
Published as a conference paper at ICLR 2025

UTILITY: UTILIZING EXPLAINABLE REINFORCE-
MENT LEARNING TO IMPROVE REINFORCEMENT
LEARNING

Shicheng Liu & Minghui Zhu
Department of Electrical Engineering
Pennsylvania State University
University Park, PA 16802, USA
{sfl5539,muz16}@psu.edu

ABSTRACT

Reinforcement learning (RL) faces two challenges: (1) The RL agent lacks ex-
plainability. (2) The trained RL agent is, in many cases, non-optimal and even far
from optimal. To address the first challenge, explainable reinforcement learning
(XRL) is proposed to explain the decision-making of the RL agent. In this paper,
we demonstrate that XRL can also be used to address the second challenge, i.e.,
improve RL performance. Our method has two parts. The first part provides a two-
level explanation for why the RL agent is not optimal by identifying the mistakes
made by the RL agent. Since this explanation includes the mistakes of the RL
agent, it has the potential to help correct the mistakes and thus improve RL perfor-
mance. The second part formulates a constrained bi-level optimization problem
to learn how to best utilize the two-level explanation to improve RL performance.
In specific, the upper level learns how to use the high-level explanation to shape
the reward so that the corresponding policy can maximize the cumulative ground
truth reward, and the lower level learns the corresponding policy by solving a con-
strained RL problem formulated using the low-level explanation. We propose a
novel algorithm to solve this constrained bi-level optimization problem, and the-
oretically guarantee that the algorithm attains global optimality. We use MuJoCo
experiments to show that our method outperforms state-of-the-art baselines.

1 INTRODUCTION

While reinforcement learning (RL) has been implemented in a wide range of applications, it faces
two significant challenges: (1) The RL agent lacks transparency due to its black-box nature. (2)
It has been widely observed in the RL community (Haarnoja et al., 2018; Henderson et al., 2018;
Dulac-Arnold et al., 2019; Cheng et al., 2024) that, in many cases, the trained RL agent does not
achieve maximum cumulative reward (i.e., non-optimal and even far from optimal). These two
challenges motivate the need to improve the transparency and performance of the RL agent.

To address the first challenge, explainable reinforcement learning (XRL) methods are proposed to
explain the decision-making of the RL agents, including learning an interpretable policy (Bastani
et al., 2018; Bewley & Lawry, 2021), pinpointing regions in the observations that are critical for
choosing certain actions (Atrey et al., 2019; Puri et al., 2019), learning the reward function that is
actually maximized (Xie et al., 2022), and identifying the critical states influential to the cumulative
reward (Guo et al., 2021; Cheng et al., 2023). These XRL methods generate various explanations
that improve the transparency of the RL agent and help people build trust in the RL agent.

This paper demonstrates that XRL can also be used to address the second challenge of RL, i.e.,
RL improvement. Given a non-optimal RL agent, we use XRL to explain why this RL agent is
not optimal by finding the mistakes made by the RL agent. Since our explanation provides insights
into the RL agent’s mistakes, it has the potential to help correct the mistakes and thus improve
performance. Some recent works (Guo et al., 2021; Cheng et al., 2023; 2024) also use XRL to
improve the RL performance. In specific, they propose to first identify the critical states that are

1

Published as a conference paper at ICLR 2025

most influential to the cumulative reward as an explanation, and then perturb the actions (Guo et al.,
2021) or fine-tune the policy (Cheng et al., 2023; 2024) at those critical states. However, they do not
explain why the RL agent does not maximize the cumulative reward. This paper proposes a novel
framework that first explains why the RL agent is not optimal, and then learns how to utilize the
generated explanations to improve RL performance. We summarize our contributions as follows:

Contribution statement. This paper proposes an optimization-based framework that aims to learn
how to best utilize XRL to improve RL. We refer to this framework as “utilizing explainable RL to
improve reinforcement learning efficacy” (UTILITY). Our contributions are threefold:

First, we provide a two-level explanation for why the RL agent is not optimal. The high-level ex-
planation learns a reward function to which the RL agent is actually optimal, and then explains why
the RL agent is not optimal by comparing this learned reward function to the ground truth reward
function. The low-level explanation identifies the state-action pairs that lead the RL agent to be non-
optimal. We refer to these state-action pairs as “misleading” state-action pairs, and rigorously derive
a mathematical metric to identify the “misleading” state-action pairs as the low-level explanation.

Second, we formalize the problem of utilizing the two-level explanations to improve the performance
as a constrained bi-level optimization problem. The upper-level problem aims to learn how to use the
high-level explanation (i.e., the learned reward function) to shape the ground truth reward function
to help the corresponding policy maximize the cumulative (ground truth) reward. The lower-level
problem learns the corresponding policy by solving a constrained RL problem where the objective
is to maximize the cumulative shaping reward and the constraint is to discourage from visiting the
low-level explanation (i.e., the “misleading” state-action pairs). A key insight is that the formulated
optimization problem facilitates policy improvement. Current constrained bi-level optimization can
only deal with the case where the lower-level problem is strongly convex. However, in our case, both
the objective function and constraint in the lower-level problem are highly non-convex. Therefore,
a novel theoretical framework is desired to solve this constrained bi-level optimization problem.

Third, we develop a novel theoretical framework and thereby an algorithm to solve the constrained
bi-level optimization problem. In specific, we first use a dual method to transform the constrained
bi-level optimization problem to an equivalent unconstrained bi-level optimization problem, and
then propose an approximation-based triple-loop algorithm to solve this unconstrained bi-level op-
timization problem. We quantify the approximation error at each loop and prove that the algorithm
attains global optimality. Experiments show that UTILITY outperforms state-of-the-art baselines.

(a)

0.0

0.2

0.4

0.6

0.8

1.0

(b) (c) (d)

Figure 1: (a) An RL task where a drone starts from the lower-left corner and navigates to the orange
goal at the upper-right corner. (b) A failing trajectory (blue) generated by the RL agent and a heat
map that visualizes the ground truth reward. (c) The two-level explanation of why the blue trajectory
fails to reach the goal. The high-level explanation is the learned reward (visualized as the heat map)
to which the RL agent is actually optimal. The low-level explanation is the misleading state-action
pairs (red circles and linked red arrows). (d) The trajectory after improvement reaches the goal.

Illustrative example. Figure 1 uses an example to illustrate our proposed framework. Suppose we
use RL to navigate a drone to the orange goal in Figure 1a. The state is the 2-D coordinate and the
action is the moving direction. The ground truth reward is one at the goal states and zero otherwise.
Figure 1b uses a heat map to visualize the ground truth reward and the blue trajectory is generated
by the learned policy. This learned policy is not optimal because it fails to reach the goal.

Figure 1c visualizes our two-level explanation of why the learned policy is not optimal. At the
high level, we use the heat map to visualize the learned reward function to which the RL agent’s

2

Published as a conference paper at ICLR 2025

trajectory (policy) is actually optimal. The high-level explanation is that the RL agent’s policy is
actually optimal to the learned reward function (visualized as the heat map in Figure 1c), and this
learned reward function is very different from the ground truth reward function (visualized as the
heat map in Figure 1b). Note that we normalize all the reward functions in Figures 1b-1d to [0, 1] for
better comparison. For the low-level explanation, we identify the top five “misleading” state-action
pairs (i.e., the red circles and arrows) in the blue trajectory where the red circles are the states and
the linked red arrows are the corresponding actions chosen by the non-optimal RL agent. These
state-action pairs are “misleading” since the correct actions should point to the goal.

Figure 1d shows the improvement where the heat map visualizes the learned shaping reward function
and the blue trajectory is generated by the learned policy after improvement. We can see that the
learned policy after improvement successfully reaches the goal.

2 RELATED WORKS

Due to the space limit, we only include the related works on improving RL performance here, and
we include more related works in Appendix E.

Reward shaping. Reward shaping can improve the RL performance by shaping the ground truth
reward function. Current works on reward shaping has two main categories. The first category
(Ng et al., 1999; Hu et al., 2020; Devlin & Kudenko, 2012; Gupta et al., 2022) requires an external
source, such as a human expert, to provide domain knowledge as an ingredient to shape the ground
truth reward function. However, when the tasks become complicated, it could be difficult and even
infeasible for humans to provide domain knowledge. The second category does not need domain
knowledge, including reward shaping based on exploration bonus (Bellemare et al., 2016; Ostrovski
et al., 2017), learning an intrinsic reward (Zheng et al., 2018; Memarian et al., 2021), and combining
exploration bonus and intrinsic reward (Devidze et al., 2022). The first category usually has better
performance, while the second category does not require human-domain knowledge. Our method
enjoys the benefits of both categories because we use domain knowledge but the domain knowledge
is not given by human expert but learned by XRL.

Other methods that can improve RL performance. Lazy-MDP (Jacq et al., 2022) shows perfor-
mance improvement with the help of a provided default policy. It uses the “lazy-gap” to determine
whether to choose greedy action or follow a default policy on each state s. Self-imitation learning
(Oh et al., 2018) aims to encourage deep exploration by reproducing previous good decisions. Pa-
pers (Wang & Taylor, 2017; Taylor, 2018; Taylor et al., 2023) aim to improve the RL performance
by utilizing external assistance, such as the assistance of a pre-trained RL agent (Wang & Taylor,
2017) or a human (Taylor, 2018; Taylor et al., 2023), which may not be accessible in some scenarios.

3 TWO-LEVEL EXPLANATION OF WHY THE RL AGENT IS NON-OPTIMAL

This section provides a two-level explanation to explain why the RL agent is not optimal. The RL
agent’s decision making is based on a Markov decision process (MDP) (S,A, γ, P0, P, r) which
consists of a state set S, an action set A, a discount factor γ ∈ (0, 1), an initial state distribu-
tion P0(·), a state transition function P (·|·, ·), and the ground truth reward function r(·, ·). The
RL agent’s learned policy is denoted by πA and the cumulative reward is defined as Jr(π) ≜
Eπ[

∑∞
t=0 γ

tr(st, at)] where the initial state is drawn from P0. When we say that the RL agent
is not optimal, it means that πA /∈ argmaxπ Jr(π).

The black-box assumption. To ensure practicability, following (Bewley & Lawry, 2021; Guo
et al., 2021; Cheng et al., 2023; Guidotti et al., 2019), we only treat the RL agent as a black box
with no access to its internal structure. In specific, we do not assume the access to the learned
value/Q-function nor the learned policy πA of the RL agent. We can only observe a set of m
trajectories D ≜ {ζj}mj=1 demonstrated by the RL agent (using the non-optimal policy πA) where
each trajectory ζj = s0, a0, · · · is a state-action sequence.

The high-level explanation. At a high level, since the RL agent is not optimal to the ground truth
reward function r, we can learn a reward function r̂ to which the RL agent’s policy πA is actually
optimal, and use this learned reward function r̂ to generate explanations. A recent work (Xie et al.,

3

Published as a conference paper at ICLR 2025

2022) uses the state-action pairs (s, a) with the highest r̂(s, a) as an explanation, however, these
state-action pairs cannot explain why the RL agent is not optimal. Therefore, we extend (Xie et al.,
2022) by comparing the learned reward function r̂ to the ground truth reward function r to explain
why πA is not optimal to the ground truth r. Figures 1b-1c provide an example of our high-level
explanation: the policy πA is actually optimal to the learned reward function r̂ (visualized in Figure
1c), and this learned reward function r̂ is very different from the ground truth reward function r
(visualized in Figure 1b).

Inverse reinforcement learning (IRL) (Abbeel & Ng, 2004; Ziebart et al., 2008; Arora & Doshi,
2021) can learn the reward function r̂ and an associated policy π̂A from the demonstration set D
such that the behaviors of policy πA demonstrated in D are optimal to the reward function r̂ learned
by IRL, and the learned policy π̂A can imitate the policy πA. We use maximum likelihood IRL
(Zeng et al., 2022; 2023) to learn the reward function r̂ and policy π̂A.

While the learned reward function r̂ can be used for the high-level explanation, it is only interpretable
to humans in low dimension, e.g., we can use heat maps to plot reward functions (as in Figure
1). When the state and action become high dimensional, the learned reward function r̂ is hard for
humans to understand and thus it is difficult to straightforwardly compare r̂ to r (as we did in Figures
1b-1c). Therefore, we need the low-level explanation which is still interpretable in high dimension.

The low-level explanation. At a low level, the RL agent is not optimal meaning that it visits some
critical points that lead to the non-optimality. Recent works (Guo et al., 2021; Cheng et al., 2023;
Amir & Amir, 2018; Jacq et al., 2022) identify the states that are most influential to the cumulative
reward as critical points. In order to explain why the RL agent is not optimal, we extend their idea
by redefining the critical points as the state-action pairs that lead πA to be non-optimal. We refer to
these critical points as “misleading” state-action pairs and we aim to identify the topK “misleading”
state-action pairs in the demonstration set D as the low-level explanation. Note that we use infinite
time-horizon MDP and it is not possible to identify the topK “misleading” state-pairs if a trajectory
has infinitely many different state-action pairs. However, in practice, the trajectory length is usually
finite and we can unify the notions of finite time horizon and infinite time horizon by introducing
“absorbing state” (Sutton & Barto, 2018). In specific, we can treat the terminal state of a finite-time-
horizon trajectory as a state keeping transitioning only to itself and generating zero reward.

The key challenge to identify the topK “misleading” state-action pairs in the demonstration set D is
to propose a proper criterion or metric to define what a “misleading” state-action pair is. A straight-
forward way is to identify the state-action pairs that an optimal policy will not visit as “misleading”,
and thus use πA(a|s)− π∗(a|s) as the metric where π∗ is an optimal policy. However, this metric is
infeasible because the optimal policy π∗ is not accessible.

In contrast, we derive a feasible metric in Definition 1 that uses aQ-function to find misleading state-
action pairs in the demonstration set D. The Q-function under the policy π and reward function r is
Qπr (s, a) ≜ Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a].

Definition 1. A state-action pair (s, a) ∈ D is a misleading state-action pair if l(s, a) > 0 where
l(s, a) ≜ maxa′ Q

πA
r (s, a′) − QπA

r (s, a) is referred to as “misleading level”. The larger the mis-
leading level l(s, a) is, the more misleading the state-action pair (s, a) is.

We include the derivation of how we come up with this metric l and the proof of why (s, a) ∈ D
is misleading if l(s, a) > 0 in Appendix B.1. In brief, we prove in Appendix B.1 that the policy
πA will be an optimal policy if l(s, a) = 0 for all (s, a) such that a ∈ πA(s) where πA(s) is the
set of actions that the policy πA has nonzero probability to choose at the state s. Therefore, any
state-action pair (s, a) ∈ D such that l(s, a) > 0 can be regarded as a “misleading” state-action
pair that leads the policy πA to be non-optimal. The larger the misleading level l(s, a) is, the more
“misleading” the state-action pair (s, a) is, because the Q value of the chosen action a has a larger
gap from the maximumQ value at the state s. We denote the set of the identified topK “misleading”
state-action pairs by C, which serves as the low-level explanation.

