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ABSTRACT

There is increasing interest in tracking the capabilities of general intelligence founda-
tion models. This study benchmarks leading large language models and vision language
models against human performance on the Wechsler Adult Intelligence Scale (WAIS-IV),
a comprehensive, population-normed assessment of underlying human cognition and in-
tellectual abilities, with a focus on the domains of Verbal Comprehension (VCI), Work-
ing Memory (WMI), and Perceptual Reasoning (PRI). Most models demonstrated excep-
tional capabilities in the storage, retrieval, and manipulation of tokens such as arbitrary se-
quences of letters and numbers, with performance on the Working Memory Index (WMI)
greater or equal to the 99.5th percentile when compared to human population normative
ability. Performance on the Verbal Comprehension Index (VCI) which measures retrieval
of acquired information, and linguistic understanding about the meaning of words and
their relationships to each other, also demonstrated consistent performance at or above the
98th percentile. Despite these broad strengths, we observed consistently poor performance
on the Perceptual Reasoning Index (PRI; range 0.1-10th percentile) from multimodal mod-
els indicating profound inability to interpret and reason on visual information. Smaller and
older model versions consistently performed worse, indicating that training data, parame-
ter count, and advances in tuning are resulting in significant advances in cognitive ability.

1 INTRODUCTION

Generative artificial intelligence (GenAI) refers to a class of models capable of creating new content, whether
it is text, images, music, or even code (Team et al., 2023; Wu et al., 2023; Gardner et al., 2023; Ouyang et al.,
2023). Unlike traditional AI systems designed for specific tasks, these models learn the underlying patterns
and structures within vast datasets and then use this knowledge to generate novel outputs that often mimic
human creativity (Zhao et al., 2023; Nath et al., 2024). The excitement surrounding GenAI stems from its
potential to revolutionize numerous fields by performing human-like cognitive functions (Wang et al., 2024;
Zhuang et al., 2023; Zhang et al., 2024). This ability to understand, learn, adapt, and create in a way that
mirrors our own thought processes opens doors to groundbreaking applications across industries like art,
design, research, and communication (Ko et al., 2023; Lu et al., 2024; Ge et al., 2024; Yang et al., 2024).
However, human cognition encompasses a vast array of specialized abilities in the processing, storage,
interpretation, and generation of information across auditory and visual channels to accomplish these unique
human capabilities (Cao et al., 2024; Subramonyam et al., 2023).

Recent advances in generative AI have been driven by large parameter models (e.g., the GPT (Achiam et al.,
2023), Gemini (Team et al., 2023) families) trained with a broad range of textual content. Scaling exper-
iments have shown that testing losses often follow power law relationships with data, model size (number
of parameters) and compute (Kaplan et al., 2020). This progress has extended to multimodal models that
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Figure 1: Benchmarking Models Against Human Performance on the Wechsler Adult Intelligence
Scale. We perform a comprehensive, population-normed assessment of AI models against underlying human
cognition and intellectual abilities, with a focus on the domains of Verbal Comprehension (VCI), Working
Memory (WMI), andPerceptual Reasoning (PRI).

learn complex cross-modal relationships between representations such as language and visual media. The
capabilities of these models has sparked debate about the potential impact of AI and proximity to artificial
general intelligence (Bengio et al., 2024). The rapid progress increases the need for careful assessment of
performance.

To assess their potential and limitations as models of human cognition, it is crucial to characterize the cog-
nitive capabilities of generative models and understand how they compare directly to human ability (Ilić &
Gignac, 2024). This will facilitate an understanding of pragmatic capabilities, limitations, and an ability to
track progress just as is done with human normative cognitive tests of ability. It will also provide insight into
unique streams of cognitive development of generative artificial intelligence under the assumption that mod-
els, like biological organisms, will develop unique capabilities based on their underlying neural architecture
and environmental demands.

General cognitive capabilities have been systematically researched and benchmarked in humans for over a
century (Spearman, 1961; Sternberg et al., 1981; Weiss et al., 2013). Refined standardized tests of ability and
performance that are normed in large representative population-based samples allow for individual perfor-
mance scores to be compared directly to normative performance. Because tests such as the Wechsler Adult
Intelligence Scale–Fourth Edition (WAIS-IV; (Wechsler, 2008)) have population norms for comparison, in-
dividual scores can be used to make decisions about relative ability, and can be used to inform the allocation
of special resources for education, housing, care, or competency. They can also be utilized to identify excep-
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tional ability and gaps between areas of performance that are diagnostic of specific neurocognitive disorders
(e.g., Autism Spectrum Disorder, Dyslexia; (Neisser et al., 1996)).

