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Abstract

Medical image segmentation is a crucial part of the radiotherapy (RT) planning workflow
for treating brain tumor patients. Consequently, radiotherapy quality assurance (RTQA)
of expert-segmentations is performed in clinical routine, especially in clinical trials. How-
ever, RTQA is time-consuming and error-prone. Towards automating this, we hypothesize
that models that can generate a distribution of segmentations to simulate the variability
in expert-segmentation, can be used as a proxy to evaluate the compliance and quality of
new segmentations. In this paper, we evaluate a deep learning (Stochastic Segmentation
Networks), and a non-deep learning approach (Gaussian Process Sampling Segmentation
of Images) to generate this distribution of ‘alternative segmentations’. We assess the qual-
ity of these alternative segmentations using three complementary criteria: (i) a blinded
qualitative assessment of expert-segmentations with computer-generated alternatives, (ii)
geometric compliance using Dice similarity coefficient, and a (iii) dosimetric compliance
evaluation using dose-volume histogram curves. On an evaluation data set consisting of 40
RT plans (2 subjects, 2 Organs at Risk, and 10 plans each), our results indicate that these
methods yield plausible alternative segmentations which could be used to build a deep
learning-based RTQA platform. Our results further indicate that geometric compliance
needs to be complemented with dosimetry to fully characterize the impact of segmentation
deviations for target coverage and organs at risk toxicity.

Keywords: Radiotherapy Quality Assurance, Alternative Segmentations, Clinical Evalu-
ation.

1. Introduction

Glioblastoma is the most common and aggressive brain tumor, accounting for 45% of all
malignant primary brain tumors (McFaline-Figueroa and Lee, 2018). Current treatment
consists of a combination of surgery, adjuvant radiotherapy (RT), and concomitant and
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adjuvant chemotherapy (Stupp et al., 2005). An accurate segmentation of the anatomy is
critical for conformal RT planning, as it aims to improve tumor control by boosting the
dose to the target volume (i.e., tumor or resection cavity, with adjacent areas of potential
microscopic spread) while sparing organs at risk (OAR), thus limiting normal tissue tox-
icity (Scoccianti et al., 2015). Radiation oncologists can choose from more than a dozen
commercial software tools to draw boundaries around the target volumes and OAR either
manually or semi-automatically (Meyer et al., 2018).

Accurate segmentation of target volumes and OAR is time consuming and prone to
variability (Wee et al., 2016; Vogin et al., 2021). In clinical trials, failure to adhere to RT
standards may impact local control and overall survival, and jeopardize the therapeutic
effectiveness of the studied regime (Ohri et al., 2013). In a multi-center phase III head and
neck cancer trial, protocol non-compliance was associated with a 20% poorer survival at two
years (Peters et al., 2010). Incorrect target volume segmentation caused 25% (24/97) of the
non-compliant treatment plans. This indicates that target volume and OAR segmentation
are amongst the most critical steps in the RT process. Therefore, efforts have been made
to standardize segmentation and develop RTQA systems (Weber et al., 2012; Niyazi et al.,
2016).

Organizations such as the European Organisation for Research and Treatment of Can-
cer (EORTC) and Radiotherapy Trials Quality Assurance (RTTQA) have introduced QA
procedures to eliminate bias due to systematic variations in radiotherapy delivery (Fairchild
et al., 2012; Nixon et al., 2013). In current EORTC brain tumor trials, segmentations of
target volumes and OAR are manually reviewed by specialized radiation oncologists. This
process is referred to as the individual case review. In a trial of several hundreds of pa-
tients, this becomes time-consuming for investigators and reviewers, and cost-intensive for
the sponsor. Moreover, the extra workload for investigators might discourage trial partici-
pation.

This motivates us to explore automated QA methods (referred hereafter as auto-QA)
to evaluate OAR segmentations for radiotherapy. Prior literature on automated evalua-
tions of segmentations have either focused on geometric plausibility (Robinson et al., 2017,
2018; Audelan and Delingette, 2019; Xia et al., 2020; Fournel et al., 2021), or on time-
saving aspects (Van der Veen et al., 2019; Vaassen et al., 2020). Beyond these, we believe
that a multi-criteria, radiotherapy focused auto-QA system must incorporate dosimetric
compliance in addition to radiological (i.e., reviewer visual evaluation) and geometric met-
rics. Dosimetric parameters are indicative of tumor control or normal tissue complication
probability and commonly evaluated using dose-volume histograms (DVH) for radiotherapy
treatment plans (Drzymala et al., 1991). The DVH curves describe the uniformity of radia-
tion dose each target volume and adjacent OAR receive, summarizing the three-dimensional
dose distribution in a two-dimensional format.

