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Abstract

Transfer learning from ImageNet is the go-to approach when applying deep learning to
medical images. The approach is either to fine-tune a pre-trained model or use it as
a feature extractor. Most modern architecture contain batch normalisation layers, and
fine-tuning a model with such layers requires taking a few precautions as they consist of
trainable and non-trainable weights and have two operating modes: training and inference.
Attention is primarily given to the non-trainable weights used during inference, as they are
the primary source of unexpected behaviour or degradation in performance during transfer
learning. It is typically recommended to fine-tune the model with the batch normalisation
layers kept in inference mode during both training and inference. In this paper, we pay
closer attention instead to the trainable weights of the batch normalisation layers, and we
explore their expressive influence in the context of transfer learning. We find that only
fine-tuning the trainable weights (scale and centre) of the batch normalisation layers leads
to similar performance as to fine-tuning all of the weights, with the added benefit of faster
convergence. We demonstrate this on a variety of seven publicly available medical imaging
datasets, using four different model architectures.
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1. Introduction

Transfer learning has been used for many medical imaging applications (Esteva et al., 2017;
Wang et al., 2017; Menegola et al., 2017; De Fauw et al., 2018; Irvin et al., 2019). Typically,
there are two approaches for doing it: (1) by using the pre-trained model as a feature
extractor, followed by training a classifier with those features (Sharif Razavian et al., 2014),
and (2) by fine-tuning the pre-trained model. The latter approach tends to lead to better
performance (Litjens et al., 2017). Fine-tuning typically consists of tuning all of the layers
(Girshick et al., 2014), or only a subset of the top layers (Long et al., 2015), with a low
learning rate to avoid destroying the pre-trained weights. Other approaches have looked
into learning which layers to tune based on the input (Guo et al., 2019).

While transfer learning is a commonly used approach, there is still uncertainty about
whether transfer learning from ImageNet confers any advantages in performance compared
to training from scratch, given the considerable differences in appearance between natural
and medical images. Recent evidence seems to suggest that there is little benefit gained
in evaluation performance from applying transfer learning to medical images, and simple,
lightweight models trained from scratch were observed to have comparable performance to
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larger fine-tuned models on chest x-ray and diabetic retinopathy datasets (Raghu et al.,
2019). In addition, Raghu et al. (2019) observed that ImageNet performance was not
predictive of performance on those datasets. Nonetheless, one of the primary advantages of
transfer learning is faster convergence compared to training a model from scratch, especially
when the aim is to use one of the latest convolutional neural network (CNN) architectures.

Within the context of fine-tuning a model, the batch normalisation (batch norm) (Ioffe
and Szegedy, 2015) layer requires taking a few precautions due to how it operates differently
between training and inference. During training, the layer uses the current batch mean
and standard deviation to normalise the activations, and, at the same time, it updates
exponentially moving averages of the mean and standard deviation and stores them as
non-trainable weights to use during inference. While fine-tuning a model, it is usually
recommended to use the batch norm layer in inference mode to avoid unexpected or poor
performance on the validation and test sets from additional updates during training. Besides
the moving average statistics, the batch norm layer has trainable weights representing affine
parameters: scale γ and offset β. Although these parameters are rarely investigated in
isolation, there is recent evidence to suggest that they have high expressive power. Frankle
et al. (2020) conducted experiments where only batch norm parameters were trained in a
deep RestNet while the rest of the weights were randomly initialised and fixed. Despite
the restrictiveness, this led to surprisingly high performance on CIFAR-10 and ImageNet,
highlighting the expressive power of simply offsetting and scaling random features of a given
architecture. Batch norm has also previously been investigated within the context of domain
adaption. Li et al. (2018) proposed modulating the batch norm statistics from the source
domain to the target domain for improved performance, and Chang et al. (2019) proposed
training domain-specific batch norm layers while sharing all the other CNN parameters.

In this paper, we investigate the effect of the affine parameters of the batch norm layers
within the context of transfer learning for medical images. To this effect, we compare a
total of five different methods – four for transfer learning and one with random features –
on nine datasets originating from a variety of seven publicly available datasets of medical
images, using four different model architectures1. We find that (1) simply fine-tuning the
batch norm affine parameters leads to similar performance as to fine-tuning all the model
parameters, especially with DenseNet121; (2) fine-tuning leads to better performance than
using the model as a feature extractor; and (3) using random weights and only training the
batch norm parameters leads to acceptable performance on some datasets.