Beyond the focus on comparison to human performance, there may be value in the development of specific
tests of GenAI cognition across discernible domains that are analogous to human tests akin to the devel-
opment of analogous tests of cognition in animal models. Indeed, models of cognitive constructs such as
working memory, semantic understanding, and visual processing, have facilitated research to understand the
underlying neural architecture and mechanisms of cognition. Similar to the relative capabilities of the visual
cortex of an hawk compared to a human – both display impressive but highly specialized abilities – we may
find that GenAI models, by virtue of their architecture and context, develop novel patterns in cognitive func-
tioning that prove to be quite different from humans, where, for example, consistent non-negligible positive
correlations have been demonstrated between many cognitive ability test scores (Detterman & Daniel, 1989;
Walker et al., 2023). This phenomenon, which is known as the Positive Manifold (Jensen, 1998), has been
demonstrated to hold for LLMs using acceptable, yet non-validated, subtest proxies of the VCI and WMI
cognitive ability tests (Ilić & Gignac, 2024).

We compared the performance of GenAI models on tests of cognitive performance that are commonly used to
index human intellectual ability. We focused on tests of verbal ability including linguistic-based knowledge
and conceptual understanding, capabilities to temporarily store, retrieve and manipulate arbitrary informa-
tion, and capabilities to understand, reason, and manipulate visual information. Both individual test scores
and composite index scores provide nuanced and interpretable information about intellectual capabilities
and both were used to evaluate and better understand the capabilities of generative models.

2 METHODS

To facilitate the assessment of GenAI models using the Wechsler Adult Intelligence Scale, Fourth Edition
(WAIS-IV), we implemented a series of methodological adaptations to accommodate the unique input and
output modalities of these models. This involved converting traditional verbal and visual stimuli into text-
based prompts (see Appendix B) and interpreting model-generated text outputs as responses to test items.
Specific adaptations for each subtest, along with validation procedures, are detailed in 2.1. For this study, we
selected a representative set of state-of-the-art (SOTA) large language models (LLMs) and vision language
models (VLMs), encompassing a range of model sizes, architectures, and training datasets (See section 2.2).

2.1 TESTING MATERIALS, ADMINISTRATION, AND SCORING

Individual items from WAIS-IV subtests (Wechsler, 2008) were converted to prompts to be individually
administered to the selected LLM (See Table 1 for a full list of tests with descriptions). Specifically, tasks
comprising the verbal comprehension and working memory indices (VCI and WMI) were converted to
language-based prompts and administered to all models including those with language-only capabilities
as well as those with multimodal language and visual capabilities. Tests from the perceptual reasoning
index (PRI) were only administered to multimodal models because they require both image recognition and
language capabilities. We were unable to administer the Block Design subtest from the PRI, because it
requires manual manipulation of real-world objects (cubes). However, valid PRI composite scores were
still calculable substituting the alternate PRI subtest Figure Weights (Wechsler, 2008). Subtests from the
Processing Speed Index (PSI) were not administered as there was no clear way to maintain fidelity to the
WAIS-IV testing procedures that are required for valid comparison to human performance norms. A full-
scale IQ score (FSIQ) could not be calculated for any model as PSI is a required component of FSIQ.

In each instance, the prompt presented to the model consisted of the instructions as outlined in the manual
(Wechsler, 2008), including the example provided as part of the administration process. However, certain
adaptations were necessary to accommodate the specific requirements of the model. Several tests involved
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reading the test content, while others utilized visual and physical aids (e.g., cards and boards). These tests
were converted into prompts, and in some cases, the translation provided the GenAI models with an advan-
tage due to their ability to access the full context while generating responses. Additionally, phrases such as
”You can only ask me to read the problem one more time” were omitted, as GenAI models are trained on in-
structions and often request repetition without responding to the actual assessment being conducted. Phrases
such as ”Just say what I say” or ”Listen” were not removed and were left as they were originally presented,
causing some models to mistakenly provide responses such as ”I am a text-based chat assistant and thus I
cannot hear or repeat the numbers.” and ”Okay, I’m listening!.”. No further instructions or inquiries were
provided. No additional instructions or queries were provided.

Each subtest consists of progressively challenging questions whose difficulty-level is normed against the
population. For example, the Digit Span test, in which subjects are requested to verbally repeat a sequence
of digits read aloud to them, begins with a sequence of three digits and progresses to a sequence of eight or
nine digits depending on the subtest. Primary WAIS-IV composite indices and related cognitive domains are
described below, along with brief descriptions of each subtest and administration procedures (See Table 1).

Verbal Comprehension Index These tests assess verbal knowledge and reasoning capacity. Subtests
include: Similarities, in which the subject must state how two words are alike (e.g., ”How are a kite and an
airplane alike?”); Vocabulary, in which the subject provides definitions of words; Information in which the
subject answers questions on a broad set of topics (e.g., ”Who was the first president of the United States?”);
and Comprehension in which subjects are asked to reason on common sense narrative scenarios.

Working Memory Index These subtests probe the capacity to store, manipulate, and reorder information,
including reasoning numerically. Digit Span requires subjects to repeat back random number strings accord-
ing to varying rules (i.e., Forwards, Backwards, and Sequencing conditions). Arithmetic requires subjects
to solve math word problems of increasing difficulty without pen and paper. Letter-Number Sequencing
requires subjects to manipulate arbitrary letter-number strings into alphabetic and numerical order.

