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Abstract

Large language models (LLMs) have demonstrated remarkable performance across
various tasks. However, it remains an open question whether the default Euclidean
space is the most suitable choice for LLMs. In this study, we investigate the
geometric characteristics of LLMs, focusing specifically on tokens and their em-
beddings. Our findings reveal that token frequency follows a power-law distribution,
where high-frequency tokens (e.g., “the,” “that”) constitute the minority, while
low-frequency tokens (e.g., “apple,” “dog”) constitute the majority. Furthermore,
high-frequency tokens cluster near the origin, whereas low-frequency tokens are
positioned farther away in the embedding space. Additionally, token embeddings
exhibit hyperbolic characteristics, indicating a latent tree-like structure within the
embedding space. Motivated by these observations, we propose HypLoRA, an
efficient fine-tuning approach that operates in hyperbolic space to exploit these
underlying hierarchical structures better. HypLoRA performs low-rank adaptation
directly in hyperbolic space, thereby preserving hyperbolic modeling capabilities
throughout the fine-tuning process. Extensive experiments across various base mod-
els and reasoning benchmarks, specifically arithmetic and commonsense reasoning
tasks, demonstrate that HypLoRA substantially improves LLM performance.

1 Introduction

Large language models (LLMs) such as GPT-4 [1], LLaMA [2], Gemma [3], and Qwen [4] have
demonstrated remarkable capabilities in understanding and generating human-like text [5, 6, 7].
Despite their impressive capabilities, these models often rely on Euclidean geometry for token
representation, which may inadequately capture the inherently complex and hierarchical nature of
real-world data structures [8, 9, 10, 11, 12, 13]. Consider how words naturally organize into nested
categories with varying levels of abstraction: abstract concepts like “fruit” occupy higher positions
in the semantic hierarchy, while specific instances such as “apple” or “banana” populate the lower
levels. Representing such structures effectively is crucial for understanding the semantics of language
in LLMs.

Recent advancements suggest that non-Euclidean geometries, particularly hyperbolic spaces [11,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23], offer promising alternatives for modeling hierarchical data.
Hyperbolic space, distinguished by its negative curvature, is especially well-suited for representing
tree-like hierarchical data due to its exponential volume growth and geometric prior. This geometric
property makes hyperbolic space particularly capable for tasks involving complex, hierarchically
structured information.
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Figure 1: Token frequency distribution and token frequency vs. norm analysis for GSM8K (Group
1) and AQuA (Group 2) datasets in LLaMA3-8B. For each group, the left panels show the token
frequency distributions (power-law distribution), while the right panels illustrate the relationship
between token frequency and the corresponding norms. This visualization reveals the underlying
geometric structure of the token embeddings. For additional data analysis and visualizations, please
refer to Appendix A.

Proposed Analysis Framework. In this work, we first delve into how LLMs interact with token
embeddings and explore the extent to which these embeddings exhibit non-Euclidean characteristics.
We approach this from both a global and local perspective. At the global level, we analyze
the overall distribution of tokens by frequency and investigate how these frequencies are arranged
across the embedding space. At the local level, we measure the hyperbolicity of the metric space
spanned by each input prompt, where the hyperbolicity serves as a proxy for evaluating the distance
or dissimilarity between the underlying embedding structure and a tree-like hierarchy [24, 25, 16].

Our analysis in Section 4 reveals several key insights. Globally, token frequency follows a power-
law distribution, where high-frequency tokens (e.g., “the,” “that”) constitute the minority, while low-
frequency tokens (e.g., “apple,” “dog”) constitute the majority. Power-law distributions are consistent
with, and can naturally arise from, underlying hierarchical or branching generative mechanisms [12,
26, 27].2 Besides, high-frequency tokens (e.g., abstract concepts, function words) tend to be located
near the origin of the embedding space, while low-frequency tokens (e.g., specific terms) are farther
away, as demonstrated in Table 1. Locally, our investigation of hyperbolicity (δ values) in Table 2
demonstrates that LLM token embeddings in each prompt exhibit significant tree-like properties.

Based on our findings above, a natural consideration is to develop hyperbolic LLMs that explic-
itly incorporate a hyperbolic inductive bias3. However, training LLMs from scratch is resource-
intensive [29, 30, 31]. As a more resource-efficient alternative, we propose to build the first low-rank
adaptation fine-tuning method in hyperbolic space. This approach is particularly advantageous given
that existing LLMs are all Euclidean, and not all downstream tasks require hyperbolic geometry in
their fine-tuning. By employing hyperbolic adapters on Euclidean LLMs for specific tasks, we can
leverage the benefits of both geometries while maintaining computational efficiency.

Challenges. Adapting LLMs in non-Euclidean embedding spaces with classic techniques, i.e., apply-
ing exponential and logarithmic maps within tangent space [32, 33, 34, 35, 36] for weight adaptation
is problematic in this case. This approach fails to fully capture the hyperbolic geometry, as the expo-
nential and logarithmic maps are mutually inverse and can be canceled with consecutive operations4.
Consequently, the inherent properties of the hyperbolic space are not effectively preserved, limiting
the potential benefits of incorporating non-Euclidean geometries into the adaptation process.

Proposed Method. To address this limitation, we introduce HypLoRA to perform low-rank adapta-
tion directly on the hyperbolic manifold without transformation to the tangent space, thus preserving
hyperbolic modeling capabilities and counteracting the cancellation effect. HypLoRA integrates hy-
perbolic geometry into existing LLMs, implicitly introducing high-order interactions and accounting

2Power-law scaling alone does not uniquely identify the underlying structure or mechanism; additional
evidence is needed to support a hierarchical interpretation [28].

3The connection between power-law distribution and hyperbolic geometry is elaborated in Section 4.3.
4The cancellation effect occurs because standard hyperbolic neural network [33, 32] approaches apply

transformations in the tangent space at the origin, requiring the sequence: Euclidean embedding → exponential
map to hyperbolic space → logarithmic map to tangent space → linear transformation → exponential map back
to hyperbolic space → projection to Euclidean space. When these operations are chained together, the maps are
mutually inverse and effectively cancel out, reducing the entire sequence to approximately the original Euclidean
transformation BAx without preserving the beneficial hyperbolic geometry.
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for token hierarchies, enabling them to benefit from hyperbolic characteristics while minimizing
additional computational costs.

To summarize, our main contributions are twofold: (1) We conduct a comprehensive investigation into
the geometric characteristics of token embeddings in LLMs, revealing their inherent tree-like structure
and strong hyperbolic properties. (2) We propose HypLoRA, a parameter-efficient fine-tuning method
that integrates hyperbolic geometry into LLMs while keeping it aligned with the Euclidean LLM
framework. We conduct extensive experiments on various models and different tasks, specifically
arithmetic reasoning and commonsense reasoning, demonstrating clear advantages over competitive
baselines.

2 Related Work

Hyperbolic Representation Learning and Foundation Models. Hyperbolic geometry has been
successfully applied to various neural network architectures and models [19, 21, 18], including shal-
low hyperbolic neural networks [15, 33, 37, 38, 39, 40], hyperbolic CNNs [41, 42, 43], hyperbolic
GNNs [32, 44, 45, 46], and hyperbolic attention networks or Transformers [47, 37, 38, 48]. These
models leverage the inductive biases of hyperbolic geometry to achieve remarkable performance on
various tasks and applications [32, 22, 23, 49, 16, 17, 50, 51, 52, 53]. Recent efforts have focused on
adapting LLMs and CLIP [54] to hyperbolic spaces. Key advancements include developing more
expressive hyperbolic image-text representations [55], enabling compositional entailment learning
for deeper vision-language understanding [56], designing safety-aware hyperbolic frameworks for
content moderation [57], and creating core modules to facilitate the construction of novel hyper-
bolic foundation models [58]. While these adaptations show promise, training LLMs from scratch
remains computationally expensive [59, 60]. The computational complexity increases further when
considering Riemannian optimization [59, 60, 61] and additional hyperbolic operations, like Möbius
addition.

Geometric Analysis of Language Model Embeddings. Prior work has made important observations
about the geometry of embeddings that helped shape and motivate our research. Reif et al. [62]
demonstrated that BERT embeddings contain distinct syntactic and semantic subspaces and showed
evidence of tree-like parse structures, while Gao et al. [63] revealed that token embeddings tend to
cluster in a narrow cone during training, leading to representation degeneration. Building on these
geometric insights, Rudman et al. [64] introduced IsoScore to formally quantify how uniformly
embeddings utilize the ambient vector space. Additionally, Puccetti et al. [65] analyzed outlier
dimensions in Transformers and showed their correlation with token frequencies. While these works
provide crucial foundations for understanding embedding geometry, our work differs in that we
specifically quantify and leverage the natural hyperbolicity of token embeddings.

Parameter-Efficient Fine-Tuning (PEFT) and LoRA. Fine-tuning LLMs [66, 1, 2] for downstream
tasks poses significant challenges due to their massive number of parameters. To address this
issue, PEFT methods have been proposed, which aim to train a small subset of parameters while
achieving comparable or even better performance compared to full fine-tuning. PEFT methods can
be broadly categorized into prompt-based methods [67, 68, 69], adapter-based methods [70, 71],
and reparameterization-based methods [31, 72, 73]. Among these, the reparameterization-based
LoRA [31] has gained significant attention due to its simplicity, effectiveness, and compatibility with
existing model architectures. Variants of LoRA, such as LoRA+[74], DoRA [75], and AdaLoRA [76],
have been proposed to improve its performance and efficiency. Recent research has also investigated
ensembles of multiple LoRAs [77, 78] and quantization techniques [79, 80, 81]. The proposed
method is a foundational algorithm that is orthogonal to existing approaches and can potentially be
combined with various LoRA variants to exploit their complementary strengths and achieve superior
performance.