2. Datasets

We performed experiments using nine datasets that originated from the following seven
publicly available datasets:

(a) Chest X-ray 17(Kermany et al., 2018) dataset consists of 5,856 180x180x3 px chest
x-ray images from children labelled as having pneumonia or normal. The dataset was
split into 4914 training, 320 validation, and 624 test. We used the original reserved
test set.

1. Code available at https://github.com/fk128/batchnorm-transferlearning
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Figure 1: Example images from each of the seven datasets.

(b) CheXpert (Irvin et al., 2019) dataset consists of 240,000 frontal and lateral chest x-ray
images. Each image is labelled with up to 14 different thoracic diseases, with each
multi-output label taking the values present, absent, or uncertain. We did not use the
entire dataset, and we resized the images to 224x224x3 px and restricted to classifying
only five pathologies: atelectasis, cardiomegaly, consolidation, edema, and pleural
effusion, similarly to Raghu et al. (2019). In addition, we used the frontal images
only, eliminated the ones with uncertain labels, and created subsampled, equally-
balanced sets consisting of 11,633 training, 1,036 validation, and 1,350 test, ensuring
that there was no patient overlap between the sets.

(c) Malaria dataset (Rajaraman et al., 2018) contains a total of 27,558 cell images with
equal instances of parasitised and uninfected cells from the thin blood smear slide
images of segmented cells. We resized the images to 120x120x3 px, and we randomly
split the dataset into 70% training, 15% validation, and 15% test.

(d) OCT dataset (Kermany et al., 2018) consists of 108,309 OCT images with four cat-
egorical labels (choroidal neovascularization, diabetic macular edema, drusen, and
normal). We subsampled this dataset into a smaller version and only used 3,200 im-
ages for training, 480 for validation, and the original equally-balanced test set of 1,000
images. We resized the images to 165x342x3px.

(e) Patch Camelyon 16 (Veeling et al., 2018) dataset consists of 327,680 96x96x3 px images
extracted from whole-slide images of lymph node sections. Each image is annotated
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DenseNet121 ResNet50V2 InceptionV3 EfficientNetB3

# of batch norm parameters 83,648 45,440 17,216 87,296

Table 1: Total number of trainable batch norm parameters in each of the four model archi-
tectures.

with a binary label indicating presence of metastatic tissue. We used the original splits
of 262,144 training, 32,768 validation, and 32,768 test. In addition to the full dataset,
we used a smaller training version consisting of 6,400 training and 960 validation.

(f) Patch Camelyon 17 dataset is a patch-based variant of the Camelyon 17 challenge
(Bandi et al., 2018) and prepared as part of the WILDS benchmark seeking to eval-
uate in-the-wild distribution shifts spanning diverse data modalities and applications
(Koh et al., 2020). The dataset consists of 450,000 96x96x3px patches extracted from
whole-slide images of breast cancer metastases in lymph node sections from five differ-
ent hospitals. The patches can be grouped by hospital; therefore, we used the largest
subset from one hospital as training (n=146,722), half of the patches of another hos-
pital as validation (n=17,452), and the three remaining subsets as separate test sets
(n=129,838, 85,054, and 59,436). In addition to the full dataset, we used a smaller
training version consisting of 6,400 training and 960 validation.

(g) The Colorectal Histology (Kather et al., 2016) dataset consists of 5,000 150x150x3 px
images each belonging to one of 8 classes. We randomly split the dataset into 70%
training, 15% validation, and 15% test.

3. Method

3.1. Models

To perform transfer learning with a given pre-trained model, we removed the final classi-
fication layer, applied global average pooling, if not already applied, and then followed it
with a dropout layer (p = 0.5), and finally applied a fully-connected classification (FC)
layer with a number of outputs based on the given dataset. We used softmax activation if
the dataset had categorical labels; otherwise, sigmoid. Figure E6 shows a diagram of the
resulting model.

Most modern architectures contain a given number of batch norm layers. Table 3.1 lists
the number of trainable batch norm parameters in each of the four model architectures that
we have used: DenseNet121 (Huang et al., 2017), ResNet50V2 (He et al., 2016), InceptionV3
(Szegedy et al., 2016), and EfficientNetB3 (Tan and Le, 2019).

3.2. Batch normalisation layer

Given a batch of data with features x, the batch norm layer computes the following as
output
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FC FC-then-full FC-then-BN FC-BMA FC-BN-RND

BN trainable parameters no yes yes no yes
BN moving averages no no no yes no
All other weights no yes no no no (random)
FC yes yes yes yes yes

Table 2: Summary of which parameters were made trainable in each of the five methods.

