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Abstract

How do different generalised quantifiers af-
fect the behaviour of transformer-based lan-
guage models (TLMs)? The recent popularity
of TLMs and the central role generalised quan-
tifiers have traditionally played in linguistics
and logic bring this question into particular fo-
cus. The current research investigating this
subject has not utilised a task defined purely in
a logical sense, and thus, has not captured the
underlying logical significance of generalised
quantifiers. Consequently, they have not an-
swered the aforementioned question faithfully
or adequately. Therefore, we investigate how
different generalised quantifiers affect TLMs
by employing a textual entailment problem de-
fined in a purely logical sense, namely, model-
checking with natural language. Our approach
permits the automatic construction of datasets
with respect to which we can assess the abil-
ity of TLMs to learn the meanings of gener-
alised quantifiers. Our investigation reveals
that TLMs generally can comprehend the logi-
cal semantics of the most common generalised
quantifiers, but that distinct quantifiers influ-
ence TLMs in varying ways.

1 Introduction

Generalised quantifiers have been a topic of much
interest for more than a century in logic and linguis-
tics (Frege, 1882; Westerstahl, 1987; Gabbay et al.,
1989; Mostowski, 1957). By capturing the interplay
between quantity and cardinality, they provide a
useful lens through which to understand human lan-
guage and cognition (Troiani et al., 2009; Szymanik
and Zajenkowski, 2010a). Since transformer-based
language models (TLMs) strive to stimulate human-
like language understanding (Vaswani et al., 2017;
Devlin et al., 2018; Raffel et al., 2019; Ouyang
et al., 2022; Chowdhery et al., 2022), it is essential
to determine the extent to which they can com-
prehend generalised quantifiers. Assessing the
depth of understanding that TLMs possess for any

given concept is best achieved by evaluating their
proficiency in applying it. In the case of gen-
eralised quantifiers, the most suitable evaluation
task is textual entailment. This is particularly rele-
vant because altering quantifiers can fundamentally
change the logical inferences derived from a given
text, reinforcing the integral role that quantifiers
occupy within the scope of the textual entailment
task.

When discussing entailment, it is vital to ac-
knowledge two distinct strands of research in the
literature. The first strand incorporates background
knowledge and common sense into entailment, im-
buing it with a probabilistic character (Bowman
et al., 2015; Williams et al., 2018; Wang et al.,
2019). The second strand examines textual en-
tailment in a purely logical sense, eliminating the
influence of background knowledge and common
sense (Richardson and Sabharwal, 2021; Schlegel
et al., 2022; Madusanka et al., 2023). While the
first form of entailment proves beneficial for a mul-
titude of practical applications, it is not ideal in
an investigation centred on the impact of linguistic
properties with logical significance, such as gen-
eralised quantifiers and negation. The empirical
evaluation of linguistic constructs under this kind
of entailment gets compromised due to its intri-
cate association with other concepts. Consequently,
it is challenging to differentiate the performance
variation due to linguistic properties from those
attributable to concepts like common sense and
background knowledge. However, prior literature
has only investigated generalised quantifiers in the
context of entailment that incorporates background
knowledge and common sense (Cui et al., 2022;
Apidianaki and Gari Soler, 2021) and naturally
suffers from the same predicament. The second
strand of textual entailment by defining entailment
in a purely logical sense circumvents the afore-
mentioned shortcoming. Consequently, it offers a
conducive environment for conducting evaluations



are artists. Only Solomon is an engineer.

Structure in Natural Language: Tulia, Hailee, Ava, Aria, Tony, Roger, Peter and Solomon
are members of some group. Talia, Ava, and Solomon are bee-keepers. Hailee, Ava and Tony
are scientists. Tony, Roger, Solomon, Ava, Aria and Hailee are Musicians. Roger, Solomon,
Ava and Aria are guitarists. There are no designers in the group. Peter, Tony and Roger

Sentence: At least 3 musicians are guitarists
validity: True

Sentence: All bee-keepers are scientists
validity: False

Figure 1: An instance of the model-checking with natural language problem, the sentence “At least 3 musicians are
guitarists” is T'rue according to the structure since the set musicians X = {Roger, Solomon, Ava, Aria} are also
guitarists and | X'| > 3. However, the sentence “ All bee-keepers are scientists” are Flalse as the set of bee-keepers

{Talia, Solomon} are not scientists

centred around linguistic constructs.

The logical problem that is most suited to study
the influence of language constructs of logical sig-
nificance is that of model-checking: given a for-
mula ¢ and a structure 2, determine whether ¢
is true in A (A = ¢). In the context of nat-
ural language, we are interested in a variant of
the model-checking problem where the structure
and the formula are translated into natural lan-
guage. An instance of model-checking with nat-
ural language problem is depicted in Figure 1.
From a complexity-theoretic point-of-view, model-
checking in most formal languages is, compara-
tively speaking, straightforward. Indeed the model-
checking problem with a fixed number of free vari-
ables and a finite structure is in PTIME. This is
in contrast to other logical problems, such as satis-
fiability, whose problems for various fragments
of logic can belong to different computational
complexity classes (Pratt-Hartmann, 2004; Pratt-
Hartmann and Third, 2006). Yet, solving instances
of the model-checking problem with natural lan-
guage requires a comprehensive understanding of
the logical semantics of the expressions involved.
Thus, it provides an ideal test environment to faith-
fully evaluate the extent to which generalised quan-
tifiers affect transformer-based language models.

