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Abstract

Large language models (LLMs) have demonstrated remarkable performance on
various tasks. However, it remains an open question whether the default Euclidean
space is the most suitable choice for embedding tokens in LLMs. In this study,
we investigate the non-Euclidean characteristics of LLMs. Our findings reveal
that token frequency follows a power-law distribution, with high-frequency tokens
clustering near the origin and low-frequency tokens positioned farther away. Ad-
ditionally, token embeddings exhibit a high degree of hyperbolicity, indicating
a latent tree-like structure in the embedding space. Motivated by these obser-
vations, we propose to efficiently fine-tune LLMs in hyperbolic space to better
exploit the underlying complex structures. However, we find that this hyperbolic
fine-tuning cannot be achieved through the naive application of exponential and
logarithmic maps when the embedding and weight matrices both reside in Eu-
clidean space. To address this technical issue, we introduce hyperbolic low-rank
efficient fine-tuning, HypLoRA, which performs low-rank adaptation directly on
the hyperbolic manifold, preventing the cancellation effect produced by consecutive
exponential and logarithmic maps and thereby preserving hyperbolic modeling
capabilities. Extensive experiments across various base models and two different
reasoning benchmarks, specifically arithmetic and commonsense reasoning tasks,
demonstrate that HypLoRA substantially improves LLM performance.

1 Introduction

Large language models (LLMs) such as GPT-4 [1], LLaMA [2], Gemma [3], and Qwen [4] have
demonstrated remarkable capabilities in understanding and generating human-like text [5, 6, 7].
Despite their impressive capabilities, these models often rely on Euclidean geometry for token
representation, which may inadequately capture the inherently complex and hierarchical nature of
real-world data structures [8, 9, 10, 11]. Consider how words naturally organize into nested categories
with varying levels of abstraction: abstract concepts like "fruit" occupy higher positions in the
semantic hierarchy, while specific instances such as "apple" or "banana" populate the lower levels.
Representing such structures effectively is crucial for understanding the semantics of language in
LLMs.

Recent advancements suggest that non-Euclidean geometries, particularly hyperbolic spaces [11, 12,
13, 14, 15, 16, 17, 18, 19, 20], offer promising alternatives for modeling hierarchical data. Hyperbolic
space, distinguished by its negative curvature, is especially well-suited for representing tree-like
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Figure 1: Token frequency distribution and token frequency vs. norm analysis for GSM8K and
AQuA datasets in LLaMA3-8B. The left panels show the token frequency distributions (power-law
distribution), while the right panels illustrate the relationship between token frequency and the
corresponding norms. This visualization reveals the underlying geometric structure of the token
embeddings. For additional data analysis and visualizations, please refer to Appendix A.

hierarchical data due to its exponential volume growth and geometric prior. This geometric property
makes hyperbolic space especially useful for tasks involving complex, hierarchically structured
information.

Proposed Analysis Framework. In this work, we first delve into how LLMs interact with token
embeddings and explore the extent to which these embeddings exhibit non-Euclidean characteristics.
We approach this from both a global and local perspective. At the global level, we analyze the
overall distribution of tokens by frequency and investigate how these frequencies are arranged across
the embedding space. At the 1ocal level, we measure the hyperbolicity of the metric space spanned
by each input prompt, where the hyperbolicity of the Euclidean embedding serves as a proxy for
evaluating the distance or dissimilarity between the underlying embedding structure and a tree-like
hierarchy [21, 22, 14].

Our analysis in Section 4 reveals several key insights. First, token frequency follows a power-law
distribution, which generally implies an underlying hierarchical structure similar to a branching
tree [23, 24, 25, 26]. High-frequency tokens (e.g., abstract concepts, function words) tend to be
located near the origin of the embedding space, while low-frequency tokens (e.g., specific terms) are
farther away, as demonstrated in Table 1. Second, our investigation of hyperbolicity (§ values) in
Table 2 demonstrates that LLM token embeddings exhibit significant tree-like properties.

Based on our findings above, a natural consideration is to develop hyperbolic LLMs that explicitly
incorporate a hyperbolic inductive bias?>. However, training LLMs from scratch can be resource-
intensive [27, 28, 29]. As a more resource-efficient alternative, we propose to build the first low-rank
adaptation fine-tuning method in hyperbolic space. This approach is particularly advantageous given
that existing LLMs are all Euclidean, and not all downstream tasks require hyperbolic geometry in
their fine-tuning. By employing hyperbolic adapters for specific tasks on Euclidean LLMs, we can
leverage the benefits of both geometries while maintaining computational efficiency.

Challenges. Adapting LLMs in non-Euclidean embedding spaces with classic techniques, i.e. apply-
ing exponential and logarithmic maps within tangent space [30, 31, 32, 33, 34] for weight adaptation
is problematic in this case. This approach fails to fully capture the hyperbolic geometry, as the expo-
nential and logarithmic maps are mutually inverse and can be canceled with consecutive operations®.
Consequently, the inherent properties of the hyperbolic space are not effectively preserved, limiting
the potential benefits of incorporating non-Euclidean geometries into the adaptation process.

