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Abstract

Multi-modal Large Language Models001
(MLLMs) exhibit impressive problem-solving002
abilities in various domains, but their visual003
comprehension and abstract reasoning skills re-004
main under-evaluated. To this end, we present005
POLYMATH, a challenging benchmark aimed006
at evaluating the general cognitive reasoning007
abilities of MLLMs. POLYMATH comprises008
5,000 manually collected high-quality images009
of cognitive textual and visual challenges010
across 10 distinct categories, including pattern011
recognition, spatial reasoning, and relative012
reasoning. We conducted a comprehensive,013
and quantitative evaluation of 15 MLLMs014
using four diverse prompting strategies,015
including Chain-of-Thought and Step-Back.016
The best scores achieved on POLYMATH017
are ∼ 41%, ∼ 36%, and ∼ 27%, obtained by018
Claude-3.5 Sonnet, GPT-4o and Gemini-1.5019
Pro respectively - highlighting the logical and020
visual complexity of these questions. A further021
fine-grained error analysis reveals that these022
models struggle to understand spatial relations023
and perform drawn-out, high-level reasoning.024
This is further strengthened by our ablation025
study estimating MLLM performance when026
given textual descriptions in place of diagrams.027
As evidenced by ∼ 4% improvement over028
textual descriptions as opposed to actual029
images, we discover that models do not030
truly comprehend visual diagrams and the031
spatial information therein, and are thus032
prone to logical errors. Finally, we evaluate033
the OpenAI o1 models and find that their034
performance only matches the human baseline,035
highlighting the difficulty of the benchmark.036
The results on POLYMATH highlight the room037
for improvement in multi-modal reasoning038
and provide unique insights to guide the039
development of future MLLMs 1.040

1https://anonymous.4open.science/r/PolyMATH-052D

1 Introduction 041

Large Language Models (LLMs) (Brown et al., 042

2020; Jiang et al., 2024; Touvron et al., 2023a; 043

Achiam et al., 2023) and Multi-modal Large Lan- 044

guage Models (MLLMs) (OpenAI, 2023b; Team 045

et al., 2023; Su et al., 2023; Chen et al., 2023b) 046

have rapidly become a pivotal area of research. 047

MLLMs with robust reasoning capabilities in vi- 048

sual contexts can solve complex educational prob- 049

lems (Seo et al., 2015; Wang et al., 2017), support 050

analysts with logical queries on statistical data (Wu 051

et al., 2023; Yang et al., 2023), and contribute to ad- 052

vanced research areas such as theorem proving and 053

scientific discovery (Taylor et al., 2022; Dong et al., 054

2023; Trinh et al., 2024). Despite their impressive 055

performance in various assessments of human-like 056

intelligence, these models still exhibit notable short- 057

comings on tasks requiring cognitive and logical 058

reasoning, such as commonsense numerical reason- 059

ing, scientific problem-solving, and abstract puz- 060

zles (Wang et al., 2023b; Lu et al., 2023a). Existing 061

evaluation benchmarks (Fu et al., 2023a; Liu et al., 062

2023d; Li et al., 2023b; Fu et al., 2023b; Sun et al., 063

2024) have focused primarily on specific concrete 064

domains. While general-purpose visual question- 065

answering (VQA) datasets capture some elements 066

of mathematical reasoning, a systematic investiga- 067

tion into abstract and general cognitive reasoning 068

which are essential for tasks like visual puzzles 069

remains an underexplored frontier. 070

In this paper, we present POLYMATH, a bench- 071

mark specifically crafted to evaluate the complex 072

multi-modal cognitive reasoning capabilities of 073

MLLMs. We propose a task taxonomy to guide the 074

development of POLYMATH: (1) we identify ten 075

distinct reasoning skills, including spatial reason- 076

ing, pattern recognition, and numerical reasoning. 077

and (2) we cover a diverse array of visual contexts, 078

including images with venn diagrams, spatially- 079

related layouts, as well as geometric figures. POLY- 080
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Figure 1: Examples of the reasoning patterns employed by MLLMs when faced with questions involving visual
information. In the top row, models fail to perceive the relationship between adjacent semicircles; in the bottom row,
models fail to comprehend fine details in the answer images.

MATH is a meticulously curated dataset of 5000081

multimodal reasoning problems newly acquired082

from a publicly available source (Table 1). The083

problems of the original source have been crafted084

and rigorously reviewed by expert annotators, and085

require diverse fine-grained problem-solving capa-086

bilities. Additionally, we provide detailed textual087

representations of diagrams of the samples. As088

denoted in fig. 1, these problems are designed to089

assess the logical reasoning abilities of the average090

high school student over text and diagrams. We ob-091

serve that MLLMs fail to demonstrate the cognitive092

reasoning skills required to solve these questions.093

We conduct extensive experiments on POLY-094

MATH with state-of-the-art (SOTA) closed-source095

MLLMs like the Claude family (3.5 Sonnet, 3096

Sonnet, 3 Haiku), Gemini-1.5 Pro, and GPT-4o,097

and 9 open-source MLLMs like LLaVA (34B) and098

ShareGPT4V. We evaluate them via zero shot, few099

shot, Chain-of-Thought (Wei et al., 2022b) and100

step back prompting (Zheng et al., 2024). We show101

that POLYMATH is a challenging benchmark, with102

human performance (established by qualified hu-103

man annotators with graduate degrees) reaching104

only 66.3% accuracy. The most powerful model105

we evaluate, Claude-3.5 Sonnet, achieves the best106

score of 41.90% followed by GPT-4o, which at-107

tains 36.50%. The best open source models like108

LLaVA-v1.6 Mistral (7B) and ShareGPT4V (13B) 109

achieves the accuracy of 15.20% and 12.80% re- 110

spectively. We additionally create a diagram only 111

subset (test-img) of the benchmark to gauge the 112

gap in visual reasoning abilities between the multi- 113

modal models and average human capability. We 114

find that the performance of these models drops fur- 115

ther to 26.20% for Claude-3.5 Sonnet and 22.50% 116

by Gemini-1.5 Pro when evaluated on test-img only. 117

In contrast with human cognitive patterns, when 118

given text descriptions in place of the diagram in 119

these questions, model accuracy improves by ∼4- 120

7%. We also conduct an error analysis on Claude- 121

3.5 Sonnet, Gemini-1.5 Pro and GPT-4o, and find 122

that the most common errors stem from misunder- 123

standing diagrams (∼ 60%), misidentifying logical 124

patterns (∼ 25%), and forgetting relational infor- 125

mation (∼ 12%). Finally, we evaluate OpenAI 126

o1 models (OpenAI, 2024b) on without diagram 127

questions of the benchmark and observe 66.72% 128

accuracy (o1-preview), 2% points below than the 129

human baseline. 130

2 Related Work 131

The development of MLLMs builds on the progress 132

of LLMs (Touvron et al., 2023a,b; OpenAI, 2023a; 133

Jiang et al., 2024) and large vision models (Kirillov 134

et al., 2023; Zhang et al., 2023d,c,e). These mod- 135
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(a) Dataset categorization (b) Results on closed source models

Figure 2: An overview of POLYMATH’s distribution and difficulty (a) exhibits the per-category split of the 5000
questions in the dataset, along with the split of with diagram (WD) and without diagram (WoD) for that category ;
(b) Compares the per-category performance of various MLLMs.

