Under review as a conference paper at ICLR 2023

AUTOREGRESSIVE GRAPH NETWORK FOR LEARNING
MULTI-STEP PHYSICS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we propose a Autoregressive Graph Network (AGN) that learns for-
ward physics using a temporal inductive bias. Currently, temporal state space in-
formation is provided as additional input to a GN when generating roll-out physics
simulations. While this relatively increases the network’s predictive performance
over multiple time steps, a temporal model enables the network to induce and
learn temporal biases. In dynamical systems, the arrow of time simplifies possible
interactions in the sense that we can assume current observations to be dependent
on preceding states. Our proposed GN encodes temporal state information using
an autoregressive encoder that can parallelly compute latent temporal embeddings
over multiple time steps during a single forward pass. We perform case studies
that compare multi-step forward predictions against baseline data-driven one-step
GNs as well as multi-step sequential models across diverse datasets that feature
different particle interactions. Our approach outperforms the baseline GN and
physics-induced GNs in 8 out of 10 and in 8 out of 10 particle physics datasets
respectively when conditioned on optimal historical states. Further, through an
energy analysis we find that our method not only accumulates the least roll-out
error but also conserves energy more efficiently than baseline Graph Transformer
Network while having an order of magnitude lesser parameters.

1 INTRODUCTION

In the recent years, there has been a growing interest in learning physics with the help of deep
learning coupled with other techniques such as inductive biases, physics informed loss functions
and meta-learning (Fragkiadaki et al.| (2016)); Battaglia et al.[(2016); |Xu et al.| (2019); [Hall et al.
(2021)). Relational networks such as Graph Networks (GNs) can decompose and learn the dynamics
of a physics system on the basis of particle interactions within their neighborhoods (Battaglia et al.
(2016); |L1 et al.[(2018)); Sanchez-Gonzalez et al.| (2020)). Across science and engineering, particle
states often contain system and particle specific properties such as mass, density, velocity, particle
type, etc. that are required to approximate the dynamics of a system.

In general, given the current state of a system of particles along with particle specific local prop-
erties and global system properties, it is possible to apply GNs to predict the trajectory of the sys-
tem (Sanchez-Gonzalez et al.| (2018;[2020)). Often referred to as the forward problem, it assumes
knowledge about the physical properties of particles and therefore utilizes the observations to con-
struct a suitable model that predicts the trajectory of the system of particles. The solution to a typical
forward dynamics problem governed by an ODE involving particles can be parameterized using a
GNN by learning from the current state or by using a history of previous particle states. There are
strong benefits to training on entire sequences or multiple time-steps (Mohajerin| (2017); [Xu et al.
(2019)) as one-step GNs tend to be unstable and accumulate error in the long-run. While prior work
has shown that concatenating history of previous states enables a trained simulator such as a GNN
to predict the next state more accurately, a sequential model captures certain symmetries, e.g., arrow
of time, conservation of energy, momentum .etc. Sequential models such as RNN, LSTM, GRU
and Transformers have been applied to 1D time series and N-body systems (Chen et al.| (2018));
Zhang et al.|(2020); [Han et al.| (2022))). While appealing choices to model dynamical systems due to
their implicit memory mechanisms, they require sequential computations that come with significant
memory overhead as the lookback length and/or the dimensionality of the problem increases.

Under review as a conference paper at ICLR 2023

To avoiding sequential computations while retaining relational information about previous states,
masking has been employed as a successful strategy in enabling feed-forward neural networks to
enjoy the best of both worlds (Germain et al.[{(2015));|Van Den Oord et al.| (2016); Papamakarios et al.
(2017)). Autoregressive models have been widely used across Machine Learning to learn conditional
dependencies to model distributions Rezende & Mohamed| (2015)); Papamakarios et al.[(2017) and
learn long range predictions using masked/causal Transformer like models (Ghazvininejad et al.
(2019); |Shi et al.| (2020); [Han et al.|(2022). Further, to improve predictive performance, the original
feature space is often mapped to a hidden latent space on which Transformers and the family of
sequential models operate. The map from the orginal feature space to a latent space at each instant
in time is often performed using linear layers such as a MLP. Much of the previous work on Physics
based deep learning has found success in learning a latent linear representation of the dynamics in
a latent feature space. While MLPs can model the relational information between features as an
undirected and fully connected graph, a recurrent or autoregressive learns a causal graph between
them. In a particle based system, such a causal graph can encode numerous dependencies between
state space variables. Fig.[T)illustrates the common causal relations learned by sequential models and
the structural differences in graphs encoded in the latent space. The key difference between using
an autoregressive and non-autoregressive graph to map a state space to a latent space condenses
between mapping a particle’s single £ x d dimensional feature vector to a latent space instead of
mapping k embeddings. Each of these additional embeddings capture a different causal relation
between state space variables. Our central hypothesis therefore is that latent space encoded with
a causal graph enables particle based ML surrogate models to learn long range dependencies that
obey conservation principles much better than an undirected graph. Therefore, in the absence of a
structure on the state space variables, inductive biases such as the next states of a system of particles
affecting the initial states are learned, when in practice, such scenarios are not encountered when
learning to approximate the dynamics of a forward simulation problem.

