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ABSTRACT

Convolutional neural networks (CNNs) have shown state-of-the-art performance
in various applications. However, CNNs are resource-hungry due to their require-
ment of high computational complexity and memory storage. Recent efforts to-
ward achieving computational efficiency in CNNs involve filter pruning methods
that eliminate some of the filters in CNNs based on the “importance” of the fil-
ters. Existing passive filter pruning methods typically use the entry-wise norm
of the filters to quantify filter importance, without considering how well the fil-
ter contributes in producing the node output. Under high pruning ratio where the
large number of filters are to be pruned from the network, the entry-wise norm
methods always select high entry-wise norm filters as important, and ignore the
diversity learned by the other filters that may result in degradation in the perfor-
mance. To address this, we present a passive filter pruning method where the
filters are pruned based on their contribution in producing output by implicitly
considering the operator norm of the filters. The computational cost and memory
requirement is reduced significantly by eliminating filters and their corresponding
feature maps from the network. Accuracy similar to the original network is re-
covered by fine-tuning the pruned network. The proposed pruning method gives
similar or better performance than the entry-wise norm-based pruning methods at
various pruning ratios. The efficacy of the proposed pruning method is evaluated
on audio scene classification (e.g. TAU Urban Acoustic Scenes 2020) and image
classification (MNIST handwritten digit classification, CIFAR-10).

1 INTRODUCTION

Convolutional neural networks (CNNs) have shown great success and exhibit state-of-the-art per-
formance when compared to traditional hand-crafted methods in many domains (Gu et al. (2018)).
Even though CNNs are highly efficient in solving non-linear complex tasks (Denton et al. (2014)),
it may be challenging to deploy large-size CNNs on resource-constrained devices such as mobile
phones or internet of things (IoT) devices, owing to high computational costs during inference and
the memory requirement for CNNs (Simonyan & Zisserman (2015); Krizhevsky et al. (2012)). Thus,
the issue of reducing the size and the computational cost of CNNs has drawn a significant amount
of attention in the research community.

Recent efforts toward reducing the computational complexity of CNNs involve pruning methods
where a set of parameters, such as weights or filters, are eliminated from the CNNs. These prun-
ing methods are motivated by the existence of redundant parameters (Denil et al. (2013); Livni
et al. (2014)) in CNNs that only yield extra computations without contributing much in performance
(Frankle & Carbin (2019)). For example, Li et al. (2017) found that 64% of the parameters, con-
tributing approximately 34% of the computation time, are redundant. Eliminating such redundant
parameters from CNNs provides small CNNs that perform similar to the original CNNs while re-
ducing the computations and the memory requirement compared to the original CNNs.

While eliminating weights from an unpruned CNN may result in a highly sparse network with few
parameters, a pruned network obtained by eliminating individual weights is unstructured and may
not be straightforward to run more efficiently. The practical acceleration in the unstructured sparse
pruned networks is limited due to random connections despite high sparsity (Luo et al. (2017)).
Moreover, the unstructured sparse networks can not be supported by off-the-shelf libraries and re-
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Figure 1: A geometrical view of output produced by a convolution operation, where input feature
maps X in R2 are transformed to output feature maps Y in R2 using a transformation matrix F. F
is decomposed to a left singular matrix (U), a right singular matrix (W) and a diagonal matrix (Σ)
using a singular value decomposition method. U and W are orthogonal matrices that cause rotation
in the input, and σ1 and σ2 are singular values that scale the input. F stretches X maximally by
||F|| = σ1 which is an operator norm of F.

quire specialised software or hardware for speed-up (Wen et al. (2016); Han et al. (2016)). To ad-
dress this unstructured pruning problem, several filter pruning methods have been proposed which
eliminates whole filters, resulting in a structured pruned network (Luo et al. (2018)) that does not
require additional resources for speed-up.

In these structured filter pruning methods, the “importance” of a filter, used to decide if a filter is
retained or eliminated, is measured using either active or passive methods. Active filter pruning
methods involve a dataset to compute the importance of filters. For example, (Luo & Wu (2017);
Polyak & Wolf (2015); Hu et al. (2016); Lin et al. (2020); Yeom et al. (2021)) use feature maps
which are the outputs generated from CNN filters corresponding to a set of examples, and apply
metrics such as entropy, variance, average rank of feature maps and the average percentage of zeros
on the feature maps to quantify the importance of the filters. Other methods including (Liu et al.
(2017); Lin et al. (2019)) compute important set of filters during training process by optimizing a
soft mask associated with each feature map using regularization. However, these methods are time-
consuming and use extra memory resources to obtain feature maps. On the other hand, passive filter
pruning methods only use the parameters of the filters without involving any dataset or optimizing
process to compute the importance of the filters. Therefore, the passive filter pruning methods are
less time-consuming and require less memory resources in identifying important set of filters. In par-
ticular, when there exists already a pre-trained network to be pruned, identifying pruned set of filters
using optimization process (Liu et al. (2017); Lin et al. (2019)) would be heavily computationally
expensive compared to that of the passive filter pruning methods.