els extend LLMs to handle a wider range of tasks136

across multiple modalities, including 2D images137

(Li et al., 2022; Dai et al., 2023; Alayrac et al.,138

2022; Li et al., 2023a), 3D point clouds (Guo et al.,139

2023; Xu et al., 2023b), audio (Han et al., 2023; Su140

et al., 2023), and video (Zhang et al., 2023a; Chen141

et al., 2023a). Notable examples like OpenAI’s142

GPT-4V (OpenAI, 2023b) and Google’s Gemini143

(Team et al., 2023) demonstrate advanced visual144

reasoning capabilities, setting new benchmarks in145

the multimodal space.146

As MLLMs rapidly advance (Li et al., 2023c),147

there is a growing need for benchmarks that eval-148

uate mathematical problem-solving in visual con-149

texts. Existing benchmarks, such as GeoQA (Chen150

et al., 2021a), VQA (Goyal et al., 2017), and Uni-151

Geo (Chen et al., 2022a), focus mostly on geo-152

metric problems. Other efforts target geometric153

diagrams, charts, and synthetic images (Chen et al.,154

2022a; Masry et al., 2022). Recent datasets also155

assess external knowledge, commonsense reason-156

ing, and scientific or medical understanding (Zhang157

et al., 2023g). MathVista (Lu et al., 2023a) expands158

multimodal math tasks, while MMMU (Yue et al.,159

2023a) focuses on college-level problems. Prior160

works evaluate LLMs across QA, mathematics, and161

science (Bubeck et al., 2023; Nori et al., 2023),162

while recent research (Zhang et al., 2023f) explores163

whether models like GPT-4V perform vision and164

language tasks independently or together.165

Existing extensive benchmarks (Fu et al., 2023a; 166

Liu et al., 2023d; Li et al., 2023b; Xu et al., 2023a) 167

primarily focus on concrete, real-world problems 168

within specific domains. These benchmarks of- 169

ten include comparatively simple diagram inter- 170

pretation questions involving plots or mathemati- 171

cal questions related to geometry, which primar- 172

ily evaluate models’ abilities to parse information 173

from a single image and solve problems using well- 174

established logical principles and formulae. How- 175

ever, they do not sufficiently test models’ capabili- 176

ties in abstract visual reasoning, including spatial 177

recognition, visual logic and puzzle solving, and 178

pattern recognition. This limitation represents a 179

notable gap, as visual puzzle tasks require logical 180

leaps that differ fundamentally from reasoning pat- 181

terns over textual or linguistic problems. Moreover, 182

spatial reasoning questions assess models’ abilities 183

to internalize and manipulate configurations in 3D 184

space, as well as reason over spatial information 185

and infer implicit relationships based on positional 186

data. This category of questions aligns closely 187

with human cognition and reasoning abilities, and 188

evaluating model performance against human base- 189

lines on these questions reveals the substantial gap 190

in reasoning abilities that models must bridge to 191

approach human-comparable reasoning capability. 192

Our proposed dataset aims to address this gap by 193

challenging and comprehensively evaluating pre- 194

viously underexplored model skills in categories 195
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Category PS FC PR SC RR MR NR SR OD LR Overall

Full dataset

Questions with Diag. 114 233 472 160 206 157 162 246 151 3 1904
Questions w/o Diag. 39 0 664 398 319 964 58 191 246 217 3096
Total Questions 153 233 1136 558 525 1121 220 437 397 220 5000

testmini

Questions with Diag. 27 47 102 33 47 28 30 53 38 0 405
Questions w/o Diag. 4 0 125 79 58 196 14 34 41 44 595
Total Questions 31 47 227 112 105 224 44 87 79 44 1000

test-img

Total Questions 60 122 248 84 108 82 85 129 79 3 1000

Table 1: An overview of the per-category distribution of questions in the test, testmini, and test-img splits of
POLYMATH. testmini and test-img are 1000-instance subsets, aimed at faster and image-focused evaluations
respectively. We also report the frequency of with diagram and without diagram questions for each category.

where their performance still lags significantly be-196

hind human reasoning baselines. Additionally, we197

provide a detailed analysis of the strengths and198

weaknesses of these models across a wide range199

of categories and skills, shedding light on specific200

reasoning errors and their frequency of occurrence201

across categories and in comparison to one another.202

3 Curating POLYMATH203

POLYMATH is curated mainly from questions di-204

rected at students taking the National Talent Search205

Examination, a nationwide competitive exam held206

by the National Council of Educational Research207

and Training of India. These questions and their208

solutions are created by experts in their fields and209

rigorously peer-reviewed, and thus contain minimal210

errors. These questions aim to assess Scholastic211

Aptitude (SAT), or the ability to recall domain-212

specific scientific and mathematical knowledge, as213

well as Mental Ability (MAT), or the ability to think214

logically and apply a range of analytical skills. We215

catalog the skills assessed by each sample along216

the categorization schema defined in Table 6.217

3.1 Collection Pipeline218

To guarantee high-quality data, we manually col-219

lected image snippets and engineered a stream-220

lined, automated framework for curation and anno-221

tation. Continuous human reviews were conducted222

throughout the process, ensuring quality and pre-223

venting error propagation.224

Step 1: We generate a universally unique identifier225

(UUID) for a given question paper to identify all226

the questions curated from it.227

Step 2: Annotators manually collected separate 228

snippets of each question and their associated con- 229

textual information (including disconnected pieces) 230

that apply to multiple questions. 231

Step 3: An image merging script automatically 232

identified and merged question images (in case the 233

question gets split by pages) with their relevant 234

context images. 235

Step 4: We used an LLM to transcribe the ques- 236

tions and their ground truth answers. We also gener- 237

ate additional metadata, including category (§3.2), 238

whether it contains a diagram (Fig 4), and image 239

description (§3.3). A manual check was performed 240

to ensure the quality of the generated metadata. 241

Step 5: An annotation file, where each row corre- 242

sponds to a question, is automatically populated. 243

3.2 Dataset categorization 244

We develop a categorization schema that catalogues 245

questions on basis of the information provided and 246

the type of reasoning assessed by the question. 247

Based on the continuous human evaluation during 248

collection, we identify 10 distinct question cate- 249

gories. We enumerate these categories along with 250

their definitions in Table 6. We further distinguish 251

between questions with diagram and without dia- 252

gram. The with diagram questions are designed 253

around the information presented in the diagrams 254

(Fig 4). The overall per-category distribution, along 255

with the with diagram and without diagram split, 256

is visualized in Figure 2. 257
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3.3 Additional metadata258

The complexity of collected question images and259

the heavy presence of diagram-based reasoning260

tasks makes POLYMATH a challenging multi-261

modal benchmark. To make POLYMATH usable262

for both text and vision model evaluations, we pro-263

vide transcriptions of questions and answers. To264

further facilitate text-based evaluation, we gener-265

ate detailed, human-vetted text descriptions of at-266

tached diagrams such that a human could visualize267

the image based on this description (Fig 4). Results268

on text-only characterization of questions in our269

dataset can be found in §4.3.270

3.4 Quality Assurance271

Following the collection and annotation process,272

we conduct a comprehensive quality check. We273

discard samples that are [1] of low resolution, [2]274

outside the scope of the categories (Table 6), or [3]275

missing vital information. We also discard samples276

with watermarks and other visual noise that renders277

the sample illegible. Our subject-expert annotators278

rectify incorrectly-extracted ground truth answers.279

Concurrently, we verify that the questions belong to280

their assigned categories, and correct any observed281

misalignments therein.282

3.5 Division of the testmini Subset.283

The final iteration of POLYMATH comprises 5000284

questions. To enable faster model validation, we285

extract a 1000-instance subset, testmini, using strat-286

ified sampling over all categories. All quantitative287

results reported were obtained on this testmini sub-288

set of POLYMATH. We also create a test-img ques-289

tion set, consisting solely of 1000 with diagram290

questions, aimed at faster, focused assessment of291

models’ visual comprehension. We use a random292

sampling strategy to create test-img due to diagram293

imbalance. 2 For data distribution, see Table 1.294

Further details on data collection and annotation295

are available in §B.1.296

4 Experiments297

We conduct a systematic evaluation of existing298

MLLMs on POLYMATH. We first introduce the299

experimental setup in this section. Then we present300

our findings followed by multiple dataset analysis301

experiments. Additional experimental results and302

qualitative examples are present in §C and E.3.303

2All datasets (test, testmini and test-img) will be publicly
released

4.1 Experimental Setup 304

Evaluation Models: We examine the per- 305

formance of foundation models across two 306

distinct categories on POLYMATH: (a) Closed- 307

source MLLMs, represented by models like 308

GPT-4o (gpt-4o-2024-05-13) (OpenAI, 309

2024a),OpenAI O1 (o1-preview-2024-09-12, 310

o1-mini-2024-09-12) (OpenAI, 2024b), 311

Gemini-1.5 Pro (gemini-1.5-pro-002) 312

(Team et al., 2023), Claude-3.5 Sonnet 313

(claude-3-5-sonnet-20240620) (An- 314

thropic, 2024b) and Claude 3 Haiku and 315

Sonnet (claude-3-sonnet-20240229, 316

claude-3-haiku-20240307) (Anthropic, 2024a) 317

(b) Open-source MLLMs, such as LLaVA 318

(v1.5-13B, v1.6-Mistral-7B, v1.6-Vicuna-13B) 319

(Liu et al., 2023a), LLaVA-v1.6-34B (Liu et al., 320

2024), G-LLaVA (7B, 13B) (Gao et al., 2023a), 321

ShareGPT4V (7B, 13B) (Chen et al., 2023c) & 322

Qwen2-VL-2B-Instruct (Wang et al., 2024b) (c) 323

Text Based LLMs Reka Flash (Ormazabal et al., 324

2024), Llama-3 (70B) (AI@Meta, 2024), Mistral 325

Large (AI, 2024). We conduct experiments on 326

all open-source models using six NVIDIA A100 327

GPUs. Hyperparameters are available in §C. 328

Implementation Details All reported results are 329

on the testmini subset. As a comparative baseline, 330

we simulate random chance by selecting a random 331

option for multiple-choice questions over 1000 tri- 332

als. Additionally, the problems in POLYMATH 333

were independently solved by the paper’s authors 334

(four engineering graduates and two PhDs), serv- 335

ing as a human performance baseline. We evaluate 336

the benchmark using various prompting methods, 337

including zero shot, few shot (2-shot), Chain-of- 338

Thought (Wei et al., 2022b), and Step Back prompt- 339

ing (Zheng et al., 2024). For multiple-choice ques- 340

tions, we use exact match for answer comparison. 341

The model inference prompts are structured to elicit 342

a step-by-step solution, the final answer, and the 343

corresponding option. Details about these prompts 344

are provided in §C.2. As part of our analysis, we 345

conducted three additional experiments: (1) ana- 346

lyzing model performance on the test-img split, (2) 347

converting the questions from test-img into text, 348

along with the transformation of diagrams into de- 349

scriptions, and (3) evaluating OpenAI o1 models 350

on questions without diagrams. 351
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Figure 3: Frequency of LF and SM errors across different question categories. We report per-model figures to enable
a comparison of model abilities. They are most prevalent in the OD, PR, and SC categories of questions, owing to
the amount of logical leaps and visual reasoning required by these questions.