Perceptual Reasoning Index Involves tests of visuospatial skills and nonverbal abstract reasoning. Matrix
Reasoning (Ex: Fig. 2) requires subjects to choose the correct image from multiple options to successfully
complete a visual pattern. Visual Puzzles (Ex: Fig. 3) requires subjects to select the correct tile to complete
a picture, assessing mental rotation and spatial relations ability. In Figure Weights (Ex: Fig. 4), subjects
are presented with an analogue scale depicting shapes of relative weight (e.g., two blue squares equals one
red triangle). The subject is presented with a balanced scale demonstrating the weight relationship between
objects, and an incomplete scale with shapes on only one side. They must then select from multiple choices
to balance the incomplete scale. Picture Completion is a test in which subjects are presented with an image
that is missing some key characteristic (e.g., an image of a woman without a shadow standing next to a sign
that is casting a shadow). The subject must verbally indicate what is missing in the image.

All answers to prompts were scored by one of two clinical psychologists trained to administer and score
the WAIS-IV. Any ambiguous results were reviewed by both psychologists to reach a consensus on scoring.
Individual test scores were collated into raw index scores and then converted to age-normed scores with
accompanying performance percentiles. As different norms exist for different age ranges, we selected the
norms for age 25 years to 29 years and 11 months. In addition to the calculation of composite indices, we also
compared individual subtests to domain-specific averages and composite scores in a series of discrepancy
analyses, in order to probe the relative strengths and weaknesses of the models. The WAIS-IV provides
standardized scoring for a variety of such comparisons, to determine if performance on an individual subtest
might represent a statistically significant deviation from what would be expected in the population of those
with similar performance profiles.
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Table 1: Summary of Tests. Indices, subtests, and cognitive dimensions measured by the WAIS-IV.

Index / Subtest Cognitive Dimensions Administration Assessed

Ve
rb

al
C

om
pr

eh
en

si
on Similarities Verbal abstract reasoning,

concept formation
Examinee verbally explains how two words are alike. T M

Vocabulary Language comprehension,
word knowledge

Examinee provides verbal definitions of words. T M

Information General fund of knowledge,
long-term memory recall

Examinee answers questions covering a broad range
of general knowledge areas.

T M

Comprehension Social judgment, common
sense, practical reasoning

Examinee answers questions about social situations
and common sense problem-solving.

T M

Pe
rc

ep
tu

al
R

ea
so

ni
ng Block Design Visual construction, spatial

reasoning
Examinee manipulates blocks to reproduce visual
designs.

N/A

Matrix Reasoning Nonverbal abstract reasoning,
pattern recognition

Examinee selects the missing element that completes
a visual pattern.

M

Visual Puzzles Mental Rotation, Spatial rea-
soning, part-whole analysis

Examinee chooses pieces that fit together to create a
complete visual image.

M

Figure Weights Quantitative and analogical
reasoning

Examinee views scales and selects the response op-
tion that balances the scale.

M

Picture Comple-
tion

Visual perception, attention to
detail

Examinee identifies the missing element from a pic-
ture.

M

W
or

ki
ng

M
em

. Digit Span Attention, working memory,
mental manipulation

Examinee recalls a series of digits forward and back-
ward.

T M

Arithmetic Calculation Ability Examinee mentally solves arithmetic word problems. T M

Letter-Num. Seq. Working memory, alphanu-
meric sequencing

Examinee performs alphanumeric sequencing of
letter-number strings.

T M

Pr
oc

es
s.

Sp
ee

d Symbol Search Visual scanning, target dis-
crimination, processing speed

Examinee rapidly scans a search group and indicates
whether a target symbol is present.

N/A

Coding Graphomotor processing
speed

Examinee copies symbols paired with geometric
shapes as quickly as possible.

N/A

Cancellation Selective attention, visual
scanning

Examinee scans an array of visual stimuli and marks
target items according to a rule.

N/A

T = Text-Only Models, M = Multi-modal (Text and Image) Models

2.2 MODELS

Language only models included OpenAI’s GPT-3.5 Turbo, Google’s Gemini Nano, Gemini Pro, and Gemini
Advanced. Multimodal models included OpenAI’s GPT-4 Turbo, GPT-4o, Google’s Gemini Flash, Gemini
Goldfish and Anthropic’s Claude 3 Opus, Claude 3.5 Sonnet. While model characteristics including the
underlying training data, number of parameters, or internal tuning approach in the model are not publically
available, key characteristics of the models are known that can be informative about factors that influence
performance. First, we are able to compare progressive versioning of models to qualitatively compare per-
formance. As an example, GPT-3.5 Turbo, Gemini Pro, and Claude 3 Opus are all earlier versions when
compared to GPT-4 Turbo, GPT-4o, Gemini Advanced, and Claude 3.5 Sonnet. Further, Gemini Flash and
Gemini Nano are intentionally designed as smaller models to be hosted on hardware chips rather than in
cloud computing where the models can be much larger. Finally, Claude models indicate that they optimize
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for advanced reasoning. While all of these pieces of information are limited due to the lack of public disclo-
sure, they do allow us to determine if 1) larger parameter versus smaller parameter models perform better;
2) models intentionally optimized for reasoning do improve reasoning capabilities.