Proposed Method. To address this limitation, we introduce HypLoRA to perform low-rank adaptation
directly on the hyperbolic manifold without transformation to the tangent space, thus preserving
hyperbolic modeling capabilities and counteracting the cancellation effect. HypL.oRA integrates
hyperbolic geometry into existing LLMs, implicitly introducing high-order interaction and accounting

The connection between power-law distribution and hyperbolic geometry is elaborated in Section 4.3.

3The cancellation effect occurs because standard hyperbolic neural network [31, 30] approaches apply
transformations in the tangent space at the origin, requiring the sequence: Euclidean embedding — exponential
map to hyperbolic space — logarithmic map to tangent space — linear transformation — exponential map back
to hyperbolic space — projection to Euclidean space. When these operations are chained together, the maps are
mutually inverse and effectively cancel out, reducing the entire sequence to approximately the original Euclidean
transformation BAx without preserving the beneficial hyperbolic geometry.



for the token hierarchies, enabling them to benefit from hyperbolic characteristics while minimizing
additional computational costs.

To summarize, our main contributions are twofold: (1) We conduct a comprehensive investigation
into the hyperbolic characteristics of token embeddings in LLMs, revealing their inherent tree-like
structure and strong hyperbolic properties. (2) We propose HypLoRA, a parameter-efficient fine-
tuning method that integrates hyperbolic geometry into LLMs while preserving hyperbolic modeling
capabilities. We conduct extensive experiments on various models and two different tasks, specifically
arithmetic reasoning and commonsense reasoning, demonstrating clear advantages over competitive
baselines.

2 Related Work

Hyperbolic Representation Learning and Foundation Models. Hyperbolic geometry has been
successfully applied to various neural network architectures and models [17, 19, 16], including
shallow hyperbolic neural networks [13, 31, 35, 36, 37, 38], hyperbolic CNNs [39, 40, 41], hyperbolic
GNNSs [30, 42, 43], and hyperbolic attention networks or Transformers [44, 35, 36, 45]. These
models leverage the inductive biases of hyperbolic geometry to achieve remarkable performance on
various tasks and applications [30, 20, 46, 14, 15, 47, 48, 49, 50]. Recent efforts have focused on
adapting LLLMs and CLIP [51] to hyperbolic spaces. Key advancements include developing more
expressive hyperbolic image-text representations [52], enabling compositional entailment learning
for deeper vision-language understanding [53], designing safety-aware hyperbolic frameworks for
content moderation [54], and creating core modules to facilitate the construction of novel hyperbolic
foundation models [55]. However, training LLMs from scratch remains computationally expensive
[56, 57]. The computational complexity increases further when considering Riemannian optimization
[56, 57, 58] and additional hyperbolic operations, like Mobius addition.

Geometric Analysis of Language Model Embeddings. Prior work has made important observations
about the geometry of embeddings that helped motivate our research. Reif et al. [59] demonstrated
that BERT embeddings contain distinct syntactic and semantic subspaces and showed evidence of
tree-like parse structures, while Gao et al. [60] revealed that token embeddings tend to cluster in a
narrow cone during training, leading to representation degeneration. Building on these geometric
insights, Rudman et al. [61] introduced IsoScore to formally quantify how uniformly embeddings
utilize the ambient vector space. Additionally, Puccetti et al. [62] analyzed outlier dimensions in
Transformers and showed their correlation with token frequencies. While these works provide crucial
foundations for understanding embedding geometry, our work differs in that we specifically quantify
and leverage the natural hyperbolicity of token embeddings.

Parameter-Efficient Fine-Tuning (PEFT) and LoRA. Fine-tuning LLMs [63, 64, 2] for downstream
tasks poses significant challenges due to their massive number of parameters. To address this issue,
PEFT methods have been proposed, which aim to train a small subset of parameters while achieving
better performance compared to full fine-tuning. PEFT methods can be broadly categorized into
prompt-based methods [65, 66, 67], adapter-based methods [68, 69], and reparameterization-based
methods [29, 70, 71]. Among these, the reparameterization-based LoRA [29] has gained significant
attention due to its simplicity, effectiveness, and compatibility with existing model architectures.
Variants of LoRA, such as LoRA+[72], DoRA [73], and AdaLoRA [74], have been proposed to
improve its performance and efficiency. Recent research has also investigated ensembles of multiple
LoRAs [75, 76] and quantization techniques [77, 78, 79]. The proposed method is a foundational
algorithm that is orthogonal to existing approaches and can potentially be combined with various
LoRA variants to exploit their complementary strengths and achieve superior performance.

3 Preliminary

This section introduces the concepts used in our study, including the Lorentz model of hyperbolic
geometry and the LoRA adapter.

