
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REINFORCED IN-CONTEXT BLACK-BOX
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Black-Box Optimization (BBO) has found successful applications in many fields
of science and engineering. Recently, there has been a growing interest in meta-
learning particular components of BBO algorithms to speed up optimization and
get rid of tedious hand-crafted heuristics. As an extension, learning the entire al-
gorithm from data requires the least labor from experts and can provide the most
flexibility. In this paper, we propose RIBBO, a method to reinforce-learn a BBO
algorithm from offline data in an end-to-end fashion. RIBBO employs expres-
sive sequence models to learn the optimization histories produced by multiple
behavior algorithms and tasks, leveraging the in-context learning ability of large
models to extract task information and make decisions accordingly. Central to our
method is to augment the optimization histories with regret-to-go tokens, which
are designed to represent the performance of an algorithm based on cumulative
regret over the future part of the histories. The integration of regret-to-go tokens
enables RIBBO to automatically generate sequences of query points that are posi-
tive correlation to the user-desired regret, which is verified by its universally good
empirical performance on diverse problems, including BBO benchmark functions,
hyper-parameter optimization and robot control problems.

1 INTRODUCTION

Black-Box Optimization (BBO) Alarie et al. (2021); Audet & Hare (2017) refers to optimizing ob-
jective functions where neither analytic expressions nor derivatives of the objective are available.
To solve BBO problems, we can only access the results of objective evaluation, which usually also
incurs a high computational cost. Many fundamental problems in science and engineering involve
optimization of expensive BBO functions, such as drug discovery Negoescu et al. (2011); Terayama
et al. (2021), material design Frazier & Wang (2016); Gómez-Bombarelli et al. (2018), robot con-
trol Calandra et al. (2016); Chatzilygeroudis et al. (2019), and optimal experimental design Greenhill
et al. (2020); Nguyen et al. (2023), just to name a few.

To date, a lot of BBO algorithms have been developed, among which the most prominent ones are
Bayesian Optimization (BO) Frazier (2018); Shahriari et al. (2016) and Evolutionary Algorithms
(EA) Back (1996); Zhou et al. (2019). Despite the advancements, these algorithms typically solve
BBO problems from scratch and rely on expert-derived heuristics. Consequently, they are often
hindered by slow convergence rates, and unable to leverage the inherent structures within the opti-
mization problems Astudillo & Frazier (2021); Bai et al. (2023).

Recently, there has been a growing interest in meta-learning a particular component of the algorithms
with previously collected data Arango et al. (2021); Feurer et al. (2021). Learning the component
not only alleviates the need for the laborious design process of the domain experts, but also specifies
the component with domain data to facilitate subsequent optimization. For example, some com-
ponents in BO are proposed to be learned from data, including the surrogate model Müller et al.
(2023); Perrone et al. (2018); Wang et al. (2021); Wistuba & Grabocka (2021), acquisition func-
tion Hsieh et al. (2021); Volpp et al. (2020), initialization strategy Feurer et al. (2015); Poloczek
et al. (2016), and search space Li et al. (2022); Perrone & Shen (2019); some core evolutionary
operations in EA have also been considered, e.g., learning the selection and mutation rate adapta-
tion in genetic algorithm Lange et al. (2023a) or the update rules for evolution strategy Lange et al.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(2023b); the configuration of the algorithm can also be learned and dynamically adjusted throughout
the optimization process Biedenkapp et al. (2020); Adriaensen et al. (2022).

There have also been some attempts to learn an entire algorithm in an End-to-End (E2E) fashion,
which requires almost no expert knowledge at all and provides the most flexibility across a broad
range of BBO problems. However, existing practices require additional knowledge regarding the
objective function during the training stage, e.g., the gradient information (often impractical for
BBO) Chen et al. (2017); TV et al. (2019) or online sampling from the objective function (often
very expensive) Maraval et al. (2023). Chen et al. (2022) proposed the OptFormer method to imitate
the behavior algorithms separately during training, presenting a challenge for the user to manually
specify which algorithm to execute during testing. Thus, these methods are less ideal for practical
scenarios where offline datasets are often available beforehand and a suitable algorithm for the given
task has to be identified automatically without the involvement of domain experts.

In this paper, we introduce Reinforced In-context BBO (RIBBO), which learns a reinforced BBO
algorithm from offline datasets in an E2E fashion. RIBBO employs an expressive sequence model,
i.e., causal transformer, to fit the optimization histories in the offline datasets generated by executing
diverse behavior algorithms on multiple tasks. The sequence model is fed with previous query points
and their function values, and trained to predict the distribution over the next query point. During
testing, the sequence model itself serves as a BBO algorithm by generating the next query points
auto-regressively. Apart from this, RIBBO augments the optimization histories with regret-to-go
(RTG) tokens, which are calculated by summing up the regrets over the future part of the histories,
representing the future performance of an algorithm. A novel Hindsight Regret Relabelling (HRR)
strategy is proposed to update the RTG tokens during testing. By integrating the RTG tokens into
the modeling, RIBBO can automatically identify different algorithms, and generate sequences of
query points that are positive correlation to the user-desired regret. Such modeling enables RIBBO
to circumvent the impact of inferior data and further reinforce its performance on top of the behavior
algorithms.

We perform experiments on BBOB synthetic functions, hyper-parameter optimization and robot
control problems by using some representatives of heuristic search, EA, and BO as behavior algo-
rithms to generate the offline datasets. The results show that RIBBO can automatically generate
sequences of query points related to the user-desired regret across diverse problems, and achieve
good performance universally. Note that the best behavior algorithm depends on the problem at
hand, and RIBBO can perform even better on some problems. Compared to the most related method
OptFormer Chen et al. (2022), RIBBO also has clear advantage. In addition, we perform a series of
experiments to analyze the influence of important components of RIBBO.

2 BACKGROUND

2.1 BLACK-BOX OPTIMIZATION

Let f : X → R be a black-box function, whereX ⊆ Rd is a d-dimensional search space. The goal of
BBO is to find an optimal solution x∗ ∈ argmaxx∈X f(x), with the only permission of querying the
objective function value. Several classes of BBO algorithms have been proposed, e.g., BO Frazier
(2018); Shahriari et al. (2016) and EA Back (1996); Zhou et al. (2019). The basic framework of
BO contains two critical components: a surrogate model, typically formalized as Gaussian Process
(GP) Rasmussen & Williams (2006), and an acquisition function Wilson et al. (2018), which are
used to model f and decide the next query point, respectively. EA is a class of heuristic optimization
algorithms inspired by natural evolution. It maintains a population of solutions and iterates through
mutation, crossover, and selection operations to find better solutions.

