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Abstract001

Large Language Models (LLMs) are being used002
more and more extensively for automated eval-003
uation in various scenarios. Previous stud-004
ies have attempted to fine-tune open-source005
LLMs to replicate the evaluation explanations006
and judgments of powerful proprietary mod-007
els, such as GPT-4. However, these methods008
are largely limited to text-based analyses under009
predefined general criteria, resulting in reduced010
adaptability for unseen instructions and demon-011
strating instability in evaluating adherence to012
quantitative and structural constraints. To ad-013
dress these limitations, we propose a novel eval-014
uation framework, ARJudge, that adaptively015
formulates evaluation criteria and synthesizes016
both text-based and code-driven analyses to017
evaluate LLM responses. ARJudge consists018
of two components: a fine-tuned Analyzer that019
generates multi-faceted evaluation analyses and020
a tuning-free Refiner that combines and refines021
all analyses to make the final judgment. We022
construct a Composite Analysis Corpus that023
integrates tasks for evaluation criteria genera-024
tion alongside text-based and code-driven anal-025
ysis generation to train the Analyzer. Our re-026
sults demonstrate that ARJudge outperforms027
existing fine-tuned evaluators in effectiveness028
and robustness. Furthermore, it demonstrates029
the importance of multi-faceted evaluation and030
code-driven analyses in enhancing evaluation031
capabilities.032

1 Introduction033

The rapid advancement of Large Language Models034

(LLMs) has highlighted the critical need for robust035

output evaluation methods (Li et al., 2024a). While036

proprietary models like GPT-4 have emerged as pre-037

dominant evaluation approaches given their supe-038

rior capabilities, transparent and controllable con-039

siderations have driven research toward fine-tuning040

open-source LLMs for evaluation tasks (Kim et al.,041

2024a,b). Recent work has established the viabil-042

ity of open-source alternatives by training LLMs043
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Figure 1: Comparison of previous fine-tuned evaluators
and our framework. Left is a former model and Right
is our ARJudge. The Analyzer adaptively defines eval-
uation criteria and conducts multi-faceted analyses in
various forms, e.g., text or code. The Refiner combines
all preceding analyses and produces the final evaluation.

to replicate the evaluation explanations and judg- 044

ments of proprietary models (Ke et al., 2024; Liu 045

et al., 2024; Hu et al., 2024; Kim et al., 2024b). 046

However, existing fine-tuned evaluators rely 047

solely on text-based analysis with predefined eval- 048

uation criteria, leading to two key limitations (Li 049

et al., 2024b; Hu et al., 2024; Zhu et al., 2023; 050

Kim et al., 2024b). First, evaluation based on pre- 051

defined criteria can not fully capture the nuanced 052

task requirements. For example, general criteria 053

for writing, such as conciseness or logical structure, 054

may not be sufficient for evaluating creative writing 055

tasks that require an engaging plot. Moreover, it is 056

challenging to effectively adapt predefined criteria 057

to new and diverse instructions (Li et al., 2024b). 058
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Second, LLM-based evaluators demonstrate signif-059