In this study, we embark on an in-depth inves-
tigation into TLMs’ understanding of generalised
quantifiers utilising the model checking problem,
juxtaposing this with cognitive science research
on quantifier verification tasks (Szymanik and Za-
jenkowski, 2010a,b; McMillan et al., 2005). A
critical part of our exploration involves the evalua-
tion of pre-trained models prior to any fine-tuning.
Thus, allowing us to discern whether any differ-
ences identified are intrinsic to the models them-
selves or introduced through the process of fine-
tuning. Additionally, we consider the complexi-
ties arising from the integration of Boolean con-

junctions and negation with generalised quantifiers.
This aspect of our study sheds light on the intri-
cate dynamics that exist between these linguistic
elements and the challenges they pose to TLMs.
This comprehensive analysis paves the way for a
more nuanced understanding of how TLMs handle
intricate linguistic constructs such as generalised
quantifiers.

The key contributions of the present research
can be summarised as follows: (1) To the best
of our knowledge, this study represents the first
exploration into the effects of generalised quanti-
fiers within a logical entailment context; (2) We
analyse the effect on TLMs when quantifiers are
paired with diverse logical constructs like nega-
tion and Boolean conjunctions; (3) We compare
and contrast the behaviour of TLMs with quanti-
fiers with that of quantifier verification experiments
done with human beings; and (4) We delve into how
well TLMs comprehend generalised quantifiers in
a zero-shot context employing prompt engineering
approaches such as chain-of-thought-prompting
(Wei et al., 2022b) and provide comparisons be-
tween pre-trained and fine-tuned models.

2 Related Work

Our work follows the literature on probing how dif-
ferent linguistic properties affect the behaviour of
neural approaches such as transformer-based lan-
guage models (Madusanka et al., 2023; Clark et al.,
2021; Buijtelaar and Pezzelle, 2023; Jawahar et al.,
2019; Ettinger, 2020). Specifically, our investiga-
tion is closely related to the literature whose lin-
guistic properties of interest are generalised quanti-
fiers (Cui et al., 2022; Apidianaki and Gari Soler,
2021). Our exploration differentiates from prior
research in two key ways. First, we explore gener-
alised quantifiers employing a task that is defined
purely in a logical sense. Thus, we provide a more
faithful investigation into how TLMs comprehend



GQ Logical Denotation
All {(X,)Y)| X CY C}
Some {(X,)Y)| XNY #0Dand X, Y C A}

Atleast K {(X,Y) || XNnY|>Kand X, Y C2}

At most K {(X,Y) || XNnY|<Kand X, Y C 2}
Less than K {(X,Y) || XNnY|<Kand X,Y C 2}
More than K {(X,Y) [ | XNnY|>Kand X,Y C 2}

K {(X,Y) || XNnY|=Kand X,Y C AU}
Most {(X,Y)[|XNY][>1]X —Y]and X,Y C A}
Few {(X,Y)||XNY|< 3| X —Y]and X,Y C A}

Table 1: The generalised quantifiers (GQ) we used in our experimental setup, along with their logical denotation

defined on some structure 2.

generalised quantifiers. Second, our research also
integrates a comprehensive analysis of how the in-
teraction of negations and Boolean conjunctions
with quantifiers influences TLMs’ performance in
a simple entailment task. We follow the logical
denotations introduced in logical studies to for-
malised generalised quantifiers when formulating
our task (Westerstahl, 1987; Mostowski, 1957; Gab-
bay et al., 1989; Fuhrken, 1970; Peters and West-
erstahl, 2006) and draw parallels with cognitive
science work on quantifier verification in our exper-
imental setup (Szymanik and Zajenkowski, 2010b;
McMillan et al., 2005; Szymanik et al., 2016).

Our evaluation scheme for evaluating TLMs in
a zero-shot setting builds upon prior literature on
prompt engineering (Brown et al., 2020; Kojima
et al., 2022; Wei et al., 2022b). However, ours is
the first literature evaluating TLMs on the model-
checking problem in zero-shot settings.