We hypothesize that a distribution of multiple automated segmentations can be used
to simulate the variability in expert-segmentation. Through this, we hope to analyze the
variability of RT plans this family of segmentations generates, for a broader evaluation base
to flag non-compliance in the dosimetric sense. Towards this broad long-term target of
auto-QA for RT planning, our first step involves testing this hypothesis with two methods
- Stochastic Segmentation Networks (SSN) (Monteiro et al., 2020) and Gaussian Process
Sampling Segmentation of Images (GPSSI) (Lê et al., 2015) which generate what we hence-
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forth call ‘alternative segmentations’. The major contributions of this paper are threefold
- we show:

(i) In Section 3.1, that in a blinded qualitative assessment of alternatives vs. refer-
ence, expert-clinician reviewers do not find significant differences between Deep Learning
generated segmentations versus expert-annotated reference.

(ii) In Section 3.2 that the variations in Dice similarity coefficients (DSC) are not always
perceptible from an expert-clinician reviewer perspective. Furthermore, variations in DSC
may not reflect linearly as variations in RT plans depending on the OAR in question.

(iii) In Section 3.3 that the variations in DVH for various OAR and segmentations have
a complex relationship to their geometric evaluations, which needs further exploration to
build clinically relevant models.

2. Methods

This section describes our study design, followed by a description of the data set used. SSN
and GPSSI are briefly described next, followed by the radiotherapy planning process.

R2

R3R1

E1 E2 E3
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Figure 1: How good are automated alternative segmentations for RTQA? Training data
annotated by three experts (E1, E2, E3) are fused via majority voting, to (a)
train an alternative segmentation model (SSN/GPSSI). From a new segmenta-
tion under QA, the model generates a distribution of alternatives (b), which are
evaluated based on: a blinded qualitative assessment of generated segmentations
versus reference (c) by three reviewers R1, R2, R3, followed by computation (d)
of geometric (DSC) and dosimetric (DVH) metrics.

Fig. 1 describes our study design. 30 glioblastoma cases are independently labeled by
three expert radiation oncologists - E1, E2 and E3. For each case, OARs are segmented
following standard clinical guidelines (Scoccianti et al., 2015). In this study, we focus
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specifically on the brainstem and the hippocampus (left and right separately), due to their
delineation complexity, their clinical relevance, and adequacy (Bartel et al., 2019) for a
first analysis of the proposed auto-QA approach. Majority voting is used to fuse expert-
segmentations and yield the reference to train a deep neural network using SSN (described
in Section 2.2). We also use GPSSI (described in Section 2.3) to generate alternative
segmentations on the same cases. These auto-generated segmentations are scored by three
reviewers - R1, R2 and R3 - who also specialize in radiation oncology. A ten point Likert-
scale of 1 (not usable) to 10 (experts’ choice) is used for the scoring.

In order to compare the reviewers’ scores to a reference segmentation of known quality,
we replace one of the alternative segmentation with the fused expert segmentation. We do
not inform the reviewers (R1, R2, R3) that this reference segmentation was included. We
refer to this as a blinded qualitative assessment to measure how such computer generated
alternatives would compare to reference segmentation based on the reviewers’ qualitative
assessment. Fig. 6 shows an example of how alternatives for a single case were presented
to reviewers for recording their scores.

2.1. Description of Data set and Reference

The data set we use includes 30 newly diagnosed glioblastoma cases, each containing vol-
umes of magnetic resonance images (MRI) with T1, T2, T1c and FLAIR sequences, as
well as computed tomography (CT) scans. The MRI volumes contain 256-by-256-by-256
voxels, in 1mm isotropic resolution. Each of these have segmentations for the brainstem
and hippocampus (both left and right), manually drawn independently by E1, E2 and E3.
A majority voting of these segmentations was used as the reference for training SSNs, and
as initial contours for GPSSI. We register these structures with the corresponding CT scans
for RT planning.

2.2. Stochastic Segmentation Networks

SSN (Monteiro et al., 2020) is a probabilistic method for modeling aleatoric uncertainty
using generic deep learning-based image segmentation architectures. It does so by effi-
ciently representing correlations between pixels by modeling the logit map as a low-rank
multivariate normal distribution.