icant instablity in evaluating adherence to complex060

instruction requirements, particularly objective cri-061

teria such as quantitative or structural constraints062

(Zhou et al., 2023). For instance, they struggle to063

reliably assess basic textual attributes such as word064

counts, a common requirement in writing-related065

instructions (Zhang and He, 2024). These limita-066

tions also extend to the evaluation of formatting067

constraints.068

In this work, we argue that developing robust069

fine-tuned evaluators requires the ability to adap-070

tively generate evaluation criteria and conduct071

multi-faceted analyses (Saha et al., 2024). These072

abilities enhance the evaluators’ comprehensive073

performance in both what to evaluate and how to074

evaluate. Even for unseen instructions, the evalua-075

tors can define tailored criteria and assess instruc-076

tions with nuanced precision. Furthermore, evalua-077

tors should use automated tools to assess objective078

requirements (Wang et al., 2024a). These tools079

provide reproducible feedback, offering reliable080

verification that helps overcome LLMs’ inherent081

limitations in objective evaluation.082

To address these challenges, we propose AR-083

Judge, a novel evaluation framework that com-084

bines adaptive criteria generation with text-based085

and code-driven analysis generation to comprehen-086

sively assess LLM outputs. ARJudge comprises087

two core components: (1) an Analyzer that gener-088

ates multi-faceted evaluation with text-based and089

code-driven analyses and (2) a Refiner that synthe-090

sizes and refines these analyses to produce well-091

reasoned judgments. We train ARJudge on a cu-092

rated Composite Analysis Corpus, which contains093

tasks for generating evaluation criteria and per-094

forming multi-faceted analyses in both text and095

code. This corpus enables the Analyzer to learn096

context-sensitive evaluation logic, such as deriving097

criteria from instructions and assessing responses098

accordingly. Extensive experiments across multi-099

ple benchmarks demonstrate ARJudge’s superior-100

ity and robustness over existing open-source eval-101

uators. Our further analysis validates the neces-102

sity and effectiveness of integrating code-driven103

analyses, which improve accuracy in evaluating104

instruction following by up to 11.1% compared to105

text-only methods.106

The main contributions of this work include:107

• We propose ARJudge, a novel evaluation108

framework that combines adaptive criteria109

generation with text-based and code-driven 110

analyses to evaluate LLM outputs. By in- 111

corporating code-driven analytical capabili- 112

ties, ARJudge extends beyond traditional text- 113

based evaluation approaches. 114

• We develop a training dataset, Composite 115

Analysis Corpus, containing samples for eval- 116

uation criteria generation, text-based analyses, 117

and code-driven analyses. It is the first dataset 118

to incorporate multi-faceted analytical sam- 119

ples for evaluator training. 120

• Extensive experiments across multiple bench- 121

marks demonstrate ARJudge’s superior per- 122

formance over existing fine-tuned evaluators. 123

2 Composite Analysis Corpus 124

Collecting comprehensive and detailed evaluation 125

analysis data is essential for fine-tuning an LLM to 126

improve evaluation performance (Li et al., 2024b; 127

Hu et al., 2024). Previous studies (Li et al., 2024b; 128

Hu et al., 2024; Kim et al., 2024a,b) focus exclu- 129

sively on text-based analysis with predefined gen- 130

eral evaluation criteria, showing limited general- 131

ization and robustness (Huang et al., 2024a). To 132

address these limitations, we develop a compos- 133

ite analysis corpus to improve LLMs’ ability to 134

determine what to evaluate and how to evaluate 135

effectively. The process of constructing the corpus 136

involves three steps: (1) establishing evaluation 137

criteria specifically for each instruction (§2.1), (2) 138

conducting text-based analyses to assess responses 139

using multiple criteria (§2.2), and (3) designing 140

code-driven analyses to assess whether responses 141

satisfy the objective requirements of the instruc- 142

tions (§2.3). 143

First of all, we collect a large set of instruc- 144

tions from publicly available preference datasets 145

based on Li et al. (2024b). These datasets (Zheng 146

et al., 2023a; Nakano et al., 2021; Havrilla, 2023; 147

Ji et al., 2023) consist of preference pairs of LLM- 148

generated responses to identical instructions. Each 149

pair is annotated with a preference label that iden- 150

tifies the better response. In line with Li et al. 151

(2024b), non-English instructions and multi-turn 152

interactions are removed. Then, we establish multi- 153

ple evaluation criteria for each instruction. 154

2.1 Establishing Evaluation Criteria 155

We define the evaluation criteria in the form of 156

concise questions (Zeng et al., 2024; Kim et al., 157
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Figure 2: The overview of the corpus construction. “R1” and “R2” denote two candidate responses with a preference
annotation. “Sample Responses” are newly sampled responses that we use as references to generate evaluation
questions and code scripts. Step (1) produces two types of evaluation questions, respectively. Step (2) and Step (3)
develop corresponding text-based and code-driven analyses.

2024b). Each question describes one aspect that a158

high-quality response should fulfill. For example,159

responses to the instruction “Draft an email to my160

deputy chairperson requesting their signature on161

the attached approval letter in a professional and162

polite manner” can be evaluated using the follow-163

ing three questions: ‘‘1. Does the response include164

a polite and professional request for the deputy165

chairperson to sign the attached approval letter? 2.166

Does the response mention the attached approval167

letter and provide the necessary details about it?168

3. Does the response offer assistance with any169

questions or clarifications the deputy chairperson170

might have about the approval letter?” We estab-171

lish two types of questions by prompting an LLM172

in a zero-shot manner. Type 1 focuses on gener-173

ating text-based analysis, while Type 2 involves174

generating Python functions and using execution175

feedback as code-driven analysis.176

To generate the first type of question, we prompt177

an LLM using three sample responses produced by178

advanced LLMs as well as the instruction x. Such179

sample responses offer a reference understanding180

of the instruction. The specific prompt is shown181

in Figure 6. We collect three questions qtext for182

each instruction x following Zeng et al. (2024) and183

construct training samples in the format (x, qtext).184

For the second type, we must generate new in-185

structions x′ with objective constraints in advance,186

since their proportion in the datasets is relatively187

low. We use the self-instruct (Wang et al., 2023b)188

method to add objective constraints to the instruc-189

tions and then produce evaluation questions for ver-190

ifying these constraints. Following the verifiable191

instructions1 summarized by Zhou et al. (2023), we 192

first generate several objective constraints for each 193

instruction, such as “word count” and “end with”. 194

The specific prompt is shown in Figure 7. Then, 195

we randomly select one to three constraints to add 196

to each instruction and collect the corresponding 197

evaluation questions qcode. The training samples 198

are constructed in the format (x′, qcode). 199

2.2 Collecting Text-based Analysis 200

We perform pairwise text-based analyses by pro- 201

viding an LLM with the instruction x, two re- 202

sponses r1 and r2, and their corresponding eval- 203

uation questions {qtext}. The output necessitates a 204

comparative analysis for each question, followed 205

by a final determination of the better response. 206

The specific prompt is shown in Figure 8. We 207

exclude analyses where the final decision contra- 208

dicts existing human annotations in the datasets. 209

The training samples are constructed in the format 210

(x ⊕ r1 ⊕ r2 ⊕ qtext, ytext). Here, ytext denotes 211

the associated analysis result for the evaluation 212

question qtext, which begins with the hint: “Let’s 213

evaluate whether responses meet the criteria”. 214

2.3 Developing Code-driven Analysis 215

To enhance evaluation robustness, we develop code- 216

driven analyses to assess evaluation questions de- 217

signed to verify objective requirements. The pro- 218

cess is completed in two steps: Collecting Python 219

Scripts and Reverse Validation. The first step 220

involves generating Python functions to analyze 221

1Verifiable instructions are instructions that can be objec-
tively verified for compliance using tools.
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whether a response satisfies the objective require-222

