.1. If t ≥ (Kq)2, the following holds

P
( |(T (m)

[t],k )′|

|(T (m)
[t],k )|

>
Mp∗

2

)
≥ 1− 2

Mt4
. (7)

Proof. Recall a version of the Chernoff inequality: given y a sum of mutually independent indicator random
variables with expectation µ = E[y], one has that P[|y − µ| > µ/2] < 2 exp(−µ/10).

Probability upper bound on the expected optimal allocation number. Consider the indicator of
optimal allocation variable I(a ∈ (T (m)

[t],k )′) for all a ∈ (T (m)
[t],k ). Assumption 2.2 implies that the expected opti-

mal allocation number µ = E[
∑
a∈(T (m)

[t],k
)]I(a ∈ (T (m)

[t],k )′) is at leastMp∗|(T (m)
[t],k )|; that is, µ ≥Mp∗|(T (m)

[t],k )|. In
this case, the Chernoff inequality indicate a high-probability upper bound on the optimal allocation number
|(T (m)

[t],k )′| as

P[|(T (m)
[t],k )′| < Mp∗

2 |(T (m)
[t],k )|] < 2 exp(−Mp∗

10 |(T
(m)

[t],k )|). (8a)

Recall that |(T (m)
[t],k )| ≥ (1/2)q log t. The equation equation 8a becomes

P[|(T (m)
[t],k )′| < Mp∗

2 |(T (m)
[t],k )|] < 2 exp(−Mp∗

20 q log t). (8b)

Require q ≥ 20
Mp∗

(4 + logM). The equation equation 8b becomes

P[|(T (m)
[t],k )′| < Mp∗

2 |(T (m)
[t],k )|] < 2 exp(−(4 log t+ logM)) = 2

Mt4
. (8c)

The following lemma gives the probability upper bound of the failure of compatability condition of sample
covariance matrix on dataset (T (m)

[t],k )′.
Lemma A.2.

P
[
Σ̂((T (m)

[t],k )′) ∈ C
(

supp(β), φ1√
2

)]
≥ 1− 1

Mt4
(9)

Proof. By an application of Lemma EC.6 in Bastani & Bayati (2020), we first have

P
[
Σ̂((T (m)

[t],k )′) ∈ C
(

supp(β), φ1√
2

)]
≥ 1− exp(−C2(φ1)2|(T (m)

[t],k )′|) (10a)

Recall that |(T (m)
[t],k )| ≥ (1/2)q log t. Lemma A.1 indicates that with probability at least 1 = 2/Mt4,

|(T (m)
[t],k )′| ≥ Mp∗

2 |(T (m)
[t],k )| ≥ Mp∗

4 q log t (10b)
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Require q ≥ 4C2(φ1)2

Mp∗
(4 + logM). The equation equation 10a becomes

P
[
Σ̂((T (m)

[t],k )′) /∈ C
(

supp(β), φ1√
2

)]
≤ exp(−(4 log t+ logM)) = 1

Mt4
. (10c)

Lemma A.3. Set λ(m)
1 ≡ φ2

0Mp∗h/64s0xmax. Then we have,

P
(

max
r∈[d]

(
2
∣∣∣ε>X(r)

∣∣∣ /|(T (m)
[t],k )|

)
≤ λ(m)

1 /2
)
≥ 1− 2

Mt4
(11)

Proof. Recall that |(T (m)
[t],k )| ≥ (1/2)q log t. Require q ≥ 512x2

max log d
C1(φ)M2p2

∗h
2 (4 + logM). we have

exp
(
− C1(φ

√
Mp∗
2 )|(T (m)

[t],k )|( h

4xmax
)2 + log d

)
≤ exp

(
− C1(φ)M

2p2
∗

16 · 1
2q log t · h2

16x2
max

+ log d
)

= exp
(
− C1(φ)M2p2

∗h
2

512x2
max

q log t+ log d
)

≤ exp
(
− (4 log t+ logM)

)
= 1
Mt4

Proposition A.4. Given

q ≥ max{ 20
Mp∗

,
4C2(φ1)2

Mp∗
,

512x2
max log d

C1(φ)M2p2
∗h

2 }(4 + logM).