Category PS FC PR SC RR MR NR SR OD LR Overall

Baseline

Random chance 9.68 4.26 6.61 9.82 9.52 9.82 15.91 6.90 7.59 9.09 8.60
Human eval 51.08 70.57 61.82 69.35 69.84 76.64 58.71 62.64 64.98 51.14 66.62

Zero Shot Inference

Claude Haiku 17.02 11.36 17.86 36.36 18.99 25.55 22.58 15.24 23.21 19.54 20.80
Claude-3 Sonnet 19.15 36.36 22.77 38.64 17.72 24.23 16.13 31.43 28.57 25.29 25.40
GPT-4o 29.79 47.73 38.84 29.55 31.65 34.36 25.81 46.67 38.39 32.18 36.60
Gemini-1.5 Pro 27.66 31.82 31.25 31.82 26.58 24.67 9.68 21.90 29.46 25.29 26.90
Claude-3.5 Sonnet 27.66 43.18 40.18 40.91 25.32 42.29 35.48 41.90 43.75 42.53 39.70

Chain-of Thought Prompting Inference

Claude Haiku 19.15 15.91 21.88 20.45 26.58 25.55 19.35 21.90 25.00 28.74 23.50
Claude-3 Sonnet 23.40 34.09 30.80 40.91 27.85 31.72 22.58 33.33 22.32 26.44 29.70
GPT-4o 21.28 54.55 41.96 25.00 27.85 29.96 9.68 40.95 41.07 33.33 35.00
Gemini-1.5 Pro 27.66 34.09 39.29 22.73 27.85 30.84 35.48 30.48 31.25 26.44 31.90
Claude-3.5 Sonnet 31.91 43.18 41.52 45.45 27.85 43.17 48.39 38.10 45.54 44.83 41.20

Step Back Prompting Inference

Claude Haiku 12.77 20.45 23.66 15.91 27.85 26.87 19.35 14.29 20.54 20.69 22.00
Claude-3 Sonnet 27.66 43.18 36.16 27.27 24.05 28.63 22.58 29.52 35.71 33.33 31.60
GPT-4o 12.77 45.45 42.41 27.27 31.65 34.80 16.13 41.90 41.07 37.93 36.50
Gemini-1.5 Pro 31.91 38.64 38.84 25.00 29.11 31.28 32.26 31.43 32.14 27.59 32.70
Claude-3.5 Sonnet 34.04 43.18 41.96 47.73 29.11 43.61 48.39 38.10 46.43 45.98 41.90

Table 2: Closed-source MLLM results on testmini using zero-shot, CoT, and step-back prompting. Highest and
lowest scores per strategy are highlighted including random chance and human baselines (avg of six runs).

4.2 Results352

Closed Source Models Across various prompt-353

ing strategies (Table 2), Claude-3.5 Sonnet per-354

formed best with these advanced prompts, achiev-355

ing up to 41.90% accuracy in Step Back Prompting,356

compared to 39.70% in zero shot. GPT-4o fol-357

lowed closely, especially in FC and PS questions,358

showing strong performance with zero shot and 359

Step Back Prompting. Gemini-1.5 Pro performed 360

moderately across all categories but lacked dom- 361

inance in any specific area, while Claude Haiku 362

being the smallest of the closed sourced MLLMs, 363

consistently underperformed across all prompting 364

strategies. In terms of prompting strategies, Chain- 365
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Model PS FC PR SC RR MR NR SR OD LR Overall

Qwen2 VL (2B) Instruct 9.38 2.13 6.17 6.25 8.57 3.57 4.55 4.60 8.86 2.27 5.60
LLaVA-v1.6 Mistral (7B) 6.45 4.26 14.98 14.29 18.10 15.18 9.09 19.54 22.78 13.64 15.20
G-LLaVA (7B) 12.90 0.00 9.25 3.57 5.71 7.59 2.27 4.60 3.80 6.82 6.30
ShareGPT4V (7B) 6.45 10.64 16.30 13.39 7.62 11.61 11.36 11.49 10.13 11.36 12.10
LLaVA-v1.6 Vicuna (13B) 12.90 12.77 8.37 8.04 13.33 5.80 15.91 6.90 13.92 4.55 9.10
LLaVA 1.5 (13B) 3.23 14.89 7.49 11.61 7.62 6.70 9.09 8.05 11.39 13.64 8.70
ShareGPT4V (13B) 9.68 17.02 13.66 12.50 15.24 10.71 9.09 12.64 17.72 6.82 12.80
G-LLaVA (13B) 13.67 2.33 11.12 5.69 7.98 10.23 1.07 6.70 5.76 7.98 8.26
LLaVA-v1.6 (34B) 9.68 25.33 9.69 12.50 6.67 10.71 13.64 10.34 15.19 9.09 11.30

Table 3: Results of open-source MLLMs on the testmini split of POLYMATH. We report model results using zero
shot inference. The highest and lowest scores achieved by a model in each category are highlighted.

of-Thought and Step Back Prompting enhanced the366

performance of top models like Claude-3.5 Sonnet367

and GPT-4o, allowing them to excel in tasks requir-368

ing structured reasoning and re-evaluation. Both369

strategies led to marked improvements over zero370

shot prompting, in categories like SR, PR, and LR.371

Open Source Models Table 3 showcases the372

results of open-source MLLMs. LLaVA-v1.6-373

Mistral-7B model achieved the highest overall374

score of 15.2%. It excelled in OD (22.78%), SR375

(19.54%), RR (18.1%), and MR (15.18%) indicat-376

ing its proficiency in generating precise, coherent,377

and relevant responses, even for out-of-distribution378

samples. The ShareGPT4V (13B) model exhib-379

ited the second-highest overall score of 12.8%,380

with outstanding performance in the PR (13.66%),381

SC (12.5%), RR (15.24%), MR (10.71%), SR382

(12.64%), and OD (17.72%) categories. Other mod-383

els, such as LlaVA-v1.6-Vicuna 13B, LlaVA-1.5384

(13B), G-LLaVA (13B), and LlaVA-v1.6 (34B),385

exhibited varying levels of success across the386

different categories, highlighting their individual387

strengths and weaknesses in handling the diverse388

reasoning aspects tested by the dataset.389

Human Evaluation To ascertain the difficulty of390

the dataset, we asked six graduate students specifi-391

cally for the evaluation of human performance on392

POLYMATH. We assigned questions from a spe-393

cific problem category to each student. They were394

asked to provide only the final answer without de-395

tailed reasoning, simulating zero-shot inference.396

4.3 Experimental Analysis397

MLLMs Rely More on Image Descriptions than398

Image To evaluate the visual reasoning capabili-399

ties, we used test-img subset, which contains ques-400

tions with diagrams. Additionally, we generated401

a text-only version of test-img by replacing all di-402

agrams with detailed textual descriptions. Both403

experiments were carried out in a zero shot setting. 404

Our analysis reveals three key findings. First, we 405

observed a noticeable decline in performance on 406

test-img, particularly for models like GPT-4o and 407

Claude-3.5 Sonnet, compared to their results on 408

the testmini subset. This suggests that both models 409

perform well on questions without diagrams, and 410

their decreased accuracy on test-img is largely due 411

to the presence of diagram-based problems. Sec- 412

ond, when we replaced the diagrams in test-img 413

with text descriptions, the performance of all mod- 414

els improved by ∼ 4%, indicating that the models 415

struggle with diagrams and benefit from textual 416

representations. Finally, we evaluated popular text- 417

only LLMs such as LLaMA-3 (70B), Reka Flash, 418

and Mistral Large on the text-description version 419

of test-img. Their scores (∼ 15%) were lower 420

than those of the MLLMs (∼ 27%), underscoring 421

the advantage of multi-modal models in handling 422

visually-grounded tasks. 423

A Closer Look at Model Errors We analysed 424

total of 236 samples where all three state of the art 425

MLLMs (Claude-3.5 Sonnet, GPT-4o and Gemini- 426

1.5 Pro) gave incorrect answers on testmini. Based 427

on the manual inspection of the responses, we iden- 428

tified 7 types of errors that MLLMs make (Table 429

10). The total error distribution of all three mod- 430

els is present in Table 11. Qualitative examples 431

for category-wise errors are present in §E.3. The 432

most common error on this dataset was Logical 433

Flaw (LF), occurring in nearly ∼ 60% of incorrect 434

samples. Spatial Misunderstanding (SM), which in- 435

volves a lack of understanding of diagram structure 436

and content, was a close second (∼ 25%). Figure 437

3 shows the category-wise distribution of the two 438

types of error. These errors were most prevalent in 439

OD, PR, and SC category of questions, as making 440

uncommon logical leaps and fully comprehending 441

visuals is integral to solving these. Furthermore, 442
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Category PS FC PR SC RR MR NR SR OD LR Overall