3 Methodology

3.1 Language Fragments and Generalised
Quantifiers

We define a language fragment to be a set of sen-
tence forms equipped with semantics translating
those sentences to some formal system such as first-
order logic (Pratt-Hartmann, 2004) and perhaps
the simplest way to define a language fragment is
via a finite set of sentence templates. A sentence
template is a sentence in which certain open-class
words have been replaced by schematic variables.
For example, “All As are Bs” is a sentence tem-
plate where A and B substitute ordinary nouns
(e.g., artist, musician beekeeper, ...), and by substi-
tuting A and B with such nouns, we can formulate
sentences such as “All musicians are artists”. Due
to the formal structure that exists in language frag-

ments, a set of sentence templates is a natural way
of representing them. For example the Aristotelian
syllogism (Smith et al., 1989) can be defined using
the following set of templates,

All As are Bs
NoAisaB

In this work of literature, we employ a slightly
extended version of the Aristotelian syllogistic to
allow negations at the subject, (e.g., Some non-
musicians are beekeepers) and generalised quanti-
fiers when generating sentences.

Generalised quantifiers define the semantics of
sentences that include them in terms of relations
between subsets of the structure (Szymanik et al.,
2013). Consider for example “All musicians are
artists”. The determiner phrase “All” in this sen-
tence specifies a relation between the set of musi-
cians and the set of artists, namely that the former
is a subset of the latter. More generally, “All” in a
structure 2 expresses the binary quantifier:

Some As are As
Some B are not Bs

{(X,Y)| X cyca

This idea can be generalised to accommodate
other quantifiers. Consider the sentence “At least
K musicians are artists” where K € N. The phrase
“At least K likewise expresses a relation between
the set of musicians and the set of artists, namely
the cardinality of their intersection is at least K,
that is, “At least K ’in 2 expresses the binary quan-
tifier:

(X,Y)|1XNY|> K and X,V C 2}

In our scholarly inquiry, we examine logical
quantifiers such as “All”, numerical quantifiers
such as “At least K and propositional quantifiers
such as “Most”. The quantifiers employed, and



their logical denotation on structure 2{ are depicted
in Table 1. We utilise these generalised quantifiers
when defining language fragments for sentence gen-
eration. Let 7g be the sentence template which
defines the language fragment corresponding to the
quantifier (). For example, consider the quanti-
fier “All”, the corresponding template 74 takes
the form of “All (non-)As are (not) Bs” where A
and B are replaced by ordinary nouns. Appendix
A depicts the sentence templates used to define
language fragments for each of the quantifiers.

3.2 Data Construction

Algorithm 1 Data Construction - Model checking
with Generalised Quantifiers

Input : The Quantifier () and corresponding
sentence template 7, a natural language template
M to convert the structure to natural language, the
vocabulary of proper nouns D and ordinary nouns
P, minimum and maximum number of domain
elements d"™" and d™?", minimum and maximum
number of predicates p" and p™*

Output : model checking dataset D

1: D+ {}
2: repeat
3: D, P « sample from vocabularies D and
P such that ™" < |D| < dma®, pmin <
|P‘ < pma:c
A, B + sample two predicates from P
A, B + negate A, B with pj,
s < substitute predicates A and B for
schematic variables in the template 7¢
¢ < sample from {True, False}
repeat
2l <+ generate structure randomly using
(D, P)
10: ¢ < MODELCHECKER(2, (Q, 4, B))
11:  until £ =/"°
122 M < translates 2 to natural language using
the template M
13: D+ DU{M,s,t}
14: until stop condition is met

We develop a data construction algorithm (Algo-
rithm 1) to construct a balanced dataset free from
easily exploitable trivial linguistic patterns. The al-
gorithm constructs a set of triplets (M, s, £), where
M is the natural language translation of the struc-
ture, s is a sentence of the relevant fragment 7 and
¢ is alabel (T'rue/ False) specifying whether s is

true in M. To construct (M, s, £), apart from 7,
the algorithm takes the vocabularies D, P also as
inputs. The vocabulary D comprises proper nouns
employed to characterise domain elements, while
the vocabulary P comprises ordinary nouns that
characterise predicates. We draw a random sample
of elements D and P, from vocabularies D and P
to construct the structure. Two random nouns are
sampled from P, each is then negated with proba-
bility pye4, and these are finally substituted for the
two schematic variables in the template 7 to form
the sentence s.

Given (probably negated) words A, B, a gener-
alised quantifier () and a structure 2, the model-
checker determines 24 |= s, where s is the sen-
tence formed by substituting A, B for schematic
variables in the templates 7g. This involves
first determining the extensions of A and B
in 20 and then applying the meaning of gener-
alised quantifier ) to these sets. Consider the
example put forth in the section 1, (Q, A, B)
corresponding to the sentence “All bee-keepers
are scientists” is (All, beekeepers, scientist).
the model-checker determines the extensions of
beekeepers and scientists in the corresponding
structure 2 to be {Talia, Ava,Solomon} and
{Hailee, Ava, Tony}, respectively. The quanti-
fier All dictates that in order for the sentence to be
True, the former needs to be a subset of the lat-
ter. However, the set {T'alia, Ava, Solomon} Z
{Hailee, Ava, Tony}, thus, the model-checker as-
signs False as the validity label /.