3 RESULTS

Index level results (VCI, WMI, PRI) demonstrate both exceptional capabilities and significant deficits when
compared to a normative population (See Table 2 for full results). All but one model demonstrated abilities
on the VCI in the Very Superior range, scoring within the top percentile of human normative ability with the
exception of Gemini Flash which fell in the Superior range (82nd%ile) and Gemini Nano (23rd %ile) which
demonstrated ability in the Borderline range. The majority of models also performed in the Very Superior
range on the WMI, with the exception of Gemini Nano (37th%ile; Low Average). However, among the
models with multimodal capabilities, performance on the PRI demonstrated a significant and consistent
deficit with all models demonstrating capabilities in the Extremely Low range (< 1st%ile) with the lone
exception of Claude Sonnet which demonstrated ability in the Low Average range (10th%tile).

Next, we analyzed individual differences in index-level results to understand relative strengths and weak-
nesses within domains of intellectual ability (See Table 3 for full Results). First, we observed a consistent
relative strength in WMI compared to other indexes representing a statistically significant difference com-
pared to the normative population (p<.15 or p<.05 level). Overall,this indicates that models’ generally
evidence stronger ability to process, store and manipulate information compared to any other ability, includ-
ing language. Further, all models with visual/multimodal capability to perform tests comprising the PRI
demonstrated significantly worse perceptual reasoning performance p<.05) when compared verbal compre-
hension and working memory indexes. This indicates a general relative weakness that is invariant across
distinct developers and models in the ability to understand and reason on visual information.

Next, we examined performance on individual tests within each index (See Table 3 and Table 4). Within the
WMI, a consistent relative weakness in Arithmetic, was observed in comparison to Digit Span, indicating
a relative weakness in mathematical reasoning compared to the ability to encode, manipulate, and reorga-
nize numeric values. Gemini Nano demonstrated further relative weaknesses in the ability to sequence and
reverse numbers compared to the ability to encode and retrieve simple numeric lists. Analysis of the VCI
demonstrated consistent relative strengths across models from independent developers, on the Information
subtest compared to Similarities and Vocabulary (p<.05 and p<.15). This indicates that models are par-
ticularly strong in the storage and retrieval of natural language-encoded knowledge – often referred to as
“crystallized knowledge” in human subjects – in comparison to the cognitive capabilities required for verbal
analogic and verbal abstract reasoning and semantic understanding. This difference in relative performance
persisted across generations of models indicating that models are consistently stronger in predicting the
write answer than understanding and reasoning with language concepts. Finally, within the PRI, relative
differences in opposite directions between best-in class models were observed with GPT-4o demonstrating
stronger relative ability in decoding Visual Puzzles and Claude Sonnet demonstrating significantly stronger
relative performance in Matrix Reasoning.

Wide variability in performance was observed on the VCI. While scores were highly skewed towards excep-
tional performance (99.5th%ile to >99.9th%ile, models that are known to be small parameter counts demon-
strated the worst relative and absolute performance (Gemini Flash = 82nd%ile; Gemini Nano = 23rd%ile).
Similarly, most models performed exceptionally on the WMI (Range, 95th %ile - >99.9th %ile) with the
exception of Gemini Nano (37th %ile). In contrast, all models tested demonstrated poor performance on the
PRI (Range, <.01th%ile - 10th%ile), with skewed performance such that the majority of models fell below
the 2nd%ile. The exception is Claude Sonnet which demonstrates a significant increase over its predecessor
Claude Opus indicating that while performance overall is poor, there is measurable progress in the ability
for generative models to reason on visual concepts.
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Table 2: Model Scores on the WAIS-IV. Composite index standard scores, individual subtest scaled scores,
and percentile rankings for each generative AI model tested.

OpenAI Google Anthropic

GPT-3.5 GPT-4 GPT-4o Gemini Gemini Gemini Gemini Gemini Claude 3 Claude 3.5
Turbo Turbo Nano Pro 1.0 Adv. Flash Goldfish Opus Sonnet

(1.0 S) (1.0 M) (1.0 XL) (1.5 S) (1.5 M)

WAIS-IV Composite Index Scaled Scaled Scaled Scaled Scaled Scaled Scaled Scaled Scaled Scaled
WAIS-IV Subtests Score (%) Score (%) Score (%) Score (%) Score (%) Score (%) Score (%) Score (%) Score (%) Score (%)

Verbal Comprehension (VCI) 143 136 141 89 132 134 114 141 138 145
Standard Score (%ile) (99.8) (99) (99.7) (23) (98) (99) (82) (99.7) (99) (99.9)

Similarities 13 (84) 14 (91) 15 (95) 1 (0.1) 8 (25) 13 (84) 14 (91) 14 (91) 13 (84) 14 (91)
Vocabulary 19 (99.9) 15 (95) 16 (98) 4 (2) 19 (99.9) 15 (95) 6 (9) 17 (99) 17 (99) 19 (99.9)
Information 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9) 18 (99.6) 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9)
Comprehension 19 (99.9) 18 (99.6) 19 (99.9) 12 (75) 18 (99.6) 19 (99.9) 19 (99.9) 19 (99.9) 17 (99) 19 (99.9)