Autoregressive Graph Non-Autoregressive Graph

Legend
.
O State Variable Node '\ » Temporal State Node
-
—> Directed Edge —— Undirected Edge

7"1 Position along axis 1 at time t 7‘.; Position along axis 2 at time t

\ Scalar Autoregresswe Graph / ii Velocity along axis 1 at time t ’i'a Velocity along axis 2 at time t
Figure 1: Structure of the state space with/without auto-regressive property. The temporal state
nodes constitute an asymmetric or a DAG-like temporal graph which further contains a state space

graph within each node. The directed edges do not allow interactions between the previous and the
next state-variables, while the undirected edges allows such interactions.

The key contributions of the proposed approach are as follows:

* An Autoregressive Graph Encoder (AGN) that explicitly induces the arrow of time (i.e.
previous states affect the future states) bias to capture causal relations between state space
variables on the latent space.

* The induced temporal bias enables the Graph Network to achieve superior energy conser-
vation and roll-out error accumulation performance across long time steps.

* Comparable multi-step prediction performance against a Graph Transformer model whilst
requiring an order of magnitude lower parameters.

Under review as a conference paper at ICLR 2023

2 RELATED WORK

Engineering simulations developed for prediction and control of complex physical systems can be
built based on empirical or theoretical findings. Compared to analytical models, a learned simulator
can be more efficient at predicting complex phenomena (He et al.| (2019); [Sanchez-Gonzalez et al.
(2020)). Further, domain knowledge can be encoded as physics priors in the form of loss function
regularization (Raiss1 et al.| (2019)) and data featurization to improve accuracy and performance.
However, explicitly providing knowledge may limit generalizability to different datasets that are
fundamentally governed by the same underlying dynamics. Data-driven approaches learn the dy-
namics of a system without explicitly solving an ODE or a PDE. The physical interactions between
particles are learned implicitly by nature of the model construction (Battaglia et al.| (2018)); Chen
et al.| (2018); (Greydanus et al.| (2019); (Cranmer et al.| (2020aib); [Sanchez-Gonzalez et al.| (2020);
Pfaff et al.[(2021); Rubanova et al.| (2022))), therefore enabling generlization across a similar class
of problems. Such neural networks have shown to approximate solutions of ordinary differential
equations (ODE) that govern the dynamics of a system and have also shown to be compatible with
most off-the-shelf ODE explicit solvers (i.e., Euler, Runge-Kutta). While successful, such meta-
models have only been trained to learn the forward dynamics of the system based on the current
state information or by concatenating history of states.

Deep implicit models (Amos & Kolter| (2017); Bai et al.| (2019; [2020)) are a powerful class of
implicit learning methods proposed for learning constraints as well as learning to solve constraints.
Often these models work around the computational expense of computing first and higher order
gradients required by numerical optimization solvers such as gradient descent, Newton’s method,
.etc. Classical mechanics present a mechanistic understanding of reality that can be captured using
such implicit or constrained models. Symmetries such as conservation of energy and momentum
can be implicitly learned by constraining the gradients of the networks to satisfy Euler-Lagrange or
Hamilton’s equations (Chen et al.[(2018)); |Lutter et al.|(2019);|Greydanus et al.[|(2019);|Cranmer et al.
(2020a)). Recent work (Yang et al.| (2020); Rubanova et al.| (2022)) have proposed implicit neural
network strategies to learn physics-based constraints. These methods frame the forward problem as a
constrained optimization problem. The Neural Projections method iteratively proposes a prediction
of the next state of a system with an explicit Euler step to solve a root-finding problem, then projects
the prediction onto a learned constraint manifold that is implemented as a multilayer perceptron
(MLP). A recent work (Han et al.| (2022)) proposes a sequential model with a transformer operating
in the latent space to perform autoregression on latent temporal embeddings of particles. While their
approach helps manage the dimensionality of the problem so as to limit memory consumption of the
sequence model, it still requires ¢ sequential computations.

In this work, we induce an arrow of time constraint on the encoder parameterization by modifying
it as an autoregressive encoder (Germain et al.| (2015)) that encodes the nodes and edges sepa-
rately with modifications to suit n dimensional physics problems. The Masked Autoencoder for
Distribution Estimation (MADE) model proposed by (Germain et al.|(2015)) only enforces a scalar
autoregressive property that may not suit vectors denoting a single state of a particle. By changing
the manner in which the masking scheme is implemented, we generalize the MADE model to have
a vector autoregressive property that can be used to generate temporal latent node and edge embed-
dings. Put together with a message passing network, we show that our model is able to model time
dependencies better and lead to slower error accumulation over long time-steps.