A typical passive filter pruning method uses an entry-wise norm of the filters to measure their im-
portance. For example, this might be a l1-norm a sum of absolute values of each entry in the filter
or an l2-norm square root of the squared sum of each entry in the filter. Li et al. (2017) eliminates
filters having smaller entry-wise l1-norm or l2-norm as measured from the origin, and finds that
eliminating filters based on the entry-wise l2-norm of the filters gives similar performance to that
of the entry-wise l1-norm. He et al. (2019) eliminates the filters with smaller l2-norm as measured
from the geometric median of all filters. Both the previous methods assume that a filter with smaller
entry-wise norm is less informative or less important, without considering how significantly a filter
contribute in producing output. For example, an illustration of the contribution by the filters in pro-
ducing output is shown in Figure 1, where filters F produces an output Y by maximally stretching
the input X by a largest singular value σ1 that represents an operator norm of the F. However, the
entry-wise norm methods do not consider any input-output relationship information and rely on each
entry of the filter while computing the filter importance.

To illustrate the above further, we pictorially show in Figure 2(a) that two filters F1 and F3 having
same entry-wise norm contribute differently and produce different output due to different operator
norm of the each filter shown in Figure 2(b). Hence such filters should be given different importance.
Moreover, when a few number of filters have to be retained in the CNN to yield a very small pruned
CNN, selecting filters with only high entry-wise norm may ignore the smaller norm filters that may
also contribute significantly in producing output (Ye et al. (2018)). This may degrade the accuracy of
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Figure 2: (a) An illustration of output produced in the convolution layer by three CNN filters, F1, F2

and F3 after applying a convolution operation on X ∈ R2×1000. (b) shows the entry-wise l1-norm
and the operator norm of the three filters.

the pruned network significantly due to relying on the filters having high entry-wise norm, however
low significance in producing output. For example as shown in Figure 2(b), F2 has σ1 = 3, and it
stretches X relatively larger than that of the F1 and the F3. However, the entry-wise norm of the
F2 is the smallest among all three filters. Therefore F2 shall be ignored by the entry-wise norm
methods despite a relatively high contribution than other filters.

To select the important filters based on their contribution in producing output, we propose a novel
passive filter pruning framework by considering filters in a convolution layer as an operator that
transform input feature maps to output feature maps. To compute the importance of filters, we
use the operator norm of the filters, which represents the maximum contribution of the filters in
producing output rather than relying on the entry-wise norm of the filters. Utilising all filters in a
convolutional layer, we use a Rank-1 approximation of the filters to obtain the maximally stretched
direction associated with the operator norm in which the input gets stretched maximally by all filters.
A filter in the convolutional layer is deemed important based on how well it is aligned along the
maximally stretched direction represented by all filters in that convolutional layer.

The proposed passive filter pruning method is evaluated on pre-trained CNNs such as VGGish (Her-
shey et al. (2017)) and DCASE 2021 Task 1A baseline (Martı́n-Morató et al. (2021)) designed for
audio scene classification (ASC), VGG-16 network (Liu & Deng (2015))and ResNet-50 (He et al.
(2016)) designed for image classification problem.

2 METHODOLOGY

Notation: Consider a CNN having L convolutional layers with indexes ∈ {1, 2,· · · , l,· · · , L}. A
feature map in a convolutional layer denotes an output produced by a CNN filter. In the lth convo-
lution layer, let nl denote the number of input channels with each feature map of size hl × wl. Let
X of size (nl−1 × hl−1 × wl−1) and Y of size (nl × hl × wl), denote the feature map matrices,
produced by stacking all the respective feature maps in the (l− 1)th and the lth layer respectively. A
jth feature map in the lth layer is produced by a convolution operation using a jth filter Fl,j of size
(nl−1 × kl × kl) having nl−1 2D kernels each of (kl × kl) on X. All filters in the lth convolution
layer constitute a kernel tensor Kl = [Fl,1 Fl,2 . . . Fl,nl ] of size (nl−1×nl× kl× kl). A pictorial
illustration of two intermediate layers in the CNN is described in Figure 3.
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Figure 3: An illustration of the intermediate layer structure and filter pruning in CNN. In the lth

layer, there are nl filters each having (kl × kl) size and nl−1 channels. The nl filters produce nl

feature maps. Pruning the jth filter, Fl,j , in the lth convolution layer results in elimination of the
feature map produced by the pruned filter and corresponding channel in the (l + 1)th layer.

SVD

SVD

SVD

Figure 4: An illustration to obtain maximally stretched direction for each nl−1 channels across all
filters in the lth convolutional layer.

2.1 COMPUTING FILTER IMPORTANCE IN THE lTH CONVOLUTION LAYER

Given a kernel tensor Kl for the lth convolution layer, our aim is to compute the importance of
each of the nl filters. Without loss of generality, we transform the kernel tensor Kl to Kv

l of size
(nl−1 × nl × kl

v) by vectrozing the 2D kernels each of (kl × kl) to kl
v .

To identify importance of each filter, we use Kv
l to obtain a maximally stretched direction corre-

sponding to the operator norm of the filters along which the filters in the given convolutional layer
stretches the input maximally. Since the output produced by the cth channel of a filter depends only
on the cth channel of the input in CNNs, the maximally stretched direction is obtained for each
channel of the filters independently.

A channel-specific matrix Vc of size (nl × kl
v) is constructed by taking cth channel of all filters.