ment included in an evaluation question. The sec-223

ond step reversely checks whether the generated224

function’s code is designed to analyze the evalua-225

tion question.226

Collecting Python Scripts. Given three sample227

responses and one evaluation question qcode, we228

prompt an LLM to generate a Python function for229

verifying the compliance of sample responses. The230

input of the function is one response, and the out-231

put is a comprehensive intermediate of the results232

related to the evaluation questions. To ensure good233

generalization, the sample responses are a mix of234

outputs from advanced and weak LLMs. The spe-235

cific prompt is shown in Figure 9. After prompting,236

we extract the generated Python function using237

Markdown parsing. We preliminarily filter out in-238

valid code using two checks: 1. The written Python239

function fails to execute with the provided sample240

responses as input; 2. The function fails when241

tested with an additional set of three sample re-242

sponses. By filtering out invalid code, we ensure243

that the generated Python functions are executable244

and generalizable.245

Reverse Validation. To further validate whether246

the generated Python functions fulfill their intended247

purpose, we design a reverse validation process.248

Specifically, we first prompt an LLM with the plain249

text of the evaluation function, requesting an expla-250

nation of the expected outputs. Second, we prompt251

the LLM again to check for consistency between252

the explanation and its associated question:253

e ∼ LLM(f, promptexplain)

r = LLM(e, qcode, promptcheck)
(1)254

where f is the evaluation function, e denotes255

the generated explanation, r indicates whether256

the explanation is consistent with the question257

qcode. The specific prompts are included in Fig-258

ure 10. If the function is found to be inconsistent259

with the aim of the evaluation question, it is dis-260

carded. Finally, we collect the effective Python261

functions and construct training samples in the for-262

mat (x′⊕ r1⊕ r2⊕ qcode, ycode). Here, ycode repre-263

sents the Python function f concatenated with the264

code output hint “Let’s write a Python function”.265

3 ARJudge266

After constructing the corpus, we collect around267

25K composite training samples. We fine-tune268

an LLM based on them and develop ARJudge, 269

a novel evaluation framework that adaptively evalu- 270

ates LLM-generated responses and integrates both 271

text-based and code-driven analyses. ARJudge con- 272

sists of two components: a fine-tuned Analyzer 273

and a tuning-free Refiner. Figure 1 presents the 274

overall framework. The Analyzer is trained on the 275

Composite Analysis Corpus to adaptively generate 276

evaluation criteria for any instruction and produce 277

multi-faceted evaluation, including both text-based 278

and code-driven analyses. The Refiner leverages 279

the general LLM’s generalist evaluation capabili- 280

ties to refine the analysis results produced by the 281

Analyzer and make the final judgment. This frame- 282

work partially preserves the generalist evaluation 283

pattern of the general model while enhancing the 284

evaluation pattern in the fine-tuning dataset. 285

3.1 Training 286

We train the Analyzer with diverse training samples 287

and tasks, including question generation samples 288

(x, qtext) and (x′, qcode), text-based analysis sam- 289

ples (x⊕ r1 ⊕ r2 ⊕ qtext, ytext), and code-driven 290

analysis samples (x′ ⊕ r1 ⊕ r2 ⊕ qcode, ycode). By 291

training on these combined samples, we aim to en- 292

hance the LLM’s comprehensive analytical capabil- 293

ities, enabling it to adaptively propose evaluation 294

criteria and conduct multi-faceted analyses. We 295

employ distinct prompt templates for question gen- 296

eration and response analyses, while maintaining a 297

consistent prompt template for both text-based and 298

code-driven analyses. Different forms of analyses 299

are triggered by their respective starting hints. 300

3.2 Evaluation 301

Given an instruction x and two responses r1 and 302

r2, the Analyzer first generates several evaluation 303

questions. Then, it performs a comparative analy- 304

sis of the two responses based on each evaluation 305

question. Notably, the Analyzer autonomously de- 306

termines whether to generate Python functions ac- 307

cording to question characteristics. If the analysis 308

text includes Python functions, the Analyzer will 309

call a Python interpreter to execute them and return 310

the execution feedback as the code-driven analysis 311

results. Finally, the above multi-faceted analysis 312

results are aggregated and sent to the Refiner for 313

further evaluation. We instruct the Refiner to evalu- 314

ate the above analysis and refine it with a renewed 315

focus on the instruction’s requirements. The Re- 316

finer will determine which response is better in a 317

zero-shot manner. 318
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4 Experiments319