This setup with relative ease can be extended
when Boolean conjunctions are introduced to
the sentences. Consider, for instance, a sen-
tence pair s; and sp, formed using the predi-
cates (A, B1) and (A, By), respectively, for
some quantifier (), merged using Boolean con-
junction ® € {A,V}. To adapt to this scenario,
the algorithm can be augmented by effecting a
simple modification to step 10, transforming it
into / < MODELCHECKER(2l, (Q, A1, B1)) ®
MODELCHECKER (2L, (Q, A2, B2)).

3.3 Prompts for Zero-shot Evaluation

Given that transformer-based language models un-
dergo pre-training through a certain form of lan-
guage modelling objective, the most common ap-
proach to evaluate these models in the zero-shot
setting is by employing prompt engineering (Brown
et al., 2020). Consequently, we formulate prompts



following a template-based strategy, utilising the
constructed tuples (M, s, £). We adopt two distinct
types of templates. The first adheres to a more
traditional form of prompting, which we refer to
as standard prompting. The second type of tem-
plate is based on the concept of chain-of-thought
prompting (Wei et al., 2022b). Chain-of-thought
prompting is a technique in which an example prob-
lem instance, accompanied by an explanation of
the underlying thought process, is used to guide the
model towards generating more precise responses.
We depict the exact templates in Appendix A.

4 Experimental Setup

4.1 Transformer-based language models

To explore the transformer-based language mod-
els’ ability to comprehend different generalised
quantifiers, we employ a set of TLMs that have a
proven track record in textual entailment problems,
namely, TS, Flan-T5, DeBERTa, LLaMA and GPT.

TS Following the prior work on textual entail-
ment defined purely in a logical sense (Richardson
and Sabharwal, 2021; Tafjord et al., 2021; Madu-
sanka et al., 2023), we utilise the T5 model in our
experimental setup as one of the baseline models.
The TS5 model (Raffel et al., 2019) employs a uni-
fied text-to-text format where all inputs and out-
puts are textual strings. We fine-tune the T5-1arge
model with 770M parameters to perform the model-
checking task.

Flan-TS Fine-tuned Language Net (Chung et al.,
2022), also known as Flan, is based on instruc-
tion fine-tuning (Wei et al., 2022a) with the ob-
jective of making the transformer model gener-
alise better to unseen tasks. The Flan-T5 model,
considered to be an improvement to T5, applies
instruction fine-tuning on the T5-model family.
Thus, we primarily centred our experimental setup
around the Flan-T5 model. We fine-tune the
Flan-T5-1large model with 770M parameters
and utilise Flan-T5-base with 220M parameters,
Flan-T5-1large, Flan-T5-x1 with 3B parameters
and Flan-T5-xx1 with 11B parameters in the zero-
shot setting.

DeBERTa-v3 Due to the recent success of the
DeBERTa-v3 model (He et al., 2021) in solving nat-
ural language inference tasks, we utilise it as a base-
line model. The DeBERTa architecture improves
upon the BERT and Roberta models using a disen-
tangled attention mechanism and enhanced mask

decoder. DeBerta-v3 further improves the architec-
ture by utilising an ELECTRA-style pre-training
with Gradient Disentangled Embedding Sharing.
We fine-tune the DeBERTa-v3-1large model with
around 304M parameters.

ChatGPT Due to the recent success of ChatGPT
in solving many natural language tasks in a zero-
shot setting (Bang et al., 2023), we employ it in a
similar context. Similar to InstructGPT (Ouyang
et al., 2022), ChatGPT is trained to follow human
instructions but follows a slightly different data
collection approach.

LLaMA Considering that Flan-T5 and ChatGPT
are trained to follow instructions, we decided to
use a TLM which has not been explicitly trained to
follow instructions as one of our baselines. Thus,
we employ LLaMA-3@B model in zero-shot settings.
The LLaMA is said to outperform GPT-3 in most
baselines and achieve comparable performance
with respect to state-of-the-art TLMs (Touvron
et al., 2023).

4.2 Dataset and Evaluation

To fine-tune and evaluate TLMs, we construct
train and test sets with 72K and 36K unique prob-
lem instances with 8K and 4K data points for
each generalised quantifier!. We arbitrarily select
[dmin7 dma:v] — [8, 14] and [pmin’pmaac} — [57 10]
when constructing problem instances. We con-
struct a balanced dataset, and thus, we use accu-
racy as the main metric but chose to depict the
overall precision, recall and f1-score to provide a
more detailed analysis. We deem this setup an-
swers the question, “How do different quantifiers
affect the behaviour of TLMs?”. As the prob-
lem instances contain negations, our experiment
will also provide insight on the effect of negation
when intertwined with quantifiers on TLMs’ under-
standing of language. We construct separate train
and test sets with 72K and 36K problem instances
with sentences containing Boolean conjunctions to
answer the question, “How do Boolean conjunc-
tions affect the behaviour of TLMs when coupled
with different quantifiers?”. By evaluating these
fine-tuned models against problem instances with
higher K values in the numerical quantifiers than
that of the train set, we ask the question “Do TLMs
learn to comprehend the logical semantics of gen-
eralised quantifiers?”. To answer the questions,

'The dataset and code available at https://github.com/
iTharindu/generalised-quantifiers-model-checking
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“How do pre-trained TLMs comprehend different
quantifiers?” and “Do they have any biases when
performing a simple entailment task?”, we eval-
uate TLMs in a zero-shot setting. We found that
the problem instances with [d™", d™%*] = [8, 14]
and [p™" pma¥] = [5,10] are challenging for
TLMs in zero-shot settings. Consequently, the use
of the same test set did not yield any meaning-
ful insights. Thus, we formulate a much simple
problem instance with [d™", d™%®] = [3,6] and
[pmin pmat] = [2,4]. A more detailed descrip-
tion of the dataset and fine-tuning is provided in
Appendix B.