Vc denotes the learned weights of the cth channel across the nl filters. Next, singular value de-
composition (SVD) is performed on Vc to compute a rank-1 approximation of the cth channel as
Vc ≈ σ1u1w

T
1 . Here, σ1 denotes the maximum singular value that affects the corresponding chan-

nel of the input maximally and is equivalent to the operator norm of the Vc, u1 is the first left
singular vector, and w1 is the first right singular vector. A row of Vc normalized to unit norm is
denoted as Vmax

c , and is considered as a maximally stretched direction for the cth channel. Vmax
c

provides a reference for measuring the significance the cth channel of the filter.
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Algorithm 1 Filter Importance Calculation
input : Kv

l of size (nl−1 × nl × kl
v), kernel matrix in lth layer .

output: Score norm, # normalized importance scores of filters, in lth layer.
Initialization: Cl = [ ], Score = [ ], # importance score of filters.

... # Obtaining channel-wise maximally stretched direction associated with operator norm...
for c← 1 to nl−1 do

Vc =Kv
l[c , : , :] # Take cth channel of size (nl × kl

v) from all the filters,
u,Σ,w = SVD( Vc ) # Perform SVD on Vc,
Cl.append((u1w

T
1)[1,:]) #Take first left (u1) and first right (w1) singular vector associated

with σ1, take any row of u1w
T
1 and normalized to 1 and append the normalized row to Cl.

end
....................# Importance-score calculation....................

for j ← 1 to nl do
Fl,j = Kv

l[ : , j , :] # Take jth filter.
F̄l,j= Score.append([trace((Fl,j)Cl)]) #Compute importance.

end
α =[Score]

Score norm = α2

max(α2) # Normalized importance.
return Score norm

After obtaining Vmax
c corresponding to the cth channel, we obtain maximally stretched directions for

other channels. Finally, the Vmax
c of all channels are stacked together to yield Cl of size (klv × nl−1)

for a given convolutional layer. A pictorial representation to obtain Cl is shown in Figure 4.

Given Cl, the importance for the jth filter is computed as, Trace[(Fl,j)Cl)]. The filters are ranked
as per their importance with a relatively high importance score indicates a high contribution of the
filter in producing output. Algorithm 1 summarizes the process to compute the importance of various
filters in a given convolutional layer.

After ranking the filters based on their importance for various convolutional layers, few unimportant
filters are eliminated based on a user-defined pruning ratio for various convolutional layers of CNN,
and a pruned network is obtained. Pruning a filter in the lth convolution layer also eliminates the
feature map produced by the pruned filter and the related kernel or channel in the next layer as shown
in Figure 3, hence the computations is reduced in both the lth layer and the (l+1)th layer. In the end,
a fine-tuning of the pruned network is performed to regain the performance loss due to elimination
of filters from the original network.

3 EXPERIMENTS

We evaluate the proposed pruning method on CNNs designed for audio scene classification (ASC)
and image classification. A brief summary of the unpruned CNNs used for experimentation is shown
in Figure 5 and is described below,

Unpruned CNNs: We use two different unpruned networks for ASC, (a) VGGish Net and (b)
DCASE21 Net. We also use (c) VGG-16 network for image classification.

(a) VGGish Net: The VGGish Net is built using a publicly available pre-trained VGGish net-
work (Hershey et al. (2017)) followed by a dense and a classification layer. We train the
VGGish Net on TUT Urban Acoustic Scenes 2018 development (we denote it as DCASE-
18) training dataset (Mesaros et al. (2018)) to classify 10 different audio scenes using Adam
optimizer with cross-entropy loss function for 200 epochs. The input to the VGGish Net is
a log-melspectrogram of size (96 × 64) computed corresponding to 960ms audio segment
for a whole 10s audio scene. The VGGish Net has 55,361,162 (approximately 55M) pa-
rameters, requiring 903M multiply-accumulate operations (MACs)1 during inference cor-
responding to an audio clip of 960ms and gives 64.69% accuracy on 10s audio scene for

1To compute MACs, we use publicly available “nessi.py” script available at https://github.com/
AlbertoAncilotto/NeSsi
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(a) VGGish_Net

(b) DCASE21_Net

(c) VGG-16

Pre-trained DCASE
2021 Task1 baseline

network 

Acoustic scene
classification on DCASE-

20 dataset10s audio
clip 

Parameter Count: 46246  
MACs: 287M  Unpruned accuracy: 48.58%

Pre-trained VGGish +
a dense layer  

 

Acoustic scene
classification on DCASE-

18 dataset960ms  
audio

segment 

Parameter Count: 55M  
MACs: 903M  

Unpruned accuracy: 64.69%

VGG-16 network
Handwritten Digit
classification on
MNIST dataset

Parameter Count: 15M  
MACs: 329M Unpruned accuracy: 99.49%

Figure 5: Unpruned CNNs used for experimentation; (a) VGGish Net (b) DCASE21 Net and (c)
VGG Net.

DCASE-18 development validation dataset. The VGGish Net has six convolution layers
(termed as C1 to C6).

(b) DCASE21 Net: DCASE21 Net is a publicly available pre-trained network designed for
DCASE 2021 Task 1A that is trained using TAU Urban Acoustic Scenes 2020 Mobile de-
velopment dataset (we denote “DCASE-20”) to classify 10 different audio scenes (Martı́n-
Morató et al. (2021)). The input to the network is a log-melspectrogram of size (40 ×
500) corresponding to a 10s audio clip. The trained network has 46246 parameters, re-
quiring approximately 287M MACs during inference corresponding to 10-second-length
audio clip and gives 48.58% accuracy on the DCASE-20 development validation dataset.
DCASE21 Net consists of three convolutional layers (termed as C1 to C3) and one fully
connected layer.