3 Preliminary

This section introduces the key concepts used in our study, including the Lorentz model of hyperbolic
geometry and the LoRA adapter.

Hyperbolic Geometry. Unlike flat Euclidean geometry, hyperbolic geometry is characterized by a
constant negative curvature. We utilize the Lorentz model, also known as the hyperboloid model due
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to its ability to effectively capture hierarchical structures and maintain numerical stability [14, 37, 82].
The Lorentz model in n dimensions with curvature −1/K(K > 0) is defined as:

Ln
K = {x ∈ Rn+1 : ⟨x,x⟩L = −K,x0 > 0}, (1)

where ⟨·, ·⟩L is the Lorentzian inner product, given by: ⟨x,y⟩L = −x0y0 +
∑n

i=1 xiyi.

Tangent Space. In the Lorentz model Ln
K , the tangent space at a point x is denoted TxLn

K . It is
defined as the set of all vectors u that are orthogonal to x under the Lorentzian inner product:

TxLn
K := {u ∈ Rn+1 : ⟨u,x⟩L = 0}. (2)

To facilitate projection between the hyperboloid and its tangent spaces at x, one can utilize two critical
mappings: the exponential and logarithmic maps. The exponential map at x, denoted expKx , projects
a vector from the tangent space TxLn

K back onto the hyperboloid. Conversely, the logarithmic map,
denoted logKx , maps a point on the hyperboloid to the tangent space at x. The detailed formulas are
given in Appendix C.

LoRA Adapter. The LoRA adapter provides an efficient approach for modifying LLMs with minimal
computational overhead. Instead of retraining the entire model, LoRA focuses on adjusting specific
components within the model’s architecture to transform an input x ∈ Rd into an output z ∈ Rk. In
practice, LoRA targets the weight matrices found in each Transformer layer of an LLM. Typically, the
weight W of the Transformer, which resides in the dimensions Rk×d, is adapted through a low-rank
approximation. This is achieved by introducing an additional term, ∆W , to the original weight
matrix:

z = WLoRA(x) = Wx+∆Wx = Wx+BAx. (3)

Here, A ∈ Rr×d and B ∈ Rk×r represent two smaller, learnable matrices where r is the rank
of these matrices, which is significantly less than either d or k. This design choice ensures that
r ≪ min(d, k), thereby reducing the complexity of the model adaptation. During the fine-tuning
process, only the matrices A and B are adjusted, while the pre-existing weights W are kept frozen.
This method significantly decreases the number of parameters that need to be trained, from d · k to
(d+ k) · r, enhancing the efficiency of the fine-tuning process. As a result, LoRA enables the targeted
adaptation of LLMs, allowing them to transform an input x into an output z while maintaining high
performance and adapting to new tasks or datasets with a fraction of the computational resources
typically required.

4 Investigation

In this section, we present an in-depth investigation of token embeddings in LLMs from both global
and local perspectives. Our goal is to uncover the geometric structures underlying pretrained token
representations, specifically examining the global distribution of token frequencies and their spatial
arrangement, as well as the local hyperbolicity of token embeddings across various datasets.

4.1 Global Token Statistics

We begin by investigating the global distribution of token frequencies in the context of arithmetic
reasoning datasets, focusing on datasets such as GSM8K [83], AQuA [84], MAWPS [85], and
SVAMP [86]. We also provide a broader analysis across different types of datasets and LLMs in
Appendix A. Figure 1 (left) presents the distribution of token frequencies, with a power-law exponent
γ ≈ 1.9, as estimated by the powerlaw package [87]. In such distributions, the exponent γ controls
how quickly token frequencies decline: smaller values of γ (closer to 1) indicate a more gradual
decay where frequent tokens dominate, while larger values signify a sharper decline, with most tokens
being rare.

This power-law behavior is consistent with the tree-like hierarchical nature of language [11, 16, 88,
52, 23]. High-frequency tokens often correspond to more abstract or general concepts, while low-
frequency tokens represent specific or rare terms. This pattern aligns with a hierarchical organization
of the token space: abstract, high-frequency tokens cluster near the origin, while specific terms are
positioned farther out, mirroring how general concepts sit at the core of a semantic hierarchy with
specialized terms at the periphery.
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Table 1: Mean, Minimum, and Maximum frequency and norm values of token embedding in different
base models and groups. Group 1: to, in, have, that, and, is, for, Group 2: how, much, many, time,
cost, Group 3: animal, fruit, number, color, size, Group 4: dog, cow, apple, banana, 380, 480, purple,
red, medium, small, large.

Model Group Frequency (Mean [Min∼Max]) Norm (Mean [Min∼Max])

Gemma-7B

Group 1 4934.4 [1838 ∼ 8539] 3.160 [3.060 ∼ 3.299]
Group 2 2709.4 [474 ∼ 6681] 3.561 [3.488 ∼ 3.627]
Group 3 292.0 [34 ∼ 1191] 3.765 [3.623 ∼ 3.887]
Group 4 114.3 [25 ∼ 284] 3.998 [3.660 ∼ 4.520]

LLaMA-7B

Group 1 4993.9 [1838 ∼ 8547] 0.951 [0.793 ∼ 1.060]
Group 2 2712.6 [474 ∼ 6683] 1.222 [1.118 ∼ 1.299]
Group 3 299.8 [34 ∼ 1200] 1.325 [1.274 ∼ 1.428]
Group 4 139.1 [26 ∼ 286] 1.364 [1.326 ∼ 1.417]

LLaMA3-8B

Group 1 4937.4 [1838 ∼ 8547] 0.353 [0.330 ∼ 0.396]
Group 2 2710.0 [474 ∼ 6683] 0.456 [0.394 ∼ 0.499]
Group 3 292.6 [34 ∼ 1191] 0.499 [0.452 ∼ 0.549]
Group 4 97.1 [13 ∼ 284] 0.569 [0.499 ∼ 0.675]

LLaMA-13B

Group 1 4993.9 [1838 ∼ 8547] 1.027 [0.833 ∼ 1.255]
Group 2 2712.6 [474 ∼ 6683] 1.429 [1.346 ∼ 1.489]
Group 3 299.8 [34 ∼ 1200] 1.494 [1.453 ∼ 1.532]
Group 4 139.1 [26 ∼ 286] 1.501 [1.470 ∼ 1.526]

Empirical Observation. To better understand the relationship between token frequency and their
spatial arrangement within the embedding space, we calculate the average token frequency as a
function of their distance from the origin. As shown in Figure 1 (right), high-frequency tokens (e.g.,
“the,” “that”) tend to have smaller norms, while low-frequency tokens (e.g., “apple,” “dog”) have
larger norms. Table 1 presents representative tokens across different frequencies and norm ranges
within the embedding space of different base models. We categorize tokens into four groups based on
their linguistic function and specificity: Group 1 contains high-frequency function words (e.g., to, is,
and), Group 2 contains common question/quantity words (e.g., how, much, many), Group 3 contains
general category nouns (e.g., animal, fruit, color), and Group 4 contains specific instances (e.g., dog,
apple, purple).

The results presented in Table 1 demonstrate several critical findings. First, we observe a statistically
significant separation between functional/abstract words (Group 1) and specific terms (Group 4)
across all models, with Group 1 consistently exhibiting the smallest embedding norms and highest
frequencies, while Group 4 shows the largest norms and lowest frequencies. Second, the relative
ordering of groups remains consistent across all examined models, with Group 1 < Group 2 <
Group 3 < Group 4 in terms of embedding norms, despite absolute magnitude variations. Most
notably, even across different architectural families (LLaMA vs. Gemma), the hierarchical organiza-
tion principle remains preserved, though with different absolute scales, where Gemma-7B exhibits
systematically larger embedding norms (mean Group 1 norm: 3.160) compared to LLaMA models
(mean Group 1 norm: 0.353 ∼ 1.027), yet maintains the same relative hierarchical structure.

Conclusion (1) These findings suggest that the spatial organization of token embeddings reflects
the inherent hierarchical relationships in language, supporting the hypothesis that token embedding
in LLMs exhibits a tree-like structure, with spatial positioning aligned with token frequency and
specificity. It is worth noting, however, that a power-law distribution of token frequency alone
does not guarantee the emergence of a hierarchical token embedding, as it also depends on the
training objectives. Our analysis demonstrates that the hierarchy is strongly correlated with token
frequencies, which can be understood through the lens of LLMs’ tokenization and co-occurrence
pattern learning during training [89]. While the exact mechanisms underlying this relationship require
further investigation in future work, the spatial distribution of token embeddings remains crucial as it
provides the primary motivation for our methodological approach.