3 APPROACH

3.1 LEARNED SIMULATOR OVERVIEW

The dynamics of a system of N particles can be described by a coupled system of Ordinary Differ-
ential Equations (ODEs) that takes the following general form:

d
where, x(t) = [r |7 represents the state of the system at time ¢ with r € R™*? denoting the

position vectors and i € RY*? denoting the velocity vectors of N particles in d dimensions. The
particles also possesses a physical property such as mass, charge, density, etc. and is denoted by

Under review as a conference paper at ICLR 2023

Run Simulation Construct Graph

it T _ [t ot nt 1T G()
A /&(t)_[r,r] = [r{, 75, 71, 75]
\/ \
% It w17 1t ot st st T
x(t) = [, £']" = [, 75,7, 7]
[Example: Gravitationally Influenced ‘ . .
Particles | Autoregressive | Autoregressive
Ll ! Node Encoder Edge Encoder]

e —

GNN Block 1
z
&

Edge --
Encoder (MLP) S

'
'
'
Node €t
Encoder (MLP) - - |-
'
'
'
'
'
'

Message Passin;
GNN Block 2

Edge -
Encoder (MLP)

Node < --!
Encoder (MLP)

GNN Block L

Figure 2: Schematics: A) Illustrates data and corresponding particle graph generation, B) Vector Au-
toregressive Graph Network, C) A single layer Vector Autoregressive Node Encoder with z masks in
the output layer that generates a 4z dimensional latent vector for every node i. The directed colored
arrows denote dependence.

w € RY. In general this problem requires an approximate numerical solution that is acquired
by solving the ODE subject to the initial value condition x(0). In this paper, we are interested
in learning the dynamics of the system (f) which can typically be complex using a parameterized
function approximator (f(.)), where () denotes the parameters to be learned. Further, since we
adopt a graph-based representation of the system of particles, we consider particles as nodes (V) in
a graph (G) such that every particle has a first-order neighborhood as well as hops of higher-order
neighborhoods. Hence, every system state (x(¢)) has a corresponding adjacency matrix (A (¢)) which
is a matrix representation of G(t) = (V, E).

To solve the forward problem, the learned simulator fy : x(¢) — X(¢) maps the current state of
the system of particles at time ¢ to its first-order derivative which is the velocity and acceleration
vectors of the system of particles. We note that the training is supervised on acceleration labels only.
Then, using a choice of numerical integrator (i.e., Euler, Runge-Kuta) the next state x(¢ 4+ 1) can be
obtained from x(¢) = [F]T.

3.2 LEARNING FORWARD DYNAMICS

3.2.1 VECTOR AUTOREGRESSIVE (VAR) ENCODER

Following the established notations, we implement the learnable function fy using Graph Net-
works (GN) (Battaglia et al.|(2018)), arranged in the Encode-Process-Decode architecture, similar to
previous work on GN-based learned simulators (Sanchez-Gonzalez et al.|(2020); [Pfaff et al.| (2021)).
In this paper, we generalize the notion of autoregression on scalars to vectors via Vector autoregres-
sion (VAR). Specifically, they explicitly induce the notion of arrow of time wherein the future states
do not affect the past states. However, a non-auto-regressive graph captures dependencies wherein
the past and future states affect each other, which is typically not the case in forward simulation
problems. As a result, the network as a whole tends to learn biases that may not hold beyond train-
ing. In the simple case of a 2D problem, the motion of each particle in a trajectory can be described
through a vector ([ry, r2, ¥1, r2]”) in 4 dimensional state space. Each element of the vector is related

Under review as a conference paper at ICLR 2023

to one another as well as to the next state’s vector through some unknown coefficients (eg. parame-
terized as Neural Nets). This can compactly be captured using a linear model such as VAR. In the
example below, we show a multivariate VAR model of order 2 with a noise term (€').

T% 'w},l w/172 w/173 w/l’4 wé,5 w:176 w:177 ijS T§—1 rel
B e W e Uk whe whe Uir e\ |7y |G
B |er vhe wha wha whs wie uis wiel || g
:31 _ w;m wjl,Q w;;.s w;;,4 Wys Wypg Wygp Wig 7'%72 I)
rLl Ws1 Wso Whg Why 0 0 0 0 r% , 0
r%,l w?"l w(?_’2 w§73 w$374 0 0 0 0 Ty 0
7.‘%_1 w/7’1 w/772 w/773 w/7’4 0 0 0 0 2 0
L7y [wg1 wso wys wgy 0 0 0 0 2 L0

In Eqn. 2, W = W o MW, where W represents a parameterizable autoregressive coefficient matrix

such that elements {wgg,.4} = 1 and MY is a mask the size of W that can be used to induce the
desired dependencies in a generalizable manner between input and output variables of interest. In the
case above, the matrix M" creates the following temporal dependencies: r#|(rt =1, rt=2); rt=!|rt~1,
Since we seek to parameterize such a VAR process using a neural network, we show a similar
analogy in the context of a an autoencoder with a single hidden layer. We drop the noise term in our
NN formulation. Let the output of the first hidden layer be denoted as H(x) = act(b+ (WoM"W)x),
which is further used in computing the prediction (%), such that X = act(c + (V o MY)H(x)). In the
expressions above, act implies an activation function (typically ReLU), MY and M" are the masks
that impose the autoregressive property while V and W are the weight matrices that parameterize
the autoregressive coefficient matrix for a VAR based encoder of order k..