While we cannot access the policy πA, we have already learned the policy π̂A using IRL and the
policy π̂A imitates the policy πA. Therefore, we can use Qπ̂A

r to substitute for QπA
r . Given that we

can access π̂A and r, we can simply learn Qπ̂A
r by sampling the environment to collect enough data

and doing regression. Due to the space limit, we include the method of learning Qπ̂A
r in Appendix

B.2. We are aware that in RL, it is usually sample inefficient and computationally expensive if we

4

Published as a conference paper at ICLR 2025

want to sample enough data to learn precise Q-functions corresponding to all the learning policy in
the learning procedure. However, our case is different because we only need to learn one precise
Q-function, which corresponds to the specific policy π̂A.

4 UTILIZING THE TWO-LEVEL EXPLANATION TO IMPROVE RL

This section provides a theoretical framework that utilizes the two-level explanation in Section 3 to
improve the RL performance. In specific, Subsection 4.1 formulates the problem as a constrained
bi-level optimization problem. Subsection 4.2 proposes a novel theoretical framework and thereby
an algorithm to solve the constrained bi-level optimization problem.

4.1 PROBLEM FORMULATION

We aim to utilize the two-level explanation to improve the RL performance. For the high-level
explanation r̂, we use it to formulate a domain knowledge and learn how to use this domain knowl-
edge to shape the ground truth reward r such that the learned shaping reward can lead the pol-
icy to maximize the cumulative ground truth reward Jr(π). In specific, we use the comparison
r − r̂ between the ground truth reward r and the high-level explanation r̂ as the domain knowl-
edge. Note that in practice, we need to first scale r̂ to the same scale with r for a better compari-
son. Since this comparison quantifies the RL agent’s misunderstanding of the ground truth reward
function r, it has the potential to help patch the error. Towards this end, we propose to learn a
shaping function θ(·, ·). For a given state-action pair (s, a), the corresponding shaping reward is
rθ(s, a) = r(s, a) + θ(s, a)(r(s, a)− r̂(s, a)).

For the low-level explanation C, we discourage the RL agent from visiting the “misleading” state-
action pairs in C. Towards this end, we design a cost function c(·, ·) such that c(s, a) ∈ (0, cmax]
when (s, a) ∈ C, and c(s, a) = 0 otherwise, where cmax is a positive constant. We discourage from
visiting C by constraining the cumulative cost Jc(π) ≜ Eπ[

∑∞
t=0 γ

tc(st, at)] under a budget b.

To utilize the two-level explanation, we formulate a constrained bi-level optimization problem:

max
θ

Jr(πrθ), where πrθ = argmax
π

{Jrθ (π) +H(π), s.t. Jc(π) ≤ b}, (1)

where Jrθ (π) ≜ Eπ[
∑∞
t=0 γ

trθ(r(st, at), r(st, at) − r̂(st, at))] is the cumulative shaping reward,
and the causal entropy H(π) ≜ Eπ[

∑∞
t=0 −γt log π(at|st)] is to encourage exploration and is

widely used in soft Q-learning (Haarnoja et al., 2017) and soft actor-critic (Haarnoja et al., 2018).

In the problem (1), the upper level aims to learn a shaping reward function rθ such that the cor-
responding policy πrθ can achieve maximum cumulative ground truth reward Jr(πrθ). Given the
current learned shaping reward function rθ, the lower-level problem in (1) is to compute the corre-
sponding policy πrθ by solving a constrained RL problem. The constrained RL problem encourages
πrθ to maximize the entropy-regularized cumulative shaping reward (Jrθ (π) +H(π)) and discour-
ages πrθ from visiting C by controlling the cumulative cost Jc(π) under the budget b. Note that if
we choose b = 0, it means that the policy πrθ should totally avoid the set C.

Remark on why the problem (1) can improve πA. Recall that πA is an non-optimal policy obtained
by running an RL algorithm until convergence, i.e., πA stops improving. The lower level in (1)
improves πA by facilitating a policy improvement step. In specific, according to monotonic policy
improvement theorem, πA will improve if it chooses greedy actions according to its Q-function
QπA
r at all the states. Given that πA stops improving, it means that πA must choose some nongreedy

actions at some states, i.e., the misleading state-action pairs. Constraining these misleading state-
action pairs means that we constrain the nongreedy actions πA originally chooses at the states. This
constraint can help πA choose greedy actions because it eliminates some nongreedy actions and thus
πA only needs to find greedy actions from smaller action sets. Since this constraint can help πA find
greedy actions, it can help improve πA. The upper level calibrates the reward function to improve
performance. In specific, we can treat the RL agent as a biased black box such that if the input is the
ground truth reward function r, the output is a policy πA that is optimal to another reward function r̂.
We want to change the input of this biased black box such that the output is a policy that is optimal
to the ground truth reward function r. More formally, we aim to learn a shaping reward rθ as the
input such that the output is optimal to r. A straightforward way is to directly learn a neural reward

5

Published as a conference paper at ICLR 2025

rθ : S × A → R. However, in practice, this is difficult to learn because the neural reward needs
to search over a very large function space. We find empirically that if we use the shaping reward in
the form of rθ(s, a) = r(s, a) + θ(s, a)(r(s, a)− r̂(s, a)), the learning results will be much better.
As the problem (1) facilitates policy improvement, we can further improve the final learned policy
of problem (1) by generating its two-level explanation and use the explanation to formulate problem
(1) again. We can iteratively formulate and solve problem (1) to keep improving the learned policy.
In this paper, we only discuss the scenario where we formulate and solve the problem (1) once.

Before solving the problem (1), we need to first make sure that the problem (1) is well-defined.
In specific, since the lower-level problem in (1) is non-convex, it may have more than one optimal
solution, i.e., πrθ is not unique. Therefore, given a reward parameter θ, the corresponding upper-
level objective function value Jr(πrθ) may not be unique as πrθ is not unique. This will make the
problem (1) ill-defined. The following theorem guarantees that the problem (1) is well-defined.
Theorem 1. Given reward rθ, the optimal solution πrθ of the lower-level problem in (1) is unique.

4.2 THEORETICAL FRAMEWORK

While the current state-of-the-arts (Xu & Zhu, 2023a; Khanduri et al., 2023) on constrained bi-level
optimization can only deal with strongly convex lower-level problems, both the objective function
and the constraint of the lower-level problem in (1) are non-convex. Therefore, a novel theoret-
ical framework is desired to solve the problem (1). This subsection proposes a novel theoretical
framework to solve the problem (1).

The proposed theoretical framework has three parts. (i) The first part transforms the original con-
strained bi-level optimization problem (1) to an equivalent unconstrained bi-level optimization prob-
lem. The benefit of this transformation is that the equivalent unconstrained bi-level optimization
problem has an unconstrained and convex lower-level problem, which is more tractable and easier
to solve. (ii) The second part proposes a novel algorithm to solve the problem (1) by solving the
equivalent unconstrained bi-level optimization problem. (iii) The third part theoretically guarantees
that the proposed algorithm attains global optimality.

4.2.1 PROBLEM TRANSFORMATION

The lower-level problem of the problem (1) is non-convex. To deal with the non-convexity issue, we
introduce the dual function of the lower-level problem in (1): G(λ; θ) ≜ maxπ Jrθ (π) + H(π) −
λ(Jc(π) − b) where λ is the dual variable. The dual function G(λ; θ) is convex in λ since it is the
point-wise maximum over a set of affine functions of λ (Boyd & Vandenberghe, 2004).
Theorem 2. The optimal solution of the lower-level problem in (1) is uniquely the constrained soft
policy πλ∗(θ);θ where λ∗(θ) is the unique optimal solution of the dual problem minλG(λ; θ).

We include the analytical expression of the constrained soft policy πλ∗(θ);θ (Liu & Zhu, 2022) in
Appendix C. Theorem 2 indicates that πλ∗(θ);θ is the unique optimal solution of the lower-level
problem in (1) (i.e., πλ∗(θ);θ = πrθ), and λ∗(θ) = argminλG(λ; θ). Therefore, we can replace
πrθ with πλ∗(θ);θ and replace the lower-level problem in (1) with its dual problem, and thereby
transform the constrained bi-level optimization problem (1) to the following unconstrained bi-level
optimization problem:

max
θ

Jr(πλ∗(θ);θ), where λ∗(θ) = argmin
λ

G(λ; θ). (2)

Compared to the original problem (1), the lower-level problem of the problem (2) is unconstrained
and convex. However, there are still two challenges to solve the new problem (2).

Challenge (i): Evaluating the dual function G(λ; θ) needs to obtain the constrained soft policy
πλ;θ = argmaxπ Jrθ (π)+H(π)−λ(Jc(π)−b). However, current RL algorithms can only approach
πλ;θ at a certain rate and only obtain the exact πλ;θ when iteration number goes to infinity. In
practice, we can only run an algorithm for finite iterations and thus we cannot obtain the exact πλ;θ.
This will cause errors when we evaluate the dual function G.

Challenge (ii): Even if we can obtain the exact πλ;θ, we cannot guarantee to get the exact optimal
solution λ∗(θ) of the lower-level problem in finite time. This makes it difficult to evaluate and solve
the upper-level problem in (2) since the upper-level problem in (2) requires λ∗(θ).

6

Published as a conference paper at ICLR 2025

Algorithm 1 Utilizing explainable reinforcement learning to improve reinforcement learning
Input: Demonstration set D, initial shaping reward parameter θ0, dual parameter λ0, and policy π0
Output: Shaping reward rθN and the policy after improvement π̂λ̂(θN);θN

1: Generate the two-level explanation (r̂, C)
2: for n = 0, · · · , N − 1 do
3: for n̄ = 0, · · · , N̄ − 1 do
4: for ñ = 0, · · · , Ñn̄ − 1 do
5: Compute the constrained soft Q function Qπñ

λn̄;θn

6: Update the policy πñ+1(a|s) ∝ exp(Qπñ

λn̄;θn
(s, a)) for any (s, a) ∈ S ×A

7: end for
8: Set π̂λn̄;θn = πÑn̄

and use π̂λn̄;θn to compute the approximated gradient gλn;θn
9: Update λn̄+1 = λn̄ − αn̄gλn̄;θn

10: end for
11: Set λ̂(θn) = 1

N̄

∑N̄−1
n̄=0 λn̄ and compute π̂λ̂(θn);θn via (N̄ − 1)-step soft policy iteration

12: Use π̂λ̂(θn);θn to compute the approximated gradient gθn and update θn+1 = θn + βngθn
13: end for

4.2.2 THE PROPOSED ALGORITHM

This part proposes a novel algorithm that solves problem (1) by solving problem (2). The proposed
algorithm is triple-loop where the inner loop approximates the constrained soft policy πλ;θ and
tackles Challenge (i), the middle loop approximates the optimal solution λ∗(θ) of the lower-level
problem in (2) and tackles Challenge (ii), and the outer loop solves the upper-level problem in (2).
We use n, n̄, and ñ to respectively denote the iteration indices of outer, middle, and inner loop.

Algorithm 1 first generates the two-level explanation (line 1) and then uses three loops to utilize the
generated two-level explanation. In specific, the inner loop (lines 4-7) approximates the constrained
soft policy πλ;θ. With the approximated policy π̂λ;θ (line 8), the middle loop solves the lower-level
problem in (2) via (N̄ − 1)-step gradient descent (line 9) to approximate the optimal solution λ∗(θ).
With the approximated parameter λ̂(θ) (line 11), the outer loop solves the upper-level problem in
(2) via (N − 1)-step gradient ascent (line 12). In the following, we elaborate each loop respectively.

The inner loop. Given the parameter (λ, θ), the inner loop aims to approximate the constrained soft
policy πλ;θ via Ñn̄-step soft policy iteration (Haarnoja et al., 2017), and Ñn̄ = n̄ + 1. Soft policy
iteration has two steps: policy evaluation and policy improvement. Policy evaluation computes the
constrained soft Q-function Qπñ

λ;θ corresponding to the current policy πñ, dual parameter λ, and
reward parameter θ. We include the expression of the constrained soft Q-function in Appendix C.
Policy improvement aims to update the policy according to πñ+1(a|s) ∝ exp(Qπñ

λ;θ(s, a)) for any
(s, a) ∈ S × A. The output of the inner loop is the approximated policy π̂λ;θ = πÑn̄

. In practical
implementations, we can update the policy πñ via the policy update in soft Q-learning (Haarnoja
et al., 2017) or actor update in soft actor-critic (Haarnoja et al., 2018). While soft Q-learning and
soft actor-critic are designed for unconstrained RL, we show in Appendix C that we can revise them
to approximate the constrained soft policy.

The middle loop. We aim to solve the lower-level problem in (2) via (N̄ -1)-step gradient descent.
Lemma 1. The gradient of the dual function G is ∇λG(λ; θ) = b− Jc(πλ;θ).

The gradient ∇λG(λ; θ) requires the exact constrained soft policy πλ;θ which is inaccessible. There-
fore, we use the approximated policy π̂λ;θ obtained from the inner loop to approximate the gradient
∇λG(λ; θ) via the gradient approximation gλ;θ = b − Jc(π̂λ;θ), and solve the lower-level problem
via (N̄ -1)-step gradient descent λn̄+1 = λn̄ − αn̄gλn̄;θ. The output is λ̂(θ) = 1

N̄

∑N̄−1
n̄=0 λn̄.

The outer loop. We solve the upper-level problem in (2) via (N − 1)-step gradient ascent. Towards
this end, we generalize the Q/value function (Sutton & Barto, 2018). In specific, we define the Q-
function of cost c under policy π as Qπc (s, a) ≜ Eπ[

∑∞
t=0 γ

tc(st, at)|s0 = s, a0 = a] and value
function of cost as V πc (s) ≜ Eπ[

∑∞
t=0 γ

tc(st, at)|s0 = s]. We define the Q-function of reward
gradient ∇θrθ as Qπ∇θrθ

(s, a) ≜ Eπ[
∑∞
t=0 γ

t∇θrθ(st, at)|s0 = s, a0 = a] and value function of

7

Published as a conference paper at ICLR 2025

reward gradient as V π∇θrθ
(s) ≜ Eπ[

∑∞
t=0 γ

t∇θrθ(st, at)|s0 = s]. We define state-action visitation
frequency as ψπ(s, a) ≜ Eπ[

∑π
t=0 γ

t1{st = s, at = a}] where 1{·} is the indicator function.

Lemma 2. The upper-level gradient is dJr(πλ∗(θ);θ)/dθ = E(s,a)∼ψπλ∗(θ);θ

[(
Q
πλ∗(θ);θ

∇θrθ
(s, a) −

V
πλ∗(θ);θ

∇θrθ
(s) − Cπλ∗(θ);θ

(Q
πλ∗(θ);θ
c (s, a) − V

πλ∗(θ);θ
c (s))

)
Q
πλ∗(θ);θ
r (s, a)

]
where Cπ is a constant

vector if we fix policy π, and we include the expression of Cπ in Appendix D.3.

Since the gradient dJr(πλ∗(θ);θ)

dθ requires the exact optimal solution λ∗(θ) and the exact constrained

soft policy πλ∗(θ);θ, we can only use the policy π̂λ̂(θ);θ to approximate dJr(πλ∗(θ);θ)

dθ via gθ =

E
(s,a)∼ψ

π̂
λ̂(θ);θ

[(
Q
π̂λ̂(θ);θ

∇θrθ
(s, a)−V

π̂λ̂(θ);θ

∇θrθ
(s)−Cπ̂λ̂(θ);θ

(Q
π̂λ̂(θ);θ
c (s, a)−V

π̂λ̂(θ);θ
c (s))

)
Q
π̂λ̂(θ);θ
r (s, a)

]
.