We use Deep medic (Kamnitsas et al., 2017) as the base segmentation network. Four 3D
input channels (FLAIR, T1, T1c, T2) and four labels (Background, brainstem, hippocampus
left, hippocampus right) were used as inputs and outputs. For training, a random selection
of 20 out of the 30 cases were used. Five cases were used for validation. For evaluating
alternative segmentations, 20 random cases are chosen, which could include cases from the
training and validation sets. The batch size for training was set to 10, with 20 patches
per volume of size 110-by-110-by-110. For data augmentation, we used random elastic
deformations on the entire input volume, followed by a random histogram deformation
and a random patch rotation on each patch. These settings are inspired from the ones
used in the Brain Tumor experiments in (Monteiro et al., 2020) and is implemented using:
https://github.com/biomedia-mira/stochastic_segmentation_networks.
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2.3. Gaussian Process Sampling for Segmenting Images

For comparison, we investigate GPSSI, a non-deep learning approach (Lê et al., 2015). The
reference segmentation is used as input to define a probability distribution of segmentations
as a Gaussian process with a squared exponential covariance. This produces spatially
coherent alternative segmentations, while using a single parameter to vary the samples,
corresponding to the DSC between the initial segmentation and the generated alternatives.
Sampled variations account for the image intensity by combining signed distance functions
with signed geodesic distances. This ensures that the variation is less likely to perturb those
regions with higher contrast, as compared to those with a lower geodesic distance, i.e., lower
contrast variations. We use the implementation from https://github.com/alainjungo/

gpssi.

2.4. Radiotherapy Treatment Planning

We use the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) to
generate treatment plans for two glioblastoma cases. Each include reference target volumes,
OARs, and 10 alternative segmentations for brainstem and hippocampus. First, a clinically
acceptable treatment ‘reference plan’ is created, and optimized on the reference target
volumes and OAR. Next, the reference plan is re-optimized for each of the alternative
segmentations of brainstem and hippocampus, creating one ‘alternative plan’ per alternative
segmentation. To avoid plan optimization parameters from being sources of confounding,
the same parameters that yield a clinically acceptable reference plan are used for each
alternative plan. To assess the impact of segmentation variability on dosimetric parameters,
the DVH curves for brainstem, hippocampus and planning target volume (PTV) from each
of the alternative plans and the reference plan are compared in terms of applied dose at
specific ratios of total structure volume. The parameters for plan optimization used for
each case is available on request.

3. Results

Qualitative results are presented in Section 3.1, followed by a geometric assessment in
Section 3.2, and finally a dosimetric assessment in Section 3.3.

3.1. Qualitative Results

Qualitative scores are recorded on an 10-point Likert-scale of 1 (not usable) to 10 (ex-
perts’ choice). Intermediate levels are marked as 3 (“OK but needs lots of corrections”), 5
(“beginner”) and 7 (“intermediate”).

Fig. 2 (left) summarizes scores by each reviewer R1, R2 and R3, per alternative gener-
ated using GPSSI (as shown in the questionnaire). We observed that the mean rating of
all the reviewers for the reference is higher than that for any of the five GPSSI generated
alternatives (see Table 1 for more details). Fig. 2 (right) shows the average scores for each
of the 20 cases. Overall, we observe a good level of agreement among raters, indicating a
robust assessment.

Fig. 3 shows the corresponding qualitative scores for alternatives generated using SSN.
In contrast to GPSSI, two of the three reviewers gave a higher mean rating to segmentations
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Figure 2: Qualitative evaluation of GPSSI-generated alternatives by reviewers (blue - R1,
orange - R2, green - R3). Left summarizes score per alternative (yellow reference
+ 5 alternatives). Right shows the average score trend for 20 cases.

Figure 3: Qualitative evaluation of SSN-generated alternatives (in the same format as
Fig. 2) Note: Reviewer R3 scored only 10 out of 20 cases - some green points
are hence missing.

generated by SSN than the reference - indicating the plausibility of SSN as generator of
alternative segmentations. However, we also observe a larger standard deviation of SSN-
based segmentations (see Table 2 for more details).

3.2. Dice Similarity Coefficient Analysis

To evaluate geometric compliance, we generate 20 alternatives using SSN/GPSSI models
and calculate DSC versus expert-segmentations from E1, E2 and E3 for each of 20 cases
(see individual case results for SSN in Fig. 8). Fig. 4 shows a box plot of DSC for all 400 of
these alternatives generated using SSN (left) and GPSSI (right). The DSC ranges for SSN
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are higher than those of GPSSI - following the same trend as the qualitative assessment
in Section. 3.1. We observe that the mean DSC for brainstem (blue) is consistently higher
than the mean DSC of hippocampus (orange) for both, while the variance of DSC for the
brainstem is smaller than that for the hippocampus. Contrasting these numbers to the
qualitative analysis indicates that an auto-generated sample with a low DSC could still be
rated in the same range as one with a high DSC. This indicates a need to investigate its
broader utility in RT planning.