(c) VGG-16: We use a VGG-16 network ( (Liu & Deng (2015))) for handwritten digit classifi-
cation using MNIST dataset2(LeCun et al. (2010)). We train the VGG-16 from scratch for
200 epochs on the MNIST training dataset. The VGG-16 consists of 13 convolutional layer
(termed as C1 to C13) and 2 dense layers. The VGG-16 has 15M parameters and requires
329M MACs per inference and the trained VGG-16 gives 99.49% accuracy for the MNIST
testing dataset.

Apart from unpruned networks (a), (b) and (c), we evaluate the prposed method on VGG-16 and
ResNet-50 (He et al. (2016)) networks using CIFAR-10 dataset (Krizhevsky & Hinton (2009)) and
an initial analysis on ResNet-50 using CIFAR-10 dataset. Please refer Appendix for detailed analy-
sis.

Fine-tuning of the pruned network: After computing importance of the filters using Algorithm 1
across various convolutional layers, we eliminate p percentage of unimportant filters from various
convolutional layer, where p ∈ {25, 50, 75, 90} denotes a pruning ratio. Once the pruned network
is obtained, we re-train the network with similar conditions such as same optimizer as used in the
training of the unpruned networks (a), (b) and (c) for 100 epochs. The codes for the proposed
pruning framework, various pruned and unpruned networks can be found at the link3.

2The MNIST dataset is downloaded using Keras API which has a pre-defined training and testing set of
grayscale images. Each grayscale image of size (28 × 28) is converted into three channels by depthwise
stacking the grayscale image and then reshaping to (32 × 32 × 3) that is used as an input to VGG-16.

3https://anonymous.4open.science/r/Operator_norm_passive_Filter_
Pruning-125D

6

https://anonymous.4open.science/r/Operator_norm_passive_Filter_Pruning-125D
https://anonymous.4open.science/r/Operator_norm_passive_Filter_Pruning-125D


Under review as a conference paper at ICLR 2023

25% pruning ratio 50% pruning ratio

(a) VGGish_Net on DCASE-18 dataset

(b) DCASE21_Net on DCASE-20 dataset

(c) VGG-16 on MNIST dataset
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Figure 6: Accuracy, MACs and parameters across different pruned networks for (a) VGGish Net, (b)
DCASE21 Net and (c) VGG-16 network, when different subsets of convolutional layers are pruned
at different pruning ratios. Here, “CA B” as “pruned layers” means that convolution layers from A
to B are pruned.

Other methods for comparison: We compare the proposed operator norm based pruning method
with that of the entry-wise norm based methods, (a) l1-norm method that eliminates filters with
smaller entry-wise l1-norm (Li et al. (2017)) and (b) geometric median (GM) method that elimi-
nates filters with smaller l2-norm as measured from the geometric median of all filters (He et al.
(2019)). We also compare the proposed pruning method with the existing active filter pruning meth-
ods including HRank (Lin et al. (2020)), Energy-aware pruning (Yeom et al. (2021)), L1-slimming
(Liu et al. (2017)), and GAL-0.1 (Lin et al. (2019)) in Appendix: Table 3.

4 RESULTS

We analyse accuracy, the number of MACs and the number of parameters in the pruned networks
obtained after pruning various subsets of convolution layers at different pruning ratios from the
unpruned network.

VGGish Net and DCASE21 Net on ASC: As shown in Figure 6 (a,b), the accuracy obtained using
the various pruned networks is similar to that of the unpruned networks at p = 25%. For VG-
Gish Net, the number of MACs are reduced by 40 percentage points and the parameters are reduced
by 25 percentage points, when all convolutional layers (C1 6: C1 to C6) are pruned at p = 25%
shown in Figure 6(a). For DCASE21 Net, both the MACs and the parameters are reduced by 40
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Table 1: Comparison of accuracy, the MACs and the parameters among the (a) unpruned, (b) the
pruned network obtained using the proposed pruning method and the same pruned network obtained
in (b), however, trained from scratch.

Network Accuracy (%) MACs Reduced MACs Paramters Reduced paramters

VGGish Net 64.69 903M - 55M -
(a) Pruned VGGish Net 64.30 253M 72% 26.82M 52%

(b) Pruned VGGish Net-scratch 61.40

DCASE21 Net 48.58 286M - 46246 -
(a) Pruned DCASE21 Net 48.18 164M 43% 27906 40%

(b) Pruned DCASE21 Net-scratch 46.80

VGGNet-MNIST 99.49 329M - 15M -
(a) Pruned VGGNet-MNIST 99.10 3.33M 99% 0.18M 99%

(b) Pruned VGGNet-MNIST-scratch 98.97

percentage points when all convolutional layers (C1 3: C1 to C3) are pruned at p = 25% shown in
Figure 6(b).

At p = 50%, the accuracy drop across various pruned networks is less than 4 percentage points
compared to that of the unpruned network for both VGGish Net and DCASE21 Net as shown in
Figure 6(a, b). For VGGish Net, the number of MACs are reduced by 75 percentage points and the
parameters are reduced by 55 percentage points, when all convolutional layers (C1 6: C1 to C6) are
pruned at p = 50% shown in Figure 6(a). For DCASE21 Net, both the MACs and the parameters
are reduced by 75 percentage points when all convolutional layers (C1 3: C1 to C3) are pruned at
p = 50% shown in Figure 6(b).