Hyperbolic Geometry. Unlike the flat Euclidean geometry, hyperbolic geometry is characterized by
a constant negative curvature. We utilize the Lorentz model, also known as the hyperboloid model,
for our study due to its ability to effectively capture hierarchical structures and maintain numerical
stability [12, 35, 80]. The Lorentz model in n dimensions with curvature —1/K (K > 0) is defined



as:
Kk ={xeR"™ : (x,x); = —K,z9 > 0}, (1

where (-, -) 2 is the Lorentzian inner product, given by: (X,y)z = —Zoyo + Y iy Xi¥i-

Tangent Space. In the Lorentz model L%, the tangent space at a point x is denoted as T L};. Itis
defined as the set of all vectors u that are orthogonal to x under the Lorentzian inner product:

Tl = {u e R": (u,x), = 0}. )

To facilitate projection between the hyperboloid and its tangent spaces, one can utilize two critical
mappings: the exponential and logarithmic maps. The exponential map at x, denoted expX, projects
a vector from the tangent space 7L’ back onto the hyperboloid. Conversely, the logarithmic map,

denoted 1ogf , maps a point on the hyperboloid to the tangent space at x. The relevant formulas are
given in Appendix D.1.

LoRA Adapter. The LoRA adapter provides an efficient approach for modifying large LLMs with
minimal computational overhead. Instead of retraining the entire model, LoRA focuses on adjusting
specific components within the model’s architecture to transform an input x into an output z. In
practice, LoRA targets the weight matrices found in each Transformer layer of an LLM. Typically, the
weight W of the Transformer, which resides in the dimensions R?*¥, is adapted through a low-rank
approximation. This is achieved by introducing an additional term, AW, to the original weight
matrix:

z = Wiera(X) = Wx + AWx = Wx + BAx. 3)

Here, B € R%*" and A € R"*F represent two smaller, learnable matrices where r—the rank of these
matrices—is significantly less than either d or k. This design choice ensures that » < min(d, k),
thereby reducing the complexity of the model adaptation. During the fine-tuning process, only the
matrices A and B are adjusted, while the pre-existing weights W are kept frozen. This method
significantly decreases the number of parameters that need to be trained, from dk to (d + k)r,
enhancing the efficiency of the fine-tuning process. As a result, LORA enables the targeted adaptation
of LLMs, allowing them to transform an input x into an output z while maintaining high performance
and adapting to new tasks or datasets with a fraction of the computational resources typically required.

4 Investigation

In this section, we present an in-depth investigation of token embeddings in LLMs from both global
and local perspectives. Our goal is to uncover the geometric structures underlying pretrained token
representations, specifically examining the global distribution of token frequencies and their spatial
arrangement, as well as the local hyperbolicity of token embeddings across various datasets.

4.1 Global Token Statistics

We begin by investigating the global distribution of token frequencies in the context of arithmetic
reasoning datasets, focusing on datasets such as GSM8K [81], AQuA [82], MAWPS [83], and
SVAMP [84]. We also provide a broader analysis across different types of datasets and LLMs in
Appendix A. Figure 1 (left) presents the distribution of token frequencies, with a power-law exponent
of approximately v ~ 1.9, as estimated by the powerlaw package [85]. In such distributions, the
exponent 7y controls how quickly token frequencies decline: smaller values of 7y (closer to 1) indicate
a more gradual decay where frequent tokens dominate, while larger values signify a sharper decline,
with most tokens being rare.

This power-law behavior aligns with the tree-like hierarchical nature of language [11, 14, 86, 49, 20].
High-frequency tokens often correspond to more abstract or general concepts, while low-frequency
tokens represent specific or rare terms. This distribution naturally suggests a hierarchical organization
of the token space, where general concepts serve as the "roots" and specific terms "branch out" as we
move through the hierarchy.

Empirical Observation. To better understand the relationship between token frequency and their
spatial arrangement within the embedding space, we calculate the average token frequency as a
function of their distance from the origin. The results are shown in Figure 1 (right), indicating that
more frequent tokens tend to have smaller norms and vice versa. Table | provides representative



Table 1: Mean, Minimum, and Maximum Frequency and Norm Values for Different Models and
Groups. Group 1: fo, in, have, that, and, is, for, Group 2: how, much, many, time, cost, Group 3:
animal, fruit, number, color, size, Group 4: dog, cow, apple, banana, 380, 480, purple, red, medium,
small, large.