5 Results and Discussion

The ability of transformer-based language mod-
els to solve instances of the model-checking prob-
lem is differentially influenced by various gen-
eralised quantifiers. As demonstrated in Table
2, TLMs appear to encounter the most difficulty
with proportional quantifiers such as “Most” and
“Few”. Interestingly, this empirical observation
aligns with cognitive science research, which also
highlights the complexities faced by humans in in-
terpreting proportional quantifiers (Szymanik and
Zajenkowski, 2010a; McMillan et al., 2005; Troiani
et al., 2009). In addition, the performance related
to the quantifier “K” is notably lower in compar-
ison to other numerical quantifiers. A sentence
incorporating the quantifier “K” is probabilistically
more likely to be F'alse given a random structure.
Therefore, in a balanced dataset, the determination
of the truth value of a sentence containing the quan-
tifier “K” necessitates a more detailed examination
compared to other numerical quantifiers consid-
ered in this study. However, as illustrated in Figure
2, given an adequate number of training steps, all
TLMs attain satisfactory performance levels across
all quantifiers. Moreover, the newer TLM models,
such as DeBERTa-v3 and Flan-T5, exhibit a faster
convergence rate compared to TS.

As expressed by their precision and recall values,
TLMs often predict True for quantifiers such as
“All” and “Less than K”, but often predict False
with respect to quantifiers like “Some” and “More
than K”. We attribute this to be an overcorrection in-
troduced during fine-tuning. Consider the sentence
with the quantifier “Less than K”: “Less than K
artists are engineers”. This sentence is more likely
to be F'alse in the context of the real world for K
values we consider in this study (8 < K < 14)

GQ ac pr re fl
All 914 | 88.6 | 953 | 91.8
Some 922 | 96.8 | 88.0 | 92.2
At least K 942 | 977 | 904 | 939
At most K 96.6 | 96.5 | 96.6 | 96.5
Lessthan K | 95.1 | 934 | 97.2 | 953
More thanK | 949 | 969 | 93.0 | 949
K 90.8 | 86.7 | 96.2 | 91.2
Most 90.4 | 929 | 873 | 90.0
Few 91.1 | 93.1 | 89.2 | 91.1

Table 2: The test scores for the Flan-T5-1arge model
across various generalised quantifiers. The abbrevia-
tions ac, pr, re and fI denote accuracy, precision, recall
and F1 score values.

since there are more than 14 artists who are en-
gineers in the world. This proposition remains
true even when negations are introduced to the sen-
tences. Thus, we speculate that TLMs overcorrect
during fine-tuning and predict T'rue or False ac-
cordingly.

TLMs show evidence of learning to under-
stand the logical semantics of generalised quan-
tifiers. As illustrated in Figure 3, when tested with
a dataset containing higher K values than that of
the train set, the accuracy of TLMs only decreases
slightly for all numerical quantifiers. Therefore,
we posit that TLMs possess the capacity to learn
the logical semantics associated with generalised
quantifiers. Our conclusions regarding generalisa-
tion bear resemblances to prior work conducted
on model-checking with natural language (Madu-
sanka et al., 2023). Their research also supports the
premise that TLMs are capable of comprehending
the logical semantics of natural language. Addition-
ally, we highlight the contrast between the demon-
strated ability of TLMs to generalise in the context
of model-checking problems, and their apparent
lack of such generalisation when solving satisfia-
bility problems (Schlegel et al., 2022; Richardson
and Sabharwal, 2021). We hypothesise that this
distinction is due to the different complexity levels
associated with these two types of problems and
the necessity to understand complex inference rules
when solving satisfiability problems.