MLLM Inference on Diagrams (Multi-modal)

Claude-3 Haiku 16.67 15.57 18.55 22.62 25.93 19.51 31.76 17.83 21.52 33.33 20.60
Claude-3 Sonnet 21.67 23.77 22.98 17.86 20.37 24.39 32.94 22.48 26.58 66.67 23.60
GPT-4o 20.00 20.49 22.18 19.05 23.15 20.73 20.00 17.05 34.18 66.67 21.80
Gemini-1.5 Pro 11.67 23.77 22.58 27.38 28.70 25.61 10.59 18.60 29.11 66.67 22.50
Claude-3.5 Sonnet 31.67 27.87 25.00 19.05 28.70 25.61 25.88 22.48 31.65 100.00 26.20

MLLM Inference on Diagram Descriptions (Text-only)

Claude-3 Haiku 30.00 25.41 18.55 19.05 25.93 28.05 27.06 26.36 30.38 100.00 24.60
Claude-3 Sonnet 30.00 32.79 25.40 22.62 26.85 36.59 37.65 26.36 31.65 100.00 29.30
GPT-4o 26.67 28.69 29.44 23.81 31.48 34.15 30.59 29.46 27.85 33.33 29.30
Gemini-1.5 Pro 25.00 26.23 25.00 27.38 21.30 28.05 16.47 19.38 22.78 33.33 23.60
Claude-3.5 Sonnet 38.33 30.33 26.61 23.81 37.96 35.37 34.12 28.68 36.71 100.00 31.40

LLM Inference on Diagram Descriptions (Text-only)

Mistral Large 15.00 13.11 11.29 15.48 18.52 13.41 9.41 17.83 25.32 33.33 14.90
Reka Flash 16.67 13.93 12.10 16.67 19.44 14.63 9.41 18.60 26.58 33.33 15.80
Llama-3 (70B) 16.67 13.93 11.69 16.67 19.44 14.63 10.59 18.60 26.58 33.33 15.80

Table 4: Visual comprehension ablation results on test-img. We compare [1] multi-modal inference with diagrams
and [2] unimodal inference using text descriptions. Highest and lowest scores per category are highlighted.
Unimodal LLM performance on text-only questions is also reported.

Category PS FC PR SC RR MR NR SR OD LR Overall

# Instances 4 0 125 79 58 196 14 34 41 44 595

Human Eval 100 - 61.60 69.62 82.76 64.29 71.43 79.41 82.93 59.09 68.40

o1-mini 0.00 - 58.40 30.38 91.38 64.80 71.43 44.12 63.41 40.91 58.15
o1-preview 0.00 - 75.20 50.63 81.03 70.41 57.14 44.12 73.17 56.82 66.72

Table 5: Results of OpenAI o1-mini and o1-preview on the without diagram (text-only) samples from the testmini
split. We observe that while overall, human cognitive abilities have a slight edge over o1 models, over certain
categories (PR, MR), o1 models outperform human performance.

in questions involving extrapolation over multi-443

ple weakly connected data points, models came444

to conclusions that contradicted earlier data, in-445

dicating a lack of information retention. Finally,446

we found that models fell into identical fallacious447

reasoning patterns, e.g. assuming that a pattern448

holds across each row when a pattern is replicated449

across columns. The category with the highest % of450

shared errors was PR, where we observed that GPT,451

Gemini, and Claude followed the same incorrect452

reasoning structure on nearly 80% of the analysed453

samples. Thus, despite their differences, in practice454

we see that MLLMs share the same strengths and455

shortcomings. For more details, see §E.456

Evaluation of OpenAI o1 models To under-457

stand the capabilities of recent text-only reason-458

ing models (o1-preview and o1-mini), we evaluate459

these models on 595 text-only questions. We also460

present human baseline scores on these questions.461

These results are presented in Table 5. o1-preview462

(∼ 67%) scores competitively with human perfor-463

mance (∼ 68%), while o1-mini (∼ 58%) lags be- 464

hind the human baseline by 10%. 465

5 Conclusion 466

In this work, we introduce POLYMATH, a bench- 467

mark designed to systematically analyze the math- 468

ematical reasoning capabilities of state-of-the-art 469

models in visually complex scenarios. Our evalua- 470

tion of 14 prominent foundation models highlights 471

that significant advancements have been made, es- 472

pecially with the GPT-4o and Claude-3.5 Sonnet 473

models. However, a substantial gap of ∼ 24% 474

still exists between Claude-3.5 Sonnet, the best- 475

performing model, and human performance. This 476

disparity sets a clear direction for future research, 477

emphasizing the need for models that can seam- 478

lessly integrate mathematical reasoning with visual 479

comprehension. Moreover, our analysis of model 480

reasoning errors and experiments on samples con- 481

taining diagrams and their textual representations 482

offer valuable insights for future investigations. 483
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Limitation and future work484

Our benchmark, POLYMATH, makes key contribu-485

tions by integrating mathematical and visual tasks.486

While we have made progress in evaluating model487

performance, we recognize certain limitations. One488

limitation is dataset coverage. Although POLY-489

MATH covers a wide range of tasks and visual490

contexts, some mathematical problems and visual491

types may be underrepresented. Additionally, fo-492

cusing on mathematical reasoning within visual493

contexts, especially in domains like competitive494

high-school-level questions involving problems in495

spatial and logical reasoning, requires a more labor-496

intensive data collection process than text-only or497

general-purpose datasets. Consequently, the scal-498

ability and generalizability of our benchmark to499

other areas remain challenging. Annotations were500

performed by the authors meticulously, however,501

due to the diversity of questions and images ap-502

pearing in these sources, the annotations lack a503

consistent format.504

In future iterations, our benchmark will aim to505

cover a wider range of problems and visual con-506

texts, with unified and comprehensive annotations.507

This benchmark is part of an ongoing research ef-508

fort, and we are committed to maintaining and refin-509

ing the datasets, including addressing potential data510

noise, based on community feedback. Addition-511

ally, we will adapt the leaderboard to reflect new512

model developments. In conclusion, despite the513

limitations of our current approach, POLYMATH514

marks a significant advancement in the field. We515

remain dedicated to continuously improving the516

benchmark to deepen our understanding of AI’s517

capabilities in mathematical and visual reasoning.518
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• Section A: Extended Related Work1224
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• Section D: Extended Analysis1227