Model Group Frequency (Mean [Min~Max]) Norm (Mean [Min~Max])

Group 1 4934.4 [1838 ~ 8539] 3.160 [3.060 ~ 3.299]
Gemmagp  Group2 2709.4 [474 ~ 6681] 3.561 [3.488 ~ 3.627]
Group 3 202.0 34 ~ 1191] 3.765 [3.623 ~ 3.887]
Group 4 114.3 [25 ~ 284] 3.998 [3.660 ~ 4.520]
Group 1 4993.9 [1838 ~ 8547] 0.951 [0.793 ~ 1.060]
Group 2 2712.6 [474 ~ 6683] 1.222 [1.118 ~ 1.299]
LLaMA-TB  Group 3 200.8 [34 ~ 1200] 1.325 [1.274 ~ 1.428]
Group 4 139.1 [26 ~ 286] 1.364 [1.326 ~ 1.417]
Group 1 49374 [1838 ~ 8547] 0.353 [0.330 ~ 0.396]
Group 2 2710.0 [474 ~ 6683] 0.456 [0.394 ~ 0.499]
LLaMA3-8B 003 202.6 [34 ~ 1191] 0.499 [0.452 ~ 0.549]
Group 4 97.1[13 ~ 284] 0.569 [0.499 ~ 0.675]
Group 1 4993.9 [1838 ~ 8547] 1.027 [0.833 ~ 1.255]
Group 2 2712.6 [474 ~ 6683] 1,429 [1.346 ~ 1.489]
LLaMA-13B G 0ip 3 290.8 [34 ~ 1200] 1,494 [1.453 ~ 1.532]
Group 4 139.1 26 ~ 286] 1.501 [1.470 ~ 1.526]

tokens with different norm ranges within the embedding space of different base models. The results
presented in Table 1 demonstrate several critical findings. First, we observe a statistically significant
separation between functional/abstract words (Group 1) and specific terms (Group 4) across all
models, with Group 1 consistently exhibiting the smallest embedding norms and highest frequencies,
while Group 4 shows the largest norms and lowest frequencies. Second, the relative ordering of groups
remains consistent across all examined models, with Group 1 < Group 2 < Group 3 < Group 4
in terms of embedding norms, despite absolute magnitude variations. Most notably, even across
different architectural families (LLaMA vs. Gemma), the hierarchical organization principle remains
preserved, though with different absolute scales, where Gemma-7B exhibits systematically larger
embedding norms (mean Group 1 norm: 3.160) compared to LLaMA models (mean Group 1 norm:
0.353 ~ 1.027), yet maintains the same relative hierarchical structure.

Conclusion. These findings suggest that the spatial organization of token embeddings reflects the
inherent hierarchical relationships in language, supporting the hypothesis that token embedding
in LLMs exhibits a tree-like structure, with spatial positioning aligned with token frequency and
specificity. It is worth noting, however, that a power-law distribution of token frequency alone does
not guarantee the emergence of a hierarchical token embedding, as it also depends on the training
objectives. Our analysis demonstrates that the hierarchy is strongly correlated with token frequencies,
which can be understood through the lens of LLMs tokenization and co-occurrence pattern learning
during training. While the exact mechanisms underlying this relationship require further investigation
in future work, the spatial distribution of token embeddings remains crucial as it provides the primary
motivation for our methodological approach.

4.2 j-Hyperbolicity of Local Token Embeddings

To rigorously quantify the hierarchical nature of token embeddings, we examine the J-hyperbolicity
of the space spanned by the token embedding. §-Hyperbolicity, introduced by Gromov [87], is a
measure that captures the degree to which a metric space deviates from an exact tree structure. Lower
values of § imply a space more similar to a perfect tree, while higher values indicate deviation from a
tree-like structure. A brief explanation of d-hyperbolicity can be found on Wikipedia®.

We compute §-hyperbolicity using the four-point condition, which compares the Gromov products
between any four points a, b, ¢, and w in the metric space. Specifically, the hyperbolicity is defined
as:

[a, c]w > min([a, b]w, [b, ¢lw) — 6, %)

*https://en.wikipedia.org/wiki/Hyperbolic_metric_space
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Table 2: Comparison of J-Hyperbolicity across various metric spaces and datasets. The left table
provides reference values for baseline metric spaces, allowing for a clearer interpretation of hyperbol-
icity in the analyzed datasets in the right table.

Metric Space Hyperbolicity(d) Hyperbolicity(6)  MAWPS SVAMP GSMBK AQuA

Sphere Space 0.99 & 0.01 LLaMA-7B 0.08+0.02 0.09+0.01 0.10+0.01 0.10+0.01
Random Graph 0.62 + 0.34 LLaMA-13B 0.08+0.01 0094001 0094001 0.10+0.01
PubMed Graph 0.40 + 0.45 Gemma-7B 0.11+0.01 0114001 0.11+0.01 0.12+0.01
Scale-free Graph 0.00 LLaMA3-8B 0.06+0.01 0.07+0.01 0.07+0.01 0.08+0.01
Tree Graph 0.00 Average 0.08+0.01 0.09+0.01 0.09+0.01 0.10+0.01

where the Gromov product [a, b],, is:
1
[a, b, = i(d(a, w) + d(b,w) — d(a,b)). Q)