To evaluate the performance of BBO algorithms, regrets are often used. The instantaneous regret
rt = f(x∗) − f(xt) measures the gap of function values between an optimal solution x∗ and the
currently selected point xt. The cumulative regret RegT =

∑T
i=1 ri is the sum of instantaneous

regrets in the first T iterations.
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2.2 META-LEARNING IN BLACK-BOX OPTIMIZATION

Hand-crafted BBO algorithms usually require an expert to analyze the algorithms’ behavior across
a wide range of problems, a process that is both tedious and time-consuming. One solution is
meta-learning Vilalta & Drissi (2002); Hospedales et al. (2021), which aims to exploit knowledge to
improve the performance of learning algorithms given data from a collection of tasks. By parameter-
izing a component of BBO algorithms or even an entire BBO algorithm that is traditionally manually
designed, we can utilize historical data to incorporate the domain knowledge into the optimization,
which may bring speedup.

Meta-learning particular components has been studied with different BBO algorithms. Meta-
learning in BO can be divided into four main categories according to “what to transfer” Bai et al.
(2023), including the design of the surrogate model, acquisition function, initialization strategy, and
search space. For surrogate model design, Wang et al. (2021) and Wistuba & Grabocka (2021)
parameterized the mean or kernel function of the GP model with Multi-Layer Perceptron (MLP),
while Perrone et al. (2018) and Müller et al. (2023) substituted GP with Bayesian linear regres-
sion or neural process Garnelo et al. (2018); Müller et al. (2022). For acquisition function design,
MetaBO Volpp et al. (2020) uses Reinforcement Learning (RL) to meta-train an acquisition function
on a set of related tasks, and FSAF Hsieh et al. (2021) employs a Bayesian variant of deep Q-network
as a surrogate differentiable acquisition function trained by model-agnostic meta-learning Finn et al.
(2017). The remaining two categories focus on exploiting the previous good solutions to warm start
the optimization Feurer et al. (2015); Poloczek et al. (2016) or shrink the search space Perrone &
Shen (2019); Li et al. (2022). Meta-learning in EA usually focuses on learning specific evolutionary
operations. For example, Lang et al. substituted core genetic operators, i.e., selection and muta-
tion rate adaptation, with dot-product attention modules Lange et al. (2023a), and meta-learned a
self-attention-based architecture to discover effective and order-invariant update rules Lange et al.
(2023b). ALDes Zhao et al. (2024) introduces an auto-regressive learning-based approach to se-
quentially generate components of meta-heuristic algorithms. Beyond that, Dynamic Algorithm
Configuration (DAC) Biedenkapp et al. (2020); Adriaensen et al. (2022) concentrates on learning
the configurations of algorithms, employing RL to dynamically adjust the configurations during the
optimization process.

Meta-learning entire algorithms has also been explored to obtain more flexible models. Early
works Chen et al. (2017); TV et al. (2019) use Recurrent Neural Network (RNN) to meta-learn
a BBO algorithm by optimizing the summed objective functions of some iterations. RNN uses its
memory state to store information about history and outputs the next query point. This work assumes
access to gradient information during the training phase, which is, however, usually impractical in
BBO problems. OptFormer Chen et al. (2022) uses a text-based transformer framework to learn an
algorithm, providing a universal E2E interface for BBO problems. It is trained to imitate different
BBO algorithms across a broad range of problems, which, however, presents a challenge for the user
to manually specify an algorithm for inference. Neural Acquisition Processes (NAP) Maraval et al.
(2023) uses transformer to meta-learn the surrogate model and acquisition function of BO jointly.
Due to the lack of labeled acquisition data, NAP uses an online RL algorithm with a supervised
auxiliary loss for training, which requires online sampling from the expensive objective function
and lacks efficiency. Black-box Optimization NETworks (BONET) Krishnamoorthy et al. (2023)
employ a transformer model to fit regret-augmented trajectories in an offline BBO scenario, where
the training and testing data are from the same objective function, and a prefix sequence is required
to warm up the optimization before testing. OPT-GAN Lu et al. (2023) utilizes generative adversar-
ial networks (GAN) to estimate the distribution of optimum gradually by exploration-exploitation
trade-off. Compared to the above state-of-the-art E2E methods, we consider the meta-BBO setting,
where the training datasets consist of diverse algorithms across different functions. Our approach of-
fers the advantage of automatically identifying with RTG tokens and deploying the best-performing
algorithm without requiring the user to pre-specify which algorithm to use or to provide a prefix
sequence during the testing phase. It utilizes a supervised learning loss for training on a fixed offline
dataset without the need for further interaction with the objective function.

2.3 DECISION TRANSFORMER

Transformer has emerged as a powerful architecture for sequence modeling tasks Khan et al. (2022);
Wen et al. (2022); Wolf et al. (2020). A basic building block behind transformer is the self-attention
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(a) Data Generation (b) Training and Inference

Figure 1: Illustration of RIBBO. Left: Data Generation. K existing BBO algorithms {Aj}Kj=1

and N BBO tasks {fi}Ni=1 are used to serve as the behavior algorithms and the training tasks,
respectively. The offline datasets {Di,j} consist of the optimization histories hT = {(xt, yt)}Tt=1
collected by executing each behavior algorithmAj on each task fi for T evaluation steps, which are
then augmented with the regret-to-go tokens Rt (calculated as the cumulative regret

∑T
t′=t+1(y

∗ −
yt′) over the future optimization history) to generate the final dataset {D̂i,j} for training. Right:
Training and Inference. Our model takes in triplets of (xt, yt, Rt), embeds them into one token,
and outputs the distribution over the next query point xt+1. During training, the ground-truth next
query point is used to minimize the loss in Eq. (4). During inference, the next query point xt+1 is
generated auto-regressively based on the current history ĥt.

mechanism Vaswani et al. (2017), which captures the correlation between tokens of any pair of
timesteps. As the scale of data and model increases, transformer has demonstrated the in-context
learning ability Brown et al. (2020), which refers to the capability of the model to infer the tasks
at hand based on the input contexts. Decision Transformer (DT) Chen et al. (2021) abstracts RL
as a sequence modeling problem, and introduces return-to-go tokens, representing the cumulative
rewards over future interactions. Conditioning on return-to-go tokens enables DT to correlate the
trajectories with their corresponding returns and generate future actions to achieve a user-specified
return. Inspired by DT, we will treat BBO tasks as a sequence modeling problem naturally, use a
causal transformer for modeling, and train it by conditioning on future regrets. Such design is ex-
pected to enable the learned model to distinguish algorithms with different performance and achieve
good performance with a user-specified low regret.

3 METHOD

This section presents Reinforced In-context Black-Box Optimization (RIBBO), which learns an en-
hanced BBO algorithm in an E2E fashion, as illustrated in Figure 1. We follow the task-distribution
assumption, which is commonly adopted in meta-learning settings Finn et al. (2017); Hospedales
et al. (2021); Zhou et al. (2023). Our goal is to learn a generalizable modelM capable of solving a
wide range of BBO tasks, each associated with a BBO objective function f sampled from the task
distribution P (F), where F denotes the function space.