• Section E: Qualitative Error Analysis1228

A Extended Related Work1229

High-quality evaluation datasets and benchmarks1230

are crucial for assessing the progress of machine1231

learning models in solving real-world tasks (Liao1232

et al., 2021). Mathematical reasoning bench-1233

marks have emerged as a significant focus area,1234

posing challenges for large foundational models1235

like Large Language Models (LLMs) and Multi-1236

modal Large Language Models (MLLMs). Ini-1237

tial datasets addressed basic algebraic (Hendrycks1238

et al., 2021b) and arithmetic (Roy and Roth, 2016)1239

word problems with limited scope. Subsequent ef-1240

forts, including MATH (Hendrycks et al., 2021b),1241

GSM8K (Cobbe et al., 2021), MMLU (Hendrycks1242

et al., 2021a), and others (Zhou et al., 2023; Yue1243

et al., 2023b; Wang et al., 2024a; Gao et al., 2023a;1244

Luo et al., 2023), expanded the range and quality of1245

textual mathematical problems, establishing robust1246

benchmarks for LLM evaluation.1247

Despite substantial mathematical reasoning en-1248

capsulated in visual modalities, most existing1249

benchmarks (Amini et al., 2019; Cobbe et al.,1250

2021; Mishra et al., 2022; Frieder et al., 2023; Lu1251

et al., 2023b) are textual only. Moreover, some1252

datasets exhibit performance saturation, with GPT-1253

4 achieving 92.0% accuracy on GSM-8K (Cobbe1254

et al., 2021), a grade-school mathematics dataset.1255

The rapid advancement of Large Multimodal Mod-1256

els (LMMs) necessitates robust multimodal bench-1257

marks, as current benchmarks (Antol et al., 2015;1258

Kembhavi et al., 2016; Kahou et al., 2017; Mathew1259

et al., 2022) provide limited coverage of rigorous1260

scientific domains crucial for general-purpose AI1261

assistants.1262

While these benchmarks assess text-only math-1263

ematical reasoning, the rapid progress of MLLMs1264

necessitates high-quality benchmarks for evaluat-1265

ing visual mathematical problem-solving. Prior1266

attempts like GeoQA (Chen et al., 2021a), while1267

MathVista (Lu et al., 2023a) and MMMU (Yue 1268

et al., 2023a) incorporated various multimodal 1269

tasks and college-level questions, respectively. 1270

MLLMs, building upon LLMs (Touvron et al., 1271

2023a,b; OpenAI, 2023a; Jiang et al., 2024; Brown 1272

et al., 2020) and large vision models (Radford et al., 1273

2021; Kirillov et al., 2023; Zhang et al., 2023d,c,e), 1274

have become increasingly prominent. They ex- 1275

tend LLMs to diverse tasks and modalities, includ- 1276

ing 2D images (Li et al., 2022; Dai et al., 2023; 1277

Alayrac et al., 2022; Li et al., 2023a), 3D point 1278

clouds (Guo et al., 2023; Xu et al., 2023b; Hong 1279

et al., 2024), audio (Han et al., 2023; Su et al., 1280

2023), and video (Zhang et al., 2023a; Chen et al., 1281

2023a). Noteworthy examples like OpenAI’s GPT- 1282

4V (OpenAI, 2023b) and Google’s Gemini (Team 1283

et al., 2023) exhibit exceptional visual reasoning ca- 1284

pabilities, setting new benchmarks in multi-modal 1285

performance. 1286

However, their closed-source nature hinders 1287

broader application and development of MLLMs. 1288

Concurrently, open-source MLLMs like LLaMA- 1289

Adapter (Zhang et al., 2024; Gao et al., 2023b), 1290

LLaVA (Liu et al., 2023b, 2024, 2023a), MiniGPT- 1291

4 (Zhu et al., 2023a; Chen et al., 2023b), mPLUG- 1292

Owl (Ye et al., 2023b), Qwen-VL (Bai et al., 2023), 1293

InternLM-XComposer (Dong et al., 2024), and 1294

SPHINX (Lin et al., 2023; Gao et al., 2024) have 1295

been explored, leveraging CLIP (Radford et al., 1296

2021) for image encoding and LLaMA (Touvron 1297

et al., 2023a) for multi-modal instruction tuning, 1298

advancing MLLMs’ visual understanding and gen- 1299

eralization. 1300

Despite comprehensive benchmarks (Fu et al., 1301

2023a; Liu et al., 2023d; Li et al., 2023b; Xu et al., 1302

2023a) for general visual instruction-following sce- 1303

narios, the specific potential of MLLMs for vi- 1304

sual mathematical problem-solving remains under- 1305

explored. Prior studies like VQA (Antol et al., 1306

2015; Goyal et al., 2017), VizWiz (Gurari et al., 1307

2018), and ParsVQA-Caps (Mobasher et al., 2022) 1308

evaluate LMMs’ general visual question answering 1309

abilities on open-ended image queries. Addition- 1310

ally, works have assessed LMMs’ specific skills 1311

beyond natural scenes, such as abstract shapes (An- 1312

tol et al., 2015; Lu et al., 2021b; Ji et al., 2022), 1313

geometry diagrams (Seo et al., 2015; Lu et al., 1314

2021a; Chen et al., 2022a; Cao and Xiao, 2022), 1315

charts (Methani et al., 2020; Masry et al., 2022; 1316

Kahou et al., 2017; Chang et al., 2022; Kafle et al., 1317

2018), documents (Singh et al., 2019; Mathew 1318

et al., 2022; Liu et al., 2023e), synthetic im- 1319
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Figure 4: Examples of with diagram and without diagram questions. In addition to the question image, POLYMATH
includes the metadata shown above. Question without diagram is not present in test-img while both kinds of
questions will be present in testmini.

Category name Definition Avg
len

Max
len

Perspective Shift (PS) A figure is given and the solver is instructed to morph it
according to the instructions (flip, mirror image, rotate, etc.) 18.60 59

Figure Completion (FC)

A figure is given with an arrangement of numbers or characters
such that their relationship to one another based on their position
in the figure is consistent. The goal is to complete the figure and
identify the element missing from a marked position.

23.97 364

Pattern Recognition (PR)

This requires the understanding of a one-to-one relationship
or pattern and replicating that pattern. For example, given the
relationship between a and b, determining the equivalent of
b to c. Questions involving substituting characters and
operations in a pre-defined pattern fall into this category.

31.98 391.4

Sequence Completion (SC) Given a sequence of numbers or figures, this question
involves finding the sequentially next element in a series. 30.22 227

Relative Reasoning (RR)

The question contains distinct data points and their relationship
with one another. The solver must extrapolate relationships that
may not be explicitly mentioned to answer the questions.
Questions involving Venn diagrams, family relations, or relative
positions given a reference point fall into this category.

27.22 137

Mathematical Reasoning (MR) This question entails calculations of a mathematical nature,
such as solving a given equation. 25.61 156

Numerical Reasoning (NR)
Questions involving counting the number of elements
mentioned. The elements may be part of a single figure
or conform to a specified pattern.

15.63 65

Spatial Reasoning These questions require the solver to visualize the context
and reason observationally to arrive at the answer. 27.67 78

Odd One Out (OD) Given a set of elements, identify the element that is not like
the others. 26.64 214

Logical Reasoning (LR) Questions involving simple logical reasoning such as
entailment and contradiction. 34.68 144

Overall 27.68 391.4

Table 6: An overview of our question categorization schema. Questions are categorized on the basis of the
information provided in the question and the reasoning skills assessed.

ages (Dahlgren Lindström and Abraham, 2022;1320

Li et al., 2023d; Bitton-Guetta et al., 2023), ex-1321

ternal knowledge (Schwenk et al., 2022; Shah 1322

et al., 2019), commonsense reasoning (Zellers et al., 1323
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2019; Yin et al., 2021), scientific knowledge (Lu1324