γ

(
x− µ

σ + ε

)
+ β. (1)

The scale γ and offset β are the two trainable affine parameters, while the mean µ and
standard deviation σ are estimated based on the data. When the layer is in training mode,
µ and σ are computed based on the current batch, and, at the same time, their exponen-
tially moving averages are updated and stored as non-trainable weights. In inference mode,
the stored moving averages are used. This dual use mode is the reason why precautions are
necessary when fine-tuning the model. Performing updates to the stored moving averages
with a limited amount of data can lead to a large discrepancy between training and eval-
uation. A distinction is made for a batch norm layer between trainable and training. The
former means that the affine parameters are trainable, while the latter refers to how µ and
σ are computed.

3.3. Training

In total we trained the models using five different methods: four variations of transfer
learning and one baseline using random weights. The training methods were as follows,
with a summary in Tab. 3.3:

1. FC: using the pre-trained model as a feature extractor and only training the fully-
connected classification (FC) layer;

2. FC-then-full: training the FC layer first until no further improvement on the valida-
tion loss, followed by fine-tuning of all the weights (including the FC layer). During
training, the batch norm layer was set to be trainable and in inference mode;

3. FC-then-BN: training the FC layer first for one epoch and then training the FC
layer and all the affine parameters of the batch norm (BN) layers. During training,
the batch norm layer was set to be trainable and in inference mode;

4. FC-BMA: only updating the batch norm moving averages (MA) and training the
FC layer. During training, the batch norm layer was set to be non-trainable and in
training mode.

5. FC-BN-RND: Randomly initialising all the weights and only training the affine
parameters of all the batch norm layers and the FC layer. During training, the batch
norm layer was set to be trainable and in inference mode.
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In all our experiments, we used an initial learning rate of 1e-3, except for when fine-
tuning the full model where we used 1e-5 to avoid destroying the pre-trained weights after
having trained the FC layer with a learning rate of 1e-3. During training, we applied step
decay to the learning rate where it decayed by a factor of five if the validation loss plateaued
after an epoch. Training stopped automatically when the validation loss had not improved
after six epochs. The model with the lowest validation loss was used to evaluate on the test
set. We used the Adam optimiser (Kingma and Ba, 2014) with β1 = 0.9 and β2 = 0.999.
We used a batch size of 32 for all datasets, except Camelyon where we used 64.

We applied minimal data augmentation consisting of random translations up to 10%
and random zoom up to 10%. We applied random flipping horizontally and vertical for all
datasets except CheXpert, Chest X-ray, and OCT where we only applied horizontal random
flipping.

4. Results

We performed three repetitions of each combination of method, model, and dataset, and we
summarised the results in Figure 2, where we reported the receiver operator characteristic
(ROC) area under the curve (AUC) computed on the test sets. For the datasets where
the outputs were categorical or had more than one test subset, we computed the AUC
per label/subset and then averaged all of the AUCs. Tables A3, A4, A5, and A6 in the
Appendix provide further breakdown of the performances on the test sets with more than
one label for DenseNet121.

We see in Figure 2 that fine-tuning only the batch norm parameters (FC-then-BN)
led to similar performance as to fine-tuning all of the model parameters (FC-then-full) in
almost all of the experiments. The exceptions where it slightly under-performed were for
InceptionV3 on CheXpert, Patch Camelyon 16 small, and Patch Camelyon 17 small; and
ResNet50V2 on CheXpert. InceptionV3 has the lowest number of trainable batch norm
parameters; nonetheless, comparable performance was still observed on some datasets.

In addition, we see a confirmation of the following: (1) fine-tuning (FC-then-full and FC-
then-BN) results in improved performance compared to only using the pre-trained model as
a feature extractor (FC), and (2) updating the moving averages (FC-BMA) tends to result
in a degradation of performance compared to keeping them fixed while using the model as
a feature extractor (Appendix D shows further results from setting the batch norm layer in
training mode during fine-tuning).