Let [N ] denote the integer set {1, 2, . . . , N}. During training, we usually access N source tasks
and each task corresponds to an objective function fi ∼ P (F), where i ∈ [N ]. Hereafter, we
use fi to denote the task i if the context is clear. We assume that the information is available via
offline datasets Di,j , which are produced by executing a behavior algorithm Aj on task fi, where
j ∈ [K] and i ∈ [N ]. Each dataset Di,j = {hi,j,m

T }Mm=1 consists of M optimization histories
hi,j,m
T = {(xt, yt)}Tt=1, where xt is the query point selected byAj at iteration t, and yt = fi(xt) is

its objective value. If the context is clear, we will omit i, j,m and simply use hT to denote a history
with length T . The initial history h0 is defined as ∅. We impose no additional assumptions about
the behavior algorithms, allowing for a range of BBO algorithms, even random search.

With the datasets, we seek to learn a modelMθ(xt|ht−1), which is parameterized by θ and gen-
erates the next query point xt by conditioning on the previous history ht−1. As introduced in
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Section 2.1, with a given budget T and the history hT produced by an algorithm A, we use the
cumulative regret

RegT =
∑T

t=1
(y∗ − yt) (1)

as the evaluation metric, where y∗ is the optimum value and {yt}Tt=1 are the function values in hT .

3.1 METHOD OUTLINE

Given the current history ht−1 at iteration t, a BBO algorithm selects the next query point xt,
observes the function value yt = fi(xt), and updates the history ht = ht−1 ∪ {(xt, yt)}. Similar
to the previous work Chen et al. (2017), we take this framework as a starting point and treat the
learning of a universal BBO algorithm as learning a modelMθ, which takes the preceding history
ht−1 as input and outputs a distribution of the next query point xt. The optimization histories in
offline datasets provide a natural supervision for the learning process.

Suppose we have a set of histories {hT }, generated by a single behavior algorithm A on a single
task f . By employing a causal transformer model Mθ, we expect Mθ to imitate A and produce
similar optimization history on f . In practice, we usually have datasets containing histories from
multiple behavior algorithms {Aj}Kj=1 on multiple tasks {fi}Ni=1. To fitMθ, we use the negative
log-likelihood loss

LBC(θ) = −EhT∼Di,j

[∑T

t=1
logMθ(xt|ht−1)

]
. (2)

To effectively minimize the loss,Mθ needs to recognize both the task and the behavior algorithm
in-context, and then imitate the optimization behavior of the corresponding behavior algorithm.

Nevertheless, naively imitating the offline datasets hinders the model since some inferior behavior
algorithms may severely degenerate the model’s performance. Inspired by DT Chen et al. (2021),
we propose to augment the optimization history with Regret-To-Go (RTG) tokens Rt, defined as the
sum of instantaneous regrets over the future history:

ĥT = {(xt, yt, Rt)}Tt=0, Rt =
∑T

t′=t+1
(y∗ − yt′), (3)

where x0 and y0 are placeholders for padding, denoted as [PAD] in Figure 1(b), and RT = 0. The
augmented histories compose the augmented dataset D̂i,j , and the training objective ofMθ becomes

LRIBBO(θ) = −EĥT∼D̂i,j

[∑T

t=1
logMθ(xt|ĥt−1)

]
. (4)

The integration of RTG tokens in the context brings identifiability of behavior algorithms, and the
model Mθ can effectively utilize them to make appropriate decisions. Furthermore, RTG tokens
have a direct correlation with the metric of interest, i.e., cumulative regret RegT in Eq. (1). Con-
ditioning on a lower RTG token provides a guidance to our model and reinforces Mθ to exhibit
superior performance. These advantages will be clearly shown by experiments in Section 4.4.

The resulting method RIBBO has implicitly utilized the in-context learning capacity of transformer
to guide the optimization with previous histories and the desired future regret as context. The in-
context learning capacity of inferring the tasks at hand based on the input contexts has been observed
as the scale of data and model increases Kaplan et al. (2020). It has been explored to infer general
functional relationships as supervised learning or RL algorithms. For example, the model is expected
to predict accurately on the query input xt by feeding the training dataset {(xi, yi)}t−1

i=1 as the
context Guo et al. (2023); Hollmann et al. (2023); Li et al. (2023); Laskin et al. (2023) learned RL
algorithms using causal transformers. Here, we use it for BBO.

3.2 PRACTICAL IMPLEMENTATION

Next, we detail the model architecture, training, and inference of RIBBO.

Model Architecture. For the formalization of the modelMθ, we adopt the commonly used GPT
architecture Radford et al. (2018), which comprises a stack of causal attention blocks. Each block
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Algorithm 1 Model Inference with HRR
Input: trained modelMθ, budget T , optimum value y∗

Process:
1: Initialize ĥ0 = {(x0, y0, R0)}, where x0 and y0 are placeholders for padding and R0 = 0;
2: for t = 1, 2, . . . , T do
3: Generate the next query point xt ∼Mθ(·|ĥt−1);
4: Evaluate xt to obtain yt = f(xt);
5: Calculate the instantaneous regret r = y∗ − yt;
6: Relabel Ri ← Ri + r, for each (xi, yi, Ri) in ĥt−1;
7: ĥt = ĥt−1 ∪ {(xt, yt, 0)}
8: end for

is composed of an attention mechanism and a feed-forward network. We aggregate each triplet
(xi, yi, Ri) using a two-layer MLP network. The output ofMθ is a diagonal Gaussian distribution
of the next query point. Note that previous works that adopt the sequence model as surrogate mod-
els Müller et al. (2022; 2023); Nguyen & Grover (2022) typically remove the positional encoding
because the surrogate model should be invariant to the history order. On the contrary, our imple-
mentation preserves the positional encoding, naturally following the behavior of certain algorithms
(e.g., BO or EA) and making it easier to learn from algorithms. Additionally, the positional encod-
ing can help maintain the monotonically decreasing order of RTG tokens. More details about the
architecture can be found in Appendix A.

Model Training. RTG tokens are calculated as outlined in Eq. (3) for the offline datasets before
training. Since the calculation of regret requires the optimum value of task i, we use the best-
observed value yimax as a proxy for the optimum. Let {D̂i,j}i∈[N ],j∈[K] denote the RTG augmented
datasets with N tasks and K algorithms. During training, we sample a minibatch of consecutive
subsequences of length τ < T uniformly from the augmented datasets. The training objective is to
minimize the RIBBO loss in Eq. (4).

Model Inference. The modelMθ generates the query points xt auto-regressively during inference,
which involves iteratively selecting a new query point xt based on the current augmented history
ĥt−1, evaluating the query as yt = f(xt), and updating the history by ĥt = ĥt−1 ∪ {(xt, yt, Rt)}.
A critical aspect of this process is how to specify the value of RTG (i.e., Rt) at every iteration t.
Inspired by DT, a naive approach is to specify a desired performance as the initial RTG R0, and
decrease it as Rt = Rt−1 − (y∗ − yt). However, this strategy has the risk of producing out-of-
distribution RTGs, since the values can fall below 0 due to an improperly selected R0.