et al., 2022; Kembhavi et al., 2017, 2016), and med-1325

ical understanding (Zhang et al., 2023g; Lau et al.,1326

2018).1327

Generative foundation models like GPT-1328

3 (Brown et al., 2020), GPT-4 (OpenAI, 2023c),1329

Claude (Anthropic, 2023), LLaMA (Touvron et al.,1330

2023a), and LLaMA-Adapter (Zhang et al., 2023b)1331

can solve various downstream tasks (Wei et al.,1332

2022a) without task-specific fine-tuning. Prior1333

work has evaluated their text-based abilities in QA,1334

math, medicine, coding, and science (Bubeck et al.,1335

2023; Nori et al., 2023; Chen et al., 2021b; Fu1336

et al., 2023c; Sun et al., 2023; Wang et al., 2023b;1337

Huang et al., 2023, 2022; Liu et al., 2023c; Zhang1338

et al., 2023b). Some work focused on specialized1339

pretraining for improved visual math and chart1340

reasoning, like PixStruct (Lee et al., 2023),1341

MatCha (Liu et al., 2022), and UniChart (Masry1342

et al., 2023). On the vision-language front, models1343

like LLaVA (Liu et al., 2023b), miniGPT4 (Zhu1344

et al., 2023a), InstructBLIP (Dai et al., 2023),1345

Flamingo (Alayrac et al., 2022; Awadalla et al.,1346

2023), LLaMA-Adapter V2 (Gao et al., 2023b),1347

and Multimodal Bard (Google, 2023) leverage1348

paired (Schuhmann et al., 2022; Sharma et al.,1349

2018; Lin et al., 2014) and interleaved (Zhu et al.,1350

2023b) image-text data. Additionally, specialized1351

versions like LLaVAR (Zhang et al., 2023h; Ye1352

et al., 2023a) emphasize document understanding1353

and math comprehension. Recent works like1354

Visit-Bench (Bitton et al., 2023), LVLM-eHub (Yu1355

et al., 2023), MMBench (Liu et al., 2023d; Xu1356

et al., 2023a; Shao et al., 2023) assess these1357

models’ instruction-following and reasoning1358

capabilities.1359

Large language models (LLMs) have demon-1360

strated remarkable reasoning abilities, further1361

enhanced by approaches like chain-of-thought1362

(CoT) (Wei et al., 2022b), program-of-thought1363

(PoT) (Chen et al., 2022b), and inductive reason-1364

ing (Wang et al., 2023a; Tan and Motani, 2023).1365

The feasibility of using LLMs to solve the Ab-1366

straction and Reasoning Corpus (ARC) challenge1367

has been verified using zero-shot, few-shot, and1368

context-grounded prompting (Tan and Motani,1369

2023).1370

OpenAI’s GPT-4V, the multimodal version of1371

GPT-4, exhibits promising performance in vision-1372

language reasoning. However, a fine-grained study1373

of its strengths and limitations is still lacking. Re-1374

cent work (Zhang et al., 2023f) explores whether1375

large multimodal models (LMMs) like GPT-4V 1376

execute vision and language tasks consistently or 1377

independently, contributing pioneering efforts in 1378

this field. 1379

B Dataset creation 1380

B.1 Collection Pipeline 1381

To ensure high-quality samples, all data samples 1382

were manually collected as image snippets from 1383

publicly available websites. We developed a flexi- 1384

ble, highly automated data curation framework to 1385

streamline the process and standardize collection 1386

and annotation. Continuous human reviews were 1387

conducted between steps in the pipeline to maintain 1388

quality and prevent error propagation. 1389

• Step 1: A universally unique identifier (UUID) 1390

was generated for each question paper to track 1391

all curated questions. This step also updated a 1392

shared record containing details of the paper 1393

and the annotator’s alias, enabling efficient 1394

assignment of questions for peer review. 1395

• Step 2: Annotators manually collected individ- 1396

ual snippets of each question, along with con- 1397

textual information relevant to multiple ques- 1398

tions. For questions requiring additional con- 1399

text, snippets were labeled accordingly, and 1400

only legible, relevant questions (focused on 1401

Mental Ability or Scholastic Ability in math- 1402

ematics) were included to maintain dataset 1403

integrity. 1404

• Step 3: An image-merging script automati- 1405

cally identified and merged split question im- 1406

ages or context snippets (based on the naming 1407

convention) using open-source image process- 1408

ing tools3. This resulted in a single image 1409

for each sample in the POLYMATH set of 1410

questions used to test models. 1411

• Step 4: The next module in the pipeline cre- 1412

ated and automatically populated an annota- 1413

tion file, where each row corresponded to a 1414

collected sample. Columns included the pa- 1415

per_id (UUID from Step 1), question number, 1416

and image path. 1417

• Step 5: Using an answer key or solution 1418

set, LLM-powered transcription extracted the 1419

3https://opencv.org/

19



ground truth answers for each question. Ex-1420

tracted answers were mapped to the corre-1421

sponding annotation rows, followed by a man-1422

ual check to ensure alignment with the pro-1423

vided solution and correctness.1424

• LLM-based categorization, followed by hu-1425

man verification, was performed to obtain1426

question categories. Table 13 is the prompt1427

used for the categorization of questions into1428

various problem types. Figures 15, 16, 17, 18,1429

19, 20, 21, 22, 23, 24 demonstrate examples1430

from each question category defined in Table1431

6.1432

C Additional experiment details1433

C.1 Hyperparameters1434

The experimental hyperparameters are enumerated1435

in Table 7. Furthermore, Table 8 provides the1436

source repositories and model cards for the various1437

models used in our experiments. Table 9 shows1438

the performance of open-source models across1439

categories using two additional prompting strate-1440

gies: Chain-of -Thought and Step-back. Table1441

11 shows the total count of error analysis sample1442

distribution that was conducted.1443

C.2 Prompts for inference1444

The various prompts are detailed in this section.1445

Table 14 is the prompt used for generating the al-1446

ternate image description of the question which is1447

present as detailed in the additional metadata sec-1448

tion §3.3. Table 15, 16, 17 show cases the zero shot1449

prompt, Chain of thought and Step back prompt1450

for inference on POLYMATH respectively. Table1451

18 shows the answer extraction prompt from the1452

MLLM response Table 19 shows the text based1453

inference for Analysis 4.1454

D Extended Analysis1455

D.1 Additional inference results1456

In this section, we show inference results from1457

additional experiments to further illustrate model1458

performance on POLYMATH. The results of open-1459

source models on test-mini is shown in Table 9.1460

We also document model performance on the full1461

POLYMATH dataset (5000 questions) in Table 20.1462

Additionally, we create a 153-sample set for each1463

category to form a category-balanced subset of1464

POLYMATH, on which we show model perfor-1465

mance in Table 21.1466

D.2 Reliance on diagram descriptions 1467

In order to quantify the maximum performance 1468

gain achievable by providing diagram description 1469

to MLLMs, we conduct an additional experiment 1470

where we provide diagram description, question, 1471

and diagram for all questions in test-img. The re- 1472

sults are shown in Table 22. 1473

E Error Analysis 1474

E.1 Methodology 1475

We leveraged 2 authors of this work to act as error 1476

evaluators independently and in parallel. Each eval- 1477

uator has a graduate degree in Computer Science 1478

and experience in similar puzzle-solving. Owing 1479

to the clear and mutually-exclusive definitions of 1480

error types, there is little ambiguity in identifying 1481

the error type of the incorrect responses. Our mea- 1482

sure of inter-evaluator agreement is Cohen’s Kappa 1483

(K), found to be 0.9 - indicating near-unanimous 1484

agreement. For questions where there was disagree- 1485

ment in evaluations, a consensus was reached after 1486

discussion. 1487

E.2 Quantitative Analysis 1488

We define the 6 types of errors found in model rea- 1489

soning patterns and their frequency of occurrence 1490

in Table 10. Table 11 provides a detailed quantita- 1491

tive analysis of error type frequency per question 1492

category. Additionally, we analyse error patterns 1493

for the most-performant and least-performant open 1494

source models in Tables 24 and 23 respectively. 1495

E.3 Qualitative Analysis 1496

This section presents examples of the qualitative 1497

error analysis that was carried out. Figures 15, 16, 1498

17, 18, 19, 20, 21, 22, 23 and 24 contains examples 1499

of failures by three proprietary models viz. Gemini- 1500

1.5 Pro, GPT-4o, and Claude-3.5 Sonnet across all 1501

categories. 1502
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Model Hyperparameters

Gemini-1.5 Pro
temperature: 1, top_p: 0.95, top_k: 64,
max_output_tokens: 8192,
response_mime_type: text/plain

GPT-4o top_p: 0.1, temperature: 1,
max_output_tokens: 4096, stream: False

Claude Family top_p: 0.1, temperature: 1,
max_output_tokens: 4096, stream: False

Open Source Models max_new_tokens: 3600, temperature: 0.7,
top_p: 0.3, num_beams: 1

Table 7: Hyperparameters used in the experiments

Model Release
Time Source

GPT-4o (OpenAI, 2024a) 2023-03 https://platform.openai.com/

Claude 3 family (Anthropic, 2024b,a) 2023-03 https://www.anthropic.com/news/
claude-3-family

Gemini-1.5 Pro (Team et al., 2023) 2023-12 https://ai.google.dev/

LLaVA-1.5 (Liu et al., 2023a) 2023-10 https://huggingface.co/liuhaotian/
llava-v1.5-13b

G-LLaVA (Gao et al., 2023a) 2023-12 https://github.com/pipilurj/G-LLaVA/
tree/main

ShareGPT4V (Chen et al., 2023c) 2023-11 https://github.com/ShareGPT4Omni/
ShareGPT4V/blob/master/docs/ModelZoo.
md#sharegpt4v-models

LLaVA-NeXT (Liu et al., 2024) 2024-01 https://github.com/LLaVA-VL/LLaVA-NeXT

Qwen2-VL (Wang et al., 2024b) 2024-01 https://huggingface.co/Qwen/
Qwen2-VL-2B-Instruct

Table 8: Models used to evaluated POLYMATH, along with their release dates and source repositories. We use both
open-source and closed-source models for a comprehensive evaluation.
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Category PS FC PR SC RR MR NR SR OOO LR Overall

Chain of Thought Inference

Qwen2 VL 2B Instruct 12.90 2.13 6.61 0.89 9.52 3.57 6.82 5.75 10.13 4.55 5.70
Llava v1.6 Mistral 7B 12.90 8.51 15.86 15.18 20.00 15.63 11.36 21.84 25.32 15.91 16.80
G-LLaVA 7B 16.13 0.00 9.69 4.46 5.71 8.04 4.55 5.75 3.80 9.09 7.00
ShareGPT4V 7B 9.68 19.15 16.74 14.29 8.57 12.05 13.64 12.64 8.86 13.64 13.20
Llava v1.6 Vicuna 13B 16.13 17.02 9.25 9.82 14.29 6.25 18.18 9.20 15.19 9.09 10.60
Llava v1.5 13B 6.45 17.02 8.37 12.50 8.57 7.14 11.36 9.20 12.66 15.91 9.80
ShareGPT4V 13B 12.90 19.15 14.10 13.39 16.19 11.61 11.36 14.94 18.99 11.36 14.10
G-LLaVA 13B 16.13 2.13 11.45 6.25 8.57 10.27 2.27 6.90 6.33 9.09 8.70
Llava v1.6 34B 12.90 25.53 10.13 0.89 7.62 10.71 15.91 10.34 16.46 9.09 10.5

Step Back Inference

Qwen2 VL 2B Instruct 16.13 4.26 7.05 1.79 10.48 4.02 9.09 6.90 11.39 6.82 6.70
Llava v1.6 Mistral 7b 16.13 6.38 16.74 14.29 20.95 14.29 13.64 21.84 26.58 18.18 17.00
G-LLaVA 7B 12.90 0.00 9.25 3.57 5.71 7.59 2.27 4.60 3.80 6.82 7.30
ShareGPT4V 7B 16.13 23.40 16.30 15.18 10.48 11.61 15.91 10.34 6.33 15.91 13.50
Llava v1.6 Vicuna 13B 19.35 14.89 10.13 8.04 13.33 6.70 20.45 10.34 16.46 11.36 11.00
Llava 1.5 13B 12.90 14.89 8.37 13.39 7.62 7.59 13.64 8.05 13.92 20.45 10.30
ShareGPT4V 13B 9.68 17.02 13.66 15.18 18.10 12.05 13.64 12.64 17.72 15.91 14.30
G-LLaVA 13B 19.35 4.26 11.89 7.14 9.52 10.71 4.55 8.05 7.59 11.36 9.70
Llava v1.6 34B 16.13 27.66 10.57 1.79 8.57 11.16 18.18 11.49 17.72 11.36 11.50

Table 9: Results of open-source MLLMs on the testmini split of POLYMATH. We report model results using
Chain-of-Thought, and Step Back prompting methods.