To design a set of masks that preserve the expected input-output relations, we begin by assigning
each element z of the d dimensional state vector x(¢) an integer ¢ corresponding to the t'" time
step and each hidden unit s in the hidden layer an integer p as a function (m(s,t)) of s and t.
Hence, the s hidden unit’s dependence can be computed as follows: m(s,t) = s mod d + (d —
(s mod d)) + dt = d(1 +t) = p gives the maximum number of input units to which it can
be connected. Further, we allow m(s,t) = P, where P = kd, while not allowing m(s,t) =
0 so as to ensure that the current state as well as the k" lag state are conditioned upon when
generating high-dimensional temporal latent vectors as opposed to probabilisitic conditionals or
prior parameterization in generative models.

The conditional temporal latent vectors can be generated using a deep autoencoder parameterized
with the help of the following masking rules. In the single hidden layer case, the constraints on the
maximum number of inputs to each hidden unit are encoded in the matrix masking the connections
between the input and hidden units:

1 ifm(s,t) >p
MW — m(s,t)>p» ; 3
=P {O7 otherwise)

forp e {d,2d,... ,kd},s € {l,...,S}andt € {0,...,k — 1}. Further, we encode the constraint
that the p*" network output is connected to all m(s,t) = p so that the output weights can connect
the p*" network output to hidden units with m(s,t) < p. These constraints can be encoded in the
output mask matrix as follows:

1,> ifp > m(s,t)
MV _ p>m(s,t)s y 4
ps {07 otherwise @

The proposed encoder architecture naturally generalizes to deep architectures. To impose the same
constraint on the succeeding hidden layer, we just have to ensure that each hidden unit s’ in the
subsequent layer gets connected to the preceeding layers such that m!(s,t) < m!T!(s’,t), where
l denotes the layer number. The rule given by Eqn. (3) can be generalized to any layer . The
last hidden layer (I’) should preserve the natural ordering (vector autoregressive graph) by enforc-
ing Eqn. (4). Further, we are interested to generate latent temporal embeddings of varying size (2).
To do so, we create z copies of final layer masks such that each mask generates an embedding the
size of the input vector (i.e. if the input of node ¢ has a size of |x;|, then the vector autoregressive

Under review as a conference paper at ICLR 2023

output of the encoder will be of size z - |x;|. We pick a z value by matching the encoder output size
with that of a typical autoencoder implemented in a GN.

We have a vector autoregressive node encoder (V.ARy) and an edge encoder (VAR g) whose cor-
responding output node and edge embeddings are denoted as HEO) and HZ(-?) respectively. The input
to VARE is [x;(t — k) — x;(t — k), X;(t — k) —X;(t — k),...,x:(t) — x;(t), X;(t) — X, (t)] repre-
senting the relative position and velocity information between particles across k (hyper-parameter)
time-steps, while that of VAR is [r;(t — k), F;(t — k), ..., r;(¢), r;(t)] representing the full state
vector between particles across k (hyper-parameter) time-steps.

3.2.2 PROCESSOR AND DECODER

Having described the graph encoders, we now briefly describe the graph processor and decoder along
with their respective inputs and outputs. The graph processor computes interactions among nodes
through L message passing blocks arranged in sequence using standard MLP edge encoders £ and
node encoders . Message-passing preserves constraints while allowing information to propagate
between nodes and edges. The processor takes as input the latent temporal embeddings (HZ(-O) and
HE?)) generated by the autoregressive node and edge encoders to perform message passing compu-
tations. In the subsequent sections, we drop ¢ for brevity.

The edge encoder (€g) performs the following node-to-edge (V' — E) message passing operation,

Vo E:HY)=el(H -1, 1HY -B[H V) + BV)
where, [. ,.] denotes concatenation and ! denotes the [-th graph network block. Following the edge

encoding operation, the node encoder () takes as input the edge embedding and performs the
following edge-to-node (£ — V') message passing operation,

BVl =¢gl)(Z Hf';)qu(:l)]) +H" (6)
JEN;

The node encoder aggregates the edge features for a target node ¢ across its neighboring nodes (N;),

concatenates the target node features and finally adds the previous block’s latent graph features using

residual connections. Following the processing step, the output of the last message passing block

gets passed to an MLP decoder that predicts the acceleration (f'). See Supplementary Materials for

more details on implementation.

4 DISCUSSION

In this section, we discuss the key findings from our experiments. In order to evaluate the rigorous-
ness of the proposed approach, we keep a number of hyper-parameter choices such as the number
of hidden layers, hidden neurons, etc. constant. See Supplementary Materials for full details on
datasets and choice of hyper-parameters. We benchmark our approach against the following work
on one-step forward prediction: Graph Network (GN) (Sanchez-Gonzalez et al.| (2020)), Graph
Lagrangian Network (GLN) (Cranmer et al.| (2020a)), Graph Hamiltonian Network (GHN) (Grey-
danus et al.|(2019); Cranmer et al.| (2020b)), Graph Transformer Network (GTN) (Shi et al.| (2020).
We also benchmark against sequential forward prediction models such as Gated Graph Recurrent
Neural Networks (GGRNN) (Seo et al.| (2018))) and by adapting the base Graph Transformer ar-
chitecture of Haan et al. Han et al.| (2022) without regularizing the latent space nor pre-computing
the latent embeddings. While [Pfaff et al.| (2020) propose a GN for learning physics simulations,
we note that their approach when applied to particle based datasets simply assumes the architecture
as proposed by |Sanchez-Gonzalez et al.| (2020). See Supplementary Materials for more details on
time-complexity analysis, model parameter count and baseline implementations.