Given the fact that RTGs are lower bounded by 0 and a value of 0 implies a good BBO algorithm
with low regret, we propose to set the immediate RTG as 0. Furthermore, we introduce a strategy
called Hindsight Regret Relabelling (HRR) to update previous RTGs based on the current sample
evaluations. The inference procedure with HRR is detailed in Algorithm 1. In line 1, the history
ĥ0 is initialized with padding placeholders x0, y0 and RTG R0 = 0. At iteration t (i.e., lines 3–7),
the modelMθ is fed with the augmented history ĥt−1 to generate the next query point xt in line 3,
followed by the evaluation procedure to obtain yt in line 4. Then, the immediate RTG Rt is set to 0,
and we employ HRR to update previous RTG tokens in ĥt−1, i.e., calculate the instantaneous regret
r = y∗ − yt (line 5) and add r to every RTG token within ĥt−1 (line 6):

∀0 ≤ i < t,Ri ← Ri + (y∗ − yt). (5)

Note that this relabelling process guarantees that ∀0 ≤ i < t, the RTG token Ri =
∑t

t′=i+1(y
∗ −

yt′), which can also be written as
∑T

t′=i+1(y
∗ − yt′), consistent with the definition in Eq. (3),

because the immediate RTG Rt =
∑T

t′=t+1(y
∗ − yt′) is set to 0. In line 7, the history ĥt is

updated by expanding ĥt−1 with {(xt, yt, 0)}, i.e., the current sampling and its immediate RTG
Rt = 0. The above process is repeated until reaching the budget T . Thus, we can find that HRR not
only exploits the full potential ofMθ through using 0 as the immediate RTG and thereby demands
the model to generate the most advantageous decisions, but also preserves the calculation of RTG
tokens following the same way as the training data, i.e., representing the cumulative regret over
future optimization history.
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3.3 DATA GENERATION

Finally, we give some guidelines about data generation for using the proposed RIBBO method.

Data Collection. Given a set of tasks {fi}Ni=1 sampled from the task distribution P (F), we can
employ a diverse set of behavior algorithms for data collection. For example, we can select some
representatives from different types of BBO algorithms, e.g., BO and EA. DatasetsDi,j are obtained
by using each behavior algorithm to optimize each task with different random seeds. Each optimiza-
tion history hT = {(xt, yt)}Tt=1 in Di,j is then augmented with RTG tokens Rt, which is computed
as in Eq. (3). The resulting histories ĥT = {(xt, yt, Rt)}Tt=0 compose the final datasets D̂i,j for
model training.

Data Normalization. To provide a unified interface and balance the statistic scales across tasks, it
is important to apply normalization to the inputs to our model. We normalize the point x by (x −
xmin)/(xmax − xmin), with xmax and xmin being the upper and lower bounds of the search space,
respectively. For the function value y, we apply random scaling akin to previous works Wistuba
& Grabocka (2021); Chen et al. (2022). That is, when sampling a history hτ from the datasets
Di,j , we randomly sample the lower bound l ∼ U(yimin − s

2 , y
i
min + s

2 ) and the upper bound u ∼
U(yimax − s

2 , y
i
max + s

2 ), where U stands for uniform distribution, yimin, y
i
max denote the observed

minimum and maximum values for fi, and s = yimax−yimin; the values yt in hτ are then normalized
by (yt − l)/(u − l) for training. The RTG tokens are calculated accordingly with the normalized
values. The random normalization can make a model exhibit invariance across various scales of y.
For inference, the average values of the best-observed and worst-observed values across the training
tasks are used to normalize y.

4 EXPERIMENTS

In this section, we examine the performance of RIBBO on a wide range of tasks, including synthetic
functions, Hyper-Parameter Optimization (HPO) and robot control problems. The model architec-
ture and hyper-parameters are maintained consistently across these problems. We train our model
using five distinct random seeds, ranging from 0 to 4, and each trained model is run five times
independently during the execution phase. We will report the average performance and standard
deviation. Details of the model hyper-parameters are given in Appendix A. The codes are provided
in the supplementary.

4.1 EXPERIMENTAL SETUP

Benchmarks. We use BBO Benchmarks BBOB Elhara et al. (2019), HPO-B Arango et al. (2021),
and rover trajectory planning task Wang et al. (2018). The BBOB suite, a comprehensive and widely
used benchmark in the continuous domain, consists of 24 synthetic functions. For each function, a
series of linear and non-linear transformations are implemented on the search space to obtain a
distribution of functions with similar properties. According to the properties of these functions, they
can be divided into 5 categories, and we select one from each category due to resource constraints,
including Greiwank Rosenbrock, Lunacek, Rastrigin, Rosenbrock, and Sharp Ridge. HPO-B is a
commonly used HPO benchmark and consists of a series of HPO problems. Each problem is to
optimize a machine learning model across various datasets, and an XGBoost model is provided as
the objective function for evaluation in a continuous space. We conduct experiments on two widely
used models, SVM and XGBoost, in the continue domain. For robot control optimization, we
perform experiments on rover trajectory planning task, which is a trajectory optimization problem to
emulate rover navigation. Similar to Elhara et al. (2019); Volpp et al. (2020), we implement random
translations and scalings to the search space to construct a distribution of functions. For BBOB
and rover problems, we sample a set of functions from the task distribution as training and test
tasks, while for HPO-B, we use the meta-training/test task splits provided by the authors. Detailed
explanations of the benchmarks can be found in Appendix B.1.

Data. Similar to OptFormer Chen et al. (2022), we employ 7 behavior algorithms, i.e., Random
Search, Shuffled Grid Search, Hill Climbing, Regularized Evolution Real et al. (2019), Eagle Strat-
egy Yang & Deb (2010), CMA-ES Hansen (2016), and GP-EI Balandat et al. (2020), which are
representatives of heuristic search, EA, and BO, respectively. Datasets are generated by employing
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each behavior algorithm to optimize various training functions sampled from the task distribution,
using different random seeds. For inference, new test functions are sampled from the same task
distribution to serve as the test set. Specifically, for the HPO-B problem, the meta-training/test splits
have been predefined by the authors and we adhere to this standard setup. Additional information
about the behavior algorithms and datasets can be found in Appendix B.2 and B.3.

4.2 BASELINES

As RIBBO is an in-context E2E model, the most related baselines are those also training an E2E
model with offline datasets, including Behavior Cloning (BC) Bain & Sammut (1995) and Opt-
Former Chen et al. (2022). Their hyper-parameters are set as same as that of our model for fairness.
Note that the seven behavior algorithms used to generate datasets are also important baselines, and
included for comparison as well.

BC uses the same transformer architecture as RIBBO. The only difference is that we do not feed
RTG tokens into the model of BC and train to minimize the BC loss in Eq. (2). When the solu-
tions are generated auto-regressively, BC tends to imitate the average behavior of various behavior
algorithms. Consequently, the inclusion of underperforming algorithms, e.g., Random Search and
Shuffled Grid Search, may significantly degrade the performance. To mitigate this issue, we have
also trained the model by excluding these underperforming algorithms, denoted as BC Filter.