We then solve the upper-level problem in (2) via (N − 1)-step gradient ascent θn+1 = θn + βngθn .

4.2.3 THEORETICAL ANALYSIS

This part quantifies the optimality of the policy after improvement π̂λ̂(θN);θN
. The main difficulty is

that the inner loop and middle loop can only approximate the policy πλ;θ and the optimal solution
λ∗(θ), and the approximation error may accumulate and ruin the convergence of the outer loop. In
the following context, we sequentially quantify the convergence from the inner loop to the outer
loop.
Lemma 3 (convergence of the inner loop). Given the parameter (λ, θ), the output π̂λ;θ of the inner
loop satisfies | log π̂λ;θ(a|s)− log πλ;θ(a|s)| ≤ O(γÑn̄) for any (s, a) ∈ S ×A.

Lemma 3 shows that inner loop converges linearly to the exact constrained soft policy πλ;θ.
Assumption 1. (i) It holds that |rθ(·, ·)| ≤ C1 for any θ where C1 is a positive constant. (ii) It holds
that ||∇θrθ(·, ·)|| ≤ C2 and ||∇2

θθrθ(·, ·)|| ≤ C3, where C2 and C3 are some positive constants.

Assumption 1 assumes that rθ is bounded, Lipschitz continuous, and smooth to θ, which is a com-
mon assumption in RL (Zheng et al., 2024b; Lan et al., 2024a; Zheng et al., 2024a; Zhang et al.,
2025; Zheng et al., 2024c; Lan et al., 2024b). We next quantify the convergence of the middle loop:
Lemma 4 (convergence of the middle loop). Suppose Assumption 1 (ii) holds and let αn̄ = 1/(n̄+

1)η̄ where η̄ ∈ (1/2, 1), the outputs (λ̂(θ), π̂λ̂(θ);θ) of the middle loop satisfy that (i) |λ̂(θ)−λ∗(θ)| ≤
O(1/N̄1−η̄); (ii) | log π̂λ̂(θ);θ(a|s)− log πλ∗(θ);θ(a|s)| ≤ O(1/N̄1−η̄+γN̄) for any (s, a) ∈ S×A.

Lemma 4 shows that if the iteration N̄ of middle loop is sufficiently large, the approximation error
of λ∗(θ) and πλ∗(θ);θ can be arbitrarily small. We next quantify the convergence of the outer loop:
Theorem 3 (convergence of the outer loop). Suppose Assumption 1 and the conditions in Lemma 4
hold and let βn = 1/(n + 1)η where η ∈ (1/2, 1), then it holds 1

N

∑N−1
n=0 ||∇Jr(πλ∗(θn);θn)||2 ≤

O(1/N1−η + 1/N̄2−2η̄ + γ2N̄).

Theorem 3 shows that Algorithm 1 converges to stationarity when the iteration numbers N and N̄
go to infinity. When the state-action space is finite, we have the following stronger result:
Theorem 4 (optimality of the outer loop). Suppose the conditions in Lemma 4 hold and the
state-action space is finite. Let the step size βn ≤ min{(1 − γ)3/8, 1/L̄}, then it holds that
limN→∞ limN̄→∞ Jr(π̂λ̂(θN);θN

) − J∗
r = 0 where J∗

r is the maximum value of Jr(π), and L̄ is
the smoothness constant of Jr(πλ∗(θ);θ) whose expression is in Lemma 9 in Appendix.

Theorem 4 shows that when the state-action space is finite, Algorithm 1 can find an optimal policy
asymptotically when the iteration numbers N and N̄ go to infinity.

5 EXPERIMENT

This section provides experiment results for the proposed framework. In specific, we aim to answer
the question: How does the proposed framework (UTILITY) compare to other RL improvement
methods in terms of improving the RL performance. Towards this end, we introduce three RL

8

Published as a conference paper at ICLR 2025

Table 1: Experiment results.

SAC UITLITY RICE SIL LIR
Delayed HalfCheetah 383.45± 45.50 715.96± 42.78 456.14± 36.32 510.34± 39.28 548.28± 47.94

Delayed Hopper 192.90± 27.18 317.99± 19.62 232.55± 16.96 263.46± 20.72 247.27± 31.93
Delayed Walker2d 134.91± 20.80 242.63± 14.11 177.45± 20.14 172.28± 24.57 204.72± 25.99

Delayed Ant 68.11± 12.52 105.80± 14.38 77.01± 10.89 81.05± 13.43 78.23± 13.11

(a) Delayed HalfCheetah (b) Delayed Hopper (c) Delayed Walker (d) Delayed Ant

Figure 2: Improvement curve.

improvement methods for comparisons. (i) Fine-tune policy on initial states and critical states
(RICE) (Cheng et al., 2024): This method fine-tunes the policy starting at the original initial states
and the states that are most influential to the cumulative reward. Note that (Guo et al., 2021; Cheng
et al., 2023) also use the most influential states to improve performance and (Cheng et al., 2024)
shows performance superiority over (Guo et al., 2021; Cheng et al., 2023), thus we pick (Cheng et al.,
2024) to compare. (ii) Self imitation learning (SIL) (Oh et al., 2018): This method reproduces
previous good decisions in order to encourage deep exploration. (iii) Learning intrinsic reward
(LIR): This method aims to learn an intrinsic reward r̃ to formulate the shaping reward r+ r̃ (Zheng
et al., 2018). We choose these three methods to compare because they respectively belong to three
different categories: XRL method (RICE), reward shaping method (LIR), and other methods that
can improve RL (SIL). We use soft actor-critic (SAC) (Haarnoja et al., 2018) as the baseline RL
algorithm that all the above RL improvement methods use and improve from. We aim to show
the improvement of the above RL improvement methods compared to SAC. We first run SAC until
convergence to get the non-optimal policy πA and use πA to generate the demonstration set D for
UTILITY to generate the two-level explanation and thus improve.

We test the algorithms on delayed MuJoCo environments (Zheng et al., 2018; Memarian et al., 2021;
Oh et al., 2018) where the rewards are accumulated for 20 time steps and provided only at the end
of these periods. Note that this makes the reward become sparse, and we include the additional
experiment results on dense reward in Appendix F.1. We use four different delayed MuJoCo tasks:
delayed HalfCheetah, delayed Hopper, delayed Walker2d, and delayed Ant. Following (Finn et al.,
2017), each episode has the length of 100 in our experiments.

Figure 2 shows the learning curves of the algorithms where the x-axis is the interaction steps with
the MDP environment and the y-axis is the cumulative reward. We plot both the mean (i.e., the
solid line) and standard deviation (i.e, the shadow area) of the algorithms. The mean and standard
deviation are computed using five random seeds. From the figures, we can observe that UTILITY
improves the baseline RL algorithm SAC by a large margin. While the other three methods (i.e.,
RICE, SIL, and LIR) can also improve SAC to some extent, UTILITY achieves the highest cumula-
tive reward. This is due to the fact that UTILITY (i) learns a shaping reward that makes it easier to
learn a good policy and (ii) discourages the policy from making the mistakes (i.e., the “misleading”
state-action pairs) made by SAC. Note that the learned shaping reward is dense while the ground
truth reward in the delayed MuJoCo environments is sparse, so that UTILITY can guide the learned
policy to achieve higher reward. In contrast, RICE and SIL still suffer from the sparse reward.
While LIR can also learn a dense shaping reward, UTILITY has the domain knowledge r − r̂ for-
mulated by the high-level explanation to help better shape the reward. Moreover, UTILITY has the
“misleading” state-action pairs to avoid. Note that the learned shaping reward not only helps in the
sparse reward scenario, we include additional results in Appendix F.1 to show that UTILITY can
still largely improve SAC when the ground truth reward is dense.

9

Published as a conference paper at ICLR 2025

Table 1 shows the final performance of the algorithms. We can observe that UTILITY has the highest
cumulative reward among all the algorithms.

The ablation study. Since UTILITY uses both the high-level explanation (i.e., the learned reward)
to shape the ground truth reward and the low-level explanation (i.e., misleading state-action pairs) to
formulate a constraint to improve SAC, we include an ablation study to separately study the effect
of the shaping reward and the constraint. In specific, we consider two methods: “shaping only”
and “constraint only”. The “shaping only” method only uses the high-level explanation to learn a
shaping reward but does not uses the low-level explanation to formulate a constraint. The “constraint
only” method only uses the low-level explanation to formulate the constraint but does not shape the
original reward. We include the results for the delayed environments in Table 2 and the results
for the dense environments in Appendix F.2. The results in Table 2 and Appendix F.2 show that
both the “shaping only” and “constraint only” methods can improve SAC. Moreover, the “shaping
only” method has a larger impact to improve the performance. This is because the shaping reward
improves the policy globally as it changes the reward value for all (s, a), while the constraint may
only improve the policy locally around the misleading state-action pairs.

Table 2: Ablation study.

SAC UITLITY shaping only constraint only
Delayed HalfCheetah 383.45± 45.50 715.96± 42.78 695.63± 33.66 422.15± 22.86

Delayed Hopper 192.90± 27.18 317.99± 19.62 289.10± 18.41 210.12± 15.77
Delayed Walker2d 134.91± 20.80 242.63± 14.11 211.37± 18.64 175.66± 15.27

Delayed Ant 68.11± 12.52 105.80± 14.38 88.18± 8.66 75.16± 6.58

Evaluation of the generated two-level explanation. Following (Guo et al., 2021; Cheng et al.,
2023), we use fidelity as the metric to respectively evaluate the high-level and low-level explanations.
The fidelity means the correctness of the two-level explanation. Since the two-level explanation is
to explain why the RL agent is not optimal, one way to validate the fidelity of the explanation is to
see whether the cumulative reward increases after we improve from the explanations.

From the last two columns in Table 2, we can see that both the high-level and low-level explana-
tions are correct explanations because both the shaping only method and the constraint only method
improve the performance. Moreover, the shaping only method (the fourth column in Table 2) has a
higher cumulative reward than LIR (the last column in Table 1), and the constraint only method (the
last column in Table 2) has a higher cumulative reward than RICE (the fourth column in Table 1).
This shows the high fidelity of our two-level explanation.

To compare the fidelity of our explanation with other methods, we fix the improvement method
and change the explanation to compare. For the low-level explanation, we compare with RICE.
In specific, we still use the constraint only method but now the constraint is to discourage from
visiting the critical states identified by RICE. We refer to this method as “RICE+constaint”. Note
that it is expected that “RICE+constaint” has low fidelity in our case because RICE does not aim to
explain why the RL agent is not optimal. For the high-level explanation, since there is no existing
XRL method to compare, we use our shaping-only method without the domain knowledge r − r̂
to compare. We refer to this method as “shaping without r − r̂”. We include the results for sparse
reward and dense reward in Appendix F.3. The results show that both the high-level and low-level
explanations of UTILITY have high fidelity.

6 CONCLUSION

This paper proposes a theoretical and systematic framework that utilizes XRL to improve RL. We
first provide an explanation for why the RL agent is not optimal, and then formulate the problem
of utilizing the explanation to improve RL as a constrained bi-level optimization problem. We
propose a novel theoretical framework to solve this problem, and use experiments to validate that
the proposed framework can improve the RL performance. Despite the benefit, one limitation of the
proposed algorithm is that it requires to interact with the environment. Therefore, one future work
is to extend our method to the offline RL setting.

10

Published as a conference paper at ICLR 2025

7 ACKNOWLEDGEMENTS

This work is partially supported by the National Science Foundation through grants ECCS 1846706
and ECCS 2140175. We thank the reviewers for their insightful and constructive suggestions.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
International Conference on Machine Learning, pp. 1–8, 2004.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31, 2017.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Dan Amir and Ofra Amir. Highlights: Summarizing agent behavior to people. In International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1168–1176, 2018.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

Akanksha Atrey, Kaleigh Clary, and David Jensen. Exploratory not explanatory: Counterfactual
analysis of saliency maps for deep reinforcement learning. In International Conference on Learn-
ing Representations, 2019.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. Advances in Neural Information Processing Systems, 31:2499–2509, 2018.

Amir Beck. First-order methods in optimization. Society for Industrial and Applied Mathematics,
2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in Neural Information Pro-
cessing Systems, pp. 1479–1487, 2016.

Tom Bewley and Jonathan Lawry. Tripletree: A versatile interpretable representation of black box
agents and their environments. In AAAI Conference on Artificial Intelligence, volume 35, pp.
11415–11422, 2021.

Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.

Zelei Cheng, Xian Wu, Jiahao Yu, Wenhai Sun, Wenbo Guo, and Xinyu Xing. StateMask: Ex-
plaining deep reinforcement learning through state mask. In Advances in Neural Information
Processing Systems, 2023.

Zelei Cheng, Xian Wu, Jiahao Yu, Sabrina Yang, Gang Wang, and Xinyu Xing. Rice: Breaking
through the training bottlenecks of reinforcement learning with explanation. In International
Conference on Machine Learning, 2024.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 8103–8112, 2018.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, pp. 5829–5842, 2022.

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pp. 433–440, 2012.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

11

Published as a conference paper at ICLR 2025

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135, 2017.

Riccardo Guidotti, Anna Monreale, Fosca Giannotti, Dino Pedreschi, Salvatore Ruggieri, and
Franco Turini. Factual and counterfactual explanations for black box decision making. IEEE
Intelligent Systems, 34(6):14–23, 2019.

Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing. Edge: Explaining deep reinforcement
learning policies. Advances in Neural Information Processing Systems, 34:12222–12236, 2021.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking re-
ward shaping: Understanding the benefits of reward engineering on sample complexity. Advances
in Neural Information Processing Systems, 35:15281–15295, 2022.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, pp. 1352–1361,
2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI Conference on Artificial Intelligence, vol-
ume 32, 2018.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances
in Neural Information Processing Systems, 33:15931–15941, 2020.

Sandy H Huang, Kush Bhatia, Pieter Abbeel, and Anca D Dragan. Establishing appropriate trust via
critical states. In IEEE International Conference on Intelligent Robots and Systems, pp. 3929–
3936, 2018.

Alexis Jacq, Johan Ferret, Olivier Pietquin, and Matthieu Geist. Lazy-MDPs: Towards interpretable
rl by learning when to act. In International Conference on Autonomous Agents and Multiagent
Systems, pp. 669–677, 2022.

Zong Ke, Jingyu Xu, Zizhou Zhang, Yu Cheng, and Wenjun Wu. A consolidated volatility prediction
with back propagation neural network and genetic algorithm. arXiv preprint arXiv:2412.07223,
2024.

Prashant Khanduri, Ioannis Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, and Mingyi
Hong. Linearly constrained bilevel optimization: A smoothed implicit gradient approach. In
International Conference on Machine Learning, pp. 16291–16325, 2023.