Figure 4: DSC variations using SSN (left) and GPSSI (right) for both brainstem (blue) and
hippocampus (orange) for 400 alternatives (20 each for 20 cases) against each of
three expert-references by E1, E2 and E3.

3.3. Dose Volume Histogram Analysis

We analyze DVH curves for two cases using 10 SSN-generated alternative segmentations.
Fig. 5 shows the DVH curves for the left hippocampus in these two cases. Two of these
alternatives included spurious false positive voxels, marked alternative 4 and 8 in Fig. 5
(right) (see Fig. 7 for more details).

A hippocampal D40%, i.e., dose to 40% of the hippocampus, of more than 7.3 Gray (Gy)
has been established as a dose constraint for neurocognitive impairment in prospective trials
on RT for brain tumors (Gondi et al., 2012). We observe that in case # 10 (left), 40% of
the hippocampus gets a dose higher than the recommended 7.3 Gy. At 40%, the dose varies
from 12 Gy for the reference segmentation to between 15 to 16 Gy for the alternatives.
Similarly, in case # 7 (right), alternative segmentations generally lead to dose variations of
up to 10 Gy. Upon comparing the DSC for these two cases (see highlighted cases in Fig. 8),
these DVH variations show the need for using broader complementary QA metrics. Even
though we observe no major dosimetric variations from outlier (false positive voxel regions)
detected (i.e., below 2 Gy difference), more research is needed to investigate the impact of
outlier size and location on RTQA.
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Figure 5: Example of DVH variations for cases # 10 and # 7. While these cases show high
DSC, the corresponding DVH curves present large dosimetric variations.

4. Discussions and Conclusion

We postulate that alternative segmentations can be useful to estimate ranges of plausible
segmentations for RTQA as they provide a richer set of reference information than single-
point comparisons (e.g., comparison to a pseudo-reference) or direct estimations of specific
QA metrics (e.g., DSC). Towards such a multi-criteria RTQA platform using alternative
segmentations, we evaluate the performance and plausibility of alternative segmentations
generated by two approaches - SSN (deep learning-based) and GPSSI (non-deep learning).
Based on radiological (i.e., reviewer visual evaluation), geometric (i.e., DSC), and dosimetric
(i.e., DVH) metrics, we find that deep learning models like SSN have the potential to
generate distributions of alternative segmentations.

However, we also observe some false positive outlier regions, which need further inves-
tigation for validating such approaches for RTQA. Following recent findings (Poel et al.,
2021; Kofler et al., 2021), and community efforts (Reinke et al., 2021), we demonstrate
that conventional loss metrics used to train and assess models may not entirely address the
needs for RTQA (see Fig. 9 for an example). We hope this inspires more work to design
clinically-oriented multi-criteria metrics for RT segmentation review.

In this initial study, we focused on alternative segmentations of the brainstem and
hippocampus as two representative structures for RTQA. Future work will incorporate
other OARs within a larger multi-center clinical trial data set of cases from the EORTC.
We further aim at building on this work to create an automatic RTQA workflow, where
input segmentations can be evaluated with radiological, geometric and dosimetric measures.
In this sense, we would like to explore how combining metrics towards a single score could
help improve the clinical workflow. Beyond the area of RT, we hope this work stimulates
further research in other domains where deep learning based quality assurance can play an
important role.
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Matthieu Lê, Jan Unkelbach, Nicholas Ayache, and Hervé Delingette. GPSSI: Gaussian
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Appendix A. Qualitative Analysis

Figure 6: Questionnaire for reviewers to evaluate segmentations. For each case, six different
alternatives were displayed and reviewers were asked to score them using Likert
scale (1 - not usable; 10 - experts’ choice). Human-expert reference was included
in a random location for a blinded qualitative assessment.

As shown in Fig. 6, we show a grid of six slices of segmentations of both the brainstem
and hippocampus for the reviewers to enter their score. The scores are between 1 and 10,
and each of the six choices gets a score. This is repeated for 20 cases - once for GPSSI
generated alternatives, and again for SSN. Statistics of the results are shown in Table. 1
and Table. 2.