OptFormer employs a transformer to imitate the behaviors of a set of algorithms and an algo-
rithm identifier usually needs to be specified manually during inference for superior performance.
Its original implementation is built upon a text-based transformer with a large training scale. In
this paper, we re-implement a simplified version of OptFormer where we only retain the algorithm
identifier within the metadata. The initial states, denoted as x0 and y0, are used to distinguish be-
tween algorithms. They are obtained by indexing the algorithm type through an embedding layer,
thereby aligning the initial states with the specific imitated algorithm. This enables the identifi-
cation of distinct behavior algorithms within the simplified OptFormer. Further details about the
re-implementation can be found in Appendix C.

4.3 MAIN RESULTS

The results are shown in Figure 2. For the sake of clarity in visualization, we have omitted the
inclusion of Random Search and Shuffled Grid Search due to their poor performance from start to
finish. We can observe that RIBBO achieves superior or at least equivalent efficacy in comparison
to the best behavior algorithm on each problem except SVM and rover. This demonstrates the
versatility of RIBBO, while the most effective behavior algorithm depends upon the specific problem
at hand, e.g., the best behavior algorithms on Lunacek, Rastrigin and XGBoost are GP-EI, Eagle
Strategy and CMA-ES, respectively. Note that the good performance of RIBBO does not owe to
the memorization of optimal solutions, as the search space is transformed randomly, resulting in
variations in optimal solutions across different functions from the same distribution. It is because
RIBBO is capable of using RTG tokens to identify algorithms and reinforce the performance on top
of the behavior algorithms, which will be clearly shown later. We can also observe that RIBBO
performs extremely well in the early stage, which draws the advantage from the HRR strategy, i.e.,
employing 0 as the immediate RTG to generate the optimal potential solutions.

RIBBO does not perform well on the SVM problem, which may be due to the problem’s low-
dimensional nature (only three parameters) and its relative simplicity for optimization. Behavior
algorithms can achieve good performance easily, while the complexity of RIBBO’s training and
inference processes could instead result in the performance degradation. For the rover problem
where GP-EI performs the best, we collect less data from GP-EI than other behavior algorithms due
to the high time cost. This may limit RIBBO’s capacity to leverage the high-quality data from GP-
EI, given its small proportion relative to the data collected from other behavior algorithms. Despite
this, RIBBO is still the runner-up, significantly surpassing the other behavior algorithms.

Compared with BC and BC Filter, RIBBO performs consistently better except on the SVM prob-
lem. BC tends to imitate the average behavior of various algorithms, and its poor performance is
due to the aggregation of behavior algorithms with inferior performance. BC Filter is generally
better than BC, because the data from the two underperforming behavior algorithms, i.e., Random
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Figure 2: Performance comparison among RIBBO, BC, BC Filter, OptFormer, and behavior al-
gorithms on synthetic functions, HPO, and robot control problems. The y-axis is the normalized
average objective value, and the length of vertical bars represents the standard deviation.

Search and Shuffled Grid Search, are manually excluded for the training of BC Filter. As introduced
before, OptFormer requires to manually specify which algorithm to execute. We have specified the
behavior algorithm Eagle Strategy in Figure 2, which obtains good overall performance on these
problems. It can be observed that OptFormer displays a close performance to Eagle Strategy, while
RIBBO performs better. More results about the imitation capacity of OptFormer can be found in
Appendix C.

Why Does RIBBO Behave Well? To better understand RIBBO, we train the model using only
two behavior algorithms, Eagle Strategy and Random Search, which represent a good algorithm
and an underperforming one, respectively. Figure 3(a) visualizes the contour lines of the 2D Branin
function and the sampling points of RIBBO, Eagle Strategy, and Random Search, represented by red,
orange, and gray points, respectively. The arrows are used to represent the optimization trajectory of
RIBBO. Note that the two parameters of Branin have been scaled to [−1, 1] for better visualization.
It can be observed that RIBBO makes a prediction preferring Eagle Strategy over Random Search,
indicating its capability to automatically identify the quality of training data. Additionally, RIBBO
achieves the exploration and exploitation trade-off capability using its knowledge about the task
obtained during training, thus generating superior solutions over the ones in the training dataset.

Generalization. We also conduct experiments to examine the generalization capabilities of RIBBO.
For this purpose, we train the model on all 24 BBOB synthetic functions simultaneously with the
results shown in Figure 3(b). To aggregate results across functions with different output scaling, we
normalize all the functions adhering to previous literature Turner et al. (2020); Arango et al. (2021);
Chen et al. (2022). The results suggest that RIBBO demonstrates strong generalizing to a variety
of functions with different properties. Further experiments are conducted to examine the cross-
distribution generalization to unseen function distributions. The model is trained on 4 of the 5 cho-
sen synthetic functions and tested with the remaining one. Note that each function (i.e., Greiwank
Rosenbrock, Lunacek, Rastrigin, Rosenbrock, and Sharp Ridge) here actually represents a distribu-
tion of functions with similar properties, and a set of functions is sampled from each distribution
as introduced before. The results suggest that RIBBO has a strong generalizing ability to unseen
function distributions. Due to the space limitation, the results and more details on cross-distribution
generalization are deferred to Appendix D. The good generalization of RIBBO can be attributed
to the paradigm of learning the entire algorithm, which can acquire general knowledge, such as
exploration and exploitation trade-off from data, as observed in Chen et al. (2017). In contrast,
such generalization may be limited if we learn surrogate models from data, because the function
landscape inherent to surrogate models will contain only the knowledge of similar functions.
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Figure 3: (a) Visualization of the contour lines of 2D Branin function and sampling points of RIBBO
(red), Eagle Strategy (orange), and Random Search (gray), where the arrows represent the optimiza-
tion trajectory of RIBBO. (b) Generalization by training the model across all 24 BBOB synthetic
functions simultaneously. The results across functions with different output scaling are normalized
to obtain the aggregate results. The legend shares with that of Figure 2. (c) Initial RTG R0’s in-
fluence on performance. (d) RTG update strategy comparison between HRR and the naive strategy
with various initial RTG R0.

4.4 ABLATION STUDIES

RIBBO augments the histories with RTG tokens, facilitating distinguishing algorithms and automat-
ically generating algorithms with user-specified performance. Next, we will verify the effectiveness
of RTG conditioning and HRR strategy.

Influence of Initial RTG Token R0. By incorporating RTG tokens, RIBBO is able to attend to
RTGs and generate optimization trajectories based on the specified initial RTG token R0. To val-
idate this, we examine the performance of RIBBO with different values of R0, and the results are
presented in Figure 3(c). Here, the RTG values, instead of normalized objective values, are used as
the y-axis. We can observe that the cumulative regrets of the generated query sequence do correlate
with the specified RTG, indicating that RIBBO establishes the connection between regret and gen-
eration. We also conduct experiments to explore the effect of varying the immediate RTG Rt, and
it is observed that setting to a value larger than 0 will decrease the performance and converge to a
worse value. Please see Appendix E.