Guangchen Lan, Dong-Jun Han, Abolfazl Hashemi, Vaneet Aggarwal, and Christopher G Brinton.
Asynchronous federated reinforcement learning with policy gradient updates: Algorithm design
and convergence analysis. arXiv preprint arXiv:2404.08003, 2024a.

Guangchen Lan, Han Wang, James Anderson, Christopher Brinton, and Vaneet Aggarwal. Improved
communication efficiency in federated natural policy gradient via admm-based gradient updates.
Advances in Neural Information Processing Systems, 36, 2024b.

Shicheng Liu and Minghui Zhu. Distributed inverse constrained reinforcement learning for multi-
agent systems. Advances in Neural Information Processing Systems, 35:33444–33456, 2022.

Shicheng Liu and Minghui Zhu. Meta inverse constrained reinforcement learning: Convergence
guarantee and generalization analysis. In International Conference on Learning Representations,
2023.

Shicheng Liu and Minghui Zhu. Learning multi-agent behaviors from distributed and streaming
demonstrations. Advances in Neural Information Processing Systems, 36, 2024a.

12

Published as a conference paper at ICLR 2025

Shicheng Liu and Minghui Zhu. In-trajectory inverse reinforcement learning: Learn incrementally
before an ongoing trajectory terminates. arXiv preprint arXiv:2410.15612, 2024b.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. IPO: Interior-point policy optimization under constraints.
In AAAI Conference on Artificial Intelligence, volume 34, pp. 4940–4947, 2020.

Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-supervised
online reward shaping in sparse-reward environments. In IEEE International Conference on In-
telligent Robots and Systems, pp. 2369–2375, 2021.

Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning, pp.
278–287, 1999.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
conference on machine learning, pp. 3878–3887, 2018.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International Conference on Machine Learning, pp. 2721–2730, 2017.

Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishna-
murthy, and Sameer Singh. Explain your move: Understanding agent actions using specific and
relevant feature attribution. In International Conference on Learning Representations, 2019.

Guanren Qiao, Guiliang Liu, Pascal Poupart, and Zhiqiang Xu. Multi-modal inverse constrained
reinforcement learning from a mixture of demonstrations. Advances in Neural Information Pro-
cessing Systems, 36:60384–60396, 2023.

Guanren Qiao, Guorui Quan, Rongxiao Qu, and Guiliang Liu. Modelling competitive behaviors in
autonomous driving under generative world model. In European Conference on Computer Vision,
pp. 19–36, 2024.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Matthew E Taylor. Improving reinforcement learning with human input. In International Joint
Conference on Artificial Intelligence, pp. 5724–5728, 2018.

Matthew E Taylor, Nicholas Nissen, Yuan Wang, and Neda Navidi. Improving reinforcement learn-
ing with human assistance: An argument for human subject studies with hippo gym. Neural
Computing and Applications, 35(32):23429–23439, 2023.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2018.

Zhaodong Wang and Matthew E Taylor. Improving reinforcement learning with confidence-based
demonstrations. In International Joint Conference on Artificial Intelligence, pp. 3027–3033,
2017.

Yuansheng Xie, Soroush Vosoughi, and Saeed Hassanpour. Towards interpretable deep reinforce-
ment learning models via inverse reinforcement learning. In International Conference on Pattern
Recognition, pp. 5067–5074, 2022.

Siyuan Xu and Minghui Zhu. Meta value learning for fast policy-centric optimal motion planning.
In Robotics science and systems, 2022.

Siyuan Xu and Minghui Zhu. Efficient gradient approximation method for constrained bilevel opti-
mization. In AAAI Conference on Artificial Intelligence, volume 37, pp. 12509–12517, 2023a.

Siyuan Xu and Minghui Zhu. Online constrained meta-learning: Provable guarantees for general-
ization. Advances in Neural Information Processing Systems, 36:15531–15544, 2023b.

13

Published as a conference paper at ICLR 2025

Siyuan Xu and Minghui Zhu. Meta-reinforcement learning with universal policy adaptation: Prov-
able near-optimality under all-task optimum comparator. arXiv preprint arXiv:2410.09728, 2024.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. CRPO: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning, pp.
11480–11491, 2021.

Q Yu, Z Ke, G Xiong, Y Cheng, and X Guo. Identifying money laundering risks in digital asset
transactions based on AI algorithms. 2025.

Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Maximum-likelihood inverse re-
inforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 35:10122–10135, 2022.

Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. When demonstrations meet genera-
tive world models: A maximum likelihood framework for offline inverse reinforcement learning.
Advances in Neural Information Processing Systems, 36:65531–65565, 2023.

Haochen Zhang, Zhong Zheng, and Lingzhou Xue. Gap-dependent bounds for federated q-learning.
arXiv preprint arXiv:2502.02859, 2025.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in Neural Information Processing Systems, pp. 4649–4659, 2018.

Zhong Zheng, Fengyu Gao, Lingzhou Xue, and Jing Yang. Federated Q-learning: Linear regret
speedup with low communication cost. In International Conference on Learning Representations,
2024a.

Zhong Zheng, Haochen Zhang, and Lingzhou Xue. Federated q-learning with reference-advantage
decomposition: Almost optimal regret and logarithmic communication cost. arXiv preprint
arXiv:2405.18795, 2024b.

Zhong Zheng, Haochen Zhang, and Lingzhou Xue. Gap-dependent bounds for q-learning using
reference-advantage decomposition. arXiv preprint arXiv:2410.07574, 2024c.

Zhengyuan Zhou, Michael Bloem, and Nicholas Bambos. Infinite time horizon maximum causal
entropy inverse reinforcement learning. IEEE Transactions on Automatic Control, 63(9):2787–
2802, 2017.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, pp. 1433–1438, 2008.

A APPENDIX

This appendix has three sections. Section B provides additional content of the two-level explanation.
Section C provides notions and notations that serve as the building blocks of the appendix. Section
D provides the proof of all the lemmas and theorems in the paper. Section F provides experiment
details.

B TWO-LEVEL EXPLANATION

This section has two subsections. Subsection B.1 provides the derivation steps of how we come up
with the mathematical metric l to find “misleading” state-action pairs in Section 3 and proves that
a state-action pair (s, a) ∈ D is misleading if l(s, a) > 0. Subsection B.2 provides an algorithm to
learn the Q-function Qπ̂A

r .

14

Published as a conference paper at ICLR 2025

B.1 JUSTIFICATION OF THE MATHEMATICAL METRIC TO FIND THE “MISLEADING”
STATE-ACTION PAIRS

Since the misleading state-action pairs lead the policy πA to be non-optimal, we can say that the pol-
icy πA will be an optimal policy if it does not visit misleading state-action pairs. Therefore, in order
to identify “misleading” state-action pairs using Q-functions, we need to first build a connection
between Q-functions and policy:

Definition 2. (i) When we say that a Q-function Q̄πr indicates a policy π, it means that π(s) =
argmaxa Q̄

π
r (s, a) for any s ∈ S where π(s) is the set of actions that the policy π will choose at

the state s.
(ii) We use Q̄π

r to denote the set of all the Q-functions that indicate the policy π, and thus we can
say that Q̄π

r indicates the policy π. Moreover, when we say that Q̄π
r indicates an action a at a state

s, it means that a ∈ argmaxa′ Q̄
π
r (s, a

′) where Q̄πr is an arbitrary Q-function in Q̄π
r .

(iii) When we say that Qπr disagrees with Q̄π
r on (s, a), it means that Q̄π

r indicates the action a at
the state s but a /∈ argmaxa′ Q

π
r (s, a

′).

Definition 2 establishes a connection between Q-functions and policy. With this connection, the
following theorem provides a way to define a mathematical metric to find “misleading” state-action
pairs using Q-functions:

Theorem 5. The policy πA will be an optimal policy if πA never visits any state-action pair (s, a),
on which QπA

r disagrees with Q̄πA
r .

Proof. Suppose there is no state-action pair (s, a) ∈ S × A, on which QπA
r disagrees with

Q̄πA
r . Then for any (s, a) ∈ S × A, if a ∈ argmaxa′ Q̄

πA
r (s, a′) where Q̄πA

r ∈ Q̄πA
r , it holds

that a ∈ argmaxa′ Q
πA
r (s, a′). Since πA(s) = argmaxa Q̄

πA
r (s, a) where Q̄πA

r ∈ Q̄πA
r , it

holds that πA(s) ⊆ argmaxaQ
πA
r (s, a) for any s ∈ S. Recall that V πA

r and QπA
r are respec-

tively the value function and Q-function of the policy πA under the reward function r, then it
holds that QπA

r (s, a) = r(s, a) + γEs′∼P (·|s,a)[V
πA
r (s′)] and V πA

r (s) = Ea′∼πA(·|s)[Q
πA
r (s, a′)].

Since πA(s) ⊆ argmaxaQ
πA
r (s, a) for any s ∈ S , then V πA

r (s) = Ea′∼πA(·|s)[Q
πA
r (s, a′)] =

maxa′ Q
πA
r (s, a′) for any s ∈ S. Therefore, the Q-function QπA

r satisfies the Bellman optimality
equation QπA

r (s, a) = r(s, a)+γEs′∼P (s′|s,a)[maxa′ Q
πA
r (s′, a′)] for any (s, a) ∈ S ×A, and thus

QπA
r is the optimal Q-function because the Bellman optimality equation is uniquely satisfied by the

optimal Q-function. Since πA(s) ⊆ argmaxaQ
πA
r (s, a) for any s ∈ S, the policy πA should be an

optimal policy.

Since the misleading state-action pairs lead the policy πA to be non-optimal, we can say that the
policy πA will be an optimal policy if it has zero probability to visit misleading state-action pairs.
Therefore, Theorem 5 shows that the “misleading” state-action pairs can be mathematically de-
fined as the state-action pairs, on which QπA

r disagrees with Q̄πA
r . Therefore, we can develop a

mathematical metric to find the top K “misleading” state-action pairs in the demonstration set D
using Q-functions. Since the demonstration set D is generated by the policy πA and Q̄πA

r indicates
the policy πA, Q̄πA

r will indicate the action a at the state s for any (s, a) ∈ D. In order to find
the “misleading” state-actions, we need to find (s, a) ∈ D such that a /∈ argmaxa′ Q

πA
r (s, a′)

or in other words, QπA
r (s, a) < maxa′ Q

πA
r (s, a′). Therefore, we can use the function l(s, a) ≜

maxa′ Q
πA
r (s, a′)−QπA

r (s, a) as the metric to identify “misleading” state-action pairs in the demon-
stration set D. The larger the loss l(s, a) is, the more “misleading” the state-action pair (s, a) is,
because the Q value of the chosen action a has a larger gap from the maximum Q value at the state
s under the Q-function QπA

r .

B.2 METHOD

In this subsection, we use a standard regression method to learn the Q-function Qπ̂A
r . In specific, we

roll out the policy π̂A to generate a set D̄ of many (s, a) samples. For each (s, a) ∈ D, we use π̂A
to generate many trajectories starting from (s, a) and use these trajectories to estimate Qπ̂A

r (s, a).
Since we can generate many trajectories, we can estimate theQ valueQπ̂A

r (s, a) for each (s, a) ∈ D̄
quite accurately. Then we use a neural network Qω parameterized by ω to solve the following

15

Published as a conference paper at ICLR 2025

regression problem:
min
ω

∑
(s,a)∈D

||Qω(s, a)−Qπ̂A
r (s, a)||2.

C NOTIONS AND NOTATIONS

The shaping reward function rθ(r(s, a), r(s, a)−r̂(s, a)) is a function of r(s, a) and r(s, a)−r̂(s, a),
and r(s, a) and r(s, a)− r̂(s, a) are both functions of (s, a). Therefore, the shaping reward function
rθ is also a function of (s, a). For simple notations, we use rθ(s, a) to denote the shaping reward of
(s, a). Given the policy π and the parameters (λ, θ)s, the corresponding constrained soft Q-function
and constrained soft value function are:

Qπλ;θ(s, a) ≜ rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)V πλ;θ(s′)ds′,

V πλ;θ(s) ≜ Eπ
[∞∑
t=0

γt(rθ(st, at)− λc(st, at)− log π(at|st))
∣∣∣∣s0 = s

]
.

Moreover, it can be shown (Zeng et al., 2022; Haarnoja et al., 2017; Liu & Zhu, 2024a;b) that
exp(V πλ;θ(s)) =

∫
a∈A exp(Qπλ;θ(s, a))da.

The constrained soft policy (Liu & Zhu, 2022; 2023) is

πλ;θ(a|s) =
exp(Qλ;θ(s, a))

exp(Vλ;θ(s))
, (3)

Qλ;θ(s, a) = rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)Vλ;θ(s′)ds′, (4)

Vλ;θ(s) = log

∫
a∈A

exp(Qλ;θ(s, a))da. (5)

We can obtain the constrained soft policy via soft Q-learning (Haarnoja et al., 2017) or soft actor-
critic (Haarnoja et al., 2018) by treating rθ − λc as the new reward function. We define the cu-
mulative cost under the policy π starting from (s, a) as Qπc (s, a) ≜ Eπ[

∑∞
t=0 γ

tc(st, at)|s0 =

s, a0 = a] and the cumulative cost starting from s as V πc (s) ≜ Eπ[
∑∞
t=0 γ

tc(st, at)|s0 =

s]. We define the cumulative reward under the policy π starting from (s, a) as Qπr (s, a) ≜
Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a] and the cumulative reward starting from s as V πr (s) ≜
Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s]. We define the cumulative reward gradient under the policy π starting
from (s, a) as Qπ∇θrθ

(s, a) ≜ Eπ[
∑∞
t=0 γ

t∇θrθ(st, at)|s0 = s, a0 = a] and the cumulative reward
starting from s as V π∇θrθ

(s) ≜ Eπ[
∑∞
t=0 γ

t∇θrθ(st, at)|s0 = s]. We define the state visitation fre-
quency under a policy π as ψπ(s) ≜ Eπ[

∑π
t=0 γ

t1{st = s}] and state-action visitation frequency
as ψπ(s, a) ≜ Eπ[

∑π
t=0 γ

t1{st = s, at = a}] where 1{·} is the indicator function.

D PROOF

This section provides the proof of all the lemmas and theorems in the paper.
Lemma 5. The gradients of the constrained soft policy are respectively ∇λ log πλ;θ(a|s) =
V
πλ;θ
c (s)−Q

πλ;θ
c (s, a) and ∇θ log πλ;θ(a|s) = Q

πλ;θ

∇θrθ
(s, a)− V

πλ;θ

∇θrθ
(s).