We have

P
(
‖β̂((T (m)

[t],k ), λ1)− βk‖1 >
h

4xmax

)
≤ 5
Mt

. (13)

Proof. Combine the above three lemmas.

P
(
‖β̂((T (m)

[t],k ), λ1)− βk‖1 >
h

4xmax

)
≤P
(

max
r∈[d]

1
|(T (m)

[t],k )|
|ε>X(r)| ≥ λ0(χ,

φ
√
p

2 )
)

+P
(

Σ̂(((T (m)
[t],k ))′) /∈ C(supp(β), φ√

2
)
)

+P
( |((T (m)

[t],k ))′|

|(T (m)
[t],k )|

≤ p

2

)
≤ 2
Mt

+ 1
Mt

+ 2
Mt

= 5
Mt

(14a)
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B Proof of Lemma 3.4

Recall the definition of central federated Lasso equation 5 β̂]k,t ≡ 1
M

∑M
m=1 β̂

],(m)
k,t .

Step 1 Set the size of error χ > 0.

P
(∥∥∥β̂#

k,t − βk
∥∥∥

1
> χ

)
(15)

=P

(∥∥∥∥∥ 1
M

M∑
m=1

β̂
(
T (m)

[t],k , λ
(m)
1

)
− 1
M

M∑
m=1

βk

∥∥∥∥∥
1

> χ

)
(16)

=P

(∥∥∥∥∥ 1
M

M∑
m=1

[β̂
(
T (m)

[t],k , λ
(m)
1

)
− βk]

∥∥∥∥∥
1

> χ

)
(17)

≤P

(
1
M

M∑
m=1

∥∥∥β̂ (T (m)
[t],k , λ

(m)
1

)
− βk

∥∥∥
1
> χ

)
(18)

=P

(
M∑
m=1

∥∥∥β̂ (T (m)
[t],k , λ

(m)
1

)
− βk

∥∥∥
1
> Mχ

)
(19)

≤P
(
∃m ∈ [M ] :

∥∥∥β̂ (T (m)
[t],k , λ

(m)
1

)
− βk

∥∥∥
1
> χ

)
(20)

≤
M∑
m=1

P
(∥∥∥β̂ (T (m)

[t],k , λ
(m)
1

)
− βk

∥∥∥
1
> χ

)
(21)

The first inequality is due to the fact that the `1-norm is convex. An application of Jensen’s
inequality shows that ‖ 1

M

∑M
m=1(β̂

(
T (m)

[t],k , λ
(m)
1

)
− β

(m)
0 )‖1 = 1

M ‖
∑M
m=1(β̂

(
T (m)

[t],k , λ
(m)
1

)
− β

(m)
0 ‖1 ≤

1
M

∑M
m=1 ‖β̂

(
T (m)

[t],k , λ
(m)
1

)
−β(m)

0 ‖1. The second inequality is due to the fact that the `1-norm is non-negative
and an application of Pigeonhole principle. The third inequality is an application of Boole’s inequality, also
known as the union bound.

Step 2 The client m sets the size of error χ = h(m)

4xmax
,

P
(∥∥∥β̂#

k,t − βk
∥∥∥

1
>

h(m)

4xmax

)
(22)

≤P

(∥∥∥β̂#
k,t − βk

∥∥∥
1
>

minm∈[M ] h
(m)

4xmax

)
(23)

≤
M∑
m=1

P

(∥∥∥β̂ (T (m)
[t],k , λ

(m)
1

)
− βk

∥∥∥
1
>

minm∈[M ] h
(m)

4xmax

)
(24)

≤M 5
Mt4

= 5
t4

(25)

The first inequality is due to the fact that tail probability is a decreasing function. The second inequality is
due to Step 1 above. The third inequality is due to is by the deviation inequality of client Teamwork Lasso
estimate (lemma 3.1) by setting the regularization level to be λ(m)

1 = (φ0)2p∗minm∈[M ] h
(m)/ (64s0xmax).