The Boolean conjunctions have a significant
effect, while negation has much less effect on
fine-tuned TLMs when coupled with generalised
quantifiers. As demonstrated in Table 3, it is ap-
parent that fine-tuned TLMs possess the capacity to
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Figure 2: The rate of convergence of (a) Flan-T5-1arge and (b) DeBERTa-v3-large and (c) T5-1arge models

break down based on different quantifiers

ac pr re f1
AND | OR | AND | OR | AND | OR | AND | OR
All 91.0 | 837 | 89.0 | 809 | 938 |89.5| 913 |849
Some 834 | 923 | 89.0 | 964 | 750 |882| 819 |92.1
AtleastK | 909 | 869 | 933 | 84.7 | 888 |89.4 | 91.0 | 87.0
AtmostK | 864 | 932 | 954 | 95.1| 765 |91.0| 849 | 93.0
K 875 | 742 | 889 |69.7| 857 | 863 | 873 | 77.1
Lessthan K | 88.5 | 90.6 | 92.3 | 90.3 | 84.0 | 91.0 | 87.9 |90.7
More thanK | 92.5 | 885 | 932 | 854 | 91.6 | 929 | 924 | 89.0
Most 822 | 813 | 826 |80.7| 830 |83.0| 828 |8L8
Few 822 | 81.0| 834 |81.8| 80.1 |79.0| 81.7 | 804
Table 3: The test accuracy values for the

Flan-T5-large model across various generalised
quantifiers, broken down based on the Boolean conjunc-
tion (AN D, OR) in the sentence. The abbreviations ac,
pr, re and fI denote accuracy, precision, recall and F1
score values.

comprehend negations. In contrast, as depicted in
Figure 4 (c), prior to the fine-tuning process, nega-
tions exert a considerable influence. Consequently,
we propose that fine-tuning plays a significant role
in enhancing the ability of TLMs to understand
negations. The inclusion of Boolean conjunctions
significantly reduces the accuracy for all quanti-
fiers. Noticeably, quantifiers for whom TLMs tend
to predict T'rue often tend to have higher accuracy
in the context of the O R operation compared to
AN D and vice-versa. In our findings, we discov-
ered that quantifiers for which TLMs frequently
predict the label as T'rue also display elevated re-
call values for O R operations and diminished recall
for AN D operations. Conversely, quantifiers that
TLM:s often predict as F'alse exhibit higher preci-
sion for AN D operations and lower precision for
OR operations.

The number of parameters, training pro-
cess and type of prompting can influence
the TLMs’ performance when solving model-
checking problem instances in zero-shot settings.
The performance for Flan-T5 models exhibits the
power law relationship with the number of param-
eters, as illustrated in Figure 4 (a). This empirical
finding is consistent with prior research analysing
language models’ performance variation with fac-

\ quantifier
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®

Figure 3: The accuracy value when tested against prob-
lem instances with sentences containing higher K val-
ues than that of the train set. The results are broken
down based on the numerical quantifier.

tors such as the number of parameters, dataset
size and computational resources (Kaplan et al.,
2020). However, upon breaking down the per-
formance metrics based on the quantifiers, the re-
sulting graph (Figure 4 (b)) is observed to be less
uniform compared to the representation of overall
performance.We attribute this behaviour to the in-
herent probabilistic aspect of the predictions formu-
lated by TLMs since language models are trained
to find the most probable next word given a set of
words. This probabilistic nature of language mod-
els can lead to inaccurate predictions, especially in
a logical context.

The Flan-T5 model with fewer parameters out-
performed the ChatGPT and LLaMA models in
a zero-shot setting, as depicted in Table 5. This
phenomenon is unsurprising since Flan-based mod-
els are very effective in tasks naturally verbalised
as instructions due to their employment of instruc-
tion fine-tuning (Wei et al., 2022a). Upon con-
trasting the efficiency of ChatGPT and Flan-T5
models in the context of standard and chain-of-
thought prompting techniques, it is observed that
the discrepancy in accuracy metrics across these
two distinct prompting methodologies is not sub-
stantial. However, the LLaMA model generated
both True and False when generating the label
when standard prompting is used, failing to follow
the instruction properly. We attribute this failure in
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Figure 4: The (a) overall test loss and (b) test loss break down based on quantifier and (c) accuracy values breakdown
based on the availability of negations for the Flan-T5 model with a different number of parameters in zero-shot
settings, the number of parameters variates from 220M to 115.

GQ 009 | Ont | s1nl | sin! ChatGPT Flan-T5 LLaMA
All 91.6 | 947 | 89.0 | 89.6 st | ch | st | ch ch
Some 953 | 918 | 919 | 897 All 578 5931595656 | 505
AtleastK | 947 | 946 | 939 | 94.6 Atsl(e):::K ;ZZ gg-g g?‘l‘ ;21 23‘3’
AtmostK | 96.2 | 97.0 | 96.5 | 96.6 AtmostK | 42.9 | 422 | 50.6 | 469 | 453
LessthanK | 96.1 | 95.5 | 95.7 | 95.0 Less than K | 48.5 | 444 | 630 | 64.6 | 492
More thanK | 95.6 | 952 | 954 | 94.9 More than K | 82.6 | 75.9 | 865 | 882 | 53.2
K 909 | 91.8 | 91.5 | 89.7 K 68.1 | 70.1 | 76.6 | 705 | 53.4
Most 93.6 | 924 | 88.1 | 88.6 Most 546 | 654 | 657 ] 69.1 | 579
Few 917 | 925 | 874 | 893 Few 444 [ 432576 | 559 | 464
Overall | 623 | 623696 | 69.9 | 535
Table 4:  The test accuracy values for the
Flan-T5-large model across various generalised Table 5: The test accuracy values for the ChatGPT,

quantifiers breakdown based on the negations in
the sentence. The s,n denote subject and predicate
nominative, 1,0 denotes having or not having a
negation at s, n. For example s°n' denote no negation
at subject and negation at predicate nominative.

the LLaMA model to its training process, which,
unlike the other two models, is not trained to fol-
low instructions. When subjected to the chain-of-
thought prompting approach, the LLaMA model
displayed more consistency, generating either a
True or False label. Thus, we infer that the in-
clusion of examples assists the LLaMA model in
generating more concise outputs.

