
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FFT-BASED DYNAMIC SUBSPACE SELECTION FOR LOW-
RANK ADAPTIVE OPTIMIZATION OF LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank optimization has emerged as a promising direction in training large
language models (LLMs) to improve running time and reduce the memory usage
of adaptive optimizers by constraining learning to a lower-dimensional space. Prior
work typically projects gradients of linear layers using approaches based on Singu-
lar Value Decomposition (SVD) or QR-decomposition. Applying these techniques
individually to each layer in large models is computationally expensive and incurs
additional memory costs due to storing the projection matrices. In this work, we
propose a computationally efficient and conceptually simple, two-step procedure
to approximate SVD/QR-based gradient projections into lower-dimensional spaces
by using a predefined orthogonal matrix of the Discrete Cosine Transform (DCT).
We dynamically select columns from the DCT matrix based on their alignment
with the gradient of each layer. The effective projection matrices are obtained via a
simple matmul with the DCT matrix in O(n3) time, followed by a lightweight
sorting step to identify the most relevant basis vectors. For large layers, DCT can
be computed via Makhoul’s N -point algorithm based on Fast Fourier Transform
(FFT) in O(n2 log(n)) time. Due to the predefined nature of the orthogonal bases,
they are computed once at the start of training. Our numerical experiments on both
pre-training and fine-tuning tasks demonstrate the effectiveness of our dual strategy
in approximating optimal low-rank projections, obtaining an approach with rank-
independent running time that matches the performance of costly SVD/QR-based
methods while achieving faster runtime and reduced memory usage by up to 25%
across different model sizes.

1 INTRODUCTION

The Adam optimizer (Kingma & Ba, 2014) and its regularized version AdamW (Loshchilov & Hutter,
2019) have become the standard approach for optimizing deep neural networks in various settings.
With the recent increase in scale of LLMs up to billions and trillions of parameters, training with
AdamW becomes more and more challenging, as its internal state requires two momentum buffers
that scale with the model size. This practical problem paved the way for a line of research that focuses
on reducing the memory usage of optimizer states in the context of adaptive gradient optimization.
These approaches range from quantizing the states to 8 bits (Dettmers et al., 2021) to the recent
GaLore optimizer (Zhao et al., 2024) inspired from the LoRA techniques (Hu et al., 2021; Lialin et al.,
2023), that compresses the gradient matrix using low-rank decomposition based on SVD. Several
improvements to GaLore have been proposed to enhance its performance, such as LDAdam (Robert
et al., 2025), FRUGAL (Zmushko et al., 2024), FIRA (Chen et al., 2024), BAdam (Luo et al., 2024),
Q-GaLore (Zhang et al., 2024). The key aspect of GaLore and its later improvements is the low-rank
decomposition based on matrix factorization, such as SVD or QR decomposition.

Recently, the Muon (Jordan et al., 2024) optimizer sparked the community’s attention due to the
faster convergence in pretraining settings, achieved by orthogonalizing the momentum matrix using
Newton-Schulz, an iterative procedure difficult to parallelize for large-scale pretraining runs as the
full-sized matrices must be materialized on GPU. The Dion optimizer (Ahn et al., 2025) aims to reduce
this overhead by employing low-rank, orthogonal updates. However, it requires storing a projection
matrix for each layer and uses QR-decomposition to orthogonalize the low-rank components, making
its running time dependent on the rank.

All these SVD/QR-based techniques are known to be computationally intensive as they have to be
invoked for each linear layer, either at each step (for, e.g., LDAdam, Muon) or once at a few steps

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(for, e.g., GaLore). To mitigate the high computational and memory costs of these procedures, we
ask: can we find an alternative low-rank projection approach to serve as an accurate replacement
for the orthogonal matrices in SVD/QR for low-rank compression of optimizer states, that is much
cheaper to compute, and portable across memory-efficient optimizers?