At p = 75%, the accuracy drop across various pruned networks is less than 5 percentage points
and 10 percentage points compared to that of the unpruned network for both VGGish Net and
DCASE21 Net respectively as shown in Figure 6(a, b). The accuracy of the pruned networks de-
grades further at p = 90% and the drop in accuracy for VGGish Net and DCASE21 Net is 10
percentage points and 20 percentage points respectively, when all layer are pruned at p = 90%.
On the other hand, both the MACs and the parameters are reduced significantly by more than 75
percentage points when all convolutional layers of VGGish Net and DCASE21 Net are pruned at
p = {75%, 90%} as shown in Figure 6(a, b).

In general, the MACs, the parameters and the accuracy decrease when various convolutional layers
are pruned from 25% to 90% pruning ratio. The accuracy of the pruned DCASE21 Net reduces
significantly from 0.2 percentage points to 20 percentage points compared to that of the unpruned
network, when all layers are pruned with 25% to 90% pruning ratio. This might be due to the smaller
network size of the DCASE21 Net, where eliminating large number of parameters at high pruning
ratio results in under-fitting problem due to insufficient parameters.

VGG-16 for image classification : For VGG-16, the accuracy of the various pruned networks is
reduced by less than 0.5% percentage points compared to that of the unpruned VGG-16 as shown in
Figure 6(c). The number of MACs and the parameters are reduced from approximately 40 percent-
age points to 99 percentage points when pruning ratio across all convolutional layers (C1 13: C1 to
C13) varies from 25% to 90% respectively.

Next, Table 1 compares the accuracy, MACs and parameters in the unpruned network with that
of (a) the pruned network having important filters obtained using the proposed pruning method
as an initialisation before fine-tuning process, (b) the same pruned network as obtained in (a) and
trained from scratch with random initialization. For comparison, we choose the pruned network
in (a) which gives a maximum drop of 0.5 percentage point in accuracy compared to that of the
unpruned network. For various networks, the parameters and the MACs are reduced significantly
with a marginal drop in accuracy compared to that of the unpruned network. The accuracy of (a)
the pruned network obtained from the proposed pruning method is better than (b) the same pruned
network trained from scratch. This shows that it is beneficial to train a large network, and then
perform pruning to reduce the parameters rather than training the same size pruned network from
scratch. For experimental analysis of VGG-16 network on CIFAR-10 and ResNet-50 network on
CIFAR-10, please refer to Appendix A.1.2 and Appendix A.2.2 respectively.
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Entry-wise geometric median (GM) based pruning

Pruning ratio (p) Pruning ratio (p)

Entry-wise     -norm based pruning

Figure 7: Accuracy obtained using the pruned network when all layers are pruned at different prun-
ing ratio using entry-wise l1-norm method, geometrical-median (GM) method and the proposed
operator norm pruning method across various networks.

Comparison with other methods: Figure 7 compares the accuracy of the proposed operator norm
pruning method with that of the entry-wise l1-norm and the geometrical median (GM) based meth-
ods, when all layers in the unpruned network are pruned at different pruning ratios. For VGGish Net
and DCASE21 Net, the accuracy obtained using the proposed operator norm based pruning method
is better than that of the entry-wise norm methods particularly when a large number of filters
(p = 90%) are pruned from the network as shown in Figure 7(a, b). Moreover, the pruned net-
work obtained using the proposed operator norm based pruning method recovers faster to regain the
accuracy during the fine-tuning process compared to that of the other pruning methods as shown in
Appendix: Figure 8(a, b) at different pruning ratios. For VGG-16, the accuracy obtained using the
proposed operator norm pruning method is similar to the other methods as shown in Figure 7(c) and
recovers faster compared to that of the other pruning methods as shown in Appendix: Figure 8(c) at
different pruning ratios.

For VGG-16 on CIFAR-10, we find that the accuracy obtained using the proposed pruning method is
slightly better than that of the entry-wise norm methods at various pruning ratio (Appendix: Figure
10), and the convergence speed is also more or less similar to the entry-wise norm methods (Ap-
pendix: Figure 11). Similar analysis is also observed for ResNet-50 network on CIFAR-10 dataset
(Appendix: Figure 15). This suggests that the proposed pruning method performs similar to or better
than the existing entry-wise norm based pruning methods across different CNNs designed for audio
and image classification , hence showing better generalization. This shows that selecting important
filters based on the operator norm of the filters in producing output is advantageous compared to
considering entry-wise norm of the filters due to similar or better performance across various CNNs.

In comparison to the active filter pruning methods including HRank (Lin et al. (2020)), Energy-
aware pruning (Yeom et al. (2021)), L1-slimming (Liu et al. (2017)), and GAL-0.1 (Lin et al. (2019))
as given in Appendix: Table 3, the proposed pruning method reduces similar number of parameters
and can achieve accuracy within ≈ 1 percentage point as given by the active filter pruning methods,
with an advantage of no requirement of dataset, feature maps, regularization techniques or knowl-
edge distillation techniques while identifying pruned set of filters.

5 CONCLUSION

This paper presents a passive filter pruning method which reduces the computational complexity and
the memory of the unpruned CNN significantly at marginal drop in accuracy. The proposed pruning
method reduces similar number of parameters and MACs at a maximum drop in accuracy of less
than 1 percentage points compared to the existing active filter pruning methods without involving
any dataset or regularization methods while eliminating filters from the unpruned network. We find
that the proposed pruning method gives similar or better accuracy at various pruning ratio compared
to that of the existing entry-wise norm methods across different CNNs designed in audio and image
domains, hence showing the generalization ability across different domains as well. In future, we
would like to improve the performance of the pruned network by incorporating data augmentation
techniques to improve the fine-tuning process.
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A APPENDIX

(a) VGGish_Net on DCASE-18

(b) DCASE21_Net on DCASE-20

(c) VGG-16 on MNIST
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Figure 8: Convergence plots showing regain in the accuracy during fine-tuning of the pruned net-
work when the pruned network is obtained by pruning all convolutional layers at different pruning
ratios.