Effectiveness of HRR. A key point of the inference procedure is how to update the value of RTG to-
kens at each iteration. To assess the effectiveness of the proposed strategy HRR outlined in Eq. (5),
we compare it with the naive strategy, that sets an initial RTG token R0 and decreases it by the
one-step regret after each iteration, a method that employs the same updating strategy mechanism as
DT. The results are shown in Figure 3(d). The naive strategy displays distinct behaviors depending
on the initial setting of R0. Specifically, when R0 = 0, i.e., the lower bound of regret, the model
performs well initially. However, as the optimization progresses, the RTG tokens gradually decrease
to negative values, leading to poor performance since negative RTGs are out-of-distribution values.
Using R0 = 5 compromises the initial performance, as the model may not select the most aggressive
solutions with a high R0. However, a higher initial R0 yields better convergence value since it pre-
vents out-of-distribution RTGs in later stage. The proposed HRR strategy consistently outperforms
across the whole optimization stage, because setting the immediate RTG to 0 encourages the model
to make the most advantageous decisions at every iteration, while hindsight relabeling of previous
RTG tokens, as specified in Eq. (5), ensures that these values remain meaningful and feasible.

Further Studies. We also study the effects of the method to aggregate (xi, yi, Ri) tokens, the
normalization method for y, the model size, and the sampled subsequence length τ . Please see
Appendix F. More visualizations illustrating the effects of random transformations on the search
space are detailed in Appendix G.

5 CONCLUSION

This paper proposes RIBBO, which employs a transformer architecture to learn a reinforced BBO al-
gorithm from offline datasets in an E2E fashion. By incorporating RTG tokens into the optimization
histories, RIBBO can automatically generate optimization trajectories satisfying the user-desired re-
gret. Comprehensive experiments on BBOB synthetic functions, HPO and robot control problems
show the versatility of RIBBO.
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Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimization
for learning gaits under uncertainty - An experimental comparison on a dynamic bipedal walker.
Annals of Mathematics and Artificial Intelligence, 76(1-2):5–23, 2016.

Konstantinos Chatzilygeroudis, Vassilis Vassiliades, Freek Stulp, Sylvain Calinon, and Jean-
Baptiste Mouret. A survey on policy search algorithms for learning robot controllers in a handful
of trials. IEEE Transactions on Robotics, 36(2):328–347, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. In Advances in Neural Information Processing Systems 34 (NeurIPS’21),
pp. 15084–15097, Virtual, 2021.
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A MODEL DETAILS

We employ the commonly used GPT architecture Radford et al. (2018) and the hyper-parameters are
maintained consistently across the problems. Details can be found in Table 1. For BC, BC Filter and
OptFormer, the hyper-parameters are set as same as those of our model. The training takes about 20
hours on 1 GPU (Nvidia RTX 4090).

B DETAILS OF EXPERIMENTAL SETUP

B.1 BENCHMARKS

• BBOB Elhara et al. (2019) is a widely used synthetic BBO benchmark, consisting of 24
synthetic functions in the continuous domain. This benchmark makes a series of trans-
formations in the search space, such as linear transformations (e.g., translation, rotation,
scaling) and non-linear transformations (e.g., Tosz, Tasy), to create a distribution of func-
tions while retaining similar properties. According to the properties of functions, these
synthetic functions can be divided into 5 categories, i.e., (1) separable functions, (2) mod-
erately conditioned functions, (3) ill-conditioned and unimodal functions, (4) multi-modal
functions with adequate global structure, and (5) multi-modal functions with weak global
structures. We select one function from each category to evaluate our algorithm, Rastrigin
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Table 1: List of hyper-parameter settings in RIBBO.

RIBBO

Embedding dimension 256
Number of self-attention layers 12
Number of self-attention heads 8
Point-wise feed-forward dimension 1024
Dropout rate 0.1
Batch size 64
Learning rate 0.0002
Learning rate decay 0.01
Optimizer Adam
Optimizer scheduler Linear warm up and cosine annealing
Number of training steps 500,000
Length of subsequence τ 50

from (1), Rosenbrock Rotated from (2), Sharp Ridge from (3), Greiwank Rosenbrock from
(4), and Lunacek from (5). We use the BBOB benchmark implementation in Open Source
Vizier1, and the dimension is set to 10 for all functions.

• SVM and XGBoost. HPO-B Arango et al. (2021) is the most commonly used HPO bench-
mark and is grouped by search space id. Each search space id corresponds to a machine
learning model, e.g., SVM or XGBoost. Each such search space has multiple associated
dataset id, which is a particular HPO problem, i.e., optimizing the performance of the cor-
responding model on a dataset. For the continuous domain, it fits an XGBoost model as
the objective function for each HPO problem. These datasets for each search space id are
divided into training and test datasets. We examine our method on two selected search
space id, i.e., 5527 and 6767, which are two representative HPO problems tuning SVM and
XGBoost, respectively. SVM has 3 parameters, while XGBoost has 18 parameters, which
is the most in HPO-B. We use the official implementations2.

• Rover Trajectory Planning Eriksson et al. (2019); Wang et al. (2018) is a trajectory op-
timization task designed to emulate a rover navigation task. The trajectory is determined
by fitting a B-spline to 30 points in a 2D plane, resulting in a total of 60 parameters to
optimize. Given x ∈ [0, 1]60, the objective function is f(x) = c(x) + λ(∥x0,1 − s∥1 +
∥x58,59 − g∥1) + b, where c(x) is the cost of the given trajectory, x0,1 denotes the first
and second dimensions of x (similarly for x58,59), s and g are 2D points that specify the
starting and goal positions in the plane, λ and b are parameters to define the problem. This
problem is non-smooth, discontinuous, and concave over the first two and last two dimen-
sions. To construct the distribution of functions, we applied translations in [−0.1, 0.1]d and
scalings in [0.9, 1.1], similar to previous works Elhara et al. (2019); Volpp et al. (2020).
The training and test tasks are randomly sampled from the distribution. We use the stan-
dard implementation for the rover problem3.

B.2 BAHAVIOR ALGORITHMS

The datasets are generated with several representatives of heuristic search, EA, and BO as behavior
algorithms. We use the implementation in Open Source Vizier Song et al. (2022) for Random Search,
Shuffled Grid Search, Eagle Strategy, CMA-ES. For Hill Climbing and Regularized Evolution, we
provide a simple re-implementation. We use the implementation in BoTorch Balandat et al. (2020)
for GP-EI. The details of these behavior algorithms are summarized as follows.

• Random Search selects a point uniformly at random from the domain at each iteration.
• Shuffled Grid Search discretizes the ranges of real parameters into 100 equidistant points

and selects a random point from the grid without replacement at each iteration.
1https://github.com/google/vizier
2https://github.com/releaunifreiburg/HPO-B
3https://github.com/uber-research/TuRBO
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• Hill Climbing. At each iteration t, the current best solution xbest is mutated (using the same
mutation operation as Regularized Evolution) to generate xnext, which is then evaluated.
If f(xnext) > f(xbest), xbest is updated to xnext.