Step 3. Define a "good event"

E
(m)
t ≡ ∩k∈A

{∥∥∥β̂]k,t − βk∥∥∥1
≤ h(m)

4xmax

}
. (26)

The event marks that each central federated Lasso is sufficiently accurate to exclude out sub-optimal arms.
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P
(

(E(m)
t )c

)
=P
(
∪k∈A

{∥∥∥β̂#
k,t − βk

∥∥∥
1
≤ h(m)

4xmax

})
(27)

≤
K∑
k=1

P
(∥∥∥β̂#

k,t − βk
∥∥∥

1
≤ h(m)

4xmax

)
(28)

≤5K
t4

(29)

The first inequality is an application of Boole’s inequality, also known as the union bound. The second
inequality is due to Step 2 above.

C Proof of Lemma 3.6

The proof strategy is to use Lemma E.1 on the dataset S(m)
[t],k.

Lemma C.1.
P
(
|(S(m)

[t],k)′| ≥ Mp∗
4 t

)
≥ 1− exp(−M

2p2
∗

36 t). (30)

Proof. We have
E[Mk,t] ≥ P[Ant

∩Ant+1] · P(Xt ∈ Uk) · |Vt|

≥ 8
9 ·Mp∗ ·

3
8 t = Mp∗

3 t

Thus, Hoeffding inequality indicates that

P(Mk,t < E[Mk,t]− η) ≤ exp(−2η2

|Vt|
) ≤ exp(−4η2

t
).

In particular, for η = Mtp∗/12, we have

P(Mk,t <
Mp∗

4 t) ≤ exp(−M
2p2
∗

36 t)

Thus, the result follows from the fact that Mk,t ≤ |(S(m)
[t],k)′|.

Lemma C.2. For t > C5 ≡ mint{logMt <
tM2p2

∗C
2
2 (φ)

16 }

P
[
Σ̂((S(m)

[t],k)′) ∈ C
(
supp(β),

√
Mp∗

2
√

2
φ1

)]
≥ 1− 1

Mt
(32)

Proof. In this case, we have sample size at most t and minimal sampling rate Mp∗/2.The first is due to
|S(m)

[t],k| ≤ t and the second is due to |(S(m)
[t],k)′| ≥ Mp∗t/4. Thus, we have |(S(m)

[t],k)′|/|S(m)
[t],k| ≥ Mp∗/4. By

definition of C5 ≡ mint{logMt <
tM2p2

∗C
2
2 (φ)

16 }, we have the probability bound

P
[
Σ̂((S(m)

[t],k)′) /∈ C
(
supp(β),

√
Mp∗

2
√

2
φ1

)]
≤ exp(− tM

2p2
∗C

2
2

16 )

≤ exp(− log(Mt)) = 1
Mt

(33a)
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Lemma C.3. Set λ(m)
2,t = φ2

0
32s0

√
M log dMt
C1(φ0)p∗t

, then we have

P
(

max
r∈[d]

(
2
∣∣∣ε>X(r)

∣∣∣ /|S(m)
[t],k|

)
≤ λ(m)

2,t /2
)
≥ 1− 2

Mt
(34)

Proof. In this case, we have minimal sampling rate Mp∗/2 since |S(m)
[t],k| ≤ t and |(S(m)

[t],k)′| ≥ Mp∗t/4. Let

χ = 16
√

log dMt
p3

∗C1(φ0)Mt .

exp
(
− C1(φ

√
Mp∗
2 )|S(m)

[t],k|χ
2 + log d

)
≤ exp

(
− C1(φ)M

2p2
∗

16 · Mp∗
4 t · 256 log(dMt)

p3
∗C1 (φ0)Mt

+ log d
)

= exp
(
− 4M2 log(dMt) + log d

)
≤ exp

(
− (log t+ logM)

)
= 1
Mt

Lemma C.4. Given t > C5. We have

P
(
‖β̂(S(m)