Contributions. In this work, we address our research question by proposing a cheaper alternative
to the orthogonal matrices computed via SVD/QR. Concretely, we propose using the orthogonal
matrices from the general class of Discrete Fourier Transforms, such as the Discrete Cosine Transform
(DCT), which has been successfully used in image compression for the JPEG algorithm. To the best
of our knowledge, we are the first to use it in the context of low-rank adaptive gradient optimization.
We summarize our contributions as follows:

• We propose a dynamic column selection approach to adaptively choose columns from a fixed
orthogonal matrix to compute a low-rank projection of the input matrix. The effective projection
matrix is obtained from the fixed orthogonal matrix by indexing the columns (Section 2.1);

• We motivate that DCT is a good candidate for our dynamic column selection approach due to
the reduced time complexity to compute the alignments with the input matrix via the Makhoul’s
N -point algorithm (Makhoul, 1980) to compute a fast DCT with O(n2 log(n)) time complexity
compared to O(n3) incurred by a basic matrix multiplication. This can yield speedups of up to
8− 50× in computing the alignments for large layers (Appendix C).

• We theoretically justify our dynamic column selection approach to compute the most significant
columns of any fixed orthogonal matrix (including the DCT-based) to obtain a projection matrix
tailored to each layer (Section 4);

• We show the DCT-based projection is a fast and accurate replacement for the orthogonal matrices
computed via SVD/QR for the Muon- and Adam-like optimizers (such as Dion, FRUGAL, FIRA,
LDAdamW) in the context of low-rank compression of optimizer states. We reduce the running
time and improve the memory usage as we store only one DCT matrix per GPU for the entire
network, computed once at the beginning of the training. In addition, we store only r (rank)
integers, representing the indices of the most significant columns for each layer instead of storing
one low-rank projection matrix.

• We propose two standalone optimizers that use the DCT-based dynamic column selection approach:
1. Trion (Section 2.3), which improves Dion by replacing the Power-Iteration with our DCT-

based dynamic column selection approach to compute a low-rank representation of the
momentum buffer, followed by orthogonalization via Newton-Schulz iteration. We provide a
DDP-compatible implementation that communicates orthogonal, low-rank momentum across
devices and compute the final layer updates locally using the projection matrix obtained
from DCT. To the best of our knowledge, we are the first ones to reduce the complexity of
Newton-Schulz using a low-rank approximation of momentum.

2. DCT-AdamW (Section 2.4), which replaces the SVD-based low-rank projections and op-
tionally adds quantized error feedback for the projection error. Further, DCT-AdamW rotates
the momentum buffers such that new low-rank gradients are correctly incorporated, and thus
allows changing the low-rank subspace every step.

2 METHOD

This section presents our dynamic column selection approach that works with any orthogonal matrix,
briefly introduces the Discrete Cosine Transform (DCT) and the motivation of using it and finally
introduces the two algorithms we propose: Trion as an improvement to Dion to replace Power-
Iteration and DCT-AdamW as an improvement to low-rank AdamW variants to replace SVD/QR.

2.1 DYNAMIC COLUMN SELECTION

General View. Given an orthogonal matrix Q ∈ Rn×n, we want to compute a projection matrix
Qr ∈ Rn×r by selecting r columns from Q to project the gradient G ∈ Rn×n to an r-dimensional
space g = GQr ∈ Rn×r. First, we compute the similarities matrix S = GQ containing the scalar
products between rows of G and columns of Q. We rank the columns of S based on their ℓ1- or
ℓ2-norm and then pick the indices of the largest r columns according to the chosen norm, which we
use to index columns in Q to obtain Qr. The ith column in matrix S contains the scalar products
between each row of G and ith column of Q, as detailed in Appendix B. We view these scalar products
as similarities (or alignments) of rows in G with columns of Q and we want to choose the columns

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of Q with largest similarity with rows of G. Using this approach, we ensure a dynamic mechanism
to choose the most appropriate columns of Q for the current gradient matrix G to minimize the
projection error (see Section 4). Each layer will have its own set of r indices for the columns. The
dynamic behavior comes from the n-choose-r possible sets of indices to select from.

The rule of thumb in the low-rank factorization methods for optimization we are targeting in this
work is to compress the smallest dimension of a matrix to r dimensions (e.g. from Rn×m to Rn×r

for n ≥ m). Usually, the smallest dimension of the gradient matrix is dmodel, the hidden (embedding)
size of the model. As a result, the memory overhead of our dynamic column selection approach is the
cost of storing only one orthogonal matrix Q ∈ Rdmodel×dmodel (DCT in our case) per GPU for the
entire model and r integers for the corresponding column indices from Q for each layer to create Qr.