Working Memory Index (WMI) 139 150 150 95 139 150 139 145 150 145
Standard Score (%ile) (99.5) (>99.9) (>99.9) (37) (99.5) (>99.9) (99.5) (99.9) (>99.9) (99.9)

Digit Span 19 (99.9) 19 (99.9) 19 (99.9) 11 (63) 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9)
DS Forward 18 (99.6) 18 (99.6) 18 (99.6) 18 (99.6) 18 (99.6) 18 (99.6) 18 (99.6) 18 (99.6) 18 (99.6) 18 (99.6)
DS Backwards 18 (99.6) 16 (98) 19 (99.9) 4 (2) 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9) 19 (99.9)
DS Sequencing 19 (99.9) 19 (99.9) 19 (99.9) 13 (84) 19 (99.9) 19 (99.9) 18 (99.6) 19 (99.9) 19 (99.9) 17 (99)
Arithmetic 15 (95) 19 (99.9) 19 (99.9) 7 (16) 15 (95) 19 (99.9) 15 (95) 17 (99) 19 (99.9) 17 (99)
LN Sequencing 19 (99.9) 19 (99.9) 19 (99.9) 1 (0.1) 19 (99.9) 19 (99.9) 16 (98) 19 (99.9) 14 (91) 16 (98)

Perceptual Reasoning (PRI) – 50 58 – – – 50 52 50 81
Standard Score (%ile) – (<0.1) (0.3) – – – (<0.1) (<0.1) (<0.1) (10)

Matrix Reasoning – 1 (0.1) 1 (0.1) – – – 1 (0.1) 1 (0.1) 1 (0.1) 8 (25)
Visual Puzzles – 1 (0.1) 2 (0.4) – – – 1 (0.1) 1 (0.1) 0 (¡0.1) 2 (0.4)
Figure Weights – 2 (0.4) 6 (9) – – – 2 (0.4) 4 (2) 1 (0.1) 10 (50)
Picture Completion – 1 (0.1) 1 (0.1) – – – 1 (0.1) 1 (0.1) 1 (0.1) 1 (0.1)

Test level analyses demonstrate statistically significant relative strengths and weaknesses within individual
composite indices. First, all models demonstrated perfect or near perfect scores on Information indicat-
ing that prior encoding and ability to access crystalized knowledge is exceptional compared to a normative
population (Range, 99.6th%ile - 99.9th%ile). Next, within the VCI, multiple models demonstrated relative
weaknesses in similarities (Gemini Nano, GPT 3.5, Gemini Pro; range indicating a relative difficulty reason-
ing on linguistic concepts compared to correctly retrieving crystallized linguistic knowledge. Gemini Nano
and Gemini Flash both demonstrated relative weaknesses in vocabulary indicating these models struggle
to understand language relative to other models. Gemini Nano also demonstrates lower scores in Com-
prehension when compared to Information, reinforcing that while this model has encoded and can retrieve
crystallized knowledge well, it struggles to demonstrate human-level reasoning with linguistic information.

With regard to the WMI, models again performed exceptionally well with all demonstrating perfect scores in
Digit Span with the exception of Gemini Nano which demonstrated a relatively poorer performance that was
consistent with average human performance. Both Arithmetic and Letter Number Sequencing represented
relative weaknesses for Gemini Nano. Further, when comparing subtests of Digit Span, we observed a
relative weakness in Digit Span Backwards when compared to Digit Span Forward. Once again, Nano
performed inconsistently, demonstrating abilities in digit span forward that were in the 99.6th%ile) while
failing at manipulating similar numeric strings (Digit Span Backwards 2nd%ile). Further, Nano was unable
to correctly perform any Letter-Number sequencing tasks (see Table 5 for complete results). Taken together,
results indicate that Nano is proficient in encoding and retrieving the correct information but performs poorly
when tasked with manipulating information, a key attribute of working memory.

Finally the PRI was assessed in the subset of multimodal models (GPT-4 Turbo, GPT-4o, Gemini Flash,
Gemini Goldfish, Claude 3 Opus, Claude 3.5 Sonnet) demonstrating consistent performance in the Ex-
tremely Low range ( 0.2nd%ile). The best performing model was Claude 3.5 Sonnet which fell in the
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Table 3: Discrepancy Score Comparison Table for WAIS-IV Composite Indices. Includes scale-level
comparisons for Digit Span vs. Arithmetic and individual Digit Span component score comparisons.