4.1 PERFORMANCE OF FORWARD DYNAMICS PREDICTION

We train all baselines (except the sequential models) as well as our models on one-step target accel-
eration predictions (i.e., Given x(¢ : ¢t + k), predict ¥(¢ + k)) using a 70:30 train, test ratio. Once
trained, we sample 30 initial conditions that were not a part of the train/test distribution to generate
30 simulations over a 1000 time-step roll-out using an RK4 integrator.

Under review as a conference paper at ICLR 2023

The optimum lookback length (£*) is a function of the model as well as the dataset. While we
discuss the impact of k on the stability and forward prediction performance later, tables [T] and [
report the Mean Squared Error (MSE) on multi step predictions when optimum £* is chosen for
each model/dataset. See Supplementary Materials for more details on look back length analysis. We
impose translation invariance by construction for all baseline models by explicitly not providing ab-
solute positions as input. Through our experiments, we find that our approach performs substantially
better when provided with absolute positions while baselines perform worse with absolute positions
as input. While this is surprising, we provide a reasoning for why this is the case. Please refer to the
partial time-translation analysis in the supplementary material for more details.

4.1.1 FORWARD SIMULATION COMPARISON WITH SEQUENTIAL MODELS

We arbitrarily fix £ = 5 and compare AGN, along with other one-step and multi-step methods. We
use GTN to perform both single-step predictions (no temporal recurrence) as well as multi-step pre-
dictions under the many-to-many setting wherein we input k states and predict k acceleration targets
corresponding to each state. Table 2] shows the forward simulation performance across the methods
with GTN (MS) outperforming the AGN (scalar) and AGN (vector) on 6 out of 10 datasets. Despite
the slightly better performance of GTN (MS), AGN has an order of magnitude fewer parameters to
learn and therefore can be trained faster to achieve GTN (MS) like performance. When comparing
GTN (MS) with GTN (SS), the performance of GTN (MS) is substantial across all datasets except
on 2D/3D Gravity (712). This difference in performance can clearly be attributed to the temporal bi-
ases learned by a temporal model that are simply not captured by a non-temporal model. However,
in comparison to GTN (SS), AGN performs substanially better across the board. While GGRNN
being a temporal model, it’s performance is quite poor across the datasets and is outperformed by
all single step methods that have been considered in this paper. This difference in performance can
likely be attributed to the better expressiveness of the other methods (temporal and non-temporal).
While we hypothesize that AGN could possible show comparable performance with GTN (MS) on
different k, we instead analyze the energy conservation property of the models in the next section.
See Supplementary Materials for additional forward prediction comparisons.

Table 1: Mean roll-our error compar- Table 2: Roll-out error comparison between sequential and
ison between one-step methods for an non-sequential models when k£ = 5. SS-Single Step, MS-

optimum k* Multi Step
Datasets GN GTN AGN AGN Datasets GN(SS) | GIN GTN GGRNN | AGN AGN (scalar) (SS)
(vec- (scalar)| (SS) (MS) (MS) (vector) (Ours)
tor) Ours SS
(OL)|rs) () EOu)rs)
2D Spring 5.38 3.49 1.77 1.36 2D Spring 6.72 3.49 3.88 235.02 2.68 1.36
2D Damped 9.37 11.04 | 8.17 7.25 2D Damped 19.39 977.89 6.89 709.17 12.76 725
2D Gravity (L) | 10.55 | 165.39 | 9.41 6.95 2D Gravity () | 14.96 165.39 4.67 33.78 27.58 17.59
2D Gravity (ﬁ) 5.12 5.62 3.58 2.84 2D Gravity (%2) 299.76 569.31 4781.57 | 61.30 3.58 3.24
2D Charge 3.85 1.26 1.26 1.77 2D Charge 38.06 1578 2.17 5.15 8.08 1.77
3D Spring 10.57 4.76 7.54 8.55 3D Spring 18.09 6.34 2.04 184.02 10.75 16.17
3D Damped 16.13 [21.52 | 13.46 | 12.23 3D Damped 202.71 251.98 13.92 887.01 15.73 20.26
3D Gravity (ﬁ) 2.19 0.45 7.38 9.97 3D Gravity (%1) 2.69 1.26 0.55 224.04 7.38 19.58
3D Gravity (1) | 0.88] 091 0.79 0.70 3D Gravity () | 1.42 291 808.004 | 1.70 1.16 1.60
3D Charge 094]047 0.47 0.46 3D Charge 3.82 7.52 0.47 6.47 1.05 0.47