Accuracy values for TLMs in zero-shot set-
tings vary drastically with different quantifiers.
As depicted in Table 5, TLMs struggle with numer-
ical quantifiers whose cardinality of intersection
has an upper bound, such as “At most K and “Less
than K”. This diminished performance can be at-
tributed primarily to the TLMs’ tendency to predict
the label False more frequently in sentences incor-
porating these specific quantifiers. We hypothesise
this phenomenon is due to two factors. First, the
background knowledge already embedded in TLMs
from pretraining. As indicated previously, the sen-
tences containing the above quantifiers coupled
with a low K value are often F'alse in a real-world

Flan-T5-xx1 and LLaMA-30B model in zero shot set-
tings, st denotes standard-prompting approach while ch
denotes the chain-of-thought prompting approach.

scenario. Second, the prior cognitive research on
quantifiers has demonstrated that quantifiers with a
downward monotone, such as “Few” or “Less than
K”, present more processing challenges for humans
compared to those with an upward monotone, such
as “Most” and “More than K” (Geurts and van der
Slik, 2005; Zeijlstra, 2020; Agmon et al., 2019).
Since TLMs are trained on human-generated data,
it is highly likely that these models have incorpo-
rated this cognitive trait into their understanding
of language, which, in turn, affects their responses.
Moreover, a deeper analysis of the answers gener-
ated through chain-of-thought prompting revealed
that even when the predicted label is correct, the
overall answer is often incoherent. This coherence
deficit in TLMs, coupled with their difficulties in
handling certain quantifiers, suggests that these
models are yet to achieve proficiency in learning
even the simplest inferential rules.

6 Conclusion

We investigated how generalised quantifiers affect
the behaviour of transformer-based language mod-



els by employing the problem of model-checking.
We found that different generalised quantifiers af-
fect TLMs in varying ways when solving model-
checking problems in both fine-tuned and zero-shot
settings. Based on empirical findings on generalisa-
tion, we posited TLMs can learn to understand the
logical semantics of generalised quantifiers. More-
over, our experimental setup in the zero-shot setting
demonstrated that a multitude of factors, such as
the training process, size of the models and type
of prompts, can affect the ability of TLMs to solve
a simple entailment task. Thus, a compelling av-
enue for future research is to probe how varying
factors affect transformer-based language models
when solving a more complex entailment task, like
determining satisfiability.

7 Limitations

Due to the empirical nature of this study, it suffers
from an inductive dilemma on three fronts. One,
in the front of transformers, the second related to
generalised quantifiers and the third in relation to
prompts we explored in zero-shot settings. We
explored several transformer-based language mod-
els that are in line with prior literature and probe
how different generalised quantifiers affect their be-
haviour. Nonetheless, due to the empirical nature
of this investigation, it is plausible that some TLM
architectures could deviate from the behavioural
norms discussed in this paper when interacting with
generalised quantifiers. A similar limitation applies
to the range of generalised quantifiers examined,
as the ones employed in our study do not represent
the entire spectrum of generalised quantifiers. In
zero-shot settings, this limitation further extends to
the prompt templates we employed. We consider
two types of prompt templates, but there is a multi-
tude of alternative ways prompts can be formulated
by using the (M, s, ¢) triplets.
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A Appendix: Templates

A.1 Sentence Templates

When constructing sentences, as mentioned in the
methodology section, we employ sentence tem-
plates. Let ) be a generalised quantifier, and 7¢) be
the sentence template for the corresponding quanti-
fier Q. Then 7 take the general form,

() (non-) As are (not) Bs

The inclusion of “non/not” is determined by the
availability of the negations and A, B are ordinary
nouns. Consider the quantifier “At most K™ for
some natural number K. Then the correspond-
ing sentence template takes the form “At most K
(non-) As are (not) Bs”. Table 6 depicts sentence
templates corresponding to quantifiers considered
in this study.

A.2 Prompt templates for Zero-shot settings

We employ the tuples (M,s,f) to delineate
prompts for the language modelling objective,
providing a framework for evaluating the effec-
tiveness of TLMs in zero-shot settings. As
mentioned in the methodology section, we ex-
plored two types of prompts. One, we informally
called standard prompts and the other is based on
chain-of-thought-prompting. The standard prompt-

ing is conceptualised by the following template,
Q: Given the following scenario, M. Is the

sentence s T'rue or False according to the
scenario?
A:

The chain-of-thought prompting employs an ex-
ample problem instance with an explanation of the
thought process, thereby facilitating a more pre-
cise response from TLMs. If we let (M., s, (.)
represent this example problem instance and E elu-
cidate the thought process, the chain of thought

prompting can then be defined using the template,
Q: Given the following scenario, M,. Is the

sentence s, T'rue or False according to the
scenario?
Al E
Q: Given the following scenario, M. Is the
sentence s T'rue or False according to the
scenario?