[t],k, λ2,t)− βk‖1 > 16

√
log t+ logM + log d

p3
∗C1 (φ0)Mt

)
≤ 2
Mt

+ 2 exp
[
−p

2
∗C2 (φ0)2

32 ·M2t

]
. (36)

Proof. Apply the above three lemmas

P
(
‖β̂(S(m)

[t],k, λ1)− βk‖1 >
h

4xmax

)
≤P
(

max
r∈[d]

1
|S(m)

[t],k|
|ε>X(r)| ≥ λ0(χ,

φ
√
p

2 )
)

+P
(

Σ̂((S(m)
[t],k)′) /∈ C(supp(β), φ√

2
)
)

+P
( |(S(m)

[t],k)′|

|S(m)
[t],k|

≤ p

2

)

≤2 1
Mt

+ exp
(
− M2p2

∗C2(φ)2

16 t

)
+ exp

(
− M2p2

∗
36 t

)
≤ 2
Mt

+ 2 exp
[
−p

2
∗C2 (φ0)2

32 ·M2t

]

(37a)

D Proof of Theorem 3.7

We break the proof into 3 steps.
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Step 1. Instantaneous regret. Given Lemma 3.6, if t > C5, we have

rt+1

≤2bxmaxE

∑
i∈K̂

I
[(
X>t+1β̂i ≥ X>t+1β̂1

)
∩Bi

]+ 2δxmaxE

∑
i∈K̂

I (Bci )


≤2bxmax Pr

[∥∥∥β1 − β̂1

∥∥∥
1
> δ
]

+ Pr
[∥∥∥β̂i − βi∥∥∥

1
> δ
]

+ 2δxmax2C0δxmax

=4bxmax( 2
Mt

+ 2 exp
[
−p

2
∗C2 (φ0)2

32 ·M2t

]
) + 4C0x

2
maxδ

2

=8bxmax( 1
Mt

+ exp
[
−p

2
∗C2 (φ0)2

32 ·M2t

]
) + 1024C0x

2
max

p3
∗C1

log t+ logM + log d
Mt

≤8bxmax(1− 32
p2
∗C2 (φ0)2 ) 1

M2t
+ 1024C0x

2
max

p3
∗C1

log t+ logM + log d
Mt

=L1
1

M2t
+ L2

log t+ logM + log d
Mt

The last inequality is due to exp(−x) < 1/x for all x > 0. The constants are L1 = 8bxmax(1 − 32
p2

∗C2(φ0)2 )

and L2 = 1024C0x
2
max

p3
∗C1

.

Step 2. Cumulative Regret of one client.

T∑
t=C5

rt+1 (38)

= 1
M

[
L1

M

T∑
t=C5

1
t

+ L2

T∑
t=C5

log t+ logM + log d
t

]
(39)

= 1
M

[
L1

M
log T + L2

(
(log T )2 + log(Md) log T

)]
(40)

= 1
M

[
L1

M
log T + L2 log(Md) log T + L2(log T )2

]
(41)

Step 3. Cumulative regret of all client

RT =
M∑
m=1

T∑
t=1

r
(m)
t

=
M∑
m=1

(
C5

M
2bxmax + 1

M

[
L1

M
log T + L2 log(Md) log T + L2(log T )2

])
=C52bxmax +

(
L1

M
+ L2 log(Md)

)
log T + L2(log T )2

=O(logM(log T )2)
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E Supporting Lemmas

Here we state a general version of Lemma 1 in Bastani & Bayati (2020) to facilitate our analysis.
Lemma E.1. (Lasso deviation inequality for non i.i.d. dataset) Given a dataset D with its i.i.d. subdataset
D′. Let β̂(D, λ) be the Lasso regression estimator (Definition 1.1) trained on D with regularization level λ.
Suppose the population covariance matrix Σ satisfy the compatability condition C(supp(β), φ). Let χ > 0 be
an error upper bound specified by user. Set λ

(
χ, φ
√
p/2
)

= χφ2p/ (16s0). Then, the l1 estimation error of
β̂(D, λ) satisfies the following deviation inequality:

P
(
‖β̂(D, λ)− β‖1 ≥ χ

)
≤ α(χ), (42)

where

α(χ) = P
(

max
r∈[d]

1
|D|
|ε>X(r)| ≥ λ0(χ,

φ
√
p

2 )
)

+ P
(

Σ̂(D′) /∈ C(supp(β), φ√
2

)
)

+ P
(
|D′|
|D|
≤ p

2

)
(43)

F Experiment Details and Additional Experiments

F.1 Synthetic Data

For the baseline case, we set d = 100, K = 5, M = 5 and s = 5, where s is the sparsity level of the
parameters that should satisfy s � d. The β of each arm for each client is generated by first choosing the
possibly nonzero positions for all clients. In our case we randomly choose 10 positions for each arm and the
10 positions are shared across the different clients to represent that the bandit environment faced by different
clients are similar (but not exactly the same). We then choose the s non-zero elements randomly within the
10 positions of each arm for each client, and then generate the values from a uniform distribution on [0, 1].
Note that the nonzero values of each arm across different clients are different, and the positions are different
too. The covariates of each client are generated from a standard normal distributions independently.

We provide some additional experimental results for different choices of d,K,M in Figure 5 for readers
interested in the effect of changing these hyper-parameters in our synthetic data.

F.2 PharmGKB

We utilize the publicly available code for PharmGKB at https://github.com/chuchro3/Warfarin for the
processing of the dataset. Specifically, the covariates are generated from either the value in the dataset if it
is numerical or from a bag-of-words of all the categories if categorical. Then the covariates are transformed
into one-hot encodings and thus the vector is very high-dimensional (d = 5528). We follow Bastani & Bayati
(2020) and classify the different dosages of Warfarin into three classes. [0, 3] is the low-dosage class, [3, 7] is
the moderate dosage class, and [7,∞] is the high-dosage class. The reward is defined to be 1 if the correct
dosage class is chosen and 0 if not, and we add standard Gaussian noise to the reward. The error rate (in
Figure 3) is defined by the number of wrong classifications divided by the total number of classifications.

F.3 Medical MNIST

Neural Network Setting. The fully-connected neural network used to train on the Medical MNIST
dataset has the architecture shown in Table 2, where input size is the size of the vectorized image, which
is 10800 in our case and output size is the number of classes, which is 6. The dataset was randomly split
into a training set and a testing set in the ratio of 9:1. The images are pre-processed with random rotation,
random horizontal flipping, resizing, center cropping and normalization. The training batch size was 32.
The optimizer was SGD with learning rate 0.01 and no momentum or weight decay. The neural network was
trained on the training set for 10 epochs and evaluated on the testing set. The final testing classification
accuracy was around 99%.

Bandit Setting. The number of arms for each agent is equal to the number of classes (6) in this problem. We
use the output of the last ReLU layer (i.e., before the last layer) as the feature vector for bandit problems,
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which means that the feature dimension is 500. At each round, The regret is defined to be whether the
feature vector is correctly classified, i.e., the reward is 0 if the the chosen arm is different from the class of
the image and 1 if they are the same. Standard Gaussian noise is added to the reward received by the bandit
algorithms.

Table 2: Architecture of the neural network
inLayer : Linear Layer(input size, 4000)

ReLU()
hidden1 : Linear Layer(4000, 2000)

ReLU()
hidden2 : Linear Layer(2000, 1000)

ReLU()
hidden3 : Linear Layer(1000, 500)

ReLU()
outLayer : Linear Layer(500, output size)
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(a) M = 5, d = 50 (b) M = 5, d = 100 (c) M = 5, d = 200

(d) M = 10, d = 50 (e) M = 10, d = 100 (f) M = 10, d = 200

(g) M = 15, d = 50 (h) M = 15, d = 100 (i) M = 15, d = 200

Figure 5: Comparison of the the average cumulative regret per client of the Fedego Fedego Lasso algorithm
under different settings of the parameters M,K, d on the synthetic dataset
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