OpenAI Google Anthropic

Index Level Comparisons GPT-3.5 GPT-4 GPT-4o Gemini Gemini Gemini Gemini Gemini Claude 3 Claude 3.5
Turbo Turbo Nano Pro 1.0 Adv. Flash Goldfish Opus Sonnet

(1.0 S) (1.0 M) (1.0 XL) (1.5 S) (1.5 M)

VCI - PRI (Difference) – 86** 83** – – – 64** 89** 88** 64**

VCI - PRI Base Rate – 0.2% 0.2% – – – 0.2% 0.2% 0.2% 0.2%
(Critical Value, Significance) 8.32** 8.32** 8.32** 8.32** 8.32** 8.32**

VCI - WMI (Difference) 4 -14** -9** -6 -7* -16** -25** -4 -12** 0

VCI - WMI Base Rate – 14.1% 25% – 29.7% 10.5% 3.0% – 18.1% –
(Critical Value, Significance) 8.81** 8.81** 6.48* 8.81** 8.81** 8.81** –

PRI - WMI (Difference) – -100** -92** – – – -89** -93** -100** -64**

PRI - WMI Base Rate – 0.1% 0.1% – – – 0.1% 0.1% 0.1% 0.1%
(Critical Value, Significance) 8.81** 8.81** 8.81** 8.81** 8.81** 8.81**

Scale Level Comparisons

Digit Span Total - Arithmetic 4** 0 0 4** 4** 0 4** 2* 0 2**

Base Rate 9.4% – – 9.4% 9.4% – 9.4% 29% – 29%
(Critical Value, Significance) 2.57** 2.57** 2.57** 2.57** 1.89* 1.89*

DS Forward-DS Backwards 0 2 -1 14** -1 -1 -1 -1 -1 -1

Base Rate – – – <0.10% – – – – – –
(Critical Value, Significance) 3.65**

DS Forward-DS Sequence -1 -1 -1 5** -1 -1 0 -1 -1 -1

Base Rate – – – 8.5% – – – – – –
(Critical Value, Significance) 3.60**

DS Backward-DS Sequence -1 -3* 0 -9** 0 0 0 0 0 0

Base Rate – 17.3% – 0.1% – – – – – –
(Critical Value, Significance) 2.62* 3.56**

Note: Base rates for Index Comparisons reflect cumulative percentages of the WAIS-IV normative sample (all ages) that
obtained equivalent index score discrepancies. Base Rates for Scale Level comparisons reflect cumulative percentages
of the entire WAIS-IV normative sample (i.e., full age range) that obtained equivalent discrepancy scaled scores. *p <
0.15; **p < 0.05

10th%ile, consistent with Borderline performance in this domain. The Figure Weights test was a relative
strength compared to other tests (Visual Puzzles, Matrix Reasoning) indicating a relative strength in ana-
lytical reasoning compared to pattern recognition or spatial reasoning. Of note, and despite overall poor
performance, Claude 3.5 Sonnet demonstrated dramatic improvements over Claude 3 Opus in Matrix Rea-
soning and Figure Weights indicating that while performance in these domains lag behind language-based
domains, models can be trained and optimized to acquire perceptual reasoning capabilities.

4 DISCUSSION

Results demonstrate that Generative AI models are capable of exceptional performance compared to nor-
mative human ability in key domains of cognition. First, and perhaps not surprising, all models demon-
strate exceptional capabilities in storage, retrieval, and manipulation of arbitrary tokenized information such
as sequences of numbers and letters while being significantly weaker in mathematical reasoning. While
poor performance was most pronounced in small parameter models, the discrepancy between reasoning and
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Table 4: Verbal Comprehension vs Perceptual Reasoning. Relative strengths and weaknesses for WAIS-
IV verbal comprehension and perceptual reasoning subtests.

OpenAI Google Anthropic

Verbal Subtests GPT-3.5 GPT-4o GPT-4 Gemini Gemini Gemini Gemini Gemini Claude 3 Claude 3.5
Turbo Turbo Nano Pro 1.0 Adv. Flash Goldfish Opus Sonnet

(1.0 S) (1.0 M) (1.0 XL) (1.5 S) (1.5 M)

Mean VCI Subtests 17.00 16.00 16.67 8.00 15.33 15.67 12.67 16.67 16.33 17.33

Similarities (subtest - mean) -4.00** -2.00** -1.67* -7.00** -7.33** -1.67* 0.33 -2.67** -3.33** -3.33**

Base Rate 2% 15% 25% 1% 1% 25% – 5% 2% 2%
(Critical Value, Significance) 1.91** 1.91** 1.56* 1.91** 1.91** 1.56* 1.91** 1.91** 1.91**

Vocabulary (subtest - mean) 2.00** -1.00 -0.67 -4.00** 3.67** -0.67 -6.67** 0.33 0.67 1.67**

Base Rate 10% – – 1% 1% – 1% – – 15%
(Critical Value, Significance) 1.58** 1.58** 1.58** 1.58** 1.58**

Information (subtest - mean) 2.00** 3.00** 2.33** 11.00** 3.67** 2.33** 6.33** 2.33** 2.67** 1.67**

Base Rate 15% 5% 10% 1% 1% 10% 1% 10% 5% 25%
(Critical Value, Significance) 1.64** 1.64** 1.64** 1.64** 1.64** 1.64** 1.64** 1.64** 1.64** 1.64**

Perceptual Reasoning

Mean PRI Subtests – 1.33 3.00 – – – 1.33 2.00 0.67 6.67

Matrix Reas. (subtest-mean) – -0.33 -2.00** – – – -0.33 -1.00 0.33 1.33

Base Rate – – 25% – – – – – – –
(Critical Value, Significance) 1.92**

Visual Puzzles (subtest-mean) – -0.33 -1.00 – – – -0.33 -1.00 -0.67 -4.67**

Base Rate – – – – – – – – – 1%
(Critical Value, Significance) 1.99**

Note: Base rates for Verbal and Perceptual Reasoning subtests reflect cumulative percentages of the WAIS-IV normative
sample (all ages) that obtained equivalent score discrepancies. *p < 0.15; **p < 0.05

information management persisted across model generations and developers indicating a generally stable
discrepancy in ability.