4.2 δ-Hyperbolicity of Local Token Embeddings

To rigorously quantify the hierarchical nature of token embeddings, we further examine the δ-
hyperbolicity of the space spanned by the token embedding. δ-hyperbolicity, introduced by Gro-
mov [90], is a measure that captures the degree to which a metric space deviates from an exact tree
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Table 2: Comparison of δ-Hyperbolicity across various metric spaces and datasets. The left table
provides reference values for baseline metric spaces, allowing for a clearer interpretation of hyperbol-
icity in the analyzed datasets in the right table.

Metric Space Hyperbolicity(δ)
Sphere Space 0.99± 0.01
Random Graph 0.62± 0.34
PubMed Graph 0.40± 0.45
Scale-free Graph 0.00
Tree Graph 0.00

Hyperbolicity(δ) MAWPS SVAMP GSM8K AQuA

LLaMA-7B 0.08± 0.02 0.09± 0.01 0.10± 0.01 0.10± 0.01
LLaMA-13B 0.08± 0.01 0.09± 0.01 0.09± 0.01 0.10± 0.01
Gemma-7B 0.11± 0.01 0.11± 0.01 0.11± 0.01 0.12± 0.01
LLaMA3-8B 0.06± 0.01 0.07± 0.01 0.07± 0.01 0.08± 0.01

Average 0.08± 0.01 0.09± 0.01 0.09± 0.01 0.10± 0.01

structure. Lower values of δ imply a space more similar to a perfect tree, while higher values indicate
deviation from a tree-like structure.

We compute δ-hyperbolicity using the four-point condition, which compares the Gromov products
between any four points a, b, c, and w in the metric space. Specifically, the hyperbolicity is defined
as:

[a, c]w ≥ min([a, b]w, [b, c]w)− δ, (4)
where the Gromov product [a, b]w is:

[a, b]w =
1

2
(d(a,w) + d(b, w)− d(a, b)). (5)

Quantitative Analysis. To measure the hyperbolicity of token embeddings, we apply this algorithm
to various open-source LLMs. Following the methodologies proposed by Khrulkov et al. [16] and
Cetin et al. [17], we estimate δ-hyperbolicity using the efficient algorithm introduced by Fournier
et al. [91]. To ensure scale invariance, we normalize δ by the diameter of the embedding space,
diam(X), yielding a relative measure: δrel = 2δ

diam(X) . This relative measure ranges from 0 to 1,
with values closer to 0 indicating a highly hyperbolic (tree-like) structure, and values near 1 indicating
a non-hyperbolic, flat structure. We employ Euclidean distance as a measure of the shortest distance,
maintaining the same computational paradigm as in previous works [16, 17]. To further validate the
correctness of this approach, we generate a series of random graphs with predefined hyperbolicity,
embed them using a two-layer graph neural network (GNN) [92], and then compute the hyperbolicity.
Details of this process are provided in Appendix B. Our experiments reveal a positive correlation
between the hyperbolicity of the embeddings and the original graphs. Consequently, we utilize this
method as a proxy for estimating the hyperbolicity of token embeddings. In our analysis, we calculate
hyperbolicity at the prompt level, treating each token within a prompt as a point in the metric space
spanned by the embeddings. By averaging the hyperbolicity across all prompts, we assess the overall
hyperbolic structure of token embeddings in each dataset.

Conclusion (2) Our results, as shown in Table 2, reveal that token embeddings exhibit significant
hyperbolicity, suggesting that the embedding space has a strong tree-like structure. This observation
further corroborates our findings from the global token statistics, where the arrangement of tokens in
the embedding space mirrors hierarchical relationships seen in language data. We also provide the
hyperbolicity analysis of the final hidden layer in Appendix A.3.

4.3 Connection between Power-law Distribution and Hyperbolic Geometry

Having established both the global power-law distribution (Section 4.1) and local tree-like geometry
(Section 4.2) of token embeddings, we now examine the theoretical connection between these two
observations.

The observation of a power-law distribution in token frequencies, as discussed in Section 4, is
not merely a statistical curiosity. It has deep connections to the underlying geometry of the data,
particularly to hyperbolic spaces, which are well-suited for representing hierarchical structures [11,
12, 93, 94]. For instance, Nickel and Kiela [11] highlighted that the existence of power-law degree
distributions can often be traced back to hierarchical structures. Similarly, Ravasz and Barabási [88]
established that the scaling law P (k) ∼ k−γ can signify the co-existence of a hierarchy of nodes
with varying degrees of clustering. Krioukov et al. [12] further strengthened this connection by
showing that the exponent of the power-law degree distribution is a function of the hyperbolic space
curvature. Building on this geometric understanding, Papadopoulos et al. [94] demonstrated that
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complex (scale-free) network topologies naturally emerge when networks grow within an underlying
hyperbolic metric space, and importantly, that the resulting hyperbolic embedding of these dynamic
scale-free networks facilitates highly efficient greedy forwarding.

To formalize this connection with hyperbolic geometry, we can consider embedding tokens in a
hyperbolic space. A common model for hyperbolic space is the Poincaré disk model (H2) with
curvature K = −15. In such a space, both the circumference C(r) and area A(r) of a circle of radius
r exhibit exponential growth:

C(r) = 2π sinh(r) ∼ er as r → ∞, (6)

A(r) = 2π(cosh(r)− 1) ∼ er as r → ∞. (7)
If we consider token embeddings in a hyperbolic space with polar coordinates (r, θ), where r ∈ R+

is the radial coordinate (correlating with token frequency) and θ ∈ [0, 2π] is the angular coordinate
(encoding semantic similarity), the radial distribution of tokens follows p(r) ∼ e−ζr, where ζ > 0
relates to the hyperbolic curvature K. The frequency function k(r) for tokens at radius r is then
given by k(r) ∼ e−r. Given k(r) ∼ e−r, we have r ∼ − ln k, and thus

∣∣ dr
dk

∣∣ ∼ k−1. Combined with
the radial distribution p(r) ∼ e−ζr ∼ kζ , this yields:

P (k) ∼ p(r)

∣∣∣∣ drdk
∣∣∣∣ ∼ kζ · k−1 ∼ k−(1−ζ). (8)

Following the parameterization of Krioukov et al. [12], the power-law exponent γ relates to the
curvature parameter via γ = 2/ζ + 1 in the context of complex networks. This relationship
underscores the theoretical connection between the power-law behavior observed in token frequencies
and the inherent hyperbolic geometry of the embedding space. Since hyperbolic models such as the
Poincaré ball model and the Lorentz model are isometric, this conclusion can be extended to other
hyperbolic models.

Hyperbolic space offers distinct advantages for modeling language hierarchies, especially when
addressing the structural and spatial constraints of token co-occurrence: (1) Separation of Low-
Frequency Tokens. Tokens with low frequencies, which typically represent more specific or granular
concepts, require clear separation from each other to maintain semantic clarity. (2) Proximity to
High-Frequency Hypernyms. Simultaneously, these low-frequency tokens should remain close
to their corresponding high-frequency hypernyms or function words. Hyperbolic space is uniquely
suited for capturing these dual constraints due to its exponential volume growth, which inherently
supports hierarchical structure and allows for ample separation of specific entities while keeping
them close to their parent categories. This contrasts with Euclidean space, where such arrangements
can lead to crowding or distortion of distances.

Overall Conclusion. Through these analyses, we demonstrate that token embeddings in LLMs
exhibit hierarchical organization and significant hyperbolicity. This understanding not only sheds
light on the geometric nature of token embeddings but also motivates the development of methods
that can better capture and preserve these underlying geometric properties.6

5 Hyperbolic Fine-Tuning for LLMs

The core technique in the LoRA adapter involves matrix transformations. The conventional approach
to implementing these transformations in the Lorentz model of hyperbolic geometry is through
operations in the tangent space, while maintaining the learnable weights in Euclidean space [33, 32].

5The derivation uses the Poincaré ball model for its intuitive geometric interpretation. However, all models
of hyperbolic space, including the Poincaré ball, the Lorentz (hyperboloid) model, and the Klein model, are
isometrically equivalent, preserving geodesic distances under explicit diffeomorphisms [95, 96]. Since our
method (Section 5) operates in the Lorentz model, the theoretical connections established here between power-law
distributions and hyperbolic geometry remain fully applicable.

6While our analysis reveals consistent hierarchical patterns across multiple LLMs, several limitations should
be noted. First, our investigation focuses on arithmetic reasoning and commonsense datasets (please check
Appendix A for details); the generalizability to other domains (e.g., code, multilingual text) requires further
validation. Second, the relationship between token frequency and embedding norm, while strong, is correlational
rather than causal. Third, our δ-hyperbolicity measurements are computed at the prompt level; corpus-level
analysis may yield different insights.
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Table 3: Comparison of various LLMs on arithmetic reasoning tasks. The percentage following
each dataset indicates the proportion of prompts relative to the total number of inference prompts.
M.AVG represents the micro-average accuracy (since the datasets are imbalanced). For more adapter
comparisons, please see Appendix F.