2.2 DISCRETE COSINE TRANSFORM

The Discrete Cosine Transform (DCT) is widely used in the signal processing and data compression
literature (e.g., JPEG algorithm for image compression) and consists of n orthogonal basis vectors
whose components are cosines (Strang, 1999). There are minor variations of DCT and in this
work we will use DCT-II/III. We denote the DCT-III matrix of order n by Q ∈ Rn×n, defined as
Qij =

√
2/n ·cos i(2j+1)π

2n , with i, j ∈ [n], where the first row has to be divided by
√
2 in order for Q

to be orthogonal, i.e. Q⊤Q = In. The DCT-II matrix is the transpose of DCT-III. In Appendix A, we
provide details on how we can efficiently materialize the DCT matrix on GPU. Once we compute Q,
we can use it in the dynamic column selection approach to efficiently compute low-rank projections
of any two-dimensional matrix.

In Appendix C, we discuss why we choose DCT matrix. In short, the particular structure of DCT
allows us to enable fast computation for the similarities matrix S in O(n2 log(n)) time using the
Makhoul’s N -point algorithm (see Appendix D) instead of O(n3) time for basic matmul.

2.3 TRION: DCT-BASED IMPROVEMENT TO DION

In this section, we present how we can apply the DCT-based dynamic column selection approach
to compute low-rank projection of momentum in the context of Dion (Ahn et al., 2025) to obtain a
faster and more accurate optimizer, which we call Trion, presented in Algorithm 1.

Dion uses Power-Iteration to compute a low-rank projection and orthogonalizes it using QR-
decomposition, whose running time depends on the rank r. Instead, we propose replacing these
techniques with a rank independent approach to compute the low-rank projection based on DCT
matrix, which requires computing the similarity matrix St, followed by a top-r ranking to determine
the indices of columns that best align with the momentum matrix, denoted by the set it. The matrix St

represents the DCT of the momentum matrix and it can be computed using the Makhoul’s algorithm
or simply by only one matrix multiplication St = BtDC , where Bt ∈ RR×C is the momentum and
DC ∈ RC×C is the DCT matrix.

Once we determine the indices it of the most significant columns in DC , we can extract the low-rank
momentum bt from the similarity matrix St, as well as the projection matrix Qt by indexing DC ,
which will be used in (a) computing the projection error ∆t and (b) projecting the orthogonal low-rank
momentum back to the higher dimensional space to update the model.

We would like to emphasize that we input the low-rank momentum bt ∈ RR×r to Newton-Schulz
and not the original momentum buffer Bt ∈ RR×C , which significantly reduces the computational
overhead. Moreover, we can use the efficient triton kernels provided in the Muon implementation
from the official Dion repository1 to speed up the computations even further for large ranks r, as
Newton-Schulz will operate with r × r matrices.

Communication in Distributed Training. We develop the Trion optimizer on top of the published
code for the Muon 2 optimizer that leverages the ZeRO (Rajbhandari et al., 2020) approach in
Distributed Data Parallel (DDP) settings. Specifically, the model update Ot for a layer is computed
only on one GPU, and the result is communicated to other GPUs using all-gather, drastically
reducing the computation costs for large models (under the assumption that communication is
cheaper than computation itself). Since we replicate the DCT matrix on each GPU, we would like to

1github.com/microsoft/dion
2Keller Jordan’s Muon implementation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

emphasize that we communicate only low-rank terms ot from the source GPU (the one computing
the update) to other devices and perform the step Ot = otQ

⊤
t locally on each device. This way, we

do not communicate full size, orthogonal matrices Ot, but only low-rank versions ot, thus reducing
the overall iteration time.

This is particularly useful in the FSDP-compatible implementation, where we can materialize the
full low-rank matrices ot on each device using all-to-all (see this Muon implementation 3) to
perform Newton-Schulz on a low-rank input, followed by a resharding. After resharding, each GPU
can compute the individual slice of Ot and update its own shard. However, the FSDP implementation
requires deciding how each layer should be sharded based on whether that particular layer requires a
left- or right-projection in order to avoid unwanted calls to communication primitives to materialize
full tensors to compute the alignments S.