A.1 EXPERIMENTAL SETUP AND ANALYSIS: VGG-16 ON CIFAR-10

A.1.1 EXPERIMENTAL SETUP

Unpruned network: We use a publicly available pre-trained VGG-16 network trained on CIFAR-
10 dataset (Geifman) as an unpruned network. The unpruned architecture is based on the VGG-
16 (Simonyan & Zisserman (2015)) with adaptation to CIFAR-10 dataset based on (Liu & Deng
(2015)). The VGG-16 has 15M parameters and requires 329M MACs per inference and the pre-
trained VGG-16 gives 93.58% accuracy for the CIFAR-10 testing dataset. The unpruned network
has 13 convolutional layer, denoted as C1 to C13.

To perform fine-tuning of the pruned network, we re-train the pruned network for 100 epochs with
similar conditions such as same optimizer as used in training the unpruned network (Geifman).

Other methods used for comparison: For comparison, we use passive filter pruning methods such
as entry-wise l1-norm (Li et al. (2017)) and entry-wise geometric median (GM) (He et al. (2019)).
We also compare the proposed pruning method with the existing active filter pruning methods in-
cluding HRank (Lin et al. (2020)), Energy-aware pruning (Yeom et al. (2021)), L1-slimming (Liu
et al. (2017)), and GAL-0.1 (Lin et al. (2019)). A brief overview of the active filter pruning methods
used for comparison is given below,

HRank: This method opts three steps to obtain a pruned network. 1) A set of feature maps are
generated for a given filter using a set of examples. 2) Rank of the feature maps is computed and
an average rank computed across feature maps of various examples is used as a criterion to quantify
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filter importance. 3) The filters with low average rank are eliminated and a fine-tuning procedure is
opted to compensate the performance loss.

Energy-aware: This method uses a set of input data to generate feature maps for a given convolu-
tional layer and then compute energy of each feature map by computing nuclear norm (sum of all
singular values) of each feature map. A feature map with low energy is pruned and then fine-tuning
of the pruned network is performed.

L1-slimming: This method uses three steps to obtain a pruned network: (1) Trains the underly-
ing unpruned network with channel-level sparsity regularisation, (2) Eliminate the channels (feature
maps and corresponding filters) having small value of a scaling coefficient (γ) in a batch normalisa-
tion layer, and (3) Fine-tune the pruned network.

GAL-0.1: This method applies knowledge distillation to train the pruned network with l1-
regularisation on the soft mask associated with channels (feature maps) to mimic the unpruned
network by aligning their output using generative adversarial learning (GAL) from the unpruned
network to the pruned network. Subsequently, the pruned network is fine-tuned after eliminating the
unimportant feature maps and corresponding filters.

A.1.2 PERFORMANCE ANALYSIS

25% pruning ratio 50% pruning ratio

75% pruning ratio 90% pruning ratio

"Green" color: Accuracy

"Red" color: MACs/Paramters

(a) VGG-16 on CIFAR-10 dataset
Pruned layers Pruned layers

Figure 9: Accuracy, MACs and parameters across different pruned networks for VGG-16 network
trained on CIFAR-10, when different subsets of convolutional layers are pruned at different pruning
ratios. Here, “CA B” as “pruned layers” means that convolution layers from A to B are pruned.

Figure 9 shows the number of MACs and the number of parameters in the pruned network obtained
after pruning various subsets of convolution layers at different pruning ratios from the unpruned
network. By varying p from 25% to 70% across convolution layers from C5 to C13, the number
of parameters are reduced from 40% to 90%, and the MACs are reduced from 25% to 70% with
an accuracy drop from 0.25 to 3 percentage points respectively. Pruning all convolutional layers at
p = 25% results in approximately 45% reduction in noth parameters and MACs at marginal drop
in accuracy compared to that of the unpruned network. On the other hand, pruning all convolu-
tional layers at p = 90% reduces parameters and MACs significantly, however accuracy drop is
approximately 20 percentage points compared to the unpruned network. Therefore, the pruning ra-
tio can be chosen according to the requirement whether the underlying resources (computation and
parameters) are primarily important or the accuracy.

Next, Table 2 compares the accuracy, MACs and parameters in the unpruned network with that of
(a) the pruned network having important filters obtained using the proposed pruning method as an
initialisation before fine-tuning process, (b) the same pruned network as obtained in (a) and trained
from scratch with random initialization. For comparison, we choose the pruned network in (a)
which gives a maximum drop of approximately 0.5 percentage point in accuracy compared to that
of the unpruned network. The parameters and the MACs are reduced by 34% and 78% respectively
with a marginal drop in accuracy compared to that of the unpruned network. The accuracy of (a)
the pruned network obtained from the proposed pruning method is better than (b) the same pruned
network trained from scratch.
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Table 2: Comparison of accuracy, the MACs and the parameters among the (a) unpruned, (b) the
pruned network obtained using the proposed pruning method and the same pruned network obtained
in (b), however, trained from scratch.