Quantitative Analysis. To measure the hyperbolicity of token embeddings, we apply this algorithm
to various open-source LLMs. Following the methodologies proposed by Khrulkov et al. [14] and
Cetin et al. [15], we estimate d-hyperbolicity using the efficient algorithm introduced by Fournier
et al. [88]. To ensure scale invariance, we normalize § by the diameter of the embedding space,
diam(X), yielding a relative measure: 0, = ﬁ‘s(x). This relative measure ranges from O to
1, with values closer to O indicating a highly hyperbolic (tree-like) structure, and values near 1
indicating a non-hyperbolic, flat structure. Following previous works [14], we employ Euclidean
distance as a measure of the shortest distance. To further validate the correctness of this approach, we
generate a series of random graphs with predefined hyperbolicity, embed them using a graph neural
network (GNN), and then compute the hyperbolicity in Euclidean space. Details of this process are
provided in Appendix B. Our experiments reveal a positive correlation between the hyperbolicity
of the embeddings and the original graphs. Consequently, we utilize this method as a proxy for
estimating the hyperbolicity of token embeddings. In our analysis, we calculate hyperbolicity at
the prompt level, treating each token within a prompt as a point in the metric space spanned by the
embeddings. By averaging the hyperbolicity across all prompts, we assess the overall hyperbolic
structure of token embeddings in each dataset.

Conclusion. Our results, as shown in Table 2, reveal that token embeddings exhibit significant
hyperbolicity, suggesting that the embedding space has a strong tree-like structure. This observation
further corroborates our findings from the global token statistics, where the arrangement of tokens in
the embedding space mirrors hierarchical relationships seen in language data. We also provide the
hyperbolicity analysis of the final hidden layer in Appendix A.3.

4.3 Connection between Power-law Distribution and Hyperbolic Geometry

The observation of a power-law distribution in token frequencies, as discussed in Section 4, is
not merely a statistical curiosity. It has deep connections to the underlying geometry of the data,
particularly to hyperbolic spaces, which are well-suited for representing hierarchical structures [11,
23, 89, 90]. For instance, Nickel and Kiela [11] highlighted that the existence of power-law degree
distributions can often be traced back to hierarchical structures. Similarly, Ravasz and Barabdsi [86]
established that the scaling law P (k) ~ k=7 can signify the co-existence of a hierarchy of nodes
with varying degrees of clustering. Krioukov et al. [23] further strengthened this connection by
showing that the exponent of the power-law degree distribution is a function of the hyperbolic space
curvature. Building on this geometric understanding, Papadopoulos et al. [90] demonstrated that
complex (scale-free) network topologies naturally emerge when networks grow within an underlying
hyperbolic metric space, and importantly, that the resulting hyperbolic embedding of these dynamic
scale-free networks facilitates highly efficient greedy forwarding.

To formalize this connection with hyperbolic geometry, we can consider embedding tokens in a
hyperbolic space. A common model for hyperbolic space is the Poincaré disk model (H?) with
curvature K = —1. In such a space, both the circumference C(r) and area A(r) of a circle of radius
r exhibit exponential growth:

C(r) =2msinh(r) ~e” asr — oo, (6)

A(r) = 2m(cosh(r) — 1) ~e" asr — 0. @)



Table 3: Accuracy comparison of various LLMs on arithmetic reasoning tasks. The percentage
following each dataset indicates the proportion of prompts relative to the total number of inference
prompts. M.AVG represents the micro-average accuracy. For a full comparison table, please see
Appendix F.

Base Model  PEFT Method # Params (%) MAWPS(8.5%) SVAMP(35.6%) GSM8K(46.9%) AQuA(9.0%) M.AVG

GPT-3.5 None None 87.4 69.9 56.4 38.9 62.3
LoRA 0.83 81.9 48.2 38.3 185 437
LLaMA-TB  gooloRA 0.83 79.2 493 39.2 207 44.6
LoRA 0.67 83.5 54.7 485 185 51.0
LLaMA-13B oL oRA 0.67 83.4 558 497 215 522
Gemma7p  LORA 0.79 89.5 74.2 614 34.3 65.9
HypLoRA 0.79 89.5 75.6 683 465 710
LoRA 0.70 91.2 81.2 69.8 421 73.2
LLaMA3-8B g LoRA 0.70 89.1 80.6 726 469 74.5
Gommazap  LORA 1.04 89.0 803 67.7 135 718
HypLoRA 1.04 2.8 78.9 678 484 72.0

If we consider token embeddings in a hyperbolic space with polar coordinates (r, §), where 7 € R™
is the radial coordinate (correlating with token frequency) and 6 € [0, 27] is the angular coordinate
(encoding semantic similarity), the radial distribution of tokens follows p(r) ~ e~¢", where ¢ > 0
relates to the hyperbolic curvature K. The frequency function k(r) for tokens at radius  is then
given by k(r) ~ e~ ". Through coordinate transformation, we can derive the power-law frequency

distribution:
dr

dk

The relationship between the hyperbolic curvature and the power-law exponent y can be given by
vy =2+ % (as concluded by Krioukov et al. [23] in the context of complex networks, where (
relates to the effective temperature or network structure). This relationship underscores the theoretical
connection between the power-law behavior observed in token frequencies and the inherent hyperbolic
geometry of the embedding space.