Proof. Recall from (3), we know that ∇λ log πλ;θ(a|s) = ∇λQλ;θ(s, a)−∇λVλ;θ(s). Recall from
(4), we know that

∇λQλ;θ(s, a) = −c(s, a) + γ

∫
s′∈S

P (s′|s, a)∇λVλ;θ(s
′)ds′,

(a)
= −c(s, a) + γ

∫
s′∈S

P (s′|s, a) 1

exp(Vλ;θ(s′))

∫
a′∈A

∇λ exp(Qλ;θ(s
′, a′))da′ds′,

16

Published as a conference paper at ICLR 2025

= −c(s, a) + γ

∫
s′∈S

∫
a′∈A

P (s′|s, a)exp(Qλ;θ(s
′, a′))

exp(Vλ;θ(s′))
∇λQλ;θ(s

′, a′)da′ds′, ,

(b)
= −c(s, a) + γ

∫
s′∈S

∫
a′∈A

P (s′|s, a)πλ;θ(a|s)∇λQλ;θ(s
′, a′)da′ds′,

= −c(s, a) + γ

∫
s′∈S

∫
a′∈A

P (s′|s, a)πλ;θ(a|s)
[
−c(s′, a′) + γ

∫
s′′∈S

P (s′′|s′, a′)∇λVλ;θ(s
′′)ds′′

]
,

where (a) follows (5), (b) follows (3). Keep the expansion, we can see that

∇λQλ;θ(s, a) = −Eπλ;θ [

∞∑
t=0

γtc(st, at)|s0 = s, a0 = a] = −Qπλ;θ
c (s, a). (6)

Similarly, we can get that:

∇λVλ;θ(s) = −Eπλ;θ [

∞∑
t=0

γtc(st, at)|s0 = s] = −V πλ;θ
c (s), (7)

∇θQλ;θ(s, a) = Eπλ;θ [

∞∑
t=0

γt∇θrθ(st, at)|s0 = s, a0 = a] = Q
πλ;θ

∇θrθ
(s, a), (8)

∇θVλ;θ(s) = Eπλ;θ [

∞∑
t=0

γt∇θrθ(st, at)|s0 = s] = V
πλ;θ

∇θrθ
(s), (9)

Therefore, we can compute the gradients

∇λ log πλ;θ(a|s) = ∇λQλ;θ(s, a)−∇λVλ;θ(s) = V
πλ;θ
c (s)−Q

πλ;θ
c (s, a),

∇θ log πλ;θ(a|s) = ∇θQλ;θ(s, a)−∇θVλ;θ(s) = Q
πλ;θ

∇θrθ
(s, a)− V

πλ;θ

∇θrθ
(s).

Lemma 6. The constrained soft operator T soft
λ;θ :

(T soft
λ;θQ)(s, a) ≜ rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a) log
[∫

a′∈A
exp(Q(s′, a′))da′

]
ds′,

(T soft
λ;θ V)(s) ≜ log

[∫
a∈A

exp

(
rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)V (s′)ds′
)
da

]
,

is a contraction map with constant γ.

Proof. It has been proved that T soft
λ;θ Q is a contraction map with constant γ (Appendix A.2 in

(Haarnoja et al., 2017) if we replace r with rθ − λc). Here we show that T soft
λ;θ V is a contrac-

tion map with constant γ. Define a norm of V as ||V1 −V2|| = sups∈S |V1(s)−V2(s)| and suppose
||V1 − V2|| = ϵ. Then we have that

T soft
λ;θ V1(s) = log

[∫
a∈A

exp

(
rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)V1(s′)ds′
)
da

]
,

≤ log

[∫
a∈A

exp

(
rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)[V2(s′) + ϵ]ds′
)
da

]
,

= log

[∫
a∈A

exp

(
rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)V2(s′)ds′ + γϵ

)
da

]
,

= log

[∫
a∈A

exp(γϵ) exp

(
rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)V2(s′)ds′
)
da

]
,

= T soft
λ;θ V2(s) + γϵ.

Similarly, we can get T soft
λ;θ V1(s) ≥ T soft

λ;θ V2(s) − γϵ. Therefore, ||T soft
λ;θ V1 − T soft

λ;θ V2|| ≤ γϵ =

γ||V1 − V2||.

17

Published as a conference paper at ICLR 2025

Lemma 7. It holds that Qπñ+1

λ;θ (s, a) ≥ T soft
λ;θ (Q

πñ

λ;θ)(s, a) and V πñ+1

λ;θ (s) ≥ T soft
λ;θ (V

πñ

λ;θ)(s) for any
(s, a).

Proof.

Q
πñ+1

λ;θ (s, a)
(a)
= rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)Ea′∼πñ+1
[Q

πñ+1

λ;θ (s′, a′)− log πñ+1(a
′|s′)]ds′,

(b)

≥ rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)Ea′∼πñ+1(·|s′)[Q
πñ

λ;θ(s
′, a′)− log πñ+1(a

′|s′)]ds′,

= rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a) log
[∫

a′∈A
exp(Qπñ

λ;θ(s
′, a′))da′

]
ds′,

= T soft
λ;θ (Q

πñ

λ;θ)(s, a),

where (a) follow equations (2)-(3) in (Haarnoja et al., 2018) and (b) follows policy improvement
theorem (Theorem 4 in (Haarnoja et al., 2017)). Similarly, we can get that

V
πñ+1

λ;θ (s) = Ea∼πñ+1(·|s)[Q
πñ+1

λ;θ (s, a)− log πñ+1(a|s)],
≥ Ea∼πñ+1(·|s)[Q

πñ

λ;θ(s, a)− log πñ+1(a|s)],

= log

[∫
a∈A

exp(Qπñ

λ;θ(s, a))da

]
,

= log

[∫
a∈A

exp

(
rθ(s, a)− λc(s, a) + γ

∫
s′∈S

P (s′|s, a)V πñ

λ;θ (s
′)ds′

)
da

]
,

= T soft
λ;θ (V

πñ

λ;θ)(s).

D.1 PROOF OF LEMMA 1

It has been proved in Theorem 1 in (Haarnoja et al., 2017) that the constrained soft policy πλ;θ =
argmaxπ Jrθ (π) − λJc(π) + H(π) where we treat rθ − λc as the new reward function. Recall
that the dual function is G(λ; θ) = maxπ Jrθ (π)− λ(Jc(π)− b) +H(π), therefore, we know that
G(λ; θ) = Jrθ (πλ;θ)− λ(Jc(πλ;θ)− b) +H(πλ;θ). Since πλ;θ is the optimal solution and the G is
differentiable to the policy, we know that ∂G(λ;θ)

∂πλ;θ(a|s) = 0 for every (s, a) ∈ S ×A. Note that

∂G(λ; θ)

∂πλ;θ(a|s)
=

∂

∂πλ;θ(a|s)
ψπλ;θ (s, a)

[
rθ(s, a)− λc(s, a)− log πλ;θ(a|s)

]
= 0 (10)

∇λG(λ; θ) = ∇λ

[
Jrθ (πλ;θ)− λJc(πλ;θ) +H(πλ;θ)

]
− (Jc(πλ;θ)− b),

=

∫
s∈S

∫
a∈A

∇λ

{
ψπλ;θ (s, a)

[
rθ(s, a)− λc(s, a)− log πλ;θ(a|s)

]}
dads− (Jc(πλ;θ)− b),

=

∫
s∈S

∫
a∈A

∇λπλ;θ(a|s) ·
∂

∂πλ;θ(a|s)

{
ψπλ;θ (s, a)

[
rθ(s, a)− λc(s, a)− log πλ;θ(a|s)

]}
dads

− (Jc(πλ;θ)− b),

(a)
= b− Jc(πλ;θ),

where (a) follows (10).

D.2 PROOF OF THEOREM 1 AND THEOREM 2

We first prove Theorem 2 and then prove Theorem 1. The fundamental logic is that we first prove
that the dual problem has a unique optimal solution λ∗(θ) and then we prove that the primal problem

18

Published as a conference paper at ICLR 2025

(i.e. the lower-level problem in (2)) and the dual problem have the same set of optimal solutions.
Since the optimal solution of the dual problem is unique, then the optimal solution of the primal
problem is also unique.

To show the optimal solution of the dual problem is unique, we prove that the dual function is strictly
convex by showing that the Hessian of the dual function to λ is positive definite.

From Lemma 1, we know that ∇λG(λ; θ) = b− Jc(πλ;θ), therefore, we have that

∇2
λλG(λ; θ) = −∇λJc(πλ;θ),

= −∇λ

∫
s0∈S

P0(s0)

∫
a0∈A

πλ;θ(a0|s0)
[
c(s0, a0) + γ

∫
s1∈S

P (s1|s0, a0)Q
πλ;θ
c (s1)ds1

]
da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

{
∇λπλ;θ(a0|s0) ·

[
c(s0, a0) + γ

∫
s1∈S

P (s1|s0, a0)Q
πλ;θ
c (s1)ds1

]
+ πλ;θ(a0|s0) ·

[
γ

∫
s1∈S

P (s1|s0, a0)∇λQ
πλ;θ
c (s1)ds1

]}
da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

{
∇λπλ;θ(a0|s0) ·Q

πλ;θ
c (s0, a0)

+ πλ;θ(a0|s0) · γ
∫
s1∈S

P (s1|s0, a0)∇λ

[∫
a1∈A

πλ;θ(a1|s1) ·Q
πλ;θ
c (s1, a1)da1ds1

]}
da0ds0.

Keep the expansion, we can get that

∇2
λλG(λ; θ) = −

∫
s∈S

∫
a∈A

ψπλ;θ (s)∇λπλ;θ(a|s) ·Q
πλ;θ
c (s, a)dads,

= −
∫
s∈S

∫
a∈A

ψπλ;θ (s)πλ;θ(a|s)∇λ log πλ;θ(a|s) ·Q
πλ;θ
c (s, a)dads,

(a)
=

∫
s∈S

ψπλ;θ (s)

∫
a∈A

πλ;θ(a|s)
[
Q
πλ;θ
c (s, a)− V

πλ;θ
c (s)

]
Q
πλ;θ
c (s, a)dads, (11)

where (a) follows Lemma 5. Note that V πλ;θ
c (s) = Ea∼πλ;θ(·|s)[Q

πλ;θ
c (s, a)]. If we use the random

variable Xsa to denote Qπλ;θ
c (s, a), then its expectation is Ea∼πλ;θ(·|s)(Xsa) = V

πλ;θ
c (s). We know

that the variance V ar(Xsa) = E[Xsa[Xsa − E(Xsa)]]. Therefore, we can see that the equation
(11) is actually a variance:

∇2
λλG(λ; θ) =

∫
s∈S

ψπλ;θ (s)V ar(Xsa)ds.

From the expression (3), we know that πλ;θ is always stochastic. Therefore, the variance
V ar(Xsa) > 0. Then we know that ∇2

λλG(λ; θ) > 0 and thus G is strictly convex. Therefore,
the optimal solution λ∗(θ) is unique.

Since G(λ; θ) attains its minimum at λ∗(θ), the gradient of G at λ∗(θ) should be zero, i.e.,
Jc(πλ∗(θ);θ)−b = 0. Let p∗ and d∗ be the optimal value of the primal problem and the dual problem.
Since G(λ; θ) = maxπ Jrθ (π) +H(π) − λ(Jc(π) − b), we know that G(λ; θ) ≥ Jrθ (π) +H(π)
for any (λ, θ), which means that d∗ ≥ p∗. Therefore, we have that:

p∗ ≤ d∗ = G(λ∗(θ); θ)
(b)
= Jrθ (πλ∗(θ);θ) +H(πλ∗(θ);θ) ≤ p∗,

where (b) follows the fact that Jc(πλ∗(θ);θ) − b = 0. Therefore, πλ∗(θ);θ is an optimal solution of
the primal problem. Suppose the primal problem has another optimal solution π′, then it holds that
π′ ∈ argmaxπ G(λ

∗(θ); θ). However, it has been proved in Lemma 1 in (Zhou et al., 2017) that
given an arbitrary λ, the optimal policy of maxπ Jrθ (π)+H(π)−λ(Jc(π)−b) is unique. Therefore,
πλ∗(θ);θ is the unique optimal solution of the primal problem (i.e., the lower-level problem in (2)).

D.3 PROOF OF LEMMA 2

Since λ∗(θ) = argminG(λ; θ), we know that ∇λG(λ
∗(θ); θ) = 0. Therefore, we have that

d∇λG(λ
∗(θ); θ)

dθ
= 0,

19

Published as a conference paper at ICLR 2025

⇒ ∇2
θλG(λ

∗(θ); θ) +∇2
λλG(λ

∗(θ); θ)∇λ∗(θ) = 0,

⇒ ∇λ∗(θ) = −[∇2
λλG(λ

∗(θ); θ)]−1∇2
θλG(λ

∗(θ); θ). (12)

Now we take a look at the term ∇2
θλG(λ; θ). From Lemma 1, we know that ∇λG(λ; θ) = b −

Jc(πλ;θ), therefore, we have that

∇2
λθG(λ; θ) = −∇θJc(πλ;θ),

= −∇θ

∫
s0∈S

P0(s0)

∫
a0∈A

πω;θ(a0|s0)Q
πλ;θ
c (s0, a0)da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

πω;θ(a0|s0)
[
∇θ log πω;θ(a0|s0) ·Q

πλ;θ
c (s0, a0) +∇θQ

πλ;θ
c (s0, a0)

]
da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

πω;θ(a0|s0)
[
∇θ log πω;θ(a0|s0) ·Q

πλ;θ
c (s0, a0)

−∇θ[c(s0, a0) + γ

∫
s1∈S

P (s1|s0, a0)Q
πλ;θ
c (s1)ds1]

]
da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

πω;θ(a0|s0)
[
∇θ log πω;θ(a0|s0) ·Q

πλ;θ
c (s0, a0)

− γ

∫
s1∈S

P (s1|s0, a0)∇θ

∫
a1∈A

πλ;θ(a1|s1)Q
πλ;θ
c (s1, a1)da1ds1]

]
da0ds0.

Keep the expansion, we can get that

∇2
λθG(λ; θ) = −

∫
s∈S

∫
a∈A

ψπλ;θ (s, a)∇θ log πλ;θ(a|s)Q
πλ;θ
c (s, a)dads,

(a)
= −

∫
s∈S

∫
a∈A

ψπλ;θ (s, a)

[
Q
πλ;θ

∇θrθ
(s, a)− V

πλ;θ

∇θrθ
(s)

]
Q
πλ;θ
c (s, a)dads, (13)

where (a) follows Lemma 5.