Base Model PEFT Method # Params (%) MAWPS(8.5%) SVAMP(35.6%) GSM8K(46.9%) AQuA(9.0%) M.AVG

GPT-3.5 None None 87.4 69.9 56.4 38.9 62.3

LLaMA-7B LoRA 0.83 81.9 48.2 38.3 18.5 43.7
HypLoRA (Ours) 0.83 79.0 49.1 39.1 20.5 44.4

LLaMA-13B LoRA 0.67 83.5 54.7 48.5 18.5 51.0
HypLoRA (Ours) 0.67 83.2 54.8 49.0 21.5 51.5

Gemma-7B LoRA 0.79 91.6 76.2 66.3 28.9 68.6
HypLoRA (Ours) 0.79 89.5 78.7 69.5 32.7 71.2

LLaMA3-8B LoRA 0.70 92.7 78.9 70.8 30.4 71.9
HypLoRA (Ours) 0.70 91.6 80.5 74.0 34.2 74.2

Gemma3-4B LoRA 1.04 90.8 77.3 72.3 50.8 73.7
HypLoRA (Ours) 1.04 88.2 83.9 76.1 53.2 77.8

Qwen2.5-7B LoRA 0.71 90.8 84.4 78.6 68.1 80.8
HypLoRA (Ours) 0.71 91.2 92.2 87.9 71.6 88.3

However, this approach presents a significant challenge for our application. Since the hidden states
of LLMs exist in Euclidean space, we would need to project these states to hyperbolic space and
subsequently map them back to the tangent space. This process results in consecutive logarithmic
and exponential mappings (logKo (expKo (x))), which effectively cancel each other out, reducing the
method to the original LoRA approach and nullifying any benefits from hyperbolic geometry.

Direct Lorentz Low-Rank Transformation (LLR). To overcome this limitation, we propose a direct
Lorentz Low-Rank Transformation (LLR) that operates directly on the hyperbolic space without
relying on tangent space mappings. This approach allows us to perform low-rank adaptation while
preserving the advantages of hyperbolic geometry:

zE = WLoRA(x
E) = WxE +∆WxE

= WxE +ΠK
log(LLR(BA,ΠK

exp(x
E))),

(9)

where LLR represents the direct Lorentz Low-Rank Transformation that operates directly on the
hyperbolic representation xH = ΠK

exp(x
E):

LLR(BA,xH) = (
√

∥BAxH
s ∥22 +K,BAxH

s ), (10)

where xH
s is the space-like component of xH , i.e., xH

s = xH
[1:n] without the first time-like dimension

xH
[0:1]. The operators ΠK

exp and ΠK
log represent projections from a local tangent space to hyperbolic

space (e.g., exponential map) and from hyperbolic space to a local tangent space (e.g., logarithmic
map), respectively. The detailed formulas are provided in Appendix C. It can be verified that
LLR(BA,xH) ∈ Ln, ensuring that our transformation remains within the Lorentz model of
hyperbolic space. This transformation primarily affects the space-like dimensions, functioning
similarly to a pseudo-Lorentz rotation [37]. The linear transformation is inspired by hyperbolic neural
networks [37, 48, 97]. For efficient integration with LLMs, the transformation removes normalization
and non-linear activation terms in [37], varying curvatures in [48], and orthogonal constraints in
[97]. Our main contribution lies in applying hyperbolic low-rank adaptation for LLMs, while the
specific linear transformation itself is flexible, and other transformations on the manifold could also
be compatible with our approach.

By adapting in the hyperbolic domain, HypLoRA captures more complex hierarchical relationships
than traditional Euclidean-based methods, as detailed in Proposition 1. Additionally, the low-rank
nature of the adaptation matrices A and B promotes parameter efficiency, making HypLoRA well-
suited for LLMs.

Time Complexity Analysis. HypLoRA has similar theoretical time complexity as the Euclidean
LoRA, which is O(r · (d+k)), where d and k represent the input and output dimensions, respectively.
However, in practical implementation, HypLoRA introduces additional computations due to the space
mapping. These additional operations, nevertheless, can be completed within O(N) where N is the
number of input tokens.
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Table 4: Comparison of various LLMs on commonsense reasoning tasks. These datasets contain
relatively similar amounts of data, so we use AVG to represent the average accuracy.
Base Model PEFT Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG
GPT-3.5 None None 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA3-8B LoRA 0.70 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
HypLoRA (Ours) 0.70 74.1 87.6 80.6 94.5 84.7 90.4 81.2 85.2 84.8

Gemma3-4B LoRA 1.04 68.1 83.2 77.2 88.9 80.5 84.5 69.9 83.6 79.5
HypLoRA (Ours) 1.04 70.0 84.3 79.2 91.5 80.3 89.1 75.9 86.4 82.5

Qwen2.5-7B LoRA 0.71 73.4 89.5 79.5 93.6 84.1 92.8 82.0 87.0 85.2
HypLoRA (Ours) 0.71 72.8 89.3 79.8 94.8 84.4 95.5 87.5 90.8 87.0

Proposition 1. Let x ∈ Rd denote the input token embeddings. The HypLoRA adaptation, applied to
x, involves a sequence of projection into hyperbolic space, a Direct Lorentz Low-Rank Transformation
(LLR), and projection back to Euclidean space. Due to the non-linear nature of these hyperbolic
operations, the effective transformation applied by HypLoRA introduces higher-order terms with
respect to x. As detailed in Appendix E, these terms exhibit explicit dependency on the L2 norm,
∥x∥2, of the input embeddings. This norm-dependent, higher-order modification enables HypLoRA
to capture hierarchical relationships in the embedding space, thereby achieving natural alignment
with the underlying hyperbolic geometry of the token representations.

5.1 Experimental Settings

Datasets. Following the experiment setup outlined in [98], we utilize two high-quality datasets,
Math10K and Commonsense170K, tailored for mathematical and commonsense reasoning, respec-
tively. Math10K consists of training data from GSM8K [83], MAWPS, MAWPS-single [85], and
1,000 samples from AQuA [84], augmented with ChatGPT-generated step-by-step rationales to
reinforce reasoning capabilities. The test set includes GSM8K, AQuA, MAWPS, and SVAMP [86],
ensuring no overlap with the training data. Commonsense170K is constructed by reformatting
samples from BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA using
standardized templates that outline the task, content, and answer, resulting in 170K training samples.
The test datasets are drawn from the same sources, with strict separation from training samples. For
fine-tuning methods, we compare with LoRA [31] and also make a comparison with other adapters in
Appendix F, which also includes training details.

5.2 Experimental Results

Table 3 summarizes our key experimental outcomes on arithmetic reasoning tasks, while Table 4
presents results for commonsense reasoning benchmarks. Our primary comparison contrasts LoRA
and HypLoRA to demonstrate the effectiveness of the proposed approach, with additional baselines
provided in Appendix F.

Arithmetic Reasoning Performance. On arithmetic reasoning tasks, as indicated by results in
Table 3, HypLoRA shows notable efficacy, especially on datasets recognized for their complexity,
such as GSM8K, AQuA, and SVAMP. These datasets demand robust multi-step reasoning and
a nuanced understanding of numerical and textual relationships. For instance, on Qwen2.5-7B,
HypLoRA achieves a substantial +7.5 percentage point improvement in M.AVG (88.3% vs. 80.8%),
with notable gains of +7.8% on SVAMP and +9.3% on GSM8K. The enhanced performance of
HypLoRA in these areas aligns with its design; by operating in hyperbolic space, it can better
model the hierarchical structure of problems and distinguish subtle yet critical differences in input
embeddings. This is further corroborated by the theoretical analysis (Appendix E), which posits that
HypLoRA introduces higher-order, norm-dependent terms. These terms allow the model to develop a
more refined sensitivity to token importance and inter-token relationships.

Commonsense Reasoning Performance. The robust performance of HypLoRA extends to common-
sense reasoning, as detailed in Table 4. For the Gemma3-4B model, HypLoRA achieved an average
accuracy of 82.5% across all datasets, surpassing LoRA’s 79.5%. Similarly, on the Qwen2.5-7B
model, HypLoRA obtained an average of 87.0% compared to LoRA’s 85.2%. These improvements
are distributed across various commonsense benchmarks, including notable gains on datasets like
ARC-c and OBQA for Gemma3-4B, and ARC-c, ARC-e, and OBQA for Qwen2.5-7B. Commonsense
reasoning often relies on understanding implicit relationships and contextual nuances, which may not
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Table 5: Results for varying cur-
vature K on the Gemma3-4B
model

Dataset K=0.5 K=1.0

MAWPS 88.2 91.9
SVAMP 83.9 80.3
GSM8K 76.1 73.8
AQuA 53.5 52.7

M.AVG 77.8 75.8

Figure 2: GPU (A100) usage during inference
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always be explicitly hierarchical but still benefit from the richer representational capacity offered by
hyperbolic geometry. The ability of HypLoRA to better discern these subtleties, likely due to the
mechanisms described in Proposition 1, contributes to these observed performance gains, showcasing
the broad applicability of hyperbolic fine-tuning.

The Impact of Curvature on Performance. Curvature in hyperbolic space is a key hyperparameter
in HypLoRA, directly affecting its capacity to model underlying structures and geometries. To
evaluate its impact, we experiment with a learnable curvature initialized with different curvature
values on the Gemma3-4B model, as shown in Table 5, where the curvature is defined as −1/K.
Our results demonstrate that curvature does influence model performance. For Gemma-7B and
Gemma3-4B, a curvature value of 0.5 consistently yields the best overall performance across both
arithmetic and commonsense reasoning benchmarks. Similarly, for LLaMA3-8B, 0.5 proves optimal.
In commonsense reasoning benchmarks, a curvature of 1.0 performs best for LLaMA3-8B and
Qwen2.5-7B.