P(k) ~ P(r) |So| ~ k7

Hyperbolic space offers distinct advantages for modeling language hierarchies, especially when
addressing the structural and spatial constraints of token co-occurrence: (1) Separation of Low-
Frequency Tokens. Tokens with low frequencies, which typically represent more specific or granular
concepts, require clear separation from each other to maintain semantic clarity. (2) Proximity to
High-Frequency Hypernyms. Simultaneously, these low-frequency tokens should remain close
to their corresponding high-frequency hypernyms or function words. Hyperbolic space is uniquely
suited for capturing these dual constraints due to its exponential volume growth, which inherently
supports hierarchical structure and allows for ample separation of specific entities while keeping
them close to their parent categories. This contrasts with Euclidean space, where such arrangements
can lead to crowding or distortion of distances.

Overall Conclusion. Through these analyses, we demonstrate that token embeddings in LLMs
exhibit hierarchical organization and significant hyperbolicity. This understanding not only sheds
light on the geometric nature of token embeddings but also motivates the development of methods
that can better capture and preserve these underlying geometric properties.

5 Hyperbolic Fine-tuning for LL.Ms

The core technique in the LoRA adapter involves linear transformations. The conventional approach
to implementing linear transformations in the Lorentz model of hyperbolic geometry is through
operations in the tangent space, while maintaining the learnable weights in Euclidean space [31, 30].
However, this approach presents a significant challenge for our application. Since the hidden states
of LLMs exist in Euclidean space, we would need to project these states to hyperbolic space and
subsequently map them back to the tangent space. This process results in consecutive logarithmic
and exponential mappings (log” (expX(x))), which effectively cancel each other out, reducing the
method to the original LoRA approach and nullifying any benefits from hyperbolic geometry.

Direct Lorentz Low-rank Transformation (LLR). To overcome this limitation, we propose a Direct
Lorentz Low-rank Transformation (LLR) that operates directly on the hyperbolic manifold without



Table 4: Comparison on Commonsense Reasoning Tasks. These datasets contain relatively similar
amounts of data, so we use AVG to represent the average accuracy.

Base Model PEFT Method #Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

GPT-3.5 None None 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0
LLaMA3-8B LoRA 0.70 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
HypLoRA (Ours) 0.70 74.1 87.6 80.6 94.5 84.7 90.4 81.2 85.2 84.8

Gemma3-4B LoRA 1.04 68.1 83.2 772 88.9 80.5 84.5 69.9 83.6 79.5
- HypLoRA (Ours) 1.04 70.0 84.3 79.2 91.5 80.3 89.1 75.9 86.4 82.5
Qwen2.5-7B LoRA 0.71 73.4 89.5 79.5 93.6 84.1 92.8 82.0 87.0 852
: HypLoRA (Ours) 0.71 72.8 89.3 79.8 94.8 84.4 95.5 87.5 90.8 87.0

relying on tangent space mappings. This approach allows us to perform low-rank adaptation while
preserving the advantages of hyperbolic geometry:

2" = Wiora(x”) = Wx" + AWx”
= WxP + Hf{_)E(LLR(BA, Hg—)H(XE)))7

where LLR represents our Direct Lorentz Low-Rank Transformation that operates directly on the
hyperbolic representation x = IT%X , . (xF):

LLR(BA,x") = (/| BAxH |3 + K, BAx["), ©9)

where xf is the space-like component of xH ie., xf = x[lf n] without the first time-like dimension

®)

X{3.1)- The operators IT;_, ;y and ITf;_, ; represent projections from Euclidean to hyperbolic space

and vice versa, respectively. While exponential maps and logarithmic maps are commonly used for
these projections, we simplify the process by utilizing stereographic projection and its inverse [91] as a
more computationally efficient alternative for LLM adaptation, where the detailed formula is given in
Appendix D.1. It can be verified that LLR.(BA, x) € L", ensuring that our transformation remains
within the Lorentz model of hyperbolic space. This transformation primarily affects the space-like
dimensions, functioning similarly to a Lorentz rotation. The linear transformation is inspired by
hyperbolic neural networks [35, 45, 92]. For efficient integration with LLMs, the transformation
removes normalization and non-linear activation terms in [35], varying curvatures in [45], and
orthogonal constraints in [92]. Our main contribution lies in applying hyperbolic low-rank adaptation
for LLMs, while the specific linear transformation itself is flexible, and other transformations on the
manifold could also be compatible with our approach.

By adapting in the hyperbolic domain, HypLoRA captures more complex hierarchical relationships
than traditional Euclidean-based methods, as detailed in Proposition 1. Additionally, the low-rank
nature of the adaptation matrices A and B promotes parameter efficiency, making HypLoRA well-
suited for LLMs.