4.1 Implementation Details320

To construct the Composite Analysis Corpus, we321

prompt GPT-4o to generate evaluation questions322

for each instruction and collect text-based analysis.323

Besides, we prompt Claude-3.5-Sonnet to generate324

Python functions for code-driven objective analy-325

sis. We selected Claude-3.5-Sonnet due to its supe-326

rior performance in code generation. We fine-tune327

Qwen2.5-7B-Instruct (Qwen, 2025) on the corpus,328

creating a model we refer to as the Analyzer for329

performing multi-faceted evaluations. We use the330

same model in a zero-shot setting as the Refiner,331

with carefully crafted prompt templates. All gener-332

ation in the main experiments is performed using333

greedy decoding by setting the temperature to 0.334

Details are described in Appendix A.335

4.2 Benchmarks336

We assess our framework on various evaluation337

datasets. Four human-annotated pairwise evalua-338

tion test sets are included: PandaLM Eval (Wang339

et al., 2024b), Auto-J Eval (Li et al., 2024b), MT-340

Bench (Zheng et al., 2023a), and the LLMBar se-341

ries (Zeng et al., 2024). These sets were chosen for342

their broad coverage of evaluation tasks and their343

diverse set of evaluation criteria. For the LLM-344

Bar series, we use four adversarial sets, Neighbor,345

GPTInst, GPTOut, and Manual, as unseen sets. Un-346

like the other three sets and our training datasets,347

where candidate responses are directly sampled348

based on instructions, the responses in LLMBar349

are artificially designed to challenge evaluators by350

incorporating potentially misleading qualities, such351

as a more engaging tone. One GPT-4-annotated352

pairwise evaluation set, JudgeLM Eval (Zhu et al.,353

2023), is adopted. For all pairwise sets, samples354

with two equally preferred responses were omitted.355

Additionally, an instruction-following benchmark,356

IFEval (Zhou et al., 2023), is incorporated. We357

use this benchmark to assess the effectiveness of358

code-driven analysis.359

4.3 Baselines360

Tuning-free General LLMs We compare our361

framework with several general LLMs that can eval-362

uate response quality. Three powerful LLMs, GPT-363

4o (OpenAI, 2024), Deepseek-v3 (DeepSeek-AI,364

2024), and Claude-3.5-Sonnet (Anthropic, 2024),365

are used due to their balanced and comprehensive366

performance across most evaluation tasks (Huang367

et al., 2024a). Additionally, the backbone model 368

used for fine-tuning the Analyzer, Qwen2.5-7B- 369

Instruct (Qwen, 2025), is employed to demonstrate 370

improvements. 371

Fine-tuned Evaluators We employ five fine- 372

tuned evaluation models that can conduct pairwise 373

evaluation. PandaLM (Wang et al., 2024b) com- 374

pares two responses and identifies the better one. 375

Auto-J (Li et al., 2024b) and Prometheus (Kim 376

et al., 2024b) support both single-response scoring 377

and pairwise response comparison. Themis (Hu 378

et al., 2024) rates each response based on various 379

criteria and determines the better one by compar- 380

ing their scores. JudgeLM (Zhu et al., 2023) pro- 381

vides a comparison of two responses along with 382

their corresponding scores. We use official models 383

with 7B parameters for PandaLM, Prometheus, and 384

JudgeLM, and models with 13B and 8B parameters 385

for Auto-J and Themis, respectively. 386

4.4 Main Results 387

The main comparative results against baseline 388

methods are shown in Table 1. Following Zeng 389

et al. (2024) and Li et al. (2024b), we calculate 390

the accuracy of the pairwise preference evaluation 391

with and without swapping the two candidate re- 392

sponses, respectively. The average accuracy and 393

the positional agreement rate are displayed as Acc 394

and Agr. The performance in LLMBar is the aver- 395

age of its four subsets. We observe that ARJudge 396

surpasses all fine-tuned evaluators of similar model 397

sizes. Notably, on the challenging LLMBar set, 398

ARJudge outperforms the best fine-tuned baseline, 399

Prometheus2-7B, by 26.7%. Even without more 400

exposure to challenging samples like LLMBar, AR- 401

Judge achieves an average 15.6% improvement 402

over its backbone model, Qwen2.5-7B-Instruct. 403

Additionally, ARJudge’s performance is compa- 404

rable to that of powerful tuning-free LLMs on 405

some test sets. For example, ARJudge performs on 406

par with GPT-4o and Claude-3.5-Sonnet on Auto-J 407

Eval and with DeepSeek-V3 on LLMBar. Besides, 408

compared to other fine-tuned methods, ARJudge 409

can generalize to more test sets. 410

Table 2 further presents detailed evaluation re- 411

sults in different subsets of LLMBar. Our ARJudge 412

performs the best on most subsets and has made 413

significant improvements compared to the back- 414

bone model, Qwen2.5-7B-Instruct. On LLMBar- 415

Neighbor, it achieves higher evaluation accuracy 416

than the advanced DeepSeek-V3. 417
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Models
JudgeLM Eval PandaLM Eval Auto-J Eval MTBench LLMBar

AveAcc Agr Acc Agr Acc Agr Acc Agr Acc Agr

Tuning-free

GPT-4o 81.8 88.1 83.1 87.5 78.6 82.5 78.8 85.4 79.8 83.4 80.4
Claude-3.5-Sonnet 82.9 86.4 86.4 91.4 78.2 85.5 80.8 89.1 83.4 90.3 82.3
Deepseek-v3 83.2 85.9 87.4 87.8 82.9 84.2 79.7 87.0 68.6 81.6 80.4
Qwen2.5-7B 80.0 78.0 80.7 79.2 73.8 65.1 75.2 72.1 52.6 65.7 72.5

Fine-tuned

PandaLM-7B 69.9 74.7 73.1 77.8 65.2 71.0 74.0 78.4 25.9 82.5 61.6
Auto-J-13B 77.9 86.6 77.2 87.2 79.7 87.5 75.0 84.2 27.8 83.6 67.5
Prometheus2-7B 76.5 80.3 76.3 70.9 75.1 77.2 74.3 79.5 41.5 77.6 68.7
JudgeLM-7B 81.8 86.0 70.3 81.4 66.1 80.2 64.6 77.1 28.1 82.0 62.2
Themis-8B 66.4 - 61.3 - 39.2 - 34.9 - 26.6 - 45.7
ARJudge 81.0 83.3 82.4 83.5 78.5 80.3 78.3 81.3 68.2 72.9 77.7

Table 1: Results of different evaluators on the pairwise comparison. “Acc” and “Agr” denote average accuracy and
positional agreement rate. “Ave” is the average “Acc” across all test sets. The highest average accuracy is marked
by bold for two series models, respectively.