Now, we take the full gradient of log πλ∗(θ);θ(a|s) to θ:

d log πλ∗(θ);θ(a|s)
dθ

= ∇θ log πλ∗(θ);θ(a|s) +∇λ log πλ∗(θ);θ(a|s) · ∇λ∗(θ),

(b)
= Q

πλ∗(θ);θ

∇θrθ
(s, a)− V

πλ∗(θ);θ

∇θrθ
(s) + (Q

πλ∗(θ);θ
c (s, a)− V

πλ∗(θ);θ
c (s))[∇2

λλG(λ
∗(θ); θ)]−1∇2

θλG(λ
∗(θ); θ),

(c)
= Q

πλ∗(θ);θ

∇θrθ
(s, a)− V

πλ∗(θ);θ

∇θrθ
(s)− (Q

πλ∗(θ);θ
c (s, a)− V

πλ∗(θ);θ
c (s))·∫

s∈S
∫
a∈A ψ

πλ∗(θ);θ (s, a)

[
Q
πλ∗(θ);θ

∇θrθ
(s, a)− V

πλ∗(θ);θ

∇θrθ
(s)

]
Q
πλ∗(θ);θ
c (s, a)dads

∫
s∈S

∫
a∈A ψ

πλ∗(θ);θ (s, a)

[
Q
πλ∗(θ);θ
c (s, a)− V

πλ∗(θ);θ
c (s)

]
Q
πλ∗(θ);θ
c (s, a)dads

,

= Q
πλ∗(θ);θ

∇θrθ
(s, a)− V

πλ∗(θ);θ

∇θrθ
(s)− Cπλ∗(θ);θ

(Q
πλ∗(θ);θ
c (s, a)− V

πλ∗(θ);θ
c (s)), (14)

where Cπλ;θ
≜

∫
s∈S

∫
a∈A ψπλ;θ (s,a)

[
Q

πλ;θ
∇θrθ

(s,a)−V
πλ;θ
∇θrθ

(s)

]
Q

πλ;θ
c (s,a)dads

∫
s∈S

∫
a∈A ψπλ;θ (s,a)

[
Q

πλ;θ
c (s,a)−V

πλ;θ
c (s)

]
Q

πλ;θ
c (s,a)dads

, (b) follows Lemma 5, and

(c) follows (11) and (13). Note that we can equivalently reformulate Cπλ;θ
as:

Cπλ;θ
=
E(s,a)∼ψπλ;θ (·,·)[(Q

πλ;θ

∇θrθ
(s, a)− V

πλ;θ

∇θrθ
(s))Q

πλ;θ
c (s, a)]

E(s,a)∼ψπλ;θ (·,·)[(Q
πλ;θ
c (s, a)− V

πλ;θ
c (s))Q

πλ;θ
c (s, a)]

. (15)

Therefore, we can compute the hyper-gradient as:

dJr(πλ∗(θ);θ)

dθ

(d)
= E(s,a)∼ψπλ∗(θ);θ

[
d log πλ∗(θ);θ

dθ
Q
πλ∗(θ);θ
r (s, a)

]
,

20

Published as a conference paper at ICLR 2025

(e)
= E(s,a)∼ψπλ∗(θ);θ

[(
Q
πλ∗(θ);θ

∇θrθ
(s, a)− V

πλ∗(θ);θ

∇θrθ
(s)− Cπλ∗(θ);θ

(Q
πλ∗(θ);θ
c (s, a)− V

πλ∗(θ);θ
c (s))

)
·

Q
πλ∗(θ);θ
r (s, a)

]
,

where (d) follows the standard result of policy gradient (Sutton & Barto, 2018), and (e) follows
(14).

D.4 PROOF OF LEMMA 3

Since πñ+1(a|s) ∝ exp(Qπñ

λ;θ(s, a)), from Appendix C, we can see that πñ+1(a|s) =
exp(Q

πñ
λ;θ(s,a))

exp(V
πñ
λ;θ (s))

.

| log πñ+1(a|s)− log πλ;θ(a|s)| = |Qπñ

λ;θ(s, a)− V πñ

λ;θ (s)−Qλ;θ(s, a) + Vλ;θ(s)|,
(a)
= Qλ;θ(s, a)−Qπñ

λ;θ(s, a) + Vλ;θ(s)− V πñ

λ;θ (s),

(b)

≤ Qλ;θ(s, a)− T soft
λ;θ (Q

πñ−1

λ;θ)(s, a) + Vλ;θ(s)− T soft
λ;θ (V

πñ−1

λ;θ)(s),

(c)
= T soft

λ;θ (Qλ;θ)(s, a)− T soft
λ;θ (Q

πñ−1

λ;θ)(s, a) + T soft
λ;θ (Vλ;θ)(s)− T soft

λ;θ (V
πñ−1

λ;θ)(s),

(d)

≤ γ

[
Qλ;θ(s, a)−Q

πñ−1

λ;θ (s, a) + Vλ;θ(s)− V
πñ−1

λ;θ (s)

]
,

≤ γñ+1

[
Qλ;θ(s, a)−Qπ0

λ;θ(s, a) + Vλ;θ(s)− V π0

λ;θ(s)

]
,

where (a) follows policy improvement theorem (Theorem 4 in (Haarnoja et al., 2017)) (note that
Qλ;θ and Vλ;θ are the optimal Q/value functions under (λ, θ)), (b) follows Lemma 7, (c) follows the
fact that the optimal Q/value functions are the fixed points of the contraction operator T soft

λ;θ , and (d)
follows Lemma 6.
Lemma 8. For any θ and n̄ ≥ 0, it holds that ∇2

λλG(λn̄; θ) ⪰ τGI where τG is a positive constant.

Proof. It has been proved in Subsection D.2 that ∇2
λλG(λ; θ) ≻ 0. To prove that ∇2

λλG(λn̄; θ) ⪰
τGI , we first prove that ∇2

λλG(λ; θ) is continuous in λ and then prove that the trajectory of λn̄ is
bounded within a compact set for any n̄ ≥ 0.

From (11), we know that

∇2
λλG(λ; θ) = Eπλ;θ

[∞∑
t=0

γt
(
Q
πλ;θ
c (s, a)− V

πλ;θ
c (s, a)

)
Q
πλ;θ
c (s, a)

]
.

Since πλ;θ, Qπλ;θ
c (s, a), and V πλ;θ

c (s, a) are differentiable to λ, we know that ∇2
λλG(λ; θ) is contin-

uous to λ. Now, we show that the trajectory of λn̄ is bounded within a compact set.
||λn̄+1 − λ∗(θ)||2 = ||λn̄ − αn̄gλn̄;θ − λ∗(θ)||2,
= ||λn̄ − λ∗(θ)||2 + α2

n̄||gλn̄;θ||2 − αn̄⟨gλn̄;θ, λn̄ − λ∗(θ)⟩,
= ||λn̄ − λ∗(θ)||2 + α2

n̄||gλn̄;θ||2 − αn̄⟨∇λG(λn̄; θ), λn̄ − λ∗(θ)⟩
− αn̄⟨gλn̄;θ −∇λG(λn̄; θ), λn̄ − λ∗(θ)⟩,
≤ ||λn̄ − λ∗(θ)||2 + α2

n̄||gλn̄;θ||2 − αn̄[G(λn̄; θ)−G(λ∗(θ); θ)]

− αn̄⟨gλn̄;θ −∇λG(λn̄; θ), λn̄ − λ∗(θ)⟩, (16)

≤ ||λn̄ − λ∗(θ)||2 + α2
n̄||gλn̄;θ||2 − αn̄⟨gλn̄;θ −∇λG(λn̄; θ), λn̄ − λ∗(θ)⟩,

≤ ||λn̄ − λ∗(θ)||2 + α2
n̄||gλn̄;θ||2 + αn̄||gλn̄;θ −∇λG(λn̄; θ)|| · ||λn̄ − λ∗(θ)||,

(a)

≤ ||λn̄ − λ∗(θ)||2 + α2
n̄||gλn̄;θ||2 + αn̄Cγ

n̄||λn̄ − λ∗(θ)||,

= ||λn̄ − λ∗(θ)||2 + α2
n̄||gλn̄;θ||2 + αn̄Cγ

n̄||λ0 − λ∗(θ)−
n̄−1∑
i=0

αigλi;θ||,

21

Published as a conference paper at ICLR 2025

≤ ||λn̄ − λ∗(θ)||2 + α2
n̄||gλn̄;θ||2 + αn̄Cγ

n̄||λ0 − λ∗(θ)||+ αn̄Cγ
n̄||

n̄−1∑
i=0

αigλi;θ||,

(b)

≤ ||λn̄ − λ∗(θ)||2 + α2
n̄(b+

cmax

1− γ
)2 + αn̄Cγ

n̄||λ0 − λ∗(θ)||+ αn̄Cγ
n̄
n̄−1∑
i=0

αi(b+
cmax

1− γ
),

(17)
where (a) follows (18), and (b) follows that ||gλ;θ|| = ||b − Jc(πλ;θ)|| ≤ b + cmax

1−γ . Now we show

that
∑∞
n̄=1 αn̄γ

n̄
∑n̄−1
i=0 αi is bounded. Since αi ∝ 1/iη̄ , we know that

∑n̄−1
i=0 αi = O(n̄1−η̄).

Therefore, we know that αn̄
∑n̄−1
i=0 αi = O(n̄1−2η̄) ≤ C̄ where C̄ is a positive constant. Therefore,∑∞

n̄=1 αn̄γ
n̄
∑n̄−1
i=0 αi ≤ C̄

∑∞
n̄=1 γ

n̄ is bounded. Now, we sum the both sides of (17) from n̄ = 1
to N̄ − 1:
N̄−1∑
n̄=0

||λn̄+1 − λ∗(θ)||2,

≤
N̄−1∑
n̄=0

||λn̄ − λ∗(θ)||2 + α2
n̄(b+

cmax

1− γ
)2 + αn̄Cγ

n̄||λ0 − λ∗(θ)||+ αn̄Cγ
n̄
n̄−1∑
i=0

αi(b+
cmax

1− γ
),

⇒ ||λN̄ − λ∗(θ)||2,

≤ ||λ0 − λ∗(θ)||2 +
N̄−1∑
n̄=0

α2
n̄(b+

cmax

1− γ
)2 + αn̄Cγ

n̄||λ0 − λ∗(θ)||+ αn̄Cγ
n̄
n̄−1∑
i=0

αi(b+
cmax

1− γ
),

≤ ||λ0 − λ∗(θ)||2 +
∞∑
n̄=0

α2
n̄(b+

cmax

1− γ
)2 + αn̄Cγ

n̄||λ0 − λ∗(θ)||+ αn̄Cγ
n̄
n̄−1∑
i=0

αi(b+
cmax

1− γ
).

Note that αn̄ ∝ 1
(n̄+1)η̄ and η̄ ∈ (12 , 1), it is obvious that |λN̄ − λ∗(θ)|2 is bounded. Therefore, the

trajectory of λn̄ is bounded for any n̄ ≥ 0. Therefore, we can always find a positive constant τG
such that ∇2

λλG(λ; θ) ⪰ τGI .

D.5 PROOF OF LEMMA 4

We first quantify the gradient approximation error |∇λG(λ; θ)−gλ;θ| and then show the convergence
of the middle loop.

|∇λG(λ; θ)− gλ;θ| = |Jc(πλ;θ)− Jc(π̂λ;θ)|,

=

∣∣∣∣∫
s∈S

∫
a∈A

[
ψπλ;θ (s, a)− ψπ̂λ;θ (s, a)

]
c(s, a)dads

∣∣∣∣,
≤ cmax

∫
s∈S

∫
a∈A

∣∣∣∣ψπλ;θ (s, a)− ψπ̂λ;θ (s, a)

∣∣∣∣dads,
(a)

≤ cmaxCd

∫
s∈S

∫
a∈A

∣∣∣∣Qλ;θ(s, a)−Q
π̂λ;θ

λ;θ (s, a)

∣∣∣∣dads,
≤ cmaxCdCSA max

(s,a)∈S×A
{|Qλ;θ(s, a)−Q

π̂λ;θ

λ;θ (s, a)|},

(b)

≤ cmaxCdCSAγ
Ñn̄ max

(s,a)∈S×A
{|Qλ;θ(s, a)−Qπ0

λ;θ(s, a)|},

= CγÑn̄ (18)
where (a) follows step (iv) of equation (64) in (Zeng et al., 2022) andCd is a positive constant, CSA
can be any positive constant that is larger that the area of S ×A, (b) follows the proof in Subsection
D.4, and C = cmaxCdCSAmax(s,a)∈S×A{|Qλ;θ(s, a)−Qπ0

λ;θ(s, a)|}.

Now, we quantify the convergence of the middle loop. From the expression (11) of ∇2
λλG(λ; θ), we

know that ||∇2
λλG(λ; θ)|| ≤

2c2max

(1−γ)2 . From (16), we know that:

αn̄[G(λn̄; θ)−G(λ∗(θ); θ)] ≤ ||λn̄ − λ∗(θ)||2 − ||λn̄+1 − λ∗(θ)||2

22

Published as a conference paper at ICLR 2025

+ α2
n̄||gλn̄;θ||2 − αn̄⟨gλn̄;θ −∇λG(λn̄; θ), λn̄ − λ∗(θ)⟩,

≤ ||λn̄ − λ∗(θ)||2 − ||λn̄+1 − λ∗(θ)||2 + α2
n̄||gλn̄;θ||2 + αn̄||gλn̄;θ −∇λG(λn̄; θ)|| · ||λn̄ − λ∗(θ)||,

(c)

≤ ||λn̄ − λ∗(θ)||2 − ||λn̄+1 − λ∗(θ)||2 + α2
n̄||gλn̄;θ||2 + αn̄γ

n̄C̃,

(d)

≤ ||λn̄ − λ∗(θ)||2 − ||λn̄+1 − λ∗(θ)||2 + α2
n̄(b+

cmax

1− γ
)2 + αn̄γ

n̄C̃, (19)

where (c) follows (18) and the fact that ||λn̄ − λ∗(θ)|| is bounded (proved in Lemma 8), C̃ is a
positive constant, and (d) follows that ||gλ;θ|| = ||b− Jc(πλ;θ)|| ≤ b+ cmax

1−γ . Telescoping (19) from
n̄ = 0 to N̄ − 1:

N̄−1∑
n̄=0

αn̄[G(λn̄; θ)−G(λ∗(θ); θ)],

≤ ||λ0 − λ∗(θ)||2 − ||λN̄ − λ∗(θ)||2 +
N̄−1∑
n̄=0

α2
n̄(b+

cmax

1− γ
)2 +

N̄−1∑
n̄=0

αn̄γ
n̄C̃.

Since αn̄ = 1
(n̄+1)η̄ and η̄ ∈ (12 , 1), there is a positive constant Dmax such that

∑N̄
n̄=0 α

2
n̄(b +

cmax

1−γ)
2 +

∑N̄
n̄=0 αn̄γ

n̄−1C̃ ≤ Dmax. Therefore, we have that

N̄−1∑
n̄=0

1

N̄ η̄
[G(λn̄; θ)−G(λ∗(θ); θ)] ≤

N̄−1∑
n̄=0

αn̄[G(λn̄; θ)−G(λ∗(θ); θ)],

≤ ||λ0 − λ∗(θ)||2 − ||λN̄ − λ∗(θ)||2 +Dmax,

⇒ 1

N̄

N̄−1∑
n̄=0

[G(λn̄; θ)−G(λ∗(θ); θ)] ≤ 1

N1−η̄

[
||λ0 − λ∗(θ)||2 − ||λN̄ − λ∗(θ)||2 +Dmax

]
.

(20)

Therefore, we have that

||λ̂(θ)− λ∗(θ)||
(e)

≤ 2

τG
[G(λ̂(θ); θ)−G(λ∗(θ); θ)]

(f)

≤ 2

τG
[
1

N̄

N̄−1∑
n̄=0

G(λn̄; θ)−G(λ∗(θ); θ)],

(g)

≤ O(
1

N̄1−η̄), (21)

where (e) follows the fact that G(λ; θ) is τG-strongly convex (Lemma 8), (f) follows Jensen’s
inequality (note that λ̂(θ) = 1

N̄

∑N̄−1
n̄=0 λn̄), and (g) follows (20).