Reviewer Reference Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

R1 5.45 (0.61) 4.50 (0.64) 4.30 (0.65) 4.45 (0.82) 4.70 (0.65) 4.25 (0.71)
R2 4.25 (0.55) 3.55 (0.52) 3.70 (0.59) 3.40 (0.41) 4.00 (0.45) 3.70 (0.43)
R3 7.15 (0.89) 6.25 (1.09) 6.50 (1.18) 6.50 (0.80) 6.50 (1.15) 6.80 (0.82)

Table 1: Mean (Standard deviation) of reviewer scores for reference and GPSSI generated
alternatives.

For GPSSI, the mean scores are the highest for the reference (majority voting of expert-
segmentations) as compared to any of the other five alternatives shown. This is shown in
Table. 1. Additionally, the difference between the mean score for the reference segmentation
and the next best is 0.75 (R1), 0.25 (R2) and 0.35 (R3) points.

In contrast, all three reviewers gave the highest mean scores to one of the SSN generated
segmentations, indicating its potential to be used to simulate alternative segmentations.
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Reviewer Reference Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

R1 5.70 (0.40) 5.50 (0.76) 5.55 (0.73) 5.85 (0.67) 5.55 (0.67) 5.90 (0.78)
R2 6.65 (0.52) 6.20 (0.96) 6.30 (0.93) 6.20 (0.92) 6.60 (0.77) 6.65 (0.77)
R3 7.90 (0.68) 7.80 (0.96) 8.30 (0.88) 8.40 (0.84) 7.60 (0.73) 8.30 (0.93)

Table 2: Mean (Standard deviation) of reviewer scores for reference and SSN generated
alternatives.

This is shown in Table. 2. It is interesting also that reviewer R3, the most senior reviewer,
had the highest mean rating, as well as the highest corresponding standard deviation for
both of these methods.

Appendix B. Complexity of relationship between DSC and DVH

Figure 7: False positive outlier regions in the segmentation for case # 7 (alternatives 4 and
8) do not show up as large variations either in DSC or DVH.

Fig. 7 shows the two alternatives that erroneously generated segmentations near the eye
and in the posterior area (highlighted inside the red circles). DSC is known to be sensitive
to the relative size of the false positives with respect to the actual region of interest, whereas
DVH appears to be sensitive to the relative location of these regions to the target volume.
Novel metrics are needed to reliably identify such scenarios and other potentially unknown
relationships, where it is unclear what the impact of these regions are.
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Figure 8: DSC for all 20 cases using SSN - measured against reference by E1, E2 and E3
(20 alternatives generated for each case). Brainstem shown in blue, hippocampus
in orange. Case # 7 and # 10 are highlighted to compare with the corresponding
DVH curves, presented in Fig. 5. Orange stars indicate cases from the test set,
green indicates cases from the validation set, all others are from the training set.
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Multi-criteria Assessment of Automated Alternative Segmentations for RT planning

Fig. 8 contains plots of the DSC for each of the 20 cases - generated using SSN.
These include both in-training and out-of-training cases - for comparison. The brainstem is
represented in blue and hippocampus in orange. The brainstem DSC is consistently higher
than that of the hippocampus. Cases # 7 and # 10 are highlighted, as they correspond to
the DVH curves presented in Fig. 5 - specifically for the hippocampus.

Figure 9: Visualization (using Eclipse) of dose impacts on OARs - target to the left of
brainstem; color wash heatmap scale in Gray

Fig. 9 is a visualization of the dose distribution in a treatment plan (color wash). The
heatmap indicates the complex relationship between the segmentations of target volume in
the temporal lobe and the brainstem. Variations in the segmentation of OARs, such as the
brainstem (multiple overlapping but different cyan lines) and the target volumes (PTV: red
line, clinical target volume/CTV: yellow line, gross tumor volume/GTV: blue line) in the
border of the high dose area, where the dose gradient is most steep (see scale on the left;
red: high dose, blue: low dose), are most critical.

In the zoomed-in section, one of the alternative brainstem segmentations is depicted
overlapping with the high-dose PTV - a potential case of over-contouring or segmentation
error. Such a variation would result in (i) overestimation of the dose to the brainstem, since
less area of the true brainstem lies within the high-dose area, and therefore (ii) potentially
an under-dosing of the target volume, in order to spare the brainstem from excess dose
during plan optimization. This could negatively impact tumor control.

On the other hand, under-contouring of the brainstem, i.e. missing certain areas, would
result in a under-estimation of the dose to the brainstem. When the actual OAR dose is
exceeding tolerance limits, excess toxicities might occur. Traditional metrics for volume
comparison such as DSC are insensitive to the spatial location of segmentation variation
in relation of the dose distribution, and might thus be insufficient to detect these clinically
meaningful variations.
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