Models
LLMBar

Neighbor GPTInst GPTOut Manual

Tuning-free

GPT-4o 81.0 86.4 75.5 76.1
Claude-3.5-Sonnet 83.2 87.0 76.6 87.0
Deepseek-v3 61.6 76.6 69.2 67.4
Qwen2.5-7B 47.0 56.0 61.7 45.6

Fine-tuned

PandaLM-7B 14.9 21.2 48.9 18.5
Auto-J-13B 20.5 21.2 47.9 21.7
Prometheus2-7B 25.4 31.0 63.8 45.6
JudgeLM-7B 21.3 25.5 41.5 23.9
Themis-8B 20.2 32.6 31.9 21.7
ARJudge 72.4 73.4 60.7 67.4

Table 2: Evaluation accuracy on test subsets of LLMBar
series. The highest average accuracy is marked by bold.

Models JudgeLM PandaLM Auto-J MTBench LLMBar

Qwen2.5-7B 80.0 80.7 73.8 75.2 52.6

ARJudge 81.0 82.4 78.5 78.3 68.2
-w/o FT 73.1 75.6 68.7 70.0 62.5
-w/o FT&MF 74.7 72.2 65.6 67.8 63.7
-w/o Refine 81.7 82.8 79.6 79.1 63.7

Table 3: Comparison results under ablation settings.
“JudgeLM”, “PandaLM”, and “Auto-J” are abbreviation
of the associated testsets. “FT” and “MF” represent
fine-tuning and multi-faceted.

4.5 Ablation Study418

To further investigate the effectiveness of our frame-419

work, we analyze several variations of ARJudge,420

as detailed below. (1) w/o FT: we replace the fine-421

tuned Analyzer with the same tuning-free model as422

the Refiner and prompt the model to generate evalu-423

ation questions and conduct the multi-faceted eval- 424

uation. (2) w/o FT&MF: we apply the model as in 425

the w/o FT setting, generating Chain-of-Thought 426

(CoT) evaluations directly. (3) w/o Refine: we re- 427

tain the fine-tuned Analyzer and make slight mod- 428

ifications to the prompt for the Refiner to directly 429

output the label of the better response. 430

The ablation results are shown in Table 3. We 431

observe accuracy drops across all test sets with 432

the ablation variants, indicating the effectiveness 433

of each component in ARJudge. Specifically, fine- 434

tuning significantly enhances a general LLM’s eval- 435

uation capability, enabling it to propose reason- 436

able evaluation questions and analyze responses 437

accordingly. Evaluation questions help the LLM 438

focus on relevant aspects and enhance its evalua- 439

tion performance. Interestingly, we find that the 440

effects of refinement differ between the fine-tuned 441

and tuning-free Analyzer. In JudgeLM Eval, Pan- 442

daLM Eval, Auto-J, and MTBench, the refinement 443

keeps evaluation accuracy under the fine-tuned An- 444

alyzer’s analysis (w/o Refine vs. ARJudge) but 445

significantly decreases it under the tuning-free An- 446

alyzer’s analysis (Qwen2.5-7B vs. w/o FT&MF). 447

It may be related to the controversial phenomenon 448

that LLMs cannot truly self-correct (Huang et al., 449

2024b). Additionally, for challenging samples in 450

LLMBar, refinement significantly strengthens the 451

performance of the fine-tuned and tuning-free ones. 452

4.6 Capability to Evaluate Using Code 453

Code-driven analysis plays a crucial role in robustly 454

verifying the objective requirements of instructions. 455

To assess the effectiveness of code-driven analy- 456
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sis, we use the execution results of the IFEval of-457