4.1.2 ENERGY CONSERVATION COMPARISON WITH SEQUENTIAL MODELS

Roll-out errors unfortunately do not narrate the entire story. Since energy and roll-out error share
an intimate relationship, we compute and report (see table[3)) the energy MSE between the predicted
trajectories and the ground-truth trajectories by measuring the total energy deviation. While we
notice that GTN’s (MS) roll-out error is superior across the datasets, we do not notice a similar
trend when comparing their corresponding energy MSEs. We find AGN models, specifically the
scalar AGN (SS) model to outperform GTN (MS) by conserving energy more efficiently across the
trajectory. This difference is due to the fact that GTN (MS) utilizes a linear encoder that does not
capture conditional relationships between states (i.e., X! is not dependent on any of x<!). However,
as a result of AGN models capturing such relations, we notice that it conserves energy much better
than all baselines, especially on non-conservative systems (2D/3D damped spring). We hypothesize
that as energy continues to accrue, the roll-out MSE of GTN (MS) may reach higher-values than
AGN if the simulation is continued for longer time-steps. Figs[3] and [] further illustrate the dif-
ference in roll-out and energy MSE for different k£ on a non-conservative and conservative system

Under review as a conference paper at ICLR 2023

respectively. While we expected to see better prediction performance by the AGN (vector) model
due to their added structure that captures state space relations, the simple and slightly less structured
AGN (scalar) consistently outperforms the AGN (vector) model. See Supplementary Materials for
additional energy analysis on single-step methods.

Table 3: Roll-out energy accumulation error comparison between sequential and non-sequential
models when k = 5. SS-Single Step Model, MS-Multi Step Model; - indicates an extremely large
number (> than 1e7)

Datasets GN (SS) GTN (SS) GTN (MS) GGRNN (MS) | AGN (vector) | AGN (scalar)
(SS) (Ours) (SS) (Ours)

2D Spring 790.86 354.46 1662.14 - 399.19 206.04

2D Damped 208.38 749412.46 54597 - 55.93 3713

2D Gravity (%) 1884.96 83541.03 153.58 1181.45 2406.93 903.16

2D Gravity (5) - - ‘ - 939246.92 46334.59 3181.42

2D Charge 65947.64 266108.12 44.21 9053.59 190091.34 236.87

3D Spring 701.13 255.47 [734.28 - 1294.72 563.2

3D Damped 3714.71 21788.21 | 226.74 - 401.413 4.51

3D Gravity (%) 604.51 365.97 325.60 792144.001 2345.27 3730.01

3D Gravity (%) 4771.97 72661.08 ‘ - 483.10 15742.91 106459.40

3D Charge 21107.90 125326.42 [2.92 22441.39 272.09 2.15

200

—— Mean MSE of AGN (scalar) (Ours)
—— Mean MSE of AGN (vector) (Ours)
—— Mean MSE of GN

175| — Mean MSE of GTN

- -
W AGN (scalar) (Ours),
= AGN (vector) (Ours)
-GN
500 GTN

-
= AGN (scalar) (Ours)
mmm AGN (vector) (Ours)
35 mmm GN
GTN

Energy MSE
w IS
8 8
S 3

N
S
8

100

0 4 5 6

3 4 5
) 200 200 600 800 1001 Lookback Length Lookback Length
Timesteps

Figure 3: (3D Damped) is a non-conservative system. Left: Roll-out error across models when
k = 5. Middle: Roll-out error look back comparison. Right: Roll-out energy accumulation look
back comparison. We crop the Y axis of the bar graphs using the median MSE across models for
better visualization.

—— Mean MSE of AGN (scalar) (Ours)
—— Mean MSE of AGN (vector) (Ours)
— Mean MSE of GN
— Mean MSE of GTN

5000

W AGN (scalar) (Ours)
m AGN (vector) (Ours)
-GN

— = o=
= AGN (scalar) (Ours)
W AGN (vector) (Ours)
- GN

4000 adl

Energy MSE
w
8
8
S

~
S
3
3

0.6

0.4
1000

0.2

4 5
0.0 Lookback Length

4 5
Lookback Length

Figure 4: (3D Gravity (r2)) is a conservative system. Left: Roll-out error across models when
k = 5. Middle: Roll-out error look back comparison. Right: Roll-out energy accumulation look

back comparison. We crop the Y axis of the bar graphs using the median MSE across models for
better visualization.