Now, we take a look at the term

| log πλ∗(θ);θ(a|s)− log π̂λ̂(θ);θ(a|s)|,
≤ | log πλ∗(θ);θ(a|s)− log πλ̂(θ);θ(a|s)|+ | log πλ̂(θ);θ(a|s)| − log π̂λ̂(θ);θ(a|s)|,
(h)

≤ 2cmax

1− γ
||λ̂(θ)− λ∗(θ)||+ | log πλ̂(θ);θ(a|s)| − log π̂λ̂(θ);θ(a|s)|,

(i)

≤ O(
1

N̄1−η̄ + γN̄), (22)

where (h) follows Lemma 5 such that |∇λ log πλ;θ| ≤ 2cmax

1−γ , and (i) follows (21) and Lemma 3.

Lemma 9. The upper-level loss function Jr(πλ∗(θ);θ) is L-Lipschitz and L̄-smooth where L and L̄
are positive constants. Moreover, it holds that ||gθ|| ≤ L and ||∇θgθ|| ≤ L̄.

Proof. This suffices to show that the norms ||∇Jr(πλ∗(θ);θ)|| and ||∇2Jr(πλ∗(θ);θ)|| are upper
bounded by L and L̄. From Subsection D.3, we know that
dJr(πλ∗(θ);θ)

dθ
,

23

Published as a conference paper at ICLR 2025

= E(s,a)∼ψπλ∗(θ);θ

[(
Q
πλ∗(θ);θ

∇θrθ
(s, a)− V

πλ∗(θ);θ

∇θrθ
(s)− Cπλ∗(θ);θ

(Q
πλ∗(θ);θ
c (s, a)− V

πλ∗(θ);θ
c (s))

)
·

Q
πλ∗(θ);θ
r (s, a)

]
,

where Cπ∗
λ(θ);θ

= [∇2
λλG(λ

∗(θ); θ)]−1∇2
λθG(λ

∗(θ); θ). Since ||[∇2
λλG(λ

∗(θ); θ)]−1|| ≤ 1
τG

(Lemma 8) and ||∇2
λθG(λ; θ)|| = ||E(s,a)∼ψπλ;θ (·,·)[(Q

πλ;θ

∇θrθ
(s, a) − V

πλ;θ

∇θrθ
(s))Q

πλ;θ
c (s, a)]|| ≤

2C2cmax

(1−γ)2 , we know that ||Cπλ∗(θ);θ
|| ≤ 2C2cmax

(1−γ)2τG . Therefore, it holds that

||
dJr(πλ∗(θ);θ)

dθ
|| ≤ 1

1− γ
·
[(

2C2

1− γ
+

2C2cmax

(1− γ)2τG
· 2cmax

1− γ

)
C1

1− γ

]
= L. (23)

Similarly, we can see that ||gθ|| ≤ L.

Now, we take a look at the Hessian term ∇2Jr(πλ∗(θ);θ). We define hπ(s, a) ≜ Qπ∇θrθ
(st, at) −

V π∇θrθ
(st)−Cπ(Qπc (st, at)−V πc (st))]Q

π
r (st, at),H

π(s, a) ≜ Eπ[
∑∞
t=0 γ

thπ(st, at)|s0 = s, a0 =

a], and Hπ(s) ≜ Eπ[
∑∞
t=0 γ

thπ(st, at)|s0 = s]. We know that ||Hπ(s, a)|| ≤ L and ||Hπ(s)|| ≤
L. Therefore, we have that

∇2Jr(πλ∗(θ);θ) = ∇
∫
s0∈S

P0(s0)

∫
a0∈A

πλ∗(θ);θ(a0|s0)Hπλ∗(θ);θ (s0, a0)da0ds0,

=

∫
s0∈S

P0(s0)

∫
a0∈A

[
∇πλ∗(θ);θ(a0|s0) ·Hπλ∗(θ);θ (s0, a0)

+ πλ∗(θ);θ(a0|s0) · ∇Hπλ∗(θ);θ (s0, a0)da0ds0

]
,

=

∫
s0∈S

P0(s0)

∫
a0∈A

[
πλ∗(θ);θ(a0|s0)∇ log πλ∗(θ);θ(a0|s0) ·Hπλ∗(θ);θ (s0, a0)

+ πλ∗(θ);θ(a0|s0) ·
(
∇hπλ∗(θ);θ (s0, a0) + γ

∫
s1∈S

P (s1|s0, a0)∇Hπλ∗(θ);θ (s1)ds1

)
da0ds0

]
.

Keep the expansion, we know that

∇2Jr(πλ∗(θ);θ),

=

∫
(s,a)∈S×A

ψπλ∗(θ);θ (s, a)

[
∇hπλ∗(θ);θ (s, a) +∇ log πλ∗(θ);θ(a|s) ·Hπλ∗(θ);θ (s, a)

]
dads,

(24)

Since ∇ log πλ∗(θ);θ(a|s) and Hπλ∗(θ);θ (s, a) are both bounded, the only thing left is to
bound ||∇hπλ∗(θ);θ (s, a)||. We aim to bound ||∇hπλ∗(θ);θ (s, a)|| by bounding each term
in ||hπλ∗(θ);θ (s, a)||. Note that ∇Cπλ∗(θ);θ

= ∇([∇2
λλG(λ

∗(θ); θ)]−1∇2
λθG(λ

∗(θ); θ)) =

[∇2
λλG(λ

∗(θ); θ)]−2∇2
λθG(λ

∗(θ); θ) ddθ (∇
2
λλG(λ

∗(θ); θ))+[∇2
λλG(λ

∗(θ); θ)]−1 d
dθ∇

2
λθG(λ

∗(θ); θ).
Therefore, it suffices to show that || ddθQ

πλ∗(θ);θ

∇θrθ
(s, a)|| and || ddθQ

πλ∗(θ);θ
c (s, a)|| are bounded.

d

dθ
Q
πλ∗(θ);θ

∇θrθ
(s, a) =

d

dθ
Eπ

∗
λ(θ);θ[

∞∑
t=0

γt∇θrθ(st|at)|s0 = s, a0 = a],

=
d

dθ

∫
s0∈S

P0(s0)

∫
s0∈A

[
∇πλ∗(θ);θ(a0|s0) ·Q

πλ∗(θ);θ

∇θrθ
(s0, a0)

+ πλ∗(θ);θ(a0|s0) · ∇Q
πλ∗(θ);θ

∇θrθ
(s0, a0)

]
da0ds0,

=
d

dθ

∫
s0∈S

P0(s0)

∫
s0∈A

[
πλ∗(θ);θ(a0|s0)∇ log πλ∗(θ);θ(a0|s0) ·Q

πλ∗(θ);θ

∇θrθ
(s0, a0)

+ πλ∗(θ);θ(a0|s0) ·
(
∇2
θθrθ(s0, a0) + γ

∫
s1∈S

P (s1|s0, a0)∇V
πλ∗(θ);θ

∇θrθ
(s1)ds1

)]
da0ds0.

24

Published as a conference paper at ICLR 2025

Keep the expansion, we can get that
d

dθ
Q
πλ∗(θ);θ

∇θrθ
(s, a),

=

∫
(s,a)∈S×A

ψπλ∗(θ);θ

[
∇2
θθrθ(s0, a0) +∇ log πλ∗(θ);θ(a0|s0) ·Q

πλ∗(θ);θ

∇θrθ
(s0, a0)

]
dads.

Therefore, we can see that || ddθQ
πλ∗(θ);θ

∇θrθ
(s, a)|| ≤ C3

1−γ +

[
2cmax

(1−γ) · C2

τG(1−γ) + 2C2

(1−γ)

]
· C2

(1−γ)2 .

Similarly, we can also see that d
dθQ

πλ∗(θ);θ
c (s, a) is also bounded. Therefore, we can find a positive

constant L̄ such that ||∇2Jr(πλ∗(θ);θ)|| ≤ L̄. With the same procedure, we can see that ||∇θgθ|| ≤
L̄.

Lemma 10. The hyper-gradient approximation error is upper bounded, i.e., || ddθJr(πλ∗(θ);θ) −
gθ|| ≤ O(γN̄ + 1

N̄1−η̄).

Proof.

|| d
dθ
Jr(πλ∗(θ);θ)− gθ||,

≤
∣∣∣∣∣∣∣∣∫

(s,a)∈S×A

[
ψπ̂λ̂(θ);θ (s, a)hπ̂λ̂(θ);θ (s, a)− ψπλ∗(θ);θ (s, a)hπλ∗(θ);θ (s, a)

]
dads

∣∣∣∣∣∣∣∣,
(a)

≤ (1− γ)L

∫
(s,a)∈S×A

||ψπ̂λ̂(θ);θ (s, a)− ψπλ∗(θ);θ (s, a)||dads,

≤ (1− γ)L

∫
(s,a)∈S×A

||ψπ̂λ̂(θ);θ (s, a)− ψπλ̂(θ);θ (s, a)||+ ||ψπλ̂(θ);θ (s, a)− ψπλ∗(θ);θ (s, a)||dads,

(b)

≤ (1− γ)CdCSA

[
max{|Qλ̂(θ);θ(s, a)−Q

π̂λ̂(θ);θ

λ̂(θ);θ
(s, a)|}+max{|Qλ̂(θ);θ(s, a)−Qλ∗(θ);θ(s, a)|}

]
,

(c)

≤ (1− γ)CdCSA

[
γN̄ max{|Qλ̂(θ);θ(s, a)−Qπ0

λ̂(θ);θ
(s, a)|}

+max{|Qλ̂(θ);θ(s, a)−Qλ∗(θ);θ(s, a)|}
]
,

(d)

≤ (1− γ)CdCSA

[
γN̄ max{|Qλ̂(θ);θ(s, a)−Qπ0

λ̂(θ);θ
(s, a)|}+ cmax

1− γ
||λ∗(θ)− λ̂(θ)||

]
,

(e)

≤ O(γN̄ +
1

N̄1−η̄),

where (a) follows (23), (b) follows step (iv) of equation (64) in (Zeng et al., 2022), (c) follows
(18), (d) follows the fact that ||∇λQλ;θ(s, a)|| = |Qπλ;θ

c (s, a)|| ≤ cmax

1−γ , and (e) follows Lemma
4.

D.6 PROOF OF THEOREM 3

We define a function f(θ) such that ∇f(θ) = gθ and ∇2f(θ) = ∇θgθ, therefore, we have that

f(θn+1) ≤ f(θn) + ⟨∇f(θn), θn+1 − θn⟩+
L̄

2
||θn+1 − θn||2,

= f(θn)− βn||∇f(θn)||2 +
L̄β2

n

2
||∇f(θn)||2,

⇒ βn||∇f(θn)||2 ≤ f(θn)− f(θn+1) +
L̄β2

n

2
||∇f(θn)||2. (25)

Telescoping (25) from n = 0 to N − 1, we have that
N−1∑
n=0

βn||∇f(θn)||2 ≤ f(θ0)− f(θN) +

N−1∑
n=0

L̄β2
n

2
||∇f(θn)||2,

25

Published as a conference paper at ICLR 2025

⇒
N−1∑
n=0

1

Nη
||∇f(θn)||2 ≤

N−1∑
n=0

βn||∇f(θn)||2
(a)

≤ f(θ0)− f(θN) +

∞∑
n=0

L2L̄β2
n

2
,

⇒ 1

N

N−1∑
n=0

||∇f(θn)||2 ≤ 1

N1−η

(
f(θ0)− f(θN) +

∞∑
n=0

L2L̄β2
n

2

)
(b)
= O(

1

N1−η), (26)

where (a) follows Lemma 9, and (b) follows the fact that
∑∞
n=0 β

2
n is bounded as βn = 1

(n+1)η and
η ∈ (12 , 1). Therefore, we have that

1

N

N−1∑
n=0

||∇Jr(πλ∗(θ);θ)||2 ≤ 1

N

N−1∑
n=0

(
||∇f(θn)||2 + ||∇f(θn)−∇Jr(πλ∗(θ);θ)||2

)
,

(c)

≤ O(
1

N1−η + γ2N̄ +
1

N̄2−2η̄
),

where (c) follows (26) and Lemma 10.

D.7 PROOF OF THEOREM 4

We first define F (θ) ≜ Jr(πλ∗(θ);θ). Theorem 10 in (Agarwal et al., 2021) shows that the policy
gradient method can achieve global optimality asymptotically under softmax policy parameteriza-
tion. The constrained soft policy πλ∗(θ);θ = limN̄→∞ π̂λ̂(θ);θ can be regarded as a softmax policy
parameterized by Qλ∗(θ);θ but the decision variable in our case is θ instead of Qλ∗(θ);θ. How-
ever, we can still build on Theorem 10 in (Agarwal et al., 2021) by building connections between
θ and Qλ∗(θ);θ. In specific, in order to use the result of Theorem 10 in (Agarwal et al., 2021), we
need to prove (i) F (θn) is monotonically increasing, i.e., F (θn+1) ≥ F (θn) for any n ≥ 0; (ii)
dF (θ̄)

dQλ∗(θ̄);θ̄
= 0 if dF (θ̄)

dθ = 0 where Qλ∗(θ);θ is a vector with the length |S| × |A| whose components

are {Qλ∗(θ);θ(s, a)}(s,a)∈S×A. Once proving these two, given that limN→∞ limN̄→∞
dF (θN)
dθ = 0

from Theorem 3, we can use Theorem 10 in (Agarwal et al., 2021) to prove Theorem 4.

Now, we first show that F (θn) is monotonically increasing. This is a straightforward result of
Theorem 10.15 in (Beck, 2017) if we choose βn ≤ 1

L̄
. Note that Theorem 10 in (Agarwal et al.,

2021) requires βn ≤ (1−γ)3
8 , so that we can choose βn ≤ min{ 1

L̄
, (1−γ)

3

8 }. We next show that
dF (θ̄)

dQλ∗(θ̄);θ̄
= 0 if dF (θ̄)

dθ = 0.

We know that dF (θ̄)
dθ = dF (θ̄)

dQλ∗(θ̄);θ̄
· dQλ∗(θ̄);θ̄

dθ , so that it suffices to show that
dQλ∗(θ̄);θ̄(s,a)

dθ ̸= 0 for any
(s, a) and any θ. Therefore, we have that

dQλ∗(θ̄);θ̄(s, a)

dθ
= ∇λQλ∗(θ̄);θ̄(s, a)∇λ∗(θ̄) +∇θQλ∗(θ̄);θ̄(s, a),

(a)
= Q

πλ∗(θ̄);θ̄

∇θrθ
(s, a)−Q

πλ∗(θ̄);θ̄
c (s, a)∇λ∗(θ̄), (27)

where (a) follows (6) and (8). Now, we first prove that the term Q
πλ∗(θ̄);θ̄

∇θrθ
(s, a) =

Eπλ∗(θ);θ [
∑∞
t=0 γ

t∇θrθ̄(st, at)] is nonzero. Define l(θ;λ, s, a) ≜ Eπλ;θ [
∑∞
t=0 γ

trθ(st, at)|s0 =

s, a0 = a], and therefore ∇θl(θ;λ, s, a) ≜ Eπλ;θ [
∑∞
t=0 γ

trθ(st, at)|s0 = s, a0 = a]. We use
ψπ(s′|s, a) and ψπ(s′, a′|s, a) to denote the state and state-action visitation frequency when the
initial state-action is (s, a). Now, we take a look at the Hessian term ∇2

θθl(θ;λ, s, a):

∇2
θθl(θ;λ, s, a),

= ∇2
θθrθ(s, a) + γ∇θ

∫
s1∈S

P (s1|s, a)
∫
a1∈A

πλ;θ(a1|s1)∇θl(θ;λ, s1, a1)da1ds1,

= ∇2
θθrθ(s, a) + γ

∫
s1∈S

P (s1|s, a)
∫
a1∈A

[
∇θπλ;θ(a1|s1) · ∇θl(θ;λ, s1, a1)

+ πλ;θ(a1|s1) · ∇2
θθl(θ;λ, s1, a1)

]
da1ds1.