Error Name Definition Gemini GPT Claude

Incomplete (IC) Model generated incomplete solution, or output hit token limit 6.36 5.08 0.42

Logical Flaw (LF) Reasoning step violated established logical rules or real-world
principles (such as equality or cardinality) 58.05 52.54 57.20

Memory Flaw (MF) Model forgets information provided in the question or
earlier in the solution 11.86 9.75 11.44

Spatial
Misunderstanding (SM)

Model misunderstands spatial relations or “misreads” specific
details of given image. 16.10 24.58 16.53

Calculation
Error (CE)

Model commits a mathematical error, or substitutes the
wrong value in an equation. 2.97 1.27 6.36

Misalignment (MG) Model reasons correctly, but concludes the answer incorrectly
(eg. identifying the pattern but selecting the wrong option ) 4.66 6.78 8.05

Table 10: The types of errors found in model reasoning patterns. The errors are defined to be mutually distinct and
leave very little room for ambiguity. We also report the frequency of these errors for each model (Gemini-1.5 Pro,
Claude-3.5 Sonnet, GPT-4o) over the 236 questions analysed.
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Error Type PS FC PR SC RR MR NR SR OD LR Overall

Gemini-1.5 Pro

Calculation Error (CE) 1 0 0 0 0 5 1 0 0 0 7
Incomplete (IC) 1 0 0 4 5 4 1 0 0 0 15
Logical Flaw (LF) 3 5 24 24 10 16 0 20 22 13 137
Memory Flaw (MF) 0 2 6 0 10 1 4 5 0 0 28
Misalignment (MG) 3 0 0 4 0 0 0 0 4 0 11
Spatial Misunderstanding (SM) 6 10 0 0 5 4 4 5 4 0 38

Overall Errors 14 17 30 32 30 30 10 30 30 13 236

GPT-4o

Calculation Error (CE) 1 0 0 0 0 1 1 0 0 0 3
Incomplete (IC) 0 3 0 4 0 4 1 0 0 0 12
Logical Flaw (LF) 1 7 24 20 15 8 0 15 26 8 124
Memory Flaw (MF) 0 0 6 0 5 8 4 0 0 0 23
Misalignment (MG) 6 0 0 4 0 1 0 0 0 5 16
Spatial Misunderstanding (SM) 6 7 0 4 10 8 4 15 4 0 58

Overall Errors 14 17 30 32 30 30 10 30 30 13 236

Claude-3.5 Sonnet

Calculation Error (CE) 1 0 0 0 0 12 1 0 1 0 15
Incomplete (IC) 0 0 0 0 0 1 0 0 0 0 1
Logical Flaw (LF) 3 10 24 20 10 12 1 20 25 10 135
Memory Flaw (MF) 1 0 6 0 10 1 4 5 0 0 27
Misalignment (MG) 6 2 0 8 0 0 0 0 0 3 19
Spatial Misunderstanding (SM) 3 5 0 4 10 4 4 5 4 0 39

Overall Errors 14 17 30 32 30 30 10 30 30 13 236

Table 11: Type of errors made by Gemini-1.5 Pro, GPT4-o, and Claude-3.5 Sonnet over various question categories.

Category PS FC PR SC RR MR NR SR OOO LR Overall

Human 1 45.16 80.85 52.86 69.64 74.29 67.86 52.27 60.92 72.15 40.91 63.10
Human 2 41.94 53.19 45.81 80.36 84.76 85.71 75.00 77.01 75.95 40.91 69.10
Human 3 67.74 63.83 86.78 54.46 61.90 80.80 72.73 44.83 79.75 40.91 70.70
Human 4 64.52 78.72 85.90 47.32 43.81 80.80 47.73 68.97 56.96 56.82 68.30
Human 5 45.16 87.23 45.81 79.46 80.00 75.00 54.55 60.92 51.90 75.00 65.10
Human 6 41.94 59.57 53.74 84.82 74.29 69.64 50.00 63.22 53.16 52.27 63.40

Table 12: Per-category accuracy scores achieved by six human evaluators. The average human accuracy over all
categories is 66.62%.
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You are given a question designed to test a student on mathematical or logical reasoning. These
questions can be categorized based on the skills and techniques used to solve them.
These are the categories of questions.

Mathematical reasoning: this question purely requires calculations of a mathematical nature. This
includes solving a straightforward equation.

Pattern recognition: this requires the understanding of a one-to-one relationship or pattern and
replicating that pattern. For example, given the relationship between a and b, determining the
equivalent of b to c. Questions involving substituting characters and operations in a pre-defined
pattern fall into this category.

Sequence completion: given a sequence of numbers or figures, this question involves finding the
sequentially next element in a series.

Figure completion: You are given a figure with an arrangement of numbers or characters such that
their relationship to one another based on their position in the figure is consistent. Th goal is to
complete the figure and identify the element missing from a marked position.

Odd one out: given a set of elements, identify the element that is not like the others.

Spatial reasoning: questions involving reasoning observationally and visualizing the question in
order to arrive at the answer.

Perspective shift: Questions where a figure is given and you are instructed to morph it according to
the instructions (flip, mirror image, rotate, etc)

Numerical reasoning: questions involving counting the number of elements mentioned. The
elements may be part of a single figure or conform to a specified pattern, but solving these questions
requires counting.

Relative reasoning: the question contains distinct data points, and solving the questions requires
understanding the relationships between all data points and extrapolating relationships that are not
explicitly mentioned. Questions involving venn diagrams, family relations, or relative positions
given a reference point fall into this category.

Logical reasoning: Questions involving simple logical reasoning such as entailment and contradic-
tion.

Now, observe the following question.

Using the categorization schema explained above, classify this question into a category.
Provide a detailed explanation. Output a JSON with the key "question" containing a transcript of
the question, "category" containing the classification category, and "explanation" containing the
reasoning for assigning the question to this category, and "contains diagram" which should be True
or False depending on whether there is a diagram provided in the question.

Table 13: Prompt used for categorization of question of image.
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You are given a mathematical question involving a diagram. You are an accessibility reader for the
blind. Output a detailed text description describing the diagram.

Example description: "description": "The diagram contains a circle, triangle, and rectangle
overlapping. The circle is the topmost figure, the triangle is figure with the lowest base. The
rectangle top cuts through the circle and triangle, while its lower side only passes through the
triangle. The portion of the circle that does not overlap with any other figure contains the number 10.
The intersection between circle and triangle contains the number 12. The intersection of only the
circle and rectangle contains the number 5. The area where all 3 figures intersect contains 20. The
area of the rectangle that interacts with no other figure contains 14. The area of the intersection
between only the rectangle and triangle contains 17. Finally, the area of the triangle does not
intersect with any other figures contains the number 16. Outside these figures are text labels and
arrows. The arrow labeled Teacher points to the circle. The arrow labeled Doctor points to the
rectangle. The arrow labeled Musician points to the triangle."

Now, generate a similarly comprehensive text description for the diagram in this question.

Image:image

Remember, the description must be detailed enough that the user can recreate the diagram exactly as
shown based on the description alone. Do not add any information or make assumptions that are not
explicitly mentioned in the image.

Output a JSON with the key "description" whose value is the generated description. Output only the
JSON. Go!

Table 14: Prompt used to generated detailed textual description of diagrams.

Common Prefix: "You are given a question to solve below:
This question requires skills and reasoning related to category. Definition: category definition.
This question has a list of options : answer range.
Your output must be a valid JSON."

Zeroshot Prompt: "Q1: Provide a step by step solution to this question.
Q2: What is the answer to this question? Remember, the answer must be present in the given list of
answer options
Q3: Which is the option from answer range that corresponds to the answer above? Output only the
option and nothing else.
Output a JSON with the keys Q1, Q2, Q3 with their answers."

Common postfix: "Remember, your output must be a valid JSON in this for-
mat:’Q1’:<answer>,’Q2’:<answer>,’Q3’:<answer> If your JSON is incomplete, incorrectly de-
limited or badly formatted, you will be destroyed. Output the valid JSON and nothing else. Go!"

Table 15: Prompt for zero shot inference
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Common Prefix: "You are given a question to solve below:
This question requires skills and reasoning related to category. Definition: category definition.
This question has a list of options : answer range.
Your output must be a valid JSON."