Network Accuracy (%) MACs Reduced MACs Parameters Reduced parameters

VGG-16 on CIFAR10 93.56 329M - 15M -
(a) Pruned VGG-16 on CIFAR10 93.00 217M 34% 3.29M 78%

(b) Pruned VGG-16 on CIFAR10-scratch 86.02

Comparison with entry-wise norm methods: Figure 10 and Figure 11 compares accuracy and
convergence during fine-tuning of the pruned network among the proposed pruning method, entry-
wise l1-norm and entry-wise GM pruning methods at different pruning ratio. In general, we find
that the accuracy obtained using the proposed pruning method is similar or marginally better (0.5 to
1 percentage points) than that of the entry-wise norm methods particularly at high pruning ratio as
shown in Figure 10 with similar convergence speed (± 0 to 20 epochs) in recovering the accuracy
during fine-tuning as shown in Figure 11.

Unpruned

Proposed Operator norm based pruning

Entry-wise geometric median (GM)
based pruning

Entry-wise     -norm based pruning

Pruning ratio (p)

Figure 10: Accuracy obtained using the pruned network when each layer of VGG-16 network
on CIFAR-10 dataset is pruned at p pruning ratio using entry-wise l1-norm method, geometrical-
median (GM) method and the proposed operator norm pruning method.

Recovered maximum accuracy using the entry-wise geometric median (GM) pruning

Proposed operator norm based pruning

Entry-wise GM pruning

Entry-wise     -norm based pruningRecovered maximum accuracy using the  entry-wise      -norm based pruning
Recovered maximum accuracy using the proposed operator norm based pruning 

(a) VGG-16 on CIFAR-10

25%p = 90%p = 50% p = 75%

Figure 11: Convergence plots showing regain in the accuracy during fine-tuning of the pruned
VGG-16 network on CIFAR-10 when the pruned network is obtained by pruning each convolutional
layers at p pruning ratios.

Comparison with existing active filter pruning methods: Table 3 compares the proposed pruning
method with existing active filter pruning methods. In general, pruning filters from the unpruned
network using only filters result in drop in accuracy approximately 1 percentage points compared to
pruning filters by involving a dataset, using feature maps, regularization or knowledge distillation
(KD) at similar reduction in parameters.

In comparison to feature map based pruning methods such as HRank and Energy-aware as given
in Table 3, we find that the proposed filter based pruning method can achieve similar performance
compared to that of feature map based pruning method, however the proposed method requires more
number of parameters and MACs.
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Table 3: Comparison of accuracy, the MACs and the parameters among different existing methods
for VGG-16 on CIFAR-10 dataset. Please note that the unpruned network used for each comparison
methods has different training procedure and unpruned accuracy. Therefore, we compare the pa-
rameters, MACs and accuracy obtained from the pruned network obtained from each method. Here
“FT” is fine-tuning, “KD” is knowledge distillation.

Method Data used in Pruning KD FT Accuracy (%) Parameters MACs

HRank (Lin et al. (2020)) ✓ ✕ ✓ 93.43 2.50M 146M
Ours (p = 90%,C7 13) ✕ ✕ ✓ 92.00 1.37M 159M
Ours (p = 75%,C7 13) ✕ ✕ ✓ 92.46 2.18M 172M
Ours (p = 75%,C9 13) ✕ ✕ ✓ 93.25 4.18M 227M
Ours (p = 50%,C9 13) ✕ ✕ ✓ 93.50 6.60M 251M

Energy-aware pruning (Yeom et al. (2021)) ✓ ✕ ✓ 93.48 2.86M 104.67M
Ours (p = 75%,C7 13) ✕ ✕ ✓ 92.46 2.18M 172M
Ours (p = 50%,C9 13) ✕ ✕ ✓ 93.50 6.60M 251M

L1-slimming (Liu et al. (2017)) ✓ ✕ ✓ 93.80 2.30M 391M
Ours (p = 50%,C9 13) ✕ ✕ ✓ 93.50 6.60M 251M

GAL-0.1 (Lin et al. (2019)) ✓ ✓ ✕ 90.78 2.67M 171.89M
GAL-0.1 ✓ ✓ ✓ 93.42 2.67M 171.89M

ours (p = 75%,C7 13) ✕ ✕ ✓ 92.46 2.18M 172.29M

In comparison to L1-slimming method as given in Table 3, the proposed pruning method results
in similar accuracy and requires 1.6 times less MACs, however with 3 times more requirement of
parameters. The L1-slimming method prunes filter based on γ parameters in the batch normalisa-
tion layer and hence, solely dependent on batch normalisation layer. Moreover, the L1-Slimming
method requires training of the unpruned network to identify which feature maps need to be pruned.
Assuming that there exists already a pre-trained network which is to be pruned, the L1-slimming
method would require extra computations to obtain the pruned network. On the other hand, the pro-
posed pruning method can directly use pre-trained filters to obtain the pruned network. Although,
the proposed pruning method result in 3 times more parameters that require more memory size, yet
the quantization (float32 to INT8) of the pruned network can be performed to reduce the pruned
network size by 4 times at marginal (< 0.15 percentage point) drop in accuracy. Therefore, the
proposed pruning method is advantageous over the L1-slimming pruning method providing similar
accuracy at reduced MACs.