4.1.3 PHYSICS CONSTRAINTS

Next, we perform experiments by modifying a GN and AGN to have physics biases (Lagrangian
and Hamiltonian). Since these constraints require computing the gradients with respect to r¢ and

Under review as a conference paper at ICLR 2023

momentum at time ¢, they require absolute positions of the particles as input. Like AGN, we em-
ploy an autoregressive node and edge encoder to capture spatio-temporal latent embeddings that
are then used as input to approximate the Lagrangian and Hamiltonian of the parameteric learnable
function (f()). From table 4 we can see that AGLN (vector and scalar variants) outperforms the
baseline Graph Lagrangian Network in 8 out of 10 datasets while AGHN (vector and scalar vari-
ants) outperforms the baseline Graph Hamiltonian Network in 9 out of 10 datasets when trained
with the optimum k. Contrary to the dominating performance of AGN (scalar) variant in the earlier
comparison, AGLN/AGHN (vector) model seems to outperform AGLN/AGHN (scalar) variant in
a majority of the cases. This shows that physics-induced models are able to exploit the state space
structure to gain advantage over non-physics models. Unlike the non-physics induced models, the
major argument underlying the success of Lagrangian and Hamiltonian networks is that they are
able to conserve energy much more efficiently and for longer time-steps. To validate how well the
proposed physics-induced models conserve energy, we perform a similar energy analysis (see Ta-
ble[5) on the trajectories predicted by all physics-induced models. Specifically, we report the energy
MSE corresponding to the optimum k, therefore allowing us to infer its relationship with the roll-out
MSE. In general, we find that GLN and AGLN conserve energy much better than GHN, AGHN and
non-physics induced models. While there seems to be a tie between AGLN and GLN models in
terms of energy MSE, we note that GLN is subject to a higher deviation in energy accumulation, as
observed from its performance on the 2D/3D charge and 3D Gravity (r%) datasets. Hence, we find
that autoregressive models do indeed help already physics-biased models to preserve energy over
long time steps. We report additional results for choice of other k values in the supplementary mate-
rial. During training, we notice that both GLN and GHN are sensitive to choice of lookback length
and a sub-optimal lookback length affects the prediction performance as well as causes a blow-up
of error (instability). On the contrary, we find that our AGLN and AGHN models like their AGN
counterpart are quite stable even when using a sub-optimal lookback length.

Table 4: Mean roll-out error comparison across Physics Constrained GNs for an optimum k*

Datasets GLN GHN AGLN (vec- | AGLN AGHN (vec- | AGHN
tor) (Ours) (scalar) tor) (Ours) (scalar)
(Ours) (Ours)
2D Spring 0.84 2.05 0.70 0.89 2.23 1.27
2D Damped 6.64 426.62 [3.29 2.31 16.09 8.88
2D Gravity (il) 2.94 13.64 \ 18.16 7.62 11.08 26.37
2D Gravity () 5.70 52.78 1.01 1.99 1.29 6.84
2D Charge 20.68 42.74 0.98 3.61 4.04 5.86
3D Spring 0.64 1.76 [137 0.95 10.08 4.49
3D Damped 543 46.62 | 20.06 4.58 85.62 24.97
3D Gravity (1) 243 5.52 1.62 1.68 3.86 6.90
3D Gravity (—EZ) 9.24 1.41 0.72 0.86 0.75 1.40
3D Charge 37.11 1.92 [0.95 0.82 0.44 0.85

Table 5: Mean energy accumulation comparison across Physics Constrained GNs for an optimum

f*
Datasets GLN GHN AGLN (vec- | AGLN AGHN (vec- | AGHN
tor) (Ours) (scalar) tor) (Ours) (scalar)
(Ours) (Ours)
2D Spring 140.04 193.04 274.46 232.19 72451 801.11
2D Damped 29.04 - 44.73 7.39 333.88 80.68
2D Gravity (,il) 171.84 485.29 127.83 177.53 1160.62 1141.59
2D Gravity (%) 163.15 119309.05 139.90 164.13 211.10 837.81
2D Charge 10443.70 67054.94 8.51 192.64 350.67 303.63
3D Spring 246.62 413.83 546.60 614.45 132415.14 26054.92
3D Damped 109.23 25054.80 158.51 207.91 102828.64 167665.90
3D Gravity (il) 88.40 1297.12 262.81 150.54 318.83 3742.82
3D Gravity (5) 4080.84 572.53 453.04 471.41 474.49 505.94
3D Charge 24641.89 151.86 [3.26 11.55 2.07 7.28

5 CONCLUSION

In this paper, we introduce a Graph Network with a temporal inductive bias to learn forward physics
simulations. The temporal bias is enforced by an Autoregressive encoder that attends to the previous
state inputs of a system of particles. The proposed model circumvents sequential computations
required to compute latent vectors and therefore does not sacrifice speed for accuracy and instead
allows a GN to enjoy the best of both worlds. Further, by capturing diverse state relations from a
trajectory of length k, it offers the best roll-out and energy MSE performances. This bias enables
our model to perform robust multi-step predictions when compared against the baselines.

Under review as a conference paper at ICLR 2023

REFERENCES

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136—-145. PMLR, 2017. ISBN 2640-3498.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. Advances in
Neural Information Processing Systems, 33:5238-5250, 2020.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Interac-
tion networks for learning about objects, relations and physics. Advances in Neural Information
Processing Systems, pp. 4509-4517, 2016. ISSN 10495258.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261v3, 2018.

Ricky T Q Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary
Differential Equations. In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, and
R Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
69386f6bbldfed68692a24c86869390b9-Paper.pdf.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv, pp. 1-9, 2020a. ISSN 23318422.