ficial code as a benchmark and compute the Con-458

sistency between its judgment (Loose or Strict)459

and that of other models. We compare ARJudge460

with GPT-4o, Claude-3.5-Sonnet, and Qwen2.5-461

7B-Instruct. These three models are prompted to462

make judgments in a zero-shot manner. As shown463

in Figure 3, our framework achieves a significant464

improvement over the backbone model, Qwen2.5-465

7B-Instruct, with the help of code-driven analysis.466

Moreover, ARJudge performs comparably to GPT-467

4o and Claude-3.5-Sonnet, demonstrating its poten-468

tial as a viable alternative. Notably, the execution469

success rate of the generated code is 100%.470

4.7 Effect of Increasing Analysis Quantity471

We extend our analysis by scaling up the number472

of question sampling attempts, exploring the ef-473

fect of increasing analysis quantity. We set the474

temperature to 0.2 to sample evaluation questions475

multiple times, ensuring diversity in the gener-476

ated questions. As shown in Figure 4, evaluation477

accuracy improves with more analyses for most478

datasets, including JudgeLM Eval, Auto-J Eval,479

PandaLM Eval, and MTBench. The highest accu-480

racy is achieved with four or five rounds of question481

sampling and their combined analysis. However, in482

the LLMBar series, additional analysis had little or483

even a negative impact on accuracy. This may be484

because the Analyzer has greater uncertainty about485

the evaluation samples in these sets, and additional486

analysis further amplifies this uncertainty.487

4.8 Generalization of Evaluation Capability488

To further demonstrate the generalization of evalu-489

ation capability, we compute the ratio of judgment490

change after refining as shown in Table 4. Combin-491

ing Table 3 and 4, we observe that the Refiner main-492

tains evaluation performance in JudgeLM Eval,493

PandaLM Eval, Auto-J Eval, and MTBench, while494

significantly increasing it in the LLMBar series.495

This indicates that re-analysis improves the gen-496

eralization of evaluation capability, especially in497

handling unseen challenging samples.498

5 Case Studies499

We show an example of a multi-faceted evalua-500

tion generated by ARJudge in Figure 5. Given an501

instruction and two responses, the Analyzer first502

generates three evaluation questions and the corre-503

sponding multi-faceted analyses. The last question504

is analyzed by constructing a Python function and505
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Figure 3: Results on the consistency between code-
driven evaluation and IFEval evaluation. “Loose” and
“Strict” are two judgment criteria in IFEval.
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Figure 4: Evaluation results with increasing analyses.
The right displays the results of four subsets in LLMBar.

Models JudgeLM PandaLM Auto-J MTBench LLMBar

W→C 3.9 4.4 2.3 2.1 7.8
C→W 4.6 4.8 3.4 2.9 3.6

Table 4: Ratio of change after refining. “W→C” de-
notes a judgment changing from wrong to correct after
refinement, while “C→W” denotes the opposite.

assessing execution feedback to determine require- 506

ment completeness. Then, the Refiner reviews the 507

preliminary analysis and refines it by reconsidering 508

the instruction’s requirements. 509

6 Related Work 510

6.1 Tuning-Free Generalist Evaluators 511

Tuning-free generalist evaluators leverage the inher- 512

ent capabilities of large language models (LLMs) 513

to assess responses through the use of carefully 514
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Instruction: I'm applying to the job of "secretary of state" for the national parks association in the UK. The job description is as follows: […] 
Can you write a first draft of a cover letter? Include a reference to each bullet point. I will discuss my experience, and we can edit paragraphs.

Response 1: Here is a draft cover letter that references each of the 
key functions listed in the job description: Dear Hiring Manager, I 
am writing to express my strong interest in the Secretary of State 
position with the National Parks Association. […]

Response 2: I am writing to apply for the role of Secretary of State 
for the National Parks Association in the UK. With my background 
in environmental policy, I believe I have the necessary skills and 
experience to make a positive contribution to the role. […]

Q1: Does the response provide a clear, structured, and relevant first draft tailored to the "secretary of state"?

Q2: Does the response maintain a professional tone and format suitable for a cover letter, and does it align 
with the instruction to discuss and edit based on the applicant's background?

Q3: Does the response include a reference to each bullet point?

Refinement

Response 1 provides a clear, structured, and relevant first draft. […] Response 2, on the other hand, is much shorter and less detailed. […]

Response 1 is well-structured, with a clear introduction, body paragraphs […] Response 2 does not explicitly invite further discussion or 
edits based on the applicant's background. […]

Multi-faceted Analysis

[         ]                 Outputs: 50% include for Response 1; 0% include for Response 2. ➡

Assessment of Preliminary Analysis: […] Refinement of Analysis: […] Conclusion: Therefore, Response 1 is better. R1

vs.

Figure 5: An example of evaluation generated by ARJudge.