A:
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GQ Sentece Template
All All (non-) As are (not) Bs
Some Some (non-) As are (not) Bs
At least K At least K (non-) As are (not) Bs
At most K At most K (non-) As are (not) Bs
Less than K Less than K (non-) As are (not) Bs
More than K More than K (non-) As are (not) Bs
K K (non-) As are (not) Bs
Most Most (non-) As are (not) Bs
Few Few (non-) As are (not) Bs

Table 6: The generalised quantifiers (GQ) we used in our experimental setup, along with their sentence templates

GQ maximum | minimum | mean

All 161 47 90.1
Some 165 48 89.7

At least K 160 47 92.4
At most K 162 48 92.2
Less than K 163 49 92.4
More than K 168 49 92.1
K 164 46 89.9
Most 162 45 89.8
Few 158 47 89.6

Table 7: minimum, maximum and mean number of
words (tokens) in problem instances (M + s) when
seperated by SPACE

B Appendix: Dataset and Training
Details

B.1 Dataset details

We utilised nine quantifiers when constructing sen-
tences. We construct train and test sets with 72K
and 36K unique data points with 8K and 4K data
points for each quantifier for fine-tuning and evalu-
ating TLMs. As the vocabulary, We employed the
Richardson and Sabharwal (2021) vocabulary of
nouns, which contains a list of professions (e.g.,
"artist", "doctor"), that we extended by adding
more professions. The dataset contains an equal
number of True and False problem instances
for each generalised quantifier. When construct-
ing the dataset for fine-tuning TLMs, we select
[dmin7dmaaz] — [8, 14] and [pminvpmaz] — [57 10]
For sentences with numerical quantifiers, we se-
lect a K values randomly from the range [1, |D|],
where | D| denotes the number of domain elements
selected when formulating the problem instance.
The minimum, maximum and mean number of to-
kens for problem instances of each quantifier is

depicted in Table 7. To evaluate TLMs’ behaviour
with boolean conjunctions, we also constructed
separate train and test sets with 72K and 36K data
points. The dataset contains an equal number of
problem instances for each conjunction, and quan-
tifier pair. Moreover, since the intention was to
compare the effects of generalised quantifiers on
transformer-based language models, so we decided
to use the simplest form of language templates, i.e.
syllogistic.

We also emphasise the rationality behind the iter-
ative approach we used in constructing the data. An
alternative way of constructing problem instances
is to derive the label ¢ using the model-checker
instead of iteratively creating structures to match
a pre-defined label and a sentence. However, this
alternative approach can induce easily exploitable
patterns. Consider the quantifier “K”, “All” and
“Some”. For a random structure, quantifiers “K”
and “All” are more likely F'alse, while the quanti-
fier “Some” is probabilistically T'rue.

B.2 Fine-tuning Details

Formally, we define the task as a binary classifica-
tion problem where the objective of the transformer-
based language model is to predict the label ¢
(T'rue or False) given the natural language in-
terpretation of the structure M and the sentence
s as the inputs. We select and fine-tune three
TLMs, namely TS5, Flan-T5, and DeBERTa-v3,
all of which have previously demonstrated their
efficiency and reliability in resolving textual en-
tailment tasks. According to prior literature, the
performance of TLMs mostly depends on the pre-
trained data, and size of the models rather than
the architectural choice (Raffel et al., 2019; Ka-
plan et al., 2020). Moreover, the accuracy values
yielded for all TLMs are similar. Thus, we expect



a similar behaviour for other TLM architectures as
well. Since the TLMs achieve satisfactory accuracy
and since the central research interest is to analyse
the behaviour of TLMs rather than identifying the
best-performing TLM, we do not perform any hy-
perparameter tuning. Moreover, exploring several
different TLMs and performing hyperparameter
tuning leaves a higher carbon footprint (Strubell
etal., 2019). Due to the nature of the research ques-
tion, we consider such an exploration unnecessary.

Loss function and optimizer We fine-tune each
TLM to predict the label ¢ given the (M, s) by
reducing the binary cross entropy loss over the
target using the ADAM (Kingma and Ba, 2015)
optimizer.

Batch size Utilising gradient checkpointing for
memory-efficient fine-tuning, we set the batch size
to 36.

Number of epochs We fine-tune each TLM for
4 epochs, resulting in 8000 steps.

maximum token length We set the maximum
token length to 512 since the maximum problem
length is much lower than that, thus, we do not
truncate the inputs.

learning rate We set the learninig rate of 1 x
107°

We utilise Huggingface (Wolf et al., 2019) im-
plementation when experimenting with the TLM
models we consider in this study.