Miles D Cranmer, Alvaro Sanchez-Gonzalez, Peter W Battaglia, Rui Xu, Kyle Cranmer, David N
Spergel, and Shirley Ho. Discovering Symbolic Models from Deep Learning with Induc-
tive Biases. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020b. URL https://proceedings.neurips.cc/paper/2020/
hash/c9f2£f917078bd2db12f23c3b413d9cba-Abstract.html.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning Visual Predic-
tive Models of Physics for Playing Billiards. In Yoshua Bengio and Yann LeCun (eds.), 4th In-
ternational Conference on Learning Representations, {ICLR} 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1511.
07404.

Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International conference on machine learning, pp. 881-889. PMLR,
2015.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Constant-time machine
translation with conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian Neural Networks. In
H Wallach, H Larochelle, A Beygelzimer, F d\textquotesingle Alché-Buc, E Fox, and R Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
2bcd8ecadceld4efdbcc8al8725cbdlf8-Paper.pdfl

Eric J. Hall, Sgren Taverniers, Markos A. Katsoulakis, and Daniel M. Tartakovsky. GINNs: Graph-
Informed Neural Networks for multiscale physics. Journal of Computational Physics, 433:1-20,
2021. ISSN 10902716. doi: 10.1016/j.jcp.2021.110192.

Xu Han, Han Gao, Tobias Pffaf, Jian-Xun Wang, and Li-Ping Liu. Predicting Physics in Mesh-
reduced Space with Temporal Attention. arXiv preprint arXiv:2201.09113, 2022.

10

https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/c9f2f917078bd2db12f23c3b413d9cba-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c9f2f917078bd2db12f23c3b413d9cba-Abstract.html
http://arxiv.org/abs/1511.07404
http://arxiv.org/abs/1511.07404
https://proceedings.neurips.cc/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf

Under review as a conference paper at ICLR 2023

Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, and Barnabas P6czos.
Learning to predict the cosmological structure formation. Proceedings of the National Academy
of Sciences, 116(28):13825-13832, 2019. ISSN 0027-8424.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning par-
ticle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018.

Michael Lutter, Christian Ritter, and Jan Peters. Deep Lagrangian Networks: Using Physics as
Model Prior for Deep Learning. BT - 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.
net/forum?id=Bk1Hp jCgKm.

Nima Mohajerin. Modeling dynamic systems for multi-step prediction with recurrent neural net-
works. 2017.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow for Density
Estimation. In Proceedings of the 31st International Conference on Neural Information Process-
ing Systems, NIPS’ 17, pp. 2335-2344, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning Mesh-
Based Simulation with Graph Networks. In 9th International Conference on Learning Repre-
sentations, {ICLR} 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=roNgYLO{_}XP.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686-707,2019. ISSN 0021-9991.

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows.
In Francis R Bach and David M Blei (eds.), Proceedings of the 32nd International Con-
ference on Machine Learning, {ICML} 2015, Lille, France, 6-11 July 2015, volume 37 of
{JMLR} Workshop and Conference Proceedings, pp. 1530-1538. JMLR.org, 2015. URL http:
//proceedings.mlr.press/v37/rezendel5.html.

Yulia Rubanova, Alvaro Sanchez-Gonzalez, Tobias Pfaff, and Peter Battaglia. Constraint-based
graph network simulator. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 18844—18870. PMLR,
2022. URL https://proceedings.mlr.press/v162/rubanova22a.html.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. 35th International Conference on Machine Learning, ICML 2018, 10:7097-7117, 2018.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Confer-
ence on Machine Learning, pp. 8459-8468. PMLR, 2020. ISBN 2640-3498.

Youngjoo Seo, Michaél Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In International conference on neural
information processing, pp. 362-373. Springer, 2018.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Adron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747-1756. PMLR, 2016.

11

https://openreview.net/forum?id=BklHpjCqKm
https://openreview.net/forum?id=BklHpjCqKm
https://openreview.net/forum?id=roNqYL0{_}XP
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v162/rubanova22a.html

Under review as a conference paper at ICLR 2023

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song. DensePhysNet:
Learning Dense Physical Object Representations Via Multi-Step Dynamic Interactions. In An-
tonio Bicchi, Hadas Kress-Gazit, and Seth Hutchinson (eds.), Robotics: Science and Systems
XV, University of Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019, 2019. doi:
10.15607/RSS.2019.XV.046. URL https://doi.org/10.15607/RSS.2019.XV.046,

Shuqi Yang, Xingzhe He, and Bo Zhu. Learning physical constraints with neural projections. Ad-
vances in Neural Information Processing Systems, 33:5178-5189, 2020.

Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-informed multi-LSTM networks for metamodeling
of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 369:113226,
2020. ISSN 0045-7825.

12

https://doi.org/10.15607/RSS.2019.XV.046

	Introduction
	Related Work
	Approach
	Learned Simulator Overview
	Learning Forward Dynamics
	Vector Autoregressive (VAR) Encoder
	Processor and Decoder

	Discussion
	Performance of forward dynamics prediction
	Forward simulation comparison with sequential models
	Energy conservation comparison with sequential models
	Physics Constraints

	Conclusion