Time Complexity. HypLoRA has similar theoretical time complexity as the Euclidean LoRA, which
is O(r - (d+ k)), where d and k represent the input and output dimensions, respectively. However, in
practical implementation, HypLoRA introduces additional computations due to the logarithmic and
exponential maps. These additional operations, nevertheless, can be completed within O(N) where
N is the number of input tokens.

Proposition 1. Let x € RY denote the input token embeddings. The HypLoRA adaptation, applied to
X, involves a sequence of projection into hyperbolic space, a Direct Lorentz Low-rank Transformation
(LLR), and projection back to Euclidean space. Due to the non-linear nature of these hyperbolic
operations, the effective transformation applied by HypLoRA introduces higher-order terms with
respect to X. As detailed in Appendix E, these terms exhibit explicit dependency on the L2 norm,
|x||2, of the input embeddings. This norm-dependent, higher-order modification enables HypLoRA
to capture hierarchical relationships in the embedding space, thereby achieving natural alignment
with the underlying hyperbolic geometry of the token representations.

5.1 Experimental Settings

Datasets. Following the experiment setup outlined in [93], we utilize two high-quality datasets,
Math10K and Commonsense 170K, tailored for mathematical and commonsense reasoning, respec-
tively. Math10K consists of training data from GSMS8K [81], MAWPS, MAWPS-single [83], and
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1,000 samples from AQuA [82], augmented with ChatGPT-generated step-by-step rationales to
reinforce reasoning capabilities. The test set includes GSM8K, AQuA, MAWPS, and SVAMP [84],
ensuring no overlap with the training data. Commonsensel70K is constructed by reformatting
samples from BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA using
standardized templates that outline the task, content, and answer, resulting in 170K training samples.
The test datasets are drawn from the same sources, with strict separation from training samples.
Model Comparison. We evaluate the performance of LLaMA-7B, LLaMA-13B, LLaMA3-8B,
Gemma-7B, Qwen2.5-7B, and Gemma3-4B base models. Except for Gemma-7B, we use the instruct
variants of all models to ensure consistency with instruction-tuned behavior. For fine-tuning methods,
we compare with LoRA [29].

Implementation Details. To ensure consistency and comparability, our experimental setup closely
followed the training configurations outlined in Hu et al. [93]. Across all fine-tuning tasks, we
employed the AdamW optimizer with a learning rate of 3 x 10~* and trained for a total of three
epochs. LoRA modules (and consequently, HypLoRA adapters) were integrated into both the
Multi-Head Attention (MHA) and MLP layers of the foundation models. A key hyperparameter for
HypLoRA is the curvature K (defining the hyperbolic curvature as —1/K’), which was determined by
searching the set {0.5, 1.0}. For evaluation, final scores were micro-averaged for arithmetic reasoning
and averaged for commonsense reasoning across the datasets, thereby giving equal weight to each
individual prompt, regardless of the varying number of questions per dataset (e.g., 1,319 in GSM8K
versus 238 in MAWPS). All experiments were executed on a single NVIDIA A100 GPU with 80GB
of memory.

5.2 Experimental Results

Table 3 summarizes our key experimental outcomes on arithmetic reasoning tasks, while Table 4
presents results for commonsense reasoning benchmarks. Our primary comparison contrasts LoRA
and HypLoRA to demonstrate the effectiveness of the proposed approach, with additional baselines
provided in Appendix F. Our findings consistently demonstrate that HypLoRA achieves superior
performance compared to the standard LoRA across a diverse range of LLMs and reasoning tasks.
This empirical evidence supports the theoretical advantages outlined in Proposition 1, suggesting that
adapting LLMs within the hyperbolic domain allows for a more effective capture of the complex,
often hierarchical, relationships.

Arithmetic Reasoning Performance. On arithmetic reasoning tasks, as indicated by results in
Table 3, HypLoRA shows notable efficacy, especially on datasets recognized for their complexity,
such as GSM8K and AQuA. These datasets demand robust multi-step reasoning and a nuanced
understanding of numerical and textual relationships. The enhanced performance of HypLoRA
in these areas aligns with its design; by operating in hyperbolic space, it can better model the
hierarchical structure of problems and distinguish subtle yet critical differences in input embeddings.
This is further corroborated by the theoretical analysis (Appendix E), which posits that HypLoRA
introduces higher-order, norm-dependent terms. These terms allow the model to develop a more
refined sensitivity to token importance and inter-token relationships.

Commonsense Reasoning Performance. The robust performance of HypLoRA extends to common-
sense reasoning, as detailed in Table 4. For the Gemma3-4B model, HypLoRA achieved an average
accuracy of 82.5% across all datasets, surpassing LoRA’s 79.5%. Similarly, on the Qwen2.5-7B
model, HypLoRA obtained an average of 87.0% compared to LoRA’s 85.2%. These improvements
are distributed across various commonsense benchmarks, including notable gains on datasets like
ARC-c and OBQA for Gemma3-4B, and ARC-c, ARC-e, and OBQA for Qwen2.5-7B. Commonsense



reasoning often relies on understanding implicit relationships and contextual nuances, which may not
always be explicitly hierarchical but still benefit from the richer representational capacity offered by
hyperbolic geometry. The ability of HypLoRA to better discern these subtleties, likely due to the
mechanisms described in Proposition 1, contributes to these observed performance gains, showcasing
the broad applicability of hyperbolic fine-tuning.