The GAL-0.1 (without fine-tuning (FT)) method is closely related to the proposed pruning method,
where knowledge distillation step to train the pruned network can be considered as equivalent to
the fine-tuning of the pruned network in the proposed pruning method. In contrast to GAL-0.1
without FT, the proposed pruning method gives better performance as given in Table 3. However,
fine-tuning the pruned network obtained using (GAL-0.1 without FT) results in approximately 1
percentage points better performance compared to that of the proposed pruning method.

The proposed pruning method is simple and advantageous in terms of obtaining pruned network
using filters only compared to involving dataset based pruning methods which results in 1 percentage
points better accuracy, however with relatively more efforts, resources (memory, extra parameters
such as learning soft mask) compared to the proposed pruning method.
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A.2 EXPERIMENTAL SETUP AND ANALYSIS: RESNET-50 ON CIFAR-10

A.2.1 EXPERIMENTAL SETUP

Unpruned network: We perform a preliminary analysis on ResNet-50 using CIFAR-10 dataset. We
use a pre-trained ResNet-50 with ImageNet (He et al. (2016)) weights followed by a global average
pooling, a fully connected layer and a classification layer to train an unpruned network for CIFAR-
10. The architecture used for experiments is shown in Figure 12 consisting of various stages and
different blocks. The unpruned network is trained for 300 epochs with stochastic gradient descent
(SGD) optimizer and cross entropy loss function. The unpruned network has 24M parameters, 99M
MACs andd gives 83.37% accuracy on CIFAR-10 test dataset with (32 x 32 x 3) shaped input.

(b) Identity (ID) Block (c) Convolutional (Conv) Block

(a) ResNet-50 architecture + classifier

ReLU
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Figure 12: (a) Architecture to classify CIFAR-10 dataset using ResNet-50 (stage 1 to stage 5)
which comprises of (b) identity blocks and (c) convolutional blocks, followed by global average
pooling layer, a dense and a classification layer. “BN” denotes batch normalization. “ReLU” denotes
recitified linear unit activation function and Conv2D is a convolutional layer with 2D filters.

Pruning layers in ResNet-50: In the current preliminary analysis for ResNet-50, we consider con-
volutional layers having (3 x 3) filters for pruning since they contain more parameters and computa-
tions compared to that of the convolutional layers with (1 x 1) filters. The proposed pruning method
can be applied directly to the convolutional layers in the residual branch as well. For this, the same
number of filters from the convolutional layer in the residual branch should be pruned as that of the
convolutional layer from the main “branch c” as shown in Figure 12(c). This is to ensure the same
dimensionality while performing addition operation between the main branch output F (x) and the
residual branch output G(x).

We analyse performance of the pruned network when various convolutional layers with (3 x 3) filters
are pruned from (a) stage 1 to stage 5, (b) stage 2 to stage 5 and (c) stage 3 to stage 5 at different
pruning ratios.

16



Under review as a conference paper at ICLR 2023

A.2.2 PERFORMANCE ANALYSIS

Figure 13 shows accuracy obtained at different pruning ratio after pruning convolutional layers from
different stages in ResNet-50. Pruning convolutional layers from stage 1 to stage 5 result in more
reduction in accuracy compared to that of stage 3 to stage 5 at various pruning ratios. Pruning
convolutional layers from stage 3 to stage 5 result in accuracy drop from -0.15 to 2.5 percentage
points, reduces parameters from 17% to 60% and reduces MACs from 14% to 54%, when p is
varied from 25% to 90% as showing in Figure 14.

Figure 13: Accuracy when each convolutional layer having (3 x 3) filters from various stages in
ResNet-50 are pruned at different pruning ratio.

Accuracy MACsParameters Unpruned
accuracy

Pruning Ratio (%)

Figure 14: Accuracy, MACs and parameters obtained after pruning each convolutional layers hav-
ing (3 x 3) filters from stage 3 to stage 5 at different pruning ratio.

Next, Table 4 compares the accuracy, MACs and parameters in the unpruned network with that of
(a) the pruned network having important filters obtained using the proposed pruning method as an
initialisation before fine-tuning process, (b) the same pruned network as obtained in (a) and trained
from scratch with random initialization. For comparison, we choose the pruned network in (a) which
gives a maximum drop of approximately 0.5 percentage point in accuracy compared to that of the
unpruned network. The parameters and the MACs are reduced by 33% and 30% respectively with a
marginal drop in accuracy compared to that of the unpruned network. The accuracy of (a) the pruned
network obtained from the proposed pruning method is significantly better than (b) the same pruned
network trained from scratch. This suggests that it is useful to obtain a smaller size network from a
relatively large-size network compared to obtaining similar small architecture trained from scratch.

Table 4: Comparison of accuracy, the MACs and the parameters among the (a) unpruned, (b) the
pruned network obtained using the proposed pruning method and the same pruned network obtained
in (b), however, trained from scratch.

Network Accuracy (%) MACs Reduced MACs Parameters Reduced parameters
ResNet-50 on CIFAR10 83.37 99M - 24M -

(a) Pruned ResNet-50 on CIFAR10 83.08 70M 30% 16M 33%
(b) Pruned ResNet-50 on CIFAR10-scratch 66.45
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Epochs Epochs Epochs

Figure 15: Convergence plot during fine-tuning process of pruned ResNet-50 (stage3 to stage 5) on
CIFAR-10 at different pruning ratio.

In comparison to existing passive filter pruning methods such as l1-norm and geometric median
(GM), the proposed pruning method gives similar performance (± 0.5 percentage points) and recov-
ers accuracy at similar epochs (± 20) at different pruning ratio as shown in Figure 15.
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