Generative models also demonstrated exceptional verbal abilities, with variability in performance according
to the size of the model. Once again, models were strongest in retrieval of stored information with consistent
relative weaknesses in tasks that require understanding of linguistic concepts or the relationships between
words and concepts. However, with the exception of Gemini Nano, all models demonstrated understand-
ing as well as crystalized knowledge well above normative ability indicating that models generally excel
in language-based tasks, even those requiring reasoning and understanding beyond simple regurgitation of
acquired knowledge. In the case of small parameter models, they may be best for storing and retrieving infor-
mation naturalistically (e.g., in the context of hardware constraints) but may not be capable of understanding
or manipulating that information to solve a problem.

Finally, the dramatically poorer performance on visual processing tasks indicates that generative models,
as they stand today, have profound deficits in the ability to understand the meaning or relationship in vi-
sual representations. Across developers and versions, models could not understand the meaning of objects,
reason, problem-solve, or detect abnormal patterns in visual representations. There is some indication that
current modeling approaches can lead to the acquisition of these abilities as Claude 3.5 Sonnet demonstrated
profound increases over the previous generation (Claude 3 Opus). Claude 3.5 Sonnet showed advances over
its predecessor in Matrix Reasoning (0.1th%ile vs. 25th%ile), which measures the ability to detect mean-
ingful patterns in visual stimuli and Figure Weights which indexes the ability to understand and reason on
mathematical relationships that are visually presented (0.1th%ile vs. 50th%ile). No such improvement was
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Table 5: Longest Digit and Letter-Number Sequencing Spans with discrepancy analyses.

OpenAI Google Anthropic

GPT-3.5 GPT-4 GPT-4o Gemini Gemini Gemini Gemini Gemini Claude 3 Claude 3.5
Turbo Turbo Nano Pro 1.0 Adv. Flash Goldfish Opus Sonnet

(1.0 S) (1.0 M) (1.0 XL) (1.5 S) (1.5 M)

Longest Digit Span Forwards (LDSF) 9 9 9 9 9 9 9 9 9 9
LDSF Base Rate (25-29 yrs.) (17.5%) (17.5%) (17.5%) (17.5%) (17.5%) (17.5%) (17.5%) (17.5%) (17.5%) (17.5%)

Longest Digit Span Backwards (LDSB) 8 7 8 3 8 8 8 8 8 8
LDSB Base Rate (25-29 yrs.) (7%) (18.5%) (7%) (97.9%) (7%) (7%) (7%) (7%) (7%) (7%)

Longest Digit Span Sequencing (LDSS) 9 9 9 9 9 9 9 9 9 9
LDSS Base Rate (25-29 yrs.) (2.5%) (2.5%) (2.5%) (2.5%) (2.5%) (2.5%) (2.5%) (2.5%) (2.5%) (2.5%)

Longest Letter-Number Sequence (LLNS) 8 8 8 0 8 8 8 8 8 8
LLNS Base Rate (25-29 yrs.) (6%) (6%) (6%) (100%) (6%) (6%) (6%) (6%) (6%) (6%)

Longest Digit Span Comparisons

LDSF-LDSB (difference score) 1 2 1 6 1 1 1 1 1 1
Base Rate (All Ages) (86%) (64.5%) (86%) (1%) (86%) (86%) (86%) (86%) (86%) (86%)

LDSF-LDSS (difference score) 0 0 0 0 0 0 0 0 0 0
Base Rate (All Ages) – – – – – – – – – –

LDSB-LDSS (difference score) -1 -2 -1 -6 -1 -1 -1 -1 -1 -1
Base Rate (All Ages) (66.5%) (40%) (66.5%) (<1%) (66.5%) (66.5%) (66.5%) (66.5%) (66.5%) (66.5%)

Note: Base rates for Longest Digit Spans and L-N Sequencing Span raw scores reflect cumulative percentages from
the WAIS-IV normative sample that obtained equivalent raw scores within the selected age bracket (25-29 years). Base
Rates for Digit Span and LN Sequencing Span discrepancy scores reflect cumulative percentages from the entire WAIS-
IV normative sample (i.e., all ages ranges) that obtained equivalent discrepancy scores.

observed in visual puzzle solving or image completion tasks that test the ability to understand and make
sense of visual information.