The Impact of Curvature on Performance. Curvature in hyperbolic space is a key hyperparameter
in HypLoRA, directly affecting its capacity to model underlying structures and geometries. To
evaluate its impact, we experiment with a learnable curvature initialised with different curvature
values on the Gemma3-4B model, as shown in Table 5, where the curvature is defined as —1/K.
Our results demonstrate that curvature does influence model performance. For Gemma-7B and
Gemma-3-4B, a curvature value of 0.5 consistently yields the best overall performance across both
arithmetic and commonsense reasoning benchmarks. Similarly, for LLaMa3-8B, 0.5 proves optimal.
In commonsense reasoning benchmarks, a curvature of 1.0 performs best for LLaMa3-8B and
Qwen2.5-7B.

Efficiency. In Section 5, we analyze the time complexity of our approach, which remains consistent
with that of LoORA. However, during actual inference, HypLoRA incurs additional computational over-
head due to operations such as the exponential and logarithmic mappings, or the inverse stereographic
and stereographic projections when using the stereographic method. These operations introduce some
additional runtime, particularly for larger models. The GPU hours for inference on four datasets are
presented in Figure 2. Despite this overhead, our method demonstrates improved efficiency when
compared to the previous competitive model, DoRA. Notably, HypLoRA still outperforms DoRA in
terms of both runtime and overall efficiency. Besides, all models can be fine-tuned in approximately
one hour for optimal training efficiency.

6 Conclusion

In this work, we investigated the non-Euclidean geometric properties inherent in LLM token em-
beddings, confirming their strong hyperbolic characteristics, which suggest underlying hierarchical
structures. Building on these insights, we introduced HypLoRA, a novel hyperbolic low-rank adap-
tation technique. HypLoRA performs fine-tuning directly on the hyperbolic manifold. Extensive
experiments show that HypLoRA significantly improves LLM performance on arithmetic reasoning
and commonsense tasks. By leveraging the hyperbolic structure of the data, HypLoRA enhances the
model’s ability to capture and utilize intricate relationships, leading to better reasoning capabilities.
While the theoretical time complexity aligns with LoRA, the practical application of hyperbolic pro-
jections introduces a slight computational overhead. This is a manageable aspect that can be readily
addressed through optimized numerical libraries or by exploring alternative, more computationally
efficient projection techniques without sacrificing the geometric benefits.

Broader Impact. Enhancing reasoning-oriented LLMs can help education, scientific assistance,
and safer decision-support systems, but the same improvements may also accelerate misuse (e.g.,
automating complex disinformation or amplifying biased advice) and increase energy consumption
because of added hyperbolic projections. We therefore advocate releasing checkpoints and code with
usage guidelines (as in our public repo), tracking compute budgets when scaling HypLoRA further,
and pairing capability gains with evaluations focused on safety, robustness, and fairness.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper’s abstract and introduction explicitly state the main claims, including
the contribution of the proposed method and analysis, and its scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses a limitation in the Conclusion (Section 6).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper presents Proposition 1 regarding HypLoRA, introducing higher-
order terms. It states that the details and derivation of these terms are provided in Appendix
F.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5.1 "Experimental Settings" describes the datasets, models, and
implementation details, including optimizer (AdamW),etc.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used (e.g., GSM8K, AQUA, various commonsense reasoning
benchmarks) are publicly available and cited.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 5.1 details the experimental setup.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 2, which presents hyperbolicity across various metric spaces and datasets,
includes error bars reported as mean and standard deviation. Tables 3 and 4 report mean
accuracies over three runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper states in Section 5.1 that "All experiments were executed on a single
NVIDIA A100 GPU with 80GB of memory."

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Based on the content of the paper, the research focuses on investigating
geometric properties of LLMs and proposing a new fine-tuning method. The datasets used
are standard benchmarks in the field. There is no indication of activities that would violate
the NeurIPS Code of Ethics, such as plagiarism, falsification of data, or unethical use of
human subjects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Conclusion part.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: It does not introduce new large-scale pretrained models or novel scraped
datasets that would pose a high risk for misuse requiring specific safeguards beyond those
applicable to the original models it builds upon.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators/original owners of assets (datasets like GSM8K, MAWPS, AQUA;
models like LLaMA, Gemma; and software like the Powerlaw Package ) are credited via
citations.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The datasets are existing benchmarks.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not appear to involve human subjects in a way that would
necessitate IRB approval, as per the justification for question 14.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: No, except for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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