designed prompts, offering exceptional flexibility515

and scalability. Various techniques have been em-516

ployed to enhance the accuracy of these evalua-517

tions, such as in-context learning (Fu et al., 2023;518

Lin and Chen, 2023)), adding task-specific crite-519

ria (Kotonya et al., 2023; Zhuo, 2024), and Chain-520

of-Thought analysis (Liu et al., 2023; Zhuo, 2024)).521

Despite their versatility, tuning-free evalua-522

tors often suffer from biases such as position523

bias (Raina et al., 2024; Wang et al., 2023a; Zheng524

et al., 2023b) and verbosity bias (Khan et al.,525

2024; Ye et al., 2024), which can skew evaluation526

outcomes. Methods like response-adapted refer-527

ences (Zhang et al., 2024), multi-agent collabora-528

tion (Xu et al., 2023), and divide and conquer (Saha529

et al., 2024; Li et al., 2023) have been proposed to530

mitigate these issues, improving the fairness and531

reliability of LLM-based evaluations.532

6.2 Specialized Fine-Tuned Evaluators533

While tuning-free approaches provide flexibil-534

ity, specialized fine-tuned evaluators are explic-535

itly trained on human-labeled preference data to536

achieve higher accuracy and domain-specific re-537

liability. These models undergo supervised fine-538

tuning or reinforcement learning-based optimiza-539

tion to align their evaluations more closely with540

expert judgments (Li et al., 2024b; Wang et al.,541

2024b; Kim et al., 2024a,b; Xie et al., 2024).542

While fine-tuned evaluators offer improved accu-543

racy, they face notable challenges in scalability and544

generalization (Huang et al., 2024a). Unlike tuning-545

free approaches, which can adapt to new tasks with 546

minimal configuration, fine-tuned models require 547

ongoing updates through methods such as super- 548

vised fine-tuning or direct preference optimiza- 549

tion (Rafailov et al., 2024). To remain effective 550

amidst evolving benchmarks (Zheng et al., 2023a; 551

Zeng et al., 2024), Auto-J (Li et al., 2024b) lever- 552

ages a large dataset of scoring and preference an- 553

notations while incorporating dynamic in-context 554

learning techniques, such as few-shot prompting, to 555

enhance adaptability. Similarly, FLAMe (Vu et al., 556

2024) combines fine-tuning on labeled preference 557

data with large-scale multitask instruction tuning, 558

enabling it to dynamically adapt to new evaluation 559

criteria while maintaining flexibility. 560

7 Conclusion 561

This work proposes a novel evaluation framework, 562

ARJudge, which adaptively designs evaluation cri- 563

teria and performs multi-faceted evaluation in both 564

text and code. A new Composite Analysis Corpus, 565

designed for both criteria generation and multi- 566

faceted analysis, is developed to train ARJudge. 567

Extensive experiments demonstrate the superiority 568

and robustness of our framework across diverse 569

evaluation benchmarks. Notably, with code-driven 570

analyses, ARJudge gains strong evaluation capa- 571

bilities for assessing instruction following. Future 572

studies can explore the effective use of more tools, 573

such as a search engine, to improve evaluation hon- 574

esty and mitigate hallucination. 575
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Limitations576

While our framework outperforms various baseline577

approaches in LLM evaluation, there is still room578

for improvement. Our method is limited to using579

code to enhance evaluation robustness and does not580

consider additional tools such as search engines or581

specialized agents. Furthermore, our approach par-582

tially relies on the LLM’s own reasoning ability for583

evaluation. If the LLM itself lacks strong reasoning584

capabilities, the effectiveness of refinement may be585

limited. Additionally, our evaluation is restricted586

to pairwise comparisons and does not enhance the587

model’s ability to score single responses. Although588

single-response scoring can be achieved by mod-589

ifying the Refiner’s prompt, its accuracy has not590

been properly aligned.591
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A Training Settings837

We train Qwen2.5-7B-Instruct2 to perform as the838

Analyzer. The number of training samples in the839

Composite Analysis Corpus is around 25K, in-840

cluding 7.7K evaluation question generation sam-841

ples, 6K code-driven analysis samples, and 11K842

text-based analysis samples. The corpus is con-843

structed based on instructions from Auto-J3 (Li844

et al., 2024b). We train it for 2 epochs with a845

global batch size of 96 and we save checkpoints846

for every 50 steps. The learning rate is set to 1e-5.847

We use DeepSpeed ZeRO3 and FlashAttention to848

2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
3https://github.com/GAIR-NLP/auto-j

reduce computational memory usage. The training 849

is implemented on 6 computing devices. We use 850

Pytorch with the 2.4.0 version, Transformers with 851

the 4.44.2 version, and deepspeed with the 0.14.4 852

version. 853

B Prompt Templates 854

Prompt templates used for dataset construction are 855

shown in Figure 6, Figure 7, Figure 8, Figure 9, 856

and Figure 10. 857

Prompt templates used for the Analyzer and Re- 858

finer of our ARJudge are shown in Figure 11, Fig- 859

ure 12, and Figure 13. 860
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Prompt for evaluation question geneartion

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Please propose at most three concise evaluation questions about whether a potential response is a good response for a given instruction. 
Another assistant will evaluate different aspects of the response by answering all the questions.

## Rules of the evaluation:
1. You should prioritize evaluating whether the response honestly/precisely/closely executes the instruction.
2. Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely execute the instruction.

## Requirements for Your Output:
The evaluation questions should **specifically** target the given instruction instead of some general standards, so the questions may revolve 
around key points of the instruction. Questions are presented from most important to least important. You should directly give the questions 
without any other words. Format is "Questions:\n1. {question1}\2. {question2}...".

## Instruction:
{instruction}

## Reference Response 1:
{response1}

## Reference Response 2:
{response2}

## Reference Response 3:
{response3}

Figure 6: Prompt template for evaluation question generation.

Prompt for constraint geneartion

You are an expert for writing constraints. These constraints can be clearly and objectively check whether they have been followed 
correctly. 

## Examples of Verifiable Constraint Types:
1. Keywords (Include Keywords: Include keywords {keyword1}, {keyword2} in your response; Keyword Frequency: In your response, the word 
word should appear {N} times; Forbidden Words: Do not include keywords {forbidden words} in the response; Letter Frequency: In your 
response, the letter {letter} should appear {N} times; etc.)
2. Language (Response Language: Your ENTIRE response should be in {language}, no other language is allowed; etc.)
[…]
7. Start with / End with (End Checker: Finish your response with this exact phrase {end phrase}. No other words should follow this phrase; 
Quotation: Wrap your entire response with double quotation marks; etc.)
8. Punctuation (No Commas: In your entire response, refrain from the use of any commas; etc.)

## Examples of Instruction and Generated Constraints:
Instruction:
Write a limerick about Hannah, a college student, doing an internship at a coffee company. Make sure that her father would love the limerick.
Constraints:
1. Include the words "intern" and "grow".
2. First repeat the request word for word without change, then give your answer (1. do not say any words or characters before repeating the 
request; 2. the request you need to repeat does not include this sentence)
[…]

## Requirements for Your Output:
Please write additional different 8 verifiable constraints for the following instruction. You should randomly select verifiable constraint types 
from the above examples of verifiable constraint types. The constraint form can be arbitrary like examples of instruction and generated 
constraints. The constraints should be tailored to the context of the instruction. Format is "Constraints:\n1. {constraint1}\2. {constraint2}...". 
Don't state the type name in constraints.