Given the relative complexity of visual information processing compared to auditory processing in both hu-
mans and other vertebrates that rely on complex visual capabilities, the gap between visual and auditory
cognitive capabilities in generative AI might not be addressed through incremental improvements in archi-
tecture or model training but may require separate specialized architecture for visual and auditory processing
with enhanced interaction capabilities, as is the case with vertebrates.

The above results clearly demonstrate that for current SoTA models the Positive Manifold, which posits
positive correlations between different cognitive capabilities, holds when VCI and WMI are considered (as
demonstrated in Ilić & Gignac (2024), and fails to hold for when including PRI as well.

The current work presents with the significant limitations that the model parameters themselves (underlying
training data, parameter count, tuning approach) are all proprietary across all examples and thus not available
for comparative analysis. While this does not limit the validity of the tests as these parameters are not known
with human subjects either, it does limit the ability to draw definitive conclusions about factors that influence
performance. This hampers scientific inquiry into GenAI models as model organisms to understand the
acquisition of cognitive capabilities. The study is further limited by the inherently non-standard approach to
WAIS-IV administration. While we attempted to copy key testing conditions and excluded tests that could
not conform, there is an inherent limitation in the difference in testing setup from that which the scores were
normed on. Despite these limitations, the current work represents the first of its kind approach to benchmark
GenAI against human norms of intelligence. The results demonstrate the unique cognitive capabilities of
current generative AI models as well as relative weaknesses, while providing a path to advance discrete
domains of cognition that underlie wide sets of human cognitive abilities.
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A BROADER IMPACT

The development of benchmarks help to assess the performance of foundation models. Capable models
need to be developed responsibility and with attention to their strengths and flaws. Leveraging knowledge
and tools from disciples such as clinical and neuro-psychology has allowed us to develop a set of grounded
tasks that shed insight on the functioning of LLMs that are complementary to existing public benchmarks.
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However, we must acknowledge that these tasks were designed specifically for evaluating human cognitive
functioning and therefore extrapolation of the results to performance on more mundane, real-world tasks and
conclusions that compare language model abilities to human cognitive functioning need to be treated with
care.

B PROMPT EXAMPLES

Similarities

How are a[n] (blank) and a[n](blank) alike? Example: How are a cat and a dog alike? They are both
pets.

Digit Span Forward

I will say some numbers. When I am done, repeat them in the same order just as I said them.
Example: I say 1-3; You say 1-3

Digit Span Backward

I will say some numbers. When I am done, repeat them in the reverse order of how I said them.
Example: I say 1-4; You say 4-1

Sequencing

I will say some numbers. When I am done, I want you to repeat all the numbers in order from
smallest to largest. Example: I say 1-4-2; You say 1-2-4

Matrix Reasoning

Look at this picture and select which of the numbered options at the bottom should be placed in the
square that currently has a question mark. You should select the option that works to complete the
pattern both going up/down and going side to side.

13



611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Vocabulary

Listen carefully to each word that I say and tell me the meaning: Example: Pen: A writing utensil
that uses ink.

Arithmetic

I am going to read you some problems. Please provide the correct answer: Example: Aaron has
two birds. Jason gives Aaron 3 more birds for his birthday. How many birds does Aaron now have.
Correct Answer: 5

Visual Puzzles

I want you to image that the picture at the top is a puzzle. Select the pieces that go together to make
the puzzle. The pieces can not overlap with each other.

Information

Now I am going to ask you some questions. Provide the correct answer. Example: What month
comes after December? Answer: January

Letter-Number Sequencing

I am going to say a series of letters and numbers. I want you to repeat them back in order starting
with numbers then letters. Numbers should be listed from smallest to largest. Letters should be listed
in alphabetical order. Example: 2-B-1-N-3-G; Answer: 1,2,3,B,G,N

Figure Weights

Your goal is to place the item(s) that balance the scales Example: Look at this scale. It is not
balanced. Choose the shape that will balance the scales.
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Comprehension

I’m going to ask some questions. Provide the best answer. Example: Why do people bathe? Answer:
To clean themselves.

Picture Completion

I will show you some pictures that have something missing. Name what is missing from the picture.
Example: Look at this example. What is missing from the picture?

Note: Test is slightly altered to protect copy-written materials.

C VISUAL TASKS EXAMPLES

Figure 2: Example of the Matrix Reasoning test in which subjects are requested to identify a pattern between
different rows and columns of the matrix. In this example, the first row is composed of green square,
followed by a red triangle (from left to right). The second row also starts with a green square meaning that
the correct option in the question mark is a red triangle. Answer: 2
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Figure 3: Example of the Visual Puzzles test in which subjects are requested to identify all the pieces that
compose the provided design. In this example, the provided design is a three color rectangle. It can be
composed by arranging rectangle (2), rectangle (1) and flipping rectangle (4), from left to right. Answer:
1,2,4.

Figure 4: Example of the Figure Weights test in which subjects are requested to determine the correct way
to balance the scales by finding the missing pieces. In this example, the scale on the left holds a single red
circle, while the scale on the right holds two red circles. Considering that each red circle carries the same
weight, attaining balance necessitates the addition of one red circle to the scale on the left. Answer: 1.
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