Efficiency. In Section 5, we analyze the time complexity of our approach, which remains consistent
with that of LoRA. However, during actual inference, HypLoRA incurs additional computational
overhead due to operations such as projections. These operations introduce some additional runtime,
particularly for larger models. The GPU hours for inference on four datasets are presented in Figure 2.
Despite this overhead, our method demonstrates improved efficiency when compared to the previous
competitive model, DoRA. Notably, HypLoRA still outperforms DoRA in terms of both runtime
and overall efficiency. Besides, all models can be fine-tuned in approximately one hour for optimal
training efficiency.

6 Conclusion

In this work, we investigated the non-Euclidean geometric properties inherent in LLMs, confirming
their strong hyperbolic characteristics, which suggest underlying hierarchical structures. Building
on these insights, we introduced HypLoRA, a hyperbolic low-rank adaptation technique. HypLoRA
performs fine-tuning directly on the hyperbolic manifold. Extensive experiments show that HypLoRA
significantly improves LLM performance on arithmetic reasoning and commonsense tasks. By
leveraging the hyperbolic structure of the data, HypLoRA enhances the model’s ability to capture
and utilize intricate relationships, leading to better reasoning capabilities.

Broader Impact. Enhancing reasoning-oriented LLMs can help education, scientific assistance,
and safer decision-support systems, but the same improvements may also accelerate misuse (e.g.,
automating complex disinformation or amplifying biased advice) and increase energy consumption
due to added hyperbolic projections. We therefore advocate releasing checkpoints and code with
usage guidelines (as in our public repo), tracking compute budgets when scaling HypLoRA further.
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URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [NA]
Justification: No new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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well as details about compensation (if any)?
Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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or other labor should be paid at least the minimum wage in the country of the data
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: No, except for writing, editing, or formatting purposes.
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for what should or should not be described.
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A More Investigation Results

A.1 Token Frequency and Norm Distribution on Mathematical Reasoning

To provide a comprehensive understanding of the geometric properties of token embeddings across
different mathematical reasoning tasks, we extend our analysis beyond the GSM8K dataset presented
in the main text to include AQuA and MAWPS datasets. This broader investigation allows us to
validate the consistency of our findings across diverse mathematical problem types and complexity
levels. The AQuA dataset presents algebraic word problems that require multi-step reasoning and
equation solving, while MAWPS focuses on elementary arithmetic word problems with varying
structural complexity. By analyzing token distributions across these complementary datasets, we
can assess whether the observed power-law behavior and hierarchical token organization represent
universal properties of mathematical reasoning tasks or are specific to particular problem domains.
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Figure 3: Token frequency distribution (top row) and token frequency vs. norm (bottom row) across
different mathematical reasoning datasets in LLaMA3. The top row shows the power-law distribution
of token frequencies with the decay rate (γ) annotated for each dataset. The bottom row illustrates
the relationship between token frequency and token norm, binned and colored by frequency, where
higher token norms correspond to lower frequencies.

Our extended analysis, illustrated in Figure 3, reveals remarkably consistent patterns across all
three mathematical reasoning datasets. The power-law exponents remain stable within a narrow
range (γ ∈ [1.89, 1.95]), indicating that the hierarchical structure of mathematical language is
preserved regardless of the specific problem type or complexity level. The relationship between
token frequency and embedding norms shows consistent inverse correlation across all datasets, with
high-frequency mathematical operators and common function words clustering near the origin, while
domain-specific mathematical terms and numerical values are positioned at greater distances. This
consistency strengthens our hypothesis that mathematical reasoning tasks inherently exhibit
hyperbolic characteristics in their token embedding spaces, providing strong empirical support
for the effectiveness of hyperbolic fine-tuning approaches like HypLoRA in mathematical domains.

A.2 Token Frequency and Norm Distribution on Commonsense Reasoning

To demonstrate the generalizability of our findings beyond mathematical reasoning, we conduct a
comprehensive analysis of token distributions across six diverse commonsense reasoning datasets:
ARC-Challenge, ARC-Easy, BoolQ, HellaSwag, PIQA, and SIQA. These datasets span a wide
range of commonsense reasoning tasks, from factual knowledge retrieval (ARC datasets) and yes/no
question answering (BoolQ) to physical commonsense (PIQA) and social understanding (SIQA).
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Figure 4: Token frequency distribution (top two rows) and token frequency vs. norm (bottom two
rows) across different commonsense reasoning datasets in LLaMA3. The top two rows show the
power-law distribution of token frequencies with the decay rate (γ) annotated for each dataset. The
bottom two rows illustrate the relationship between token frequency and token norm, binned and
colored by frequency, where higher token norms correspond to lower frequencies.
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Table 6: Relative δ-hyperbolicity (mean ± std.) of the final hidden layer in Gemma-7B across
math (AQuA, GSM8K) and commonsense (ARC-Challenge, WinoGrande, OpenBookQA) datasets
comparing the frozen base model, LoRA, DoRA, and HypLoRA.

Dataset Base Model LoRA DoRA HypLoRA
AQuA 0.31± 0.04 0.24± 0.05 0.23± 0.05 0.22± 0.03
GSM8K 0.28± 0.04 0.21± 0.05 0.21± 0.05 0.20± 0.03
ARC-Challenge 0.30± 0.03 0.35± 0.03 0.36± 0.02 0.25± 0.02
Winogrande 0.22± 0.04 0.32± 0.02 0.27± 0.02 0.27± 0.02
OpenbookQA 0.30± 0.03 0.35± 0.03 0.38± 0.02 0.25± 0.02

Table 7: Relative δ-hyperbolicity (mean ± std.) of the final hidden layer in Gemma3-4B for the same
five datasets, contrasting the base model with LoRA, DoRA, and HypLoRA.

Dataset Base Model LoRA DoRA HypLoRA
AQuA 0.17± 0.03 0.17± 0.03 0.19± 0.02 0.11± 0.01
GSM8K 0.16± 0.03 0.20± 0.03 0.19± 0.03 0.11± 0.02
ARC-Challenge 0.17± 0.02 0.21± 0.01 0.17± 0.02 0.20± 0.02
Winogrande 0.16± 0.02 0.16± 0.02 0.21± 0.01 0.12± 0.01
OpenbookQA 0.17± 0.03 0.16± 0.02 0.17± 0.03 0.11± 0.01

This diverse collection allows us to investigate whether the hyperbolic characteristics observed in
mathematical reasoning extend to broader domains of human knowledge and reasoning. The inclusion
of both challenging (ARC-Challenge, HellaSwag) and more accessible (ARC-Easy, BoolQ) datasets
enables us to examine how task difficulty influences the underlying geometric structure of token
embeddings.

The results presented in Figure 4 demonstrate that the power-law distribution of token frequencies
and the inverse relationship between frequency and embedding norms persist across all commonsense
reasoning datasets, with power-law exponents ranging from γ = 1.76 to γ = 1.94. Notably, the
Social IQA dataset exhibits a slightly lower exponent (γ = 1.76), suggesting that social reasoning
tasks may have a somewhat different hierarchical structure, possibly due to the more nuanced and
context-dependent nature of social interactions compared to factual or physical reasoning. Despite
this variation, the overall pattern remains consistent: abstract concepts and function words maintain
smaller norms and higher frequencies, while specific entities, proper nouns, and domain-specific
terminology are positioned at greater distances from the origin.

A.3 Hyperbolicity in the Final Hidden Layer of LLMs

In this part, we further present the analysis of the hyperbolicity of the hidden states in Tables 6
and Table 7. Considering five distinct reasoning datasets, including two mathematical reasoning
datasets (AQuA and GSM8K) as well as three commonsense reasoning datasets (ARC-Challenge,
Winogrande, and OpenbookQA), we observe that the base models consistently exhibit less hyperbolic
structure (i.e., higher δ values) in their final hidden layer representations compared to their initial
token embeddings.

LoRA and DoRA generally reduce the δ values, while the proposed HypLoRA method mostly
achieves even lower values, indicating a higher degree of hyperbolicity in the learned representations.
This effect is observed across most datasets in both model families. These empirical findings
complement our analysis of the initial token embeddings: while the pretrained models begin with a
latent hierarchical structure, as evidenced by hyperbolicity in the input layer, fine-tuning methods
can either preserve or distort this property. The consistently lower δ values of HypLoRA provide
strong empirical evidence that our method actively preserves and enhances the hierarchical structure
of the representations throughout the model, aligning the final contextualized embeddings with the
geometric biases that are beneficial for reasoning.

27



B Hyperbolicity on Different Metric Spaces

Table 2 presents the hyperbolicity values in both continuous (i.e., sphere space) and discrete metric
spaces (i.e., tree, scale-free, and random graphs). We employ a consistent processing method similar
to that used in Section 4 for embedding spaces. Specifically, we sample 1,000 four-tuples, compute
the δ value for each, and then take the maximum value.

Figure 5: Empirical correlation between the ground-truth δ-hyperbolicity of several reference graphs
(tree, scale-free, PubMed, dense, sphere) and the δ measured after embedding them with a two-layer
GCN into Euclidean space; each point averages 1,000 sampled quadruples.