And finally, we see that using random weights (RND-FC-BN) and only training the
batch norm parameters results mostly in the lowest performance compared to the other
methods; nonetheless, acceptable performance was observed on some datasets such as Chest
X-ray and Malaria with DenseNet121; this is potentially due to the them being easier to
classify. The EfficientNetB3 model with random weights was unable to train properly and
the outputs remained saturated preventing the gradients from flowing. Setting the batch
norm layer in training mode allowed the EfficientNetB3 model to train on some datasets
(see Appendix B); however, it still had the lowest performance amongst the four models.
This is in contrast to DenseNet121 and ResNet50V2 which contain shortcut connections
that facilitate the flow of gradients during training with random weights.
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Figure 2: Barplots with standard deviation bars for the ROC AUC for the combinations of
five different methods, nine datasets, and four model architectures. We see that
training only the batch norm affine parameters (FC-then-BN) results in similar
performance as to training the full model parameters (FC-then-full) in almost all
of the experiments.
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5. Discussion

We conducted experiments on a variety of different medical imaging datasets of various sizes
ranging from x-ray, OCT, and histopathology, and our results demonstrate that fine-tuning
only the batch norm affine parameters leads to similar performance as to fine-tuning all of
the model parameters. We find this to be an interesting observation. Simply fine-tuning
the batch norm affine parameters leads to faster convergence as there are fewer parameters
to train and a higher learning rate can be used. Either training the fully-connected layer
first followed by fine-tuning the batch norm layers, or training both simultaneously results
overall in similar performance (see Appendix C).

A limitation of this study is that we did not perform any hyperparameter search op-
timisation apart from adopting settings used in common practice, given the large number
of experiments already run. Another limitation is that we did not delve deeper into the
primary mechanism as to why fine-tuning batch norm parameters is enough. Frankle et al.
(2020) had observed using ResNets on CIFAR-10 and ImageNet that training the same
number of randomly-selected parameters per channel performs far worse than training the
batch norm parameters, and that the primary expressive power of batch norm feature comes
from the ability to sparsify features. Our results clearly indicate that pre-trained convolu-
tional layers are better than layers with randomly initialised weights, at least within the
context of transfer learning. However, far larger random networks, especially in width,
could potentially match the performance of pre-trained networks, given that wider ResNets
with random weights exhibited improved performance on ImageNet (Frankle et al., 2020).

6. Conclusion

Our results demonstrate that fine-tuning only the batch norm affine parameters leads to
similar performance as to fine-tuning all of the model parameters on a variety of medical
imaging datasets. This overall results in faster convergence from the use of a higher learning
rate and the fine-tuning of a smaller number of parameters without loss in performance.
We observed this result with four different model architectures, and in particular with
DenseNet121, highlighting the expressive power of simply scaling and offsetting outputs of
pre-trained convolutional layers for transferring to new tasks.
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Appendix A. Performances on test sets using DenseNet121

Dataset Method Hosp. 0 Hosp. 2 Hosp. 3

Patch Camelyon 17 FC 95.0 (0.1) 93.2 (0.2) 95.5 (0.2)
FC-BMA 84.6 (0.4) 93.1 (0.1) 94.5 (0.4)
FC-then-BN 96.5 (1.3) 97.9 (0.3) 97.2 (0.7)
FC-then-full 96.2 (0.8) 96.9 (0.1) 97.4 (0.0)
RND-FC-BN 78.3 (3.1) 71.7 (8.8) 65.6 (8.3)

Patch Camelyon 17 small FC 94.0 (0.7) 92.7 (0.5) 94.5 (0.7)
FC-BMA 83.1 (0.2) 91.3 (0.5) 92.6 (0.3)
FC-then-BN 97.0 (1.0) 96.1 (0.4) 97.3 (0.2)
FC-then-full 96.8 (0.2) 95.0 (0.2) 96.4 (0.1)
RND-FC-BN 64.3 (16.6) 79.6 (3.2) 79.3 (7.3)

Table A3: Patch Camelyon 17 ROC AUC (mean and std in %) results for the three test
sets each, originating from a different hospital.

Method Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

FC 64.6 (0.7) 69.7 (0.6) 69.9 (0.3) 77.7 (1.0) 78.6 (0.4)
FC-BMA 60.3 (0.2) 69.1 (0.5) 66.3 (0.4) 78.3 (0.4) 74.3 (0.3)
FC-then-BN 70.5 (0.3) 83.2 (1.2) 78.9 (0.1) 84.4 (0.2) 87.7 (0.4)
FC-then-full 69.5 (0.3) 83.8 (0.7) 77.4 (0.9) 84.8 (0.4) 87.1 (0.8)
RND-FC-BN 59.7 (1.1) 64.3 (2.3) 64.1 (2.6) 74.1 (1.7) 74.5 (1.9)