26

Published as a conference paper at ICLR 2025

Keep the expansion and note that ∇θl(θ;λ, s, a) = Q
πλ;θ

∇θrθ
(s, a), we can get that

∇2
θθl(θ;λ, s, a) =

∫
s′∈S

∫
a′∈A

ψπλ;θ (s′|s, a)∇θπλ;θ(a
′|s′) ·Qπλ;θ

∇θrθ
(s′, a′)da′ds′,

=

∫
s′∈S

∫
a′∈A

ψπλ;θ (s′|s, a)πλ;θ(a′|s′)∇θ log πλ;θ(a
′|s′) ·Qπλ;θ

∇θrθ
(s′, a′)da′ds′,

(b)
=

∫
s′∈S

ψπλ;θ (s′|s, a)
∫
a′∈A

πλ;θ(a
′|s′)

[
Q
πλ;θ

∇θrθ
(s′, a′)− V

πλ;θ

∇θrθ
(s′)

]
Q
πλ;θ

∇θrθ
(s′, a′)da′ds′, (28)

where (b) follows Lemma 5. Note that V πλ;θ

∇θrθ
(s′) = Ea′∼πλ;θ(·|s′)[Q

πλ;θ

∇θrθ
(s′, a′)]. If we use the ran-

dom variable Ys′a′ to denoteQπλ;θ

∇θrθ
(s′, a′), then its expectation isEa′∼πλ;θ(·|s′)(Ys′a′) = V

πλ;θ

∇θrθ
(s′).

We know that the variance V ar(Ys′a′) = E[Ys′a′ [Ys′a′ −E(Ys′a′)]]. Therefore, we can see that the
equation (28) is actually a variance:

∇2
θθl(θ;λ, s, a) =

∫
s′∈S

ψπλ;θ (s′|s, a)V ar(Ys′a′)ds′ ⪰ 0.

Therefore, the function l(θ;λ, s, a) is convex in θ for any (λ, s, a). If ∇θl(θ̄;λ, s, a) = 0, this
means that l(θ̄;λ, s, a) achieves its optimum. However, l(θ;λ, s, a) does not have an optimum, i.e.,
l(θ;λ, s, a) can be infinitely large or infinitely small because rθ(s, a) can be any arbitrarily large
value. This is a contradiction, therefore, l(θ̄;λ, s, a) ̸= 0 for any (λ, s, a). Then, l(θ̄;λ∗(θ̄), s, a) =
Q
πλ∗(θ̄);θ̄

∇θrθ
(s, a) ̸= 0.

Recall from (27) that
dQλ∗(θ̄);θ̄(s,a)

dθ = Q
πλ∗(θ̄);θ̄

∇θrθ
(s, a)−Q

πλ∗(θ̄);θ̄
c (s, a)∇λ∗(θ̄). For any (s, a) /∈ C,

Q
πλ∗(θ̄);θ̄
c (s, a) = 0 because the policy πλ∗(θ̄);θ̄ satisfies the constraint of the lower-level problem

in (1), i.e., avoiding the set C. Therefore,
dQλ∗(θ̄);θ̄(s,a)

dθ = Q
πλ∗(θ̄);θ̄

∇θrθ
(s, a) ̸= 0. For any (s, a) ∈

C, we know that Q
πλ∗(θ̄);θ̄
c (s, a) = c(s, a) because the policy πλ∗(θ̄);θ̄ avoids the set C unless its

starting state-action pair is in C. Therefore, we can also design c(s, a) such that Q
πλ∗(θ̄);θ̄

∇θrθ
(s, a) −

c(s, a)∇λ∗(θ̄) ̸= 0 for (s, a) ∈ C. Therefore, we can ensure that
dQλ∗(θ̄);θ̄(s,a)

dθ ̸= 0 for any (s, a) ∈
S ×A. Therefore, dF (θ̄)

dQλ∗(θ̄);θ̄
= 0 if dF (θ̄)

dθ = 0.

E RELATED WORKS

XRL methods that has the potential to be used to improve RL performance. There are some
XRL methods that have the potential to improve the RL performance even if they do not mention
that they can improve the RL performance. Value-max (Amir & Amir, 2018; Huang et al., 2018) use
the value function V (s) to identify the states with highest value as critical points. We can perturb
the actions on these critical states to improve the RL performance.

Constrained reinforcement learning (CRL). The lower-level problem in (1) is a CRL problem.
The current works on CRL have two major categories: primal-dual approach and primal approach.
The primal-dual approach (Achiam et al., 2017; Tessler et al., 2018; Stooke et al., 2020) converts the
CRL problem into an unconstrained optimization problem by using the dual method. Our approach
can be categorized as a primal-dual approach. The primal approach (Liu et al., 2020; Chow et al.,
2018; Xu et al., 2021) enforce constraints via various designs of the objective function or the update
process without an introduction of dual variables. However, these previous methods on CRL may not
be suitable to the context of constrained bi-level optimization because they cannot guarantee that the
upper-level problem in (1) is smooth after the lower-level problem is solved. The non-smoothness of
the upper-level problem can make the constrained bi-level optimization problem difficult to solve. In
contrast, our approach ensures the smoothness of the upper-level problem in (1) because we derive
an analytical solution of the constrained soft policy and this policy is smooth w.r.t. θ.

F EXPERIMENT DETAILS

The code was running on a laptop whose CPU is Intel Core i9 12900k and GPU is NVIDIA RTX
3080. The operating system is Windows 10. We use a neural network to parameterize the learned

27

Published as a conference paper at ICLR 2025

reward function. The neural network has two hidden layers where each hidden layer has 64 neurons.
The activation functions are respectively ReLU and Tanh.

The delayed MuJoCo environments. The delayed Mujoco environments are widely used in RL
improvement literature (Zheng et al., 2018; Memarian et al., 2021; Oh et al., 2018) where the reward
is accumulated by 20 time steps and only provided at the end. For example, for an episode with
length 100 (i.e., 0, · · · , 99), only the time steps 19, 39, 59, 79, 99 receive nonzero reward while all
the other steps receive zero reward. The time step 19 receives the reward that is accumulated from
time 0 to time 19. We can see that the delayed MuJoCo tasks have sparse reward.

We also conduct experiments on the original MuJoCo environments, which are widely used in RL
literature (Xu & Zhu, 2023b; 2024) We will explore some other tasks like motion planning (Xu &
Zhu, 2022; Qiao et al., 2023; 2024) and finance (Yu et al., 2025; Ke et al., 2024).

F.1 EXPERIMENT RESULTS ON DENSE REWARD

To show that our method can also improve the performance on dense reward scenarios, we include
the experiment results on the original MuJoCo environment (where the reward is dense) below:

Table 3: Experiment results (original MuJoCo environment with dense reward).

SAC UITLITY RICE SIL LIR
HalfCheetah 686.40± 41.24 824.42± 42.18 701.44± 45.83 716.62± 39.17 718.25± 42.10

Hopper 238.14± 29.94 348.16± 26.32 242.99± 19.10 264.86± 27.11 277.58± 22.69
Walker2d 182.21± 24.14 269.14± 25.08 189.19± 39.11 197.63± 21.39 214.16± 21.24

Ant 299.79± 26.53 421.63± 25.16 322.26± 34.15 340.14± 26.53 351.14± 28.92

Table 3 shows the final results on the original MuJoCo environment (dense reward). We can observe
that UTILITY achieves the highest reward and largely improves SAC.

F.2 ABLATION STUDY

Since our method has two components to improve the performance: the shaping reward and the
constrained formulated by the “misleading” state-action pairs. Here, we separately study the effect
of the learned shaping reward and the constraint. In specific, we test the performance of the shaping
only method and the constraint only method, and provide the results below:

Table 4: Ablation study for dense reward.

SAC UITLITY shaping only constraint only
HalfCheetah 686.40± 51.24 824.42± 42.18 764.25± 48.11 701.19± 47.43

Hopper 238.14± 29.94 348.16± 26.32 311.78± 34.24 268.15± 42.66
Walker2d 182.21± 24.14 269.14± 25.08 242.18± 29.62 196.77± 22.19

Ant 299.79± 26.53 421.63± 25.16 396.05± 29.18 317.12± 34.59

Table 4 shows that both the learned shaping reward and the constraint can improve the performance,
and the shaping reward has a larger impact. Moreover, even if we only use the shaping reward,
the performance is better than LIR. This is because our shaping reward uses the domain knowledge
formulated by the high-level explanation. Even if we only use the constraint, the performance is
better than RICE. The reason is that the “misleading” state-action pairs we find are the points that
lead to the failure, and thus avoiding these state-action pairs can improve performance. In contrast,
RICE finds the states that are most influential cumulative reward, however, these states may not be
the states that lead the RL agent to be non-optimal.

F.3 FIDELITY OF THE GENERATED TWO-LEVEL EXPLANATION

The fidelity means the correctness of the two-level explanation (Guo et al., 2021; Cheng et al., 2023).
Since the two-level explanation is to explain why the RL agent (i.e., SAC) is not optimal, one way to

28

Published as a conference paper at ICLR 2025

validate the fidelity of the explanation is to see whether the performance improves after we improve
from the explanations. From the last two columns in Table 4, we can see that both the high-level and
low-level explanations are the correct explanations because both the shaping only method and the
constraint only method improve the performance. Moreover, the shaping only method (the fourth
column in Table 4) has a higher cumulative reward than LIR (the last column in Table 3), and the
constraint only method (the last column in Table 4) has a higher cumulative reward than RICE (the
fourth column in Table 3). This shows the high fidelity of our two-level explanation.

Table 5: Fidelity comparison for sparse reward.

SAC shaping only (ours) shaping without r − r̂ constraint only (ours) RICE+constraint
Delayed HalfCheetah 383.45± 45.50 695.63± 33.66 611.08± 39.44 422.15± 22.86 369.14± 19.40

Delayed Hopper 192.90± 27.18 289.10± 18.41 255.18± 16.57 210.12± 15.77 181.45± 12.11
Delayed Walker2d 134.91± 20.80 211.37± 18.64 191.15± 11.26 175.66± 15.27 140.26± 11.53

Delayed Ant 68.11± 12.52 88.18± 8.66 77.11± 5.52 75.16± 6.58 63.11± 4.28

Table 6: Fidelity comparison for dense reward.

SAC shaping only (ours) shaping without r − r̂ constraint only (ours) RICE+constraint
HalfCheetah 686.40± 51.24 764.25± 48.11 710.99± 35.16 701.19± 47.43 672.15± 25.16

Hopper 238.14± 29.94 311.78± 34.24 279.12± 27.44 268.15± 42.66 211.03± 21.20
Walker2d 182.21± 24.14 242.18± 29.62 213.15± 18.94 196.77± 22.19 177.19± 15.33

Ant 299.79± 26.53 396.05± 29.18 359.14± 22.85 317.12± 34.59 288.19± 18.02

Tables 5 and 6 show that both the high-level and low-level explanations of our method have higher
fidelity. The method “RICE+constraint” has even worse performance than SAC because the critical
states influential to the cumulative reward may be the states that lead to high cumulative reward,
and thus constraining them may even make the performance worse. However, even if we do not
constrain these states but use the fine-tune method as in (Cheng et al., 2023) instead, our constraint-
only method (the last column in Table 4) still outperforms RICE (the fourth column in Table 3).
For the high-level explanation, we can see that our shaping only method achieves higher cumulative
reward than the method “shaping without r − r̂”. This shows the high fidelity of our high-level
explanation.

F.4 HOW TO ACCELERATE THE TRIPLE-LOOP ALGORITHM

The total iterations of UTILITY is N × N̄ × Ñ where N is the iteration number of the outer loop,
N̄ is the iteration number of the middle loop, and Ñ is the iteration number of the inner loop.
While the triple-loop structure looks computationally expensive, in practice, we can significantly
accelerate the algorithm using warm start in the inner loop and middle loop. Take the inner loop as
an example, given the shaping parameter θ and the current dual parameter λn̄, we need to compute
the corresponding constrained soft Bellman policy πλn̄;θ in the inner loop. Instead of starting from a
random policy initialization, we use the policy π̂λn̄−1;θ learned in last inner loop as the initialization
where π̂λn̄−1;θ is an approximation of πλn̄−1;θ. The intuition behind this is that since λn̄ and λn̄−1

are close (only different by one-step gradient descent), it is expected that πλn̄−1;θ and πλn̄;θ are
close. Therefore, using π̂λn̄−1;θ as the initialization makes it easier to approach πλn̄;θ. Therefore,
the warm start trick enables us to use fewer iterations for the inner loop, i.e., the iteration number Ñ
reduces. We use the similar warm start trick for the middle loop to reduce the iteration number N̄ .

G POTENTIAL SOCIETAL IMPACT

This paper has positive impact which is to improve the performance of RL agents. However, the
paper also has potential negative impacts. Since the two-level explanation identifies the mistakes
made by the RL agents. A malicious entity may use these weaknesses or mistakes to launch attack
to the RL agents. To alleviate this issue, one solution is to keep the demonstration of the RL agent
private, so that the malicious entity cannot get access to the demonstration and thus cannot find the
weakness.

29

Published as a conference paper at ICLR 2025

H LIMITATIONS

One limitation of the method is that it requires to interact with the environment. Therefore, one
future work is to extend this method to the offline RL setting.

I EVOLUTION FRO FIGURE 1C TO FIGURE 1D

(a) Iteration=0 (b) Iteration=50 (c) Iteration=100 (d) Iteration=150 (e) Iteration=200

Figure 3: Evolution from Figure 1c to Figure 1d.

For this scenario, we run UTILITY for 200 iterations. Figure 3 show the evolution from Figure 1c
(iteration=0) to Figure 1d (iteration=200). From the evolution, we can see that the learned reward
becomes closer and closer to the ground truth reward and the learned policy becomes more and more
optimal.

30

	Introduction
	Related works
	Two-level explanation of why the RL agent is non-optimal
	Utilizing the two-level explanation to improve RL
	Problem formulation
	Theoretical framework
	Problem transformation
	The proposed algorithm
	Theoretical analysis

	Experiment
	Conclusion
	Acknowledgements
	Appendix
	Two-level explanation
	Justification of the mathematical metric to find the ``misleading" state-action pairs
	Method

	Notions and notations
	Proof
	Proof of Lemma 1
	Proof of Theorem 1 and Theorem 2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 3
	Proof of Theorem 4

	Related works
	Experiment details
	Experiment results on dense reward
	Ablation study
	Fidelity of the generated two-level explanation
	How to accelerate the triple-loop algorithm

	Potential societal impact
	Limitations
	Evolution fro Figure 1c to Figure 1d