For the sphere space, we use a two-dimensional model and calculate hyperbolicity based on geodesic
distances. The PubMed graph is sourced from Sen et al. [99]. The tree and dense graphs are
generated using NetworkX [100]. For these graphs, we remove isolated nodes before performing our
calculations to ensure consistency. We use the shortest-path distance on each graph as the distance
measure, analogous to the concept of geodesics in continuous spaces.

In this study, we utilize the Euclidean distance to compute the hyperbolicity of token embeddings,
following the approach proposed by [16]. To further assess the validity of this method, we embed
graphs with varying degrees of hyperbolicity into Euclidean space using a two-layer GCN and
compute hyperbolicity based on the distances between embeddings. The results, presented in
Figure 5, indicate a positive correlation between the hyperbolicity of the original graphs and that of
the embeddings, although the values do not exactly coincide. Building on this observed relationship,
we calculate the hyperbolicity of token embeddings as a proxy for estimating their underlying
geometric structure. In this context, lower hyperbolicity values suggest a more tree-like geometric
configuration.

C Exponential and Logarithmic Maps

The exponential and logarithmic maps are fundamental tools for navigating between the tangent
space and the hyperbolic manifold. These maps enable us to perform computations in the familiar
Euclidean tangent space while preserving the geometric properties of hyperbolic space.

C.1 Exponential Map

The exponential map expKx : TxLn
K → Ln

K projects a tangent vector v ∈ TxLn
K at point x onto the

hyperboloid Ln
K . Geometrically, it maps v to the point expKx (v) := γ(1), where γ is the unique

geodesic satisfying γ(0) = x and γ̇(0) = v.

The exponential map is given by:

expKx (v) = cosh

(
∥v∥L√

K

)
x+

√
K sinh

(
∥v∥L√

K

)
v

∥v∥L
, (11)

where ∥v∥L =
√
⟨v,v⟩L is the norm of the tangent vector under the Lorentzian inner product.

At the origin o = (
√
K, 0, . . . , 0), for a tangent vector v = (0,u) where u ∈ Rn, the exponential

map simplifies to:

expKo (v) =

(√
K cosh

(
∥u∥√
K

)
,
√
K sinh

(
∥u∥√
K

)
u

∥u∥

)
. (12)
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C.2 Logarithmic Map

The logarithmic map logKx : Ln
K → TxLn

K is the inverse of the exponential map. It projects a point
y ∈ Ln

K back to the tangent space at x:

logKx (y) =
cosh−1

(
− ⟨x,y⟩L

K

)
√(

⟨x,y⟩L
K

)2

− 1

(
y +

⟨x,y⟩L
K

x

)
. (13)

These maps satisfy the inverse relationships: logKx (expKx (v)) = v and expKx (logKx (y)) = y.

C.3 Notation in the Main Text

In the main text, we use the shorthand notation ΠK
exp and ΠK

log to denote general projection operators
between Euclidean space Rn and hyperbolic space Ln

K . The exponential and logarithmic maps
described above represent one valid instantiation of these operators:

ΠK
exp(x) := expKo ((0,x)), (14)

ΠK
log(y) := logKo (y)[1:], (15)

where (0,x) ∈ R1+d denotes the vector obtained by prepending a zero to x ∈ Rd, and (·)[1:]
denotes the restriction to the last d coordinates (i.e., removal of the first coordinate). However, other
diffeomorphisms [101] between Euclidean and hyperbolic spaces. The choice of projection method
can be adapted based on computational efficiency and numerical stability requirements, while the
core principle of our approach, performing the low-rank transformation directly on the hyperbolic
manifold, remains unchanged.

Important Observation. Regardless of the specific projection method used, when these maps are
applied consecutively at the same base point without intermediate operations on the manifold, they
effectively cancel each other out. For example, logKo (expKo (v)) = v. This is why the conventional
tangent-space approach for hyperbolic neural networks [33, 32] does not directly benefit LLM
adaptation, where the hyperbolic geometry is effectively bypassed. Our Direct Lorentz Low-Rank
Transformation (LLR) addresses this limitation by operating directly on the hyperbolic manifold
between the projection steps, ensuring that the geometric properties of hyperbolic space are preserved
and utilized.

D Lorentz Transformation

In the context of special relativity, Lorentz transformations are linear mappings that preserve the
spacetime interval between events, ensuring the constancy of the speed of light across all inertial
frames. These transformations can be categorized into two primary types: Lorentz boosts and Lorentz
rotations [102, 103].

D.1 Lorentz Boost

A Lorentz boost corresponds to a transformation between two inertial reference frames moving at
a constant relative velocity. Given a velocity vector v ∈ Rn with magnitude ∥v∥ < 1, the Lorentz
boost matrix B mixes time and space coordinates:

B =

[
γ −γv⊤

−γv I+ γ2

1+γvv
⊤

]
, (16)

where γ = 1√
1−∥v∥2

is the Lorentz factor.

D.2 Lorentz Rotation

A Lorentz rotation involves only the rotation of spatial coordinates while preserving the time coordi-
nate:

R =

[
1 0⊤

0 R̃

]
, (17)
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where R̃ ∈ SO(n) is a spatial rotation matrix.

Our Spatial-like Transformation. In our Direct Lorentz Low-Rank Transformation (LLR), we
apply transformations exclusively to the spatial components while maintaining the constraint of the
Lorentz manifold. Given a point xH = (xH

0 ,xH
s ) ∈ Ln

K , our transformation is:

LLR(BA,xH) = (
√
∥BAxH

s ∥2 +K,BAxH
s ), (18)

where we transform the spatial component xH
s and recompute the time component to maintain the

Lorentz constraint x2
0 − ∥xs∥2 = K.

This can be decomposed into two sequential transformations:

yH = (yH0 ,yH
s ) = (

√
∥AxH

s ∥2 +K,AxH
s ), (19)

zH = (zH0 , zHs ) = (
√
∥ByH

s ∥2 +K,ByH
s ). (20)

Interpretation as a Constrained Lorentz Rotation. Our transformation can be viewed as a special
case of Lorentz rotation where: (1) We apply a linear transformation to the spatial coordinates:
xH
s 7→ BAxH

s ; (2) We recompute the time component to preserve the manifold constraint: xH
0 7→√

∥BAxH
s ∥2 +K. This approach differs from a standard Lorentz rotation in two ways (see also [37]):

(1) the spatial transformation BA is not necessarily orthogonal (i.e., BA /∈ SO(n)); (2) the time
component is not preserved but rather recomputed to maintain the manifold constraint.

In matrix form, our transformation can be expressed as:[
zH0
zHs

]
=

[√
∥BAxH

s ∥2+K√
∥xH

s ∥2+K
0⊤

0 BA

] [
xH
0

xH
s

]
(21)

The key property is that this transformation preserves the Lorentz manifold structure: if xH ∈ Ln
K ,

then LLR(BA,xH) ∈ Ln
K , as verified by:

(zH0 )2 − ∥zHs ∥2 = ∥BAxH
s ∥2 +K − ∥BAxH

s ∥2 = K. (22)

This spatial-like transformation approach allows us to leverage the low-rank structure of BA while
maintaining the geometric properties of the hyperbolic space, providing a computationally efficient
method for hyperbolic low-rank adaptation.

E Transformation Analysis

This section provides a detailed analysis of how HypLoRA differs from standard LoRA by examining
the higher-order terms introduced through hyperbolic geometry.

Proof. Let x ∈ Rd be an input token embedding. Let A ∈ Rr×d and B ∈ Rk×r be low-rank matrices
with rank r ≪ min{d, k}. Consider the d-dimensional hyperbolic space Ld

K (Lorentz model) with
curvature C = −1/K, where K > 0.

Our goal is to analyze how the HypLoRA update differs from the LoRA update and to understand the
impact of token norms ∥x∥ on the higher-order terms introduced by HypLoRA.

Mapping the Input Embedding to Hyperbolic Space. Following previous work [32], we interpret
the Euclidean token embedding x as an element in the tangent space at the origin o of the hyperbolic
space Ld

K . The tangent vector is given by v = (0,x) ∈ ToLd
K . The exponential map expKo projects

v onto the hyperbolic space:

expKo (v) =

(√
K cosh

(
∥v∥L√

K

)
,
√
K sinh

(
∥v∥L√

K

)
v

∥v∥L

)
, (23)

where ∥v∥L denotes the Minkowski norm. Since v = (0,x) and ∥v∥L = ∥x∥, the exponential map
simplifies to:

expKo (v) =

(√
K cosh

(
∥x∥√
K

)
,
√
K sinh

(
∥x∥√
K

)
x

∥x∥

)
. (24)
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Approximations. For small
∥x∥√
K

, let z = ∥x∥ we can use the Taylor series expansions:

cosh

(
z√
K

)
≈ 1 +

z2

2K
, sinh

(
z√
K

)
≈ z√

K
+

z3

6K3/2
. (25)

Applying these to the exponential map of x:

uH
0 ≈

√
K +

∥x∥2

2
√
K

, (26)

uH
space ≈ x+

∥x∥2

6K
x. (27)

Applying Low-Rank Transformations to the Approximated Embedding. Using the approximated
uH

space, we apply the transformations.