CoT Prompt: Now answer the following questions.
Q1: What is the list of variables and their values provided in the questions?
Q2: What is the variable that needs to be solved for?
Q3: What information that is not present in the question, can you infer from the given variables?
Q4: Provide a step-by-step solution with reasoning to obtain the answer to this question. Provide the
solution at each step.
Q5: What is the answer to this question? Remember, the answer must be present in the given list of
answer options.
Q6: Which is the option from answer range that corresponds to the answer above? Output only the
option and nothing else.

Output a JSON with the keys Q1, Q2, Q3, Q4, Q5, Q6 with their answers.

Common postfix: "Remember, your output must be a valid JSON in this for-
mat:’Q1’:<answer>,’Q2’:<answer>,’Q3’:<answer> If your JSON is incomplete, incorrectly de-
limited or badly formatted, you will be destroyed. Output the valid JSON and nothing else. Go!"

Table 16: Prompt for Chain-of-Thought inference
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Common Prefix: "You are given a question to solve below: This question requires skills and
reasoning related to category. Definition: category definition.
This question has a list of options : answer range. Your output must be a valid JSON."
Step back category prompt:
Mathematical Reasoning: "Q1: What is the relation of all given variables to one another? How is
each variable related to the missing value?
Q2: Which are the mathematical operations involved in solving a question like this?"
Pattern Recognition: "Q1: What is the pattern being followed in this question? Provide an
example.
Q2: Which are the elements in this question that follow this pattern?"
Sequence Completion: "Q1: What is a numerical sequence?
Q2: What is the relationship between previous and subsequent elements in a sequence? What is the
relationship between elements in the sequence present in this question?"

Figure Completion: "Q1: How do you approach a figure completion problem?
Q2: What is the information you have and the missing information? What are their spatial
relationships to one another?"

Odd one out: "Q1: How do you identify an odd element out of a set?
Q2: Describe the elements in this set. Now ,what do almost all of these elements have in common?"

Spatial Reasoning: "Q1: What are the spatial manipulations that occur in this question? Eg.
unfolding, folding, 2D to 3D reconstruction, etc.
Q2: Given the original question image, how can you visualize the resulting image after the
manipulations mentioned in the question? Explain in detail."

Perspective Shift: "Q1: What are the attributes of an image that is flipped, rotated, or its mirror
image? What differentiates the result of these operations from the original image?
Q2: Which of these operations apply in this image, and in what order?"

Numerical Reasoning: "Q1: What is the information you are given? What do you need to find out?
How can you arrive at this number? Q2: What are the main points of concern in solving such a
question? How can you ensure that you do not under or over estimate the final number?"

Relative Reasoning: "Q1: What is the information you are given? What are the relationships of the
given data points to one another? What is the information you need to discover? Which data points
are directly or indirectly related to the missing variable? Explain in detail.
Q2: What principles of relational logic do you need to apply to this question?"

Logical Reasoning: "Q1: what are the principle of logical reasoning involved in solving this
question? Q2: What is the information provided in this question? What is the objective of this
question?"

Meta Prompt: Step back category prompt. Q3: Based on the above information, provide a step-by-
step solution to the question in the image. Q4: What is the answer to this question? Remember, the
answer must be present in the given list of answer options Q5: Which is the option from answer
range that corresponds to the answer above? Output only the option and nothing else.
Output a JSON with the keys Q1, Q2, Q3, Q4, Q5 with their answers.

Table 17: Per-category and meta-prompts for Step Back prompt inference
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You are given a mathematical question with a list of multiple choice answers. You are an accessibility
reader for the blind. Transcribe the textual part of the question, and the list of answer options
provided.
Example: ’question’:’How many triangles are present in this diagram?’,’answer list’:’(A) 23 (B) 21
(C) 29 (D) 34’
Now, generate a question and answer list transcript for the question in the image.
Output a JSON with the keys "question" and "answer list" as described. Output only the JSON. Go!

Table 18: Prompt to transcribe list of answer options from question image

You are given a question to solve below:

This question requires skills and reasoning related to category. This question contains a
diagram that is crucial to solving the question whose textual description as been provided. Definition:
category definition. Problem: extracted question. Diagram: image description extracted answer list
Q1: Provide a step by step solution to this question.
Q2: What is the answer to this question? Remember, the answer must be present in the given list of
answer options
Q3: Which is the option from answer range that corresponds to the answer above? Output only the
option and nothing else.
Output a JSON with the keys Q1, Q2, Q3 with their answers.
Remember, your output must be a valid JSON in this for-
mat:’Q1’:<answer>,’Q2’:<answer>,’Q3’:<answer> If your JSON is incomplete, incorrectly
delimited or badly formatted, you will be destroyed. Output the valid JSON and nothing else. Go!

Table 19: Prompt for text-only inference.

Model FC LR MR NR OD PR PS RR SC SR Overall

Gemini-1.5 Pro 24.03 37.27 34.61 30.00 36.27 27.11 16.34 30.29 29.39 32.49 30.68
GPT-4o 22.32 55.91 34.61 40.91 47.86 27.82 19.61 32.00 25.81 47.37 34.16
Claude-3 sonnet 21.46 43.64 25.51 32.73 33.25 25.09 22.88 33.14 27.60 27.23 28.06
Claude Haiku 19.31 24.09 20.87 28.64 30.23 23.50 23.53 20.57 25.09 22.43 23.28
Claude-3.5 Sonnet 29.18 79.09 35.59 50.91 53.65 27.82 45.75 32.76 31.18 51.03 38.42

Table 20: Results on the entire POLYMATH dataset

Model FC LR MR NR OD PR PS RR SC SR Overall

Gemini 1.5 Pro 27.45 33.99 35.95 28.76 32.68 23.53 13.07 33.33 29.39 33.99 29.21
GPT 4o 19.61 58.82 32.68 43.14 45.75 30.07 22.88 28.76 24.18 48.37 35.42
Claude 3 sonnet 19.61 45.75 22.22 35.95 35.95 22.22 19.61 36.60 26.14 28.76 29.28
Claude Haiku 22.88 20.92 19.61 30.07 28.76 24.84 22.22 21.57 26.14 20.92 23.79
Claude 3.5 sonnet 26.14 82.35 38.56 47.71 55.56 26.80 49.02 29.41 30.07 52.29 43.79

Table 21: Results on a 153-sample set of each category, showing model scores on a balanced distribution across
question categories.

FC LR MR NR OD PR PS RR SC SR Overall

Claude Haiku 23.40 25.00 24.55 18.18 35.44 29.52 48.39 28.57 40.18 34.48 30.00
GPT 4o 42.55 52.27 40.18 45.45 35.44 46.26 70.97 33.33 53.57 60.92 45.60
Gemini 1.5 Pro 44.68 54.55 41.96 59.09 56.96 28.63 29.03 42.86 38.39 37.93 40.50
Claude-3 Sonnet 42.55 47.73 36.16 50.00 62.03 29.52 29.03 42.86 38.39 37.93 39.00
Claude-3.5 Sonnet 46.81 56.82 42.86 59.09 37.97 47.14 83.87 36.19 58.04 63.22 49.00

Table 22: Results of experiment setting combining diagram description, along with diagram image and question.
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Figure 5: Erroneous model reasoning patterns observed on an FC question
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Figure 6: Erroneous model reasoning patterns observed on an LR question
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Figure 7: Erroneous model reasoning patterns observed on an MR question

31



Figure 8: Erroneous model reasoning patterns observed on an NR question
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Figure 9: Erroneous model reasoning patterns observed on an OD question
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Figure 10: Erroneous model reasoning patterns observed on a PR question
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Figure 11: Erroneous model reasoning patterns observed on a PS question
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Figure 12: Erroneous model reasoning patterns observed on an RR question

36



Figure 13: Erroneous model reasoning patterns observed on an SC question
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Figure 14: Erroneous model reasoning patterns observed on an SR question
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Figure 15: Questions belonging to the figure_completion (FC) category
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Figure 16: Questions belonging to the logical_reasoning (LR) category
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Figure 17: Questions belonging to the mathematical_reasoning (MR) category
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Figure 18: Questions belonging to the numerical_reasoning (NR) category
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Figure 19: Questions belonging to the odd_one_out (OD) category
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Figure 20: Questions belonging to the pattern_recognition (PR) category
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Figure 21: Questions belonging to the perspective_shift (PS) category
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Figure 22: Questions belonging to the relative_reasoning (RR) category
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Figure 23: Questions belonging to the sequence_completion (SC) category
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Figure 24: Questions belonging to the spatial_reasoning (SR) category
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Row Labels Percent

calc error 3.81
incomplete 0.00
logical flaw 63.55
memory 2.11
misalign 0.84
spatial 29.66

Table 23: Qwen2 VL (2B) Instruct (5) - Least perfor-
mant open source model

Row Labels Percent

calc error 2.54
incomplete 0.84
logical flaw 60.59
memory 4.23
misalign 3.38
spatial 28.38

Table 24: LLaVA-v1.6 Mistral (7B) (15) - Best perform-
ing open source model
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