• Regularized Evolution Real et al. (2019) is an evolutionary algorithm with tournament
selection and age-based replacement. We use a population size of 25 and a tournament
size of 5. At each iteration, a tournament subset is randomly selected from the current
population, and the solution with the maximum value is mutated. The mutation operation
uniformly selects one of the parameters and mutates it to a random value within the domain.

• Eagle Strategy Yang & Deb (2010) without the Levy random walk, aka Firefly Algorithm,
maintains a population of fireflies. Each firefly emits light whose intensity corresponds to
the objective value. At each iteration, for each firefly, a weight is calculated to chase after
a brighter firefly and actively move away from darker ones in its vicinity. The position is
updated based on the calculated weight.

• CMA-ES Hansen (2016) is a popular evolutionary algorithm. At each iteration, candidate
solutions are sampled from a multivariate normal distribution and evaluated, then the mean
and covariance matrix are updated.

• GP-EI employs GP as the surrogate model and EI Jones et al. (1998) as the acquisition
function for BO.

RIBBO is trained exclusively from offline datasets derived from various source tasks, which are
sampled from the task distribution. Each dataset consists of several optimization histories, generated
by running a behavior algorithm on a task. No additional assumptions are imposed to the data
collection process or the behavior algorithms, thereby permitting the use of any behavior algorithm.

Nevertheless, we can choose appropriate behavior algorithms to help the training. The model is
trained on the datasets collected by the behavior algorithms, and the characteristics of these datasets
can influence the model’s efficacy. It is advisable to employ well-performing and diverse behavior
algorithms to create these datasets. If the datasets are from suboptimal behavior algorithms pre-
dominantly, there might be a decline in performance, even with the incorporation of RTG tokens.
If the datasets are predominantly produced by behavior algorithms with homogeneous properties,
the model may only be adept at addressing specific problems characterized by those properties.
Conversely, if the behavior algorithms are diverse, the model can learn the strengths from various
algorithms.

B.3 DATA

For BBOB and rover problem, a set of tasks is sampled from the task distribution and the above
behavior algorithms are used to collect data. Specifically, for the BBOB suite, a total of 200 func-
tions are sampled, and each behavior algorithm is executed 500 times, except for GP-EI, which is
limited to 100 function samples due to its high time cost. The total number of optimization histories
is about 100, 000 and the length of each history is 150. For the rover problem, 300 functions are
sampled with each being run 500 times, whereas for GP-EI, a smaller number of 50 functions is
selected, each being run 500 times. The total number of optimization histories is about 150, 000 and
the length of each history is 150. For testing, we randomly sample 10 functions for each problem
and run each algorithm multiple times to report the average performance and standard deviation.

For HPO-B, we use the “v3” meta-training/test splits provided by the authors, which consist of 51
training and 6 test tasks for SVM, and similarly, 52 training and 6 test tasks for XGBoost. All
behavior algorithms employ 500 random seeds to collect the training datasets. The total number of
optimization histories is about 25, 000 and the length of each history is 100.

C RE-IMPLEMENTATION OF OPTFORMER

OptFormer Chen et al. (2022) is a general optimization framework based on transformer Vaswani
et al. (2017) and provides an interface to learn policy or function prediction. When provided with
textual representations of historical data, OptFormer can determine the next query point xt, acting as
a policy. Additionally, if the context incorporate a possible query point xt, the framework is capable
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of predicting the corresponding yt, thus serving as a prediction model. We focus on the aspect of
policy learning, due to its greater relevance to our work.

The original implementation is built upon a text-based transformer and uses private datasets for
training. In this paper, we have re-implemented a simplified version of OptFormer, where we omit
the textual tokenization process and only retain the algorithm type within the metadata. Numerical
inputs are fed into the model and we use different initial states x0 and y0 to distinguish among
algorithms. The initial states are derived by indexing the algorithm type in an embedding layer,
thereby enabling the identification of distinct behavior algorithms within OptFormer. The hyper-
parameters are set as same as our method.

To examine the algorithm imitation capability, we compare our re-implementation with the corre-
sponding behavior algorithms. The results are shown in Figure 4. For clarity in the visual rep-
resentation, we only plot a subset of the behavior algorithms, including Shuffled Grid Search, Hill
Climbing, Regularized Evolution and Eagle Strategy. These behavior algorithms are plotted by solid
lines, while their OptFormer counterparts are shown by dashed lines with the same color. Note that
the figure uses the immediate function values as the y-axis to facilitate a comprehensive observation
of the optimization process.
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Figure 4: Comparison of the behavior algorithms with the OptFormer re-implementation.

D GENERALIZATION

We conduct a series of experiments to examine the generalization of our method in this section. We
train the model on 4 of 5 chosen synthetic functions and test on the remaining one. The results in
Figure 5 have shown that RIBBO has a strong generalization ability to unseen function distributions.
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Figure 5: Cross-distribution generalization by training on 4 of 5 chosen synthetic functions and
testing on the remaining one.

We also train the model across all training datasets from BBOB synthetic functions simultaneously,
and normalize all the test functions to aggregate results across functions with different output scaling.
The results are shown in Figure 6(a), and RIBBO has the best performance.

The generalization across different problems is implemented in an in-context manner. The con-
text data, collected from the new problems, provides insights for understanding the problems at
hand. These contexts are integrated to construct the inputs, thereby influencing the resulting sam-
pled points.
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E FURTHER DISCUSSIONS ABOUT RTG TOKENS

We conduct more discussion about the setting of RTG tokens in this section. The immediate RTG
tokens are designed to represent the performance based on cumulative regret over the future trajec-
tories (i.e., Ri =

∑t
t′=i+1(y

∗− yt′)), rather than focusing solely on instantaneous regret y∗− yt+1.
Thus, setting the immediate RTG to 0 inherently accounts for future regret, thereby enabling the
algorithm to autonomously trade-off the exploration and exploitation. We conduct experiments to
examine the performance of RIBBO with different values of Rt. The results are shown in Fig-
ure 6(b). Setting to a value larger than 0 will decrease the performance and converge to a worse
value, validating the effectiveness of setting the immediate RTG as 0.

Sampling the next query point xt is influenced by all the model inputs, including the immediate
RTG token xt and the previous history (xi, yi, Ri)

t−1
i=0 . The immediate RTG token represents the

goal that is intended to be achieved, while the historical data contains information about the problem.
These elements are integrated to construct the inputs, influencing the resulting sampled point. Even
if the RTG token is set to 0, implying a desire to sample the optimum, the short length of the history
suggests limited knowledge about the problem, prompting the model to retain explorative behavior.
As the history extends, suggesting a sufficient knowledge of the problem, the preference encoded
by the RTG token shifts towards more greedy action. We conduct an experiment about the std of
the output Gaussian head of x of RIBBO using GriewankRosenbrock function and the results are
shown in Table 2. It is clear that the std is very large in the early stage and becomes small later,
which demonstrates the ability to trade-off the exploration and exploitation.

Number of evaluations 1 30 60 90 120 150
std of x 0.37 0.17 0.14 0.11 0.03 0.01

Table 2: Std of the output Gaussian head of x.