First transformation:

yH
space = AuH

space ≈ A

(
x+

∥x∥2

6K
x

)
= Ax+

∥x∥2

6K
Ax. (28)

Second transformation:

zHspace = ByH
space ≈ BAx+

∥x∥2

6K
BAx. (29)

Compute the time component after the transformations:

zH0 =

√
K +

∥∥zHspace

∥∥2. (30)

Approximating the Logarithmic Map. We map the transformed hyperbolic point zH =
(
zH0 , zHspace

)
back to the tangent space at the origin using the logarithmic map logKo :

∆QHyp = logKo (zH) =
√
K · arcosh

(
zH0√
K

)
zHspace√

(zH0 )2 −K
. (31)

Using the approximation zH0 ≈
√
K +

∥∥zHspace

∥∥2
2
√
K

and for small δ =

∥∥zHspace

∥∥2
2K

, we have:

arcosh

(
zH0√
K

)
≈ arcosh(1 + δ) ≈

√
2δ =

∥∥zHspace

∥∥
√
K

, (32)√
(zH0 )2 −K ≈

∥∥zHspace

∥∥ . (33)

Therefore, the logarithmic map simplifies to:

∆QHyp ≈ zHspace. (34)

Comparing HypLoRA and LoRA Updates. The HypLoRA update is:

∆QHyp ≈ BAx+
∥x∥2

6K
BAx. (35)

The LoRA update is:
∆QLoRA = BAx. (36)

The difference between the updates is:

∆QHyp −∆QLoRA =
∥x∥2

6K
BAx. (37)
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Impact of Token Norms on Higher-Order Terms. The higher-order term
∥x∥2

6K
BAx is proportional

to ∥x∥2. Since ∥x∥ reflects the specificity of the token in the hierarchical structure (larger norms
correspond to more specific tokens), this term becomes significant for tokens representing specific
concepts.

Impact on Attention Scores. The HypLoRA attention scores are computed as:

ScoresHypLoRA =

(
Qorig +∆QHyp

) (
Korig +∆KHyp

)⊤
√
dk

, (38)

where ∆KHyp is derived similarly.

The difference in attention scores includes higher-order terms dependent on ∥x∥2:

∆Scores = ScoresHypLoRA − ScoresLoRA . (39)

These higher-order terms enable HypLoRA to capture more complex hierarchical relationships,
particularly for tokens with larger norms.

Remark 1. Alignment with Token Hierarchy: The higher-order terms in HypLoRA’s updates are
proportional to ∥x∥2, correlating with the specificity of tokens in the hierarchical structure. As a
result, HypLoRA places greater emphasis on more specific tokens, enhancing its ability to model
detailed relationships.

Role of Curvature C: The curvature C = −1/K scales the higher-order corrections. Smaller
K (larger negative curvature) amplifies these terms, aligning with the hyperbolic nature of token
embeddings. In practice, the curvature parameter K can be tuned to ensure this condition is satisfied
for typical token embedding norms.

Effectiveness of HypLoRA: By incorporating these higher-order terms, HypLoRA leverages the
inherent hierarchical and hyperbolic structure of token embeddings. This leads to improved perfor-
mance, especially on problems requiring complex reasoning, explaining why the proposed method
performs better on more challenging datasets.

F Full Comparison

While the main body of our paper focuses on comparing HypLoRA against the standard LoRA
baseline to demonstrate the core effectiveness of our hyperbolic fine-tuning approach, this section
provides a comprehensive evaluation against a broader range of parameter-efficient fine-tuning
methods, such as Prefix tuning [68], Series and Parallel adapters [70], and DoRA [75], providing
a more complete picture of HypLoRA’s performance relative to the current landscape of efficient
fine-tuning techniques. This extended comparison validates that our improvements are not merely due
to increased model capacity or specific architectural choices, but rather stem from the fundamental
advantages of incorporating hyperbolic geometry into the adaptation process.

F.1 Implementation Details

To ensure consistency and comparability, our experimental setup closely followed the training config-
urations outlined in Hu et al. [98]. Across all fine-tuning tasks, we employed the AdamW optimizer
with a learning rate of 3× 10−4 and trained for a total of three epochs. LoRA modules (and conse-
quently, HypLoRA adapters) were integrated into both the Multi-Head Attention (MHA) and MLP
layers of the foundation models. A key hyperparameter for HypLoRA is the curvature K (defining the
hyperbolic curvature as −1/K), which was initialized by searching the set {0.5, 1.0}. For evaluation,
final scores were micro-averaged for arithmetic reasoning and averaged for commonsense reasoning
across the datasets, thereby giving equal weight to each individual prompt, regardless of the varying
number of questions per dataset (e.g., 1, 319 in GSM8K versus 238 in MAWPS).

For baseline methods, we adopted the following approach: results for Prefix tuning [68], Series
adapters, and Parallel adapters [70] are directly cited from Hu et al. [98] to ensure fair comparison
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Table 8: Comprehensive comparison of parameter-efficient fine-tuning methods on mathematical
reasoning tasks. Results marked with * are from [98], while † indicates our reproduced results. The
percentage following each dataset name indicates the proportion of prompts relative to the total
number of inference prompts. M.AVG represents the micro-average accuracy across all datasets. Best
results for each model are highlighted in bold. OOT indicates out-of-time during training.

Base Model PEFT Method MAWPS(8.5%) SVAMP(35.6%) GSM8K(46.9%) AQuA(9.0%) M.AVG
GPT-3.5 None 87.4 69.9 56.4 38.9 62.3

LLaMA-7B

None 51.7 32.4 15.7 16.9 24.8
Prefix* 63.4 38.1 24.4 14.2 31.7
Series* 77.7 52.3 33.3 15.0 42.2
Parallel* 82.4 49.6 35.3 18.1 42.8
LoRA* 79.0 52.1 37.5 18.9 44.6
LoRA† 81.9 48.2 38.3 18.5 43.7
DoRA 80.0 48.8 39.0 16.4 43.9
HypLoRA (Ours) 79.0 49.1 39.1 20.5 44.4

LLaMA-13B

None 65.5 37.5 32.4 15.0 35.5
Prefix* 66.8 41.4 31.1 15.7 36.4
Series* 78.6 50.8 44.0 22.0 47.4
Parallel* 81.1 55.7 43.3 20.5 48.9
LoRA* 83.6 54.6 47.5 18.5 50.5
LoRA† 83.5 54.7 48.5 18.5 51.0
DoRA 83.0 54.6 OOT 18.9 NA
HypLoRA (Ours) 83.2 54.8 49.0 21.5 51.5

Gemma-7B

None 76.5 60.4 38.4 25.2 48.3
LoRA 91.6 76.2 66.3 28.9 68.6
DoRA 90.7 79.2 68.3 33.9 71.0
HypLoRA (Ours) 89.5 78.7 69.5 32.7 71.2

LLaMA3-8B

None 79.8 50.0 54.7 21.0 52.1
LoRA 92.7 78.9 70.8 30.4 71.9
DoRA 90.3 79.8 73.3 21.3 72.4
HypLoRA (Ours) 91.6 80.5 74.0 34.2 74.2

Gemma3-4B
LoRA 90.8 77.3 72.3 50.8 73.7
DoRA 89.5 78.8 68.5 52.4 72.5
HypLoRA (Ours) 88.2 83.9 76.1 53.2 77.8

Qwen2.5-7B
LoRA 90.8 84.4 78.6 68.1 80.8
DoRA 92.8 87.4 80.4 64.2 82.5
HypLoRA (Ours) 91.2 92.2 87.9 71.6 88.3

under identical experimental conditions. For LoRA and DoRA, we conducted independent reimple-
mentations following their respective original papers and parameters [31, 75] to enable rigorous and
controlled comparisons.

F.2 Comparison on Mathematical Reasoning

Looking at the mathematical reasoning comparison table, several key experimental findings emerge
regarding HypLoRA’s performance across different model architectures and datasets. The results
demonstrate that HypLoRA consistently outperforms standard LoRA across multiple model families,
with particularly notable improvements on more challenging datasets. For the Gemma-7B model, Hy-
pLoRA achieves a micro-averaged accuracy of 71.2%, surpassing LoRA’s 68.6%. For LLaMA3-8B,
HypLoRA reaches 74.2% compared to LoRA’s 71.9%. The improvements are especially pronounced
on the AQuA dataset, which requires complex algebraic reasoning. Specifically, HypLoRA shows
gains of 3.8 percentage points over LoRA on Gemma-7B (32.7% vs 28.9%) and 3.8 points on
LLaMA3-8B (34.2% vs 30.4%). This pattern suggests that HypLoRA’s hyperbolic geometry is
particularly effective for problems requiring multi-step reasoning and understanding of hierarchical
mathematical relationships.