## Instruction:
{instruction}

Figure 7: Prompt template for objective constraint generation.
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Prompt for text-based evaluation

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Select the better response, Response 1 or Response 2, based on the evaluation questions. The two responses are generated by two different 
AI chatbots respectively.

## Rules of the evaluation:
1. You should prioritize evaluating whether the response honestly/precisely/closely executes the instruction.
2. Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely execute the instruction.
3. You should avoid any potential bias and your judgment should be as objective as possible. For example, the order in which the responses 
were presented should NOT affect your judgment, as Response 1 and Response 2 are **equally likely** to be the better.

## Requirements for Your Output:
1. You should do the evaluation based on thinking about the evaluation questions.
2. You should first provide an analysis of each response based on the comparison between them, and then end your output with either 
"Therefore, Response 1 is better" or "Therefore, Response 2 is better," verbatim.
3. Do NOT say both/neither are good. Do NOT say "Response 1 is better" or "Response 2 is better" at the beginning.
4. You should do reasoning and thinking **before** claiming which is better.
5. Format is "Analysis of Question 1: {analysis}\n\nAnalysis of Question 2: {analysis}\n\nAnalysis of Question 3: {analysis}\n\n..Therefore, 
Response {idx} is better." Don't use comment symbols like "*".

## Instruction:
{instruction}

## Response 1:
{response1}

## Response 2:
{response2}

## Evaluation Questions:
{criteria}

Figure 8: Prompt template for text-based evaluation.

Prompt for code-driven evaluation

You are a helpful assistant in writing evaluation functions in Python to evaluate whether a response aligns with the given evaluation 
question.

## Reference Response 1:
{response1}

## Reference Response 2:
{response2}

## Reference Response 3:
{response3}

## Evaluation question:
{question}

## Requirements for Your Output:
1. You should write a Python function named "evaluate" to evaluate whether an input string "response" aligns with the given evaluation 
question. Use ".format()" instead of f-string. Use escape character "\\n" if necessary.
2. You should comprehensively understand the question and write Python function suitable for evaluating all responses.
3. "Starts with" or "Ends with" mean the first or last several characters of the response should meet some requirements. The whitespaces at the 
beginning or end of sentences can be ignored.
4. The Python function must print not only the main results but also intermediate calculations or additional information that helps to 
understand the logic of the code.
5. DO NOT print out the original responses.
6. The execution lines are as follows:
```python
# Example usage
responses = [response1, response2, response3]
for i, response in enumerate(responses, 1):

print("\nEvaluating Response {}:".format(i))
evaluate(response)

```

Figure 9: Prompt template for code-driven evaluation.
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Prompt for reverse validation

You are an expert in converting Python evaluation function code into the corresponding explanation text. I will provide the evaluation 
function code. Please strictly follow the code to convert it into the corresponding explanation text.

Example:
## Evaluation Function:
```python
{function}
```

## Explanation:
{explanation} 

Please convert the following evaluation function into explanation stored in a list:
## Evaluation Function:
```python
{function}
```

Figure 10: Prompt template for reverse validation.

Prompt for the Analyzer: question

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Propose 3-6 concise evaluation questions about whether a potential response is a good response for a given instruction.

## Requirements for Your Output:
The evaluation questions should **specifically** target the given instruction instead of some general standards, so the questions may 
revolve around key points of the instruction.

## Instruction:
{instruction}

Figure 11: Prompt template for question generation of the Analyzer.

Prompt for the Analyzer: multi-faceted evaluation

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Evaluate the following two responses based on the given evaluation question.

## Requirements for Your Output:
1. You should do the evaluation based on thinking about the evaluation question.
2. You should provide an analysis of each response based on the comparison between them.
3. You can write Python code to do the analysis for some verifiable evaluation question.

## Instruction:
{instruction}

## Response 1:
{response1}

## Response 2:
{response2}

## Evaluation Question:
{criteria}

Figure 12: Prompt template for multi-faceted analysis of the Analyzer.
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Prompt for the Refiner

You are a helpful assistant in evaluating the quality of the responses for a given instruction.
Select the better response, Response 1 or Response 2. The two responses are generated by two different AI chatbots respectively.

## Rules of the evaluation:
1. You should prioritize evaluating whether the response honestly/precisely/closely executes the instruction.
2. Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely execute the instruction.
3. You should avoid any potential bias and your judgment should be as objective as possible. For example, the order in which the responses 
were presented should NOT affect your judgment, as Response 1 and Response 2 are **equally likely** to be the better.

## Requirements for your output:
1. You should provide a detailed explanation of your analysis, and then always end your response with either "Therefore, Response 1 is 
better." or "Therefore, Response 2 is better." verbatim.
2. Do NOT say both/neither are good. Do NOT say "Response 1 is better" or "Response 2 is better" at the beginning.
3. You should do reasoning and thinking **before** claiming which is better.

## Instruction:
{instruction}

## Response 1:
{response1}

## Response 2:
{response2}

## Analysis by preliminary evaluators:
{analysis}

## Your analysis (Give a detailed explanation: step 1: what do you think of the analysis by other evaluators?; step 2: can you refine the 
analysis by reconsidering the requirements of the instruction?; step 3: which response is better?):

Figure 13: Prompt template for refinement of the Refiner.
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