F ABLATION STUDIES

We provide further ablation studies to examine the influence of the key components and hyper-
parameters in RIBBO, including the method to aggregate (xi, yi, Ri) tokens, the normalization
method for the function value y, the model size, and the sampled subsequence length τ during
training.

Token Aggregation aims to aggregate the information from (xi, yi, Ri) tokens and establish asso-
ciations between them. RIBBO employs the Concatenation method (Concat), i.e., concatenating to
aggregate xi, yi and Ri to form a single token. This method is compared with two alternative token
aggregation methods, i.e., Addition (Add) and Interleaving (Interleave). The addition method inte-
grates the values of each token into one, while the interleaving method addresses tokens sequentially.
The results are shown in Figure 6(c). The concatenation method surpasses both the addition and in-
terleaving methods, with the addition method showing the least efficacy. The concatenation method
employs a relatively straightforward approach to aggregate tokens, while the interleaving method
adopts a more complex process to learn the interrelations among tokens. The inferior performance
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of the addition method can be due to the summation operator, which potentially eliminates critical
details from the original tokens. These details are essential for generating the subsequent query xt.

Normalization Method is to balance the scales of the function value y across tasks. We compare
the employed random normalization with the dataset normalization and the absence of any normal-
ization. Dataset normalization adjusts the value of y by (y − yimin)/(y

i
max − yimin) for each task i,

where yimin and yimax denote the observed minimum and maximum values of fi. No normalization
uses the original function values directly. The results in Figure 6(d) indicate that random normaliza-
tion and dataset normalization perform similarly, whereas the absence of normalization significantly
hurts the performance. The choice of normalization method directly impacts the computation of
RTG tokens and subsequently affects the generation of the desired regret. The lack of normaliza-
tion leads to significant variations in the scale of y, which complicates the training process. Both
random and dataset normalization scale the value of y within a reasonable range, thus facilitating
both training and inference. However, random normalization can bring additional benefits, such as
invariance across various scales of y as mentioned in Wistuba & Grabocka (2021) and Chen et al.
(2022). Therefore, we recommend using random normalization in practice.

Model Size has an effect on the in-context learning ability. We assess the effects of different model
sizes by comparing the performance of the currently employed model size with both a smaller and
a larger model. The smaller model consists of 8 layers, 4 attention heads, and 128-dimensional
embedding space, while the larger model has 16 layers, 12 attention heads, and 384-dimensional
embedding space. The results are shown in Figure 6(e), indicating that the model size has a minimal
impact on overall performance. Specifically, the smaller model, due to its limited capacity, shows a
reduced performance, while the larger one, potentially more powerful, requires more training data,
which can lead to a slight decrease in performance due to overfitting or inefficiency in learning from
a limited dataset. This analysis highlights the trade-offs involved in selecting the appropriate model
size for optimal performance.

Subsequence Length τ controls the context length during both the training and inference phases.
The process of subsequence sampling acts as a form of data augmentation, enhancing training ef-
ficiency. As shown in Figure 6(f), sampling subsequences rather than using the entire history as
context, particularly when τ = T = 150, leads to improved performance. The computational com-
plexity for causal transformer training and inference scales quadratically with the context length.
Therefore, utilizing a shorter τ can significantly reduce computational demands. However, it is im-
portant to note that a shorter τ might not capture sufficient historical data, potentially degrading the
performance due to the insufficient contextual information. This highlights the trade-offs between
computational complexity and performance.
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(d) Normalization method
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Figure 6: Ablation studies of token aggregation, normalization method, model size, and subsequence
length τ .

G VISUALIZATION OF BRANIN FUNCTION

In several of our experiments, such as BBOB, rover problems, and the visualization analysis of the
Branin function, we implement a series of transformations to the search space. This is designed to
generate a distribution of functions with similar properties. A set of functions is sampled serving as
the training and test tasks from the distribution.

For the Branin function, random translations and scalings are applied to form the distribution. In this
section, we present visualizations of the contour lines of the 2D Branin functions, sampled from the
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distribution to demonstrate the effects of the applied transformations. To this end, 4 distinct random
seeds are used to draw samples from the distribution. The visualizations are shown in Figure 7.
Note that the two parameters of the Branin function have been scaled to the range of [−1, 1] for the
clarity of visual representations. Variations are observed in both the location of the optimum and the
scales of the objective values. For instance, the optimum of the first subfigure locates more to the
right compared to the second one, and the contour lines in the former are much more dispersed than
those in the latter. The value scale for the first subfigure ranges from −8 to 1, while in the second, it
ranges from −3.5 to 1. By applying these transformations, we can generate a function distribution
that retains similar properties, enabling the sampling of training and test tasks for our model.

For other functions, such as BBOB suite, besides simple random translations and scalings, more
complex transformations such as non-linear Tosz and Tasy transformations are applied, leading to a
more intricate landscape. However, due to the high dimensionality of these functions, direct visual-
ization is impractical, so we present only the visualization of the 2D Branin function.
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Figure 7: Contour line visualization for samples drawn from the 2D Branin function distribution
using 4 distinct random seeds.

H COMPARISON TO BBO ALGORITHM SELECTION METHODS AND
META-LEARNING INDIVIDUAL COMPONENTS
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Figure 8: Comparison to BBO algorithm selection methods and meta-learning individual compo-
nents.

I ADDITIONAL RESULTS ON BBOB FUNCTIONS

J FURTHER DISCUSSIONS ABOUT DT

DT represents a paradigm of upside down RL Schmidhuber (2019), that maps the desired rewards
to corresponding actions to enhance the performance. The benefit of using regret-to-go is its inde-
pendence from a predetermined horizon length when using the HRR strategy, contrasting with the
return-to-go method where the calculation is usually related to the product of the maximal achiev-
able reward and the horizon length. Once established, the return-to-go is expected to decrease as
the optimization progresses. Additionally, from the perspective of optimization, the cumulative re-
gret provides a more meaningful measure of the performance (measuring the gap to the optimum),
compared to the sum of y. Therefore, regret-to-go has been adopted as the preferred metric in the
algorithm’s design.
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Figure 9: Additional results on BBOB functions.
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Figure 10: Comparison to DT with different initial return-to-go.

K FUTURE WORKS

In this paper, we only consider the model training over continuous search space with the same di-
mensionality, and it would be interesting to explore heteroscedastic search space with different types
of variables. Usually, running BBO algorithms with more evaluations leads to improved perfor-
mance. Training across diverse historical data lengths and incorporating length extrapolation tech-
niques Press et al. (2022) to enable longer horizons may be helpful in more challenging scenarios.
The OOD problems for RTG tokens are also important topic. Generalization across functions with
disparate properties remains a significant challenge. Incorporating additional meta-features related
to the problem, such as the range, type and statistical features of each variable may be important
to develop a model that can recognize distinct problems and apply its learning to new problems,
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thereby enhancing its generalization. A mathematical theoretical analysis about the cumulative re-
gret analysis and generalization analysis based on RTG tokens is of interest and helpful for refining
the algorithmic designs.
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