The consistency of improvements across different model architectures further validates the general-
izability of the hyperbolic approach. While HypLoRA shows competitive performance on simpler
datasets like MAWPS, the performance advantages become more significant on challenging datasets
like GSM8K and AQuA, which demand sophisticated reasoning capabilities. For instance, on
GSM8K, HypLoRA achieves 69.5% accuracy on Gemma-7B versus 66.3% for LoRA, and 74.0%
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Table 9: Extended commonsense reasoning accuracy (%) for GPT-3.5 and for LoRA, DoRA, and
HypLoRA on LLaMA3-8B, Gemma3-4B, and Qwen2.5-7B. Columns correspond to BoolQ, PIQA,
SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA; the rightmost column reports the macro
average across the eight benchmarks.
Base Model PEFT Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG
GPT-3.5 None None 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA3-8B
LoRA 0.70 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA 0.71 72.1 85.5 79.6 92.8 83.3 85.2 72.1 84.0 81.8
HypLoRA (Ours) 0.70 74.1 87.6 80.6 94.5 84.7 90.4 81.2 85.2 84.8

Gemma3-4B
LoRA 1.04 68.1 83.2 77.2 88.9 80.5 84.5 69.9 83.6 79.5
DoRA 1.05 68.1 84.3 78.4 88.3 80.1 84.1 70.8 83.8 79.7
HypLoRA (Ours) 1.04 70.0 84.3 79.2 91.5 80.3 89.1 75.9 86.4 82.5

Qwen2.5-7B
LoRA 0.71 73.4 89.5 79.5 93.6 84.1 92.8 82.0 87.0 85.2
DoRA 0.72 71.7 88.7 79.0 93.7 84.1 92.4 82.8 88.4 85.1
HypLoRA (Ours) 0.71 72.8 89.3 79.8 94.8 84.4 95.5 87.5 90.8 87.0

on LLaMA3-8B versus 70.8% for LoRA. These correspond to gains of 3.2 points over LoRA on
both Gemma-7B and LLaMA3-8B. Notably, on the most recent models, HypLoRA demonstrates
substantial improvements: on Gemma3-4B, HypLoRA achieves 77.8% M.AVG compared to LoRA’s
73.7% (+4.1 points), and on Qwen2.5-7B, HypLoRA reaches 88.3% versus LoRA’s 80.8% (+7.5
points). The fact that HypLoRA maintains superior performance across both older (LLaMA-7B,
LLaMA-13B) and newer (LLaMA3-8B, Gemma3-4B, Qwen2.5-7B) model architectures demon-
strates the robustness of incorporating hyperbolic inductive biases into parameter-efficient fine-tuning,
regardless of the underlying model’s specific architectural details or training paradigms.

F.3 Comparison on Commonsense Reasoning

HypLoRA demonstrates substantial improvements over standard LoRA across diverse commonsense
reasoning benchmarks, as shown in Table 9. The commonsense reasoning tasks evaluated include
BoolQ (yes/no question answering), PIQA (physical commonsense inference), SIQA (social inter-
action reasoning), HellaSwag (commonsense natural language inference), WinoGrande (pronoun
disambiguation), ARC-e and ARC-c (science question answering with easy and challenging diffi-
culty), and OBQA (open book question answering). These benchmarks collectively assess the model’s
ability to understand implicit knowledge, contextual nuances, and real-world reasoning patterns.
The consistent performance gains across all three model architectures and eight diverse benchmarks
indicate that the hierarchical inductive bias introduced by hyperbolic geometry effectively captures
the implicit relational structures underlying commonsense reasoning

F.4 GPU Usage

Table 10 presents a comprehensive comparison of memory usage across different fine-tuning methods
for both LLaMA3-8B and Gemma3-4B models. The results demonstrate that HypLoRA maintains
comparable memory efficiency to the baseline LoRA method. Specifically, HypLoRA with stereo-
graphic projection achieves identical memory consumption to LoRA (30.12 GB for LLaMA3-8B
and 14.61 GB for Gemma3-4B), while HypLoRA with exponential/logarithmic maps introduces only
a minimal overhead of 0.02 GB for LLaMA3-8B and 0.01 GB for Gemma3-4B. Notably, both Hy-
pLoRA variants significantly outperform DoRA in terms of memory efficiency, with DoRA requiring
30.23 GB and 14.62 GB, respectively. These results confirm that our hyperbolic adaptation approach
does not compromise memory efficiency while delivering superior performance improvements, mak-
ing HypLoRA a practical choice for resource-constrained environments where both performance
gains and memory conservation are critical considerations.

Table 10: Allocated Memory Usage Comparison for Fine-tuning Methods
LLaMA3-8B Gemma3-4B

Method Param (%) Memory (GB) Param (%) Memory (GB)
LoRA 0.7002 30.12 1.0371 14.61
DoRA 0.7098 30.23 1.0516 14.62
HypLoRA 0.7099 30.14 1.0518 14.62
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Table 11: Example problem with solutions from LoRA and HypLoRA (Case 1)

Question To have the car for the weekend, Wilson’s report card needs to show that he received 80 or higher
in his math class. His math grade is calculated by the average of 5 test scores. On those tests, he
received: 65, 94, 81, 86, and 74. What is his current math grade? Answer: 80.0

LoRA To find Wilson’s current math grade, we need to take the average of his 5 test scores. First, we
add up all 5 test scores: 65 + 94 + 81 + 86 + 74 = 380. Then, we divide the sum by the number
of tests: 380÷ 5 = 76. Therefore, Wilson’s current math grade is 76. Answer: 76.

HypLoRA To find Wilson’s current math grade, we need to take the average of his 5 test scores. To do this,
we add up the scores and divide by 5: 65 + 94 + 81 + 86 + 74 = 400. Then, we divide by 5:
400÷ 5 = 80. Therefore, Wilson’s current math grade is 80. Answer: 80.

G Case Study

In this section, we present three examples to demonstrate the advantages of incorporating HypLoRA
over standard LoRA fine-tuning.

Table 12: Example problem with solutions from LoRA and HypLoRA (Case 2)
Question It takes 240 minutes of walking to break in a new pair of shoes. Jason wants to try out for the

track team in three weeks. If he can walk 4 days a week to break in the new shoes, how long
does he have to spend walking each day? Answer: 20.0 minutes

LoRA To find out how long Jason has to spend walking each day, we need to divide the total number
of minutes it takes to break in the shoes by the number of days he has to do it. Jason has 240
minutes divided by 4 days per week. This results in 60 minutes per day. Answer: 60.

HypLoRA First, we need to find how many minutes Jason needs to walk in total to break in the new shoes:
240 minutes. Next, we find how many minutes Jason needs to walk each week over three weeks:
240 minutes divided by 3 weeks equals 80 minutes per week. Then, to find how many minutes
he needs to walk each day: 80 minutes per week divided by 4 days equals 20 minutes per day.
Answer: 20.

Table 13: Example problem with solutions from LoRA and HypLoRA (Case 3)
Question Gissela, Gordy, and Gary are truck drivers. Gissela has a truck large enough to haul 4,000 pounds

of gravel. Gordy’s truck can haul 800 pounds more than Gissela’s truck. When Gary brings his
truck and joins Gissela and Gordy, the three trucks combined can haul a total of 11,600 pounds
of gravel. How many pounds of gravel can Gary’s truck carry? Answer: 2,800 pounds

LoRA Let’s start by assigning variables to represent the amount of gravel each truck can haul: Gissela’s
truck hauls 4,000 pounds. Gordy’s truck hauls 4, 000+800 = 4, 800 pounds. Now, we set up an
equation for the total amount of gravel the three trucks can haul: 4, 000+ 4, 800+ x = 11, 600,
where x is the amount Gary’s truck hauls. Simplifying the equation: 9, 800 + x = 11, 600, we
subtract 9, 800 from both sides to get x = 11, 600− 9, 800 = 1, 800. Therefore, Gary’s truck
hauls 1,800 pounds. Answer: 1,800.

HypLoRA Gissela’s truck can haul 4,000 pounds of gravel. Gordy’s truck can haul 800 more pounds than
Gissela’s truck, so it can haul 4,800 pounds of gravel. Together, Gissela and Gordy’s trucks can
haul 8,800 pounds of gravel. If the three trucks combined can haul 11,600 pounds, then Gary’s
truck can haul 11, 600− 8, 800 = 2, 800 pounds of gravel. Answer: 2,800.

These examples demonstrate how HypLoRA consistently provides more accurate reasoning compared
to LoRA across different types of mathematical problems. In Case 1, LoRA drops 20 points when
summing the five scores (reporting 380 instead of 400) and therefore produces the wrong average.
This seemingly small arithmetic lapse aligns with the observation that LLMs often rely on high-level
pattern similarity rather than exact computation [104]. By preserving greater separation among
numerically close but semantically distinct tokens (e.g., 380 vs. 400), the hyperbolic representation
in HypLoRA keeps the sequence of operations faithful and recovers the correct average.

In Case 2, LoRA immediately divides 240 minutes by the four weekly walking days, yielding 60
minutes per day and ignoring that the 240-minute budget must be spread over three weeks. HypLoRA
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correctly reasons in stages: divide 240 by 3 weeks, then by 4 days per week, recovering the required
20 minutes per day and showing stronger temporal reasoning.

In Case 3, LoRA actually sets up the correct balance equation 4,000+4,800+x = 11,600 but subtracts
9,800 from 11,600 rather than 8,800, reporting x = 1,800. HypLoRA carries the subtraction through
correctly and outputs the true 2,800 pounds. Together, these examples illustrate how the hyperbolic
geometry employed by HypLoRA enables better handling of multi-step reasoning, maintaining both
semantic context and numerical consistency in mathematical problem-solving scenarios.

Overall, these cases highlight a consistent trend: LoRA frequently derails on either a single arithmetic
step (Cases 1 and 3) or a latent multi-hop dependency (Case 2), whereas HypLoRA preserves each
intermediate calculation, keeps quantities well separated in representation space, and consequently
delivers the correct final answers. These qualitative observations complement the quantitative gains
reported in the main paper.
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