Table A4: CheXpert ROC AUC (mean and std in %) results for each of the five labels.
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Method CNV DME DRUSEN NORMAL

FC 95.2 (0.2) 97.9 (0.2) 97.8 (0.2) 99.1 (0.2)
FC-BMA 91.5 (0.6) 96.4 (0.3) 81.1 (0.1) 96.4 (0.6)
FC-then-BN 99.0 (0.4) 99.9 (0.0) 99.3 (0.4) 100.0 (0.0)
FC-then-full 99.1 (0.3) 99.9 (0.0) 99.5 (0.6) 100.0 (0.0)
RND-FC-BN 92.2 (2.1) 75.1 (1.7) 66.1 (2.3) 86.8 (1.0)

Table A5: OCT small ROC AUC (mean and std in %) results for each of the four labels.

Method Tumor Stroma Complex Lympho

FC 99.5 (0.3) 98.3 (0.3) 97.7 (0.6) 99.6 (0.1)
FC-BMA 99.6 (0.3) 98.3 (0.2) 96.0 (0.3) 99.8 (0.2)
FC-then-BN 99.7 (0.5) 99.4 (0.1) 98.5 (0.6) 99.4 (0.5)
FC-then-full 100.0 (0.0) 99.3 (0.1) 99.0 (0.3) 99.9 (0.0)
RND-FC-BN 96.0 (2.1) 94.7 (0.8) 94.9 (0.7) 97.9 (2.2)

Debris Mucosa Adipose Empty

FC 98.9 (0.2) 99.8 (0.2) 99.8 (0.5) 99.9 (0.3)
FC-BMA 99.2 (0.7) 99.7 (0.3) 100.0 (0.0) 100.0 (0.0)
FC-then-BN 99.3 (0.4) 99.7 (0.2) 99.9 (0.1) 99.3 (0.8)
FC-then-full 99.7 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
RND-FC-BN 94.1 (2.5) 96.0 (2.2) 99.1 (1.1) 98.4 (2.3)

Table A6: Colorectal Histology ROC AUC (mean and std in %) results for each of the eight
labels.
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Appendix B. Random weights

The EfficientNetB3 model with random weights was unable to train the batch norm pa-
rameters on some datasets where the outputs remained mostly saturated, preventing the
gradients from flowing properly. Better random initialisation of the weights could potentially
lead to better performance; however, this is outside the scope of this paper. We performed
additional experiments where we have set the batch norm layers in training mode, and this
allowed the model to train. The additional standardisation of the activations potentially
provided better conditions to reduce the amount of saturated activations. Figure B3 shows
the AUC for DenseNet121 and EfficientNetB3 with random weights and the batch norm
layers either set to trainable and inference mode (RND-FC-BN), or trainable and training
mode (RND-FC-BN-BMA).

Figure B3: ROC AUC results for DenseNet121 and EfficientNetB3 with random weights
with the batch norm layers either set to trainable and inference mode (RND-
FC-BN),or trainable and training mode (RND-FC-BN-BMA).

Appendix C. Training method with batch norm layer

Figure C4 shows ROC AUC results for the DenseNet121 and EfficientNetB3 models obtained
using three different strategies for training the batch norm parameters and the FC layer.
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1. FC-BN training the batch norm parameters and the FC layer together from the start
with an initial learning rate of 1e-3.

2. FC-then-BN training the FC layer for one epoch, then training the batch norm
parameters with the FC layers with an initial learning rate of 1e-3.

3. FC-then-BN-lr training the FC layer till no improvement on the validation set, then
training both the FC and batch norm parameters with an initial learning rate of 1e-5.

Overall, training FC-BN and FC-then-BN exhibited similar performance. Lower perfor-
mance was occasionally obtained with FC-then-BN-lr suggested there is some benefit in a
higher learning rate.

Figure C4: ROC AUC results for the DenseNet121 and EfficientNetB3 models obtained
using three different strategies for training the batch norm parameters and the
FC layer.

Appendix D. Batch norm in training mode

Figure D5 shows the ROC AUC for three main transfer learning methods where we set for
each the batch norm layers either in training or inference mode. Overall, setting the batch
norm layers in inference model performs best for all methods.
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Figure D5: ROC AUC for three main transfer learning methods where we set for each the
batch norm layers either in training (-BMA) or inference mode.
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Appendix E. Transfer learning model

Figure E6: A plot of the transfer learning model
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