Algorithm 1 Trion Optimizer

1: Define the DCT-II/III matrix DC ∈ RC×C

2: for t = {1, 2, . . . , T} do
3: Gt = ∇θL(θt) ∈ RR×C

4: Bt = Mt−1 +Gt ∈ RR×C

5: St = MAKHOUL(Bt) ∈ RR×C ▷ or St = Bt ·DC to compute similarities;
6: it = DYNAMICCOLUMNSELECTION(S, r) ∈ Nr ▷ select largest r columns by ℓ1/ℓ2-norm
7: Qt = DC [:, it] ∈ RC×r ▷ projection matrix containing most significant r columns
8: bt = St[:, it] ∈ RR×r ▷ extract low-rank momentum from the similarity matrix S
9: ∆t = Bt − btQ

⊤
t ▷ the error is btQ⊤

t and replaces PtR
⊤
t error from Dion

10: Mt = µBt + (1− µ)∆t = Bt − (1− µ)btQ
⊤
t ▷ update momentum with error feedback

11: ot = NEWTONSCHULZ(bt) ∈ RR×r ▷ Newton-Schulz applied on low-rank bt
12: Ot = otQ

⊤
t ∈ RR×C ▷ project orthogonalized low-rank momentum to original size

13: θt+1 = (1− ληt)θt − ηt max(1,
√

R/C) Ot ∈ RR×C

14: end for

2.4 DCT-ADAMW

We propose DCT-AdamW, a standalone low-rank version of AdamW with DCT-based projection
that has the option to use quantized error feedback (EF) (Seide et al., 2014; Karimireddy et al.,
2019; Alistarh et al., 2018) and ensures momentum buffers integrate gradients from the same lower
dimensional subspaces in a similar way as in LDAdamW (Robert et al., 2025). In contrast to
LDAdamW, which has to store two consecutive projection matrices per layer, we only have to store
two sets of r indices per layer. Prior work MicroAdam (Modoranu et al., 2024) quantized the error
feedback down to 4-bits in the context of compressing the optimizer state using sparsity. In our setup,
the lowest resolution we can quantize EF to is 8-bits without degrading the optimizer performance. For
space constraints reasons, we present the pseudocode of our DCT-AdamW optimizer in Appendix E.

3 EXPERIMENTS

In this section we present our numerical results. Our main goal is to show that our DCT-based
dynamic column selection approach at least recovers the performance of the original algorithms
which we integrate it in. Specifically, we evaluate Trion against Dion, where we directly compare
the DCT-based projection followed by Newton-Schulz iteration with QR-based Power-Iteration. In
addition, we replace the SVD-based projection in FRUGAL and FIRA optimizers with our DCT
approach. In the end, we compare LDAdamW with our standalone DCT-AdamW optimizer. In our
pretraining experiments, we compare training/validation perplexity and for fine-tuning we compare
the evaluation accuracy, as well as memory usage and running time for both scenarios. In the
remaining part of the paper, we focus on presenting our pretraining (PT) results and the fine-tuning
(FT) results are presented in Appendix H.

We train from scratch models from the Llama family with 350M, 800M and 1.3B parameters using
Chinchilla-optimal token counts (20 tokens per parameter) from the C4 (Raffel et al., 2020) dataset
and sequence length 512. All PT experiments are run in Distributed Data Parallel (DDP) settings on
8x H100 Nvidia GPUs using global batch size 512 with local batch size 64 per GPU (unless otherwise
specified explicitly).

3github.com/microsoft/dion/blob/main/dion/muon.py#L22

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

PT with Trion. Our purpose is to show that our DCT-based dynamic column selection approach
can successfully replace the QR-based Power-Iteration procedure in Dion and at least recovers the
performance for the best hyper-parameters reported by the original work. In Table 1, we present our
results, which are obtained using the optimal learning rate η = 0.01 (as reported by the original Dion
paper) and weight decay λ = 0.01. We report the average values across 3 seeds for train/validation
loss and perplexity, maximum allocated memory (read directly from the GPU) and the lowest running
time across all runs. We experiment with ranks 128, 256 and 512, the rank-to-dimension ratio is
r/d ∈ {1/16, 1/8, 1/4, 1/2}, equivalent to 6.25%, 12.5%, 25% and 50% of the full rank d, where d
is model’s embedding dimension.

Rank r Metric 350M (d = 1024) 800M (d = 2048) 1.3B∗ (d = 2048)

Trion Dion Trion Dion Trion Dion

128

r/d 1/8 1/16 1/16
Train Loss 2.726 2.764 2.532 2.555 2.475 2.503
Train PPL 15.29 15.89 12.59 12.89 11.90 12.24
Val Loss 2.736 2.773 2.505 2.527 2.422 2.448
Val PPL 15.43 16.00 12.25 12.52 11.27 11.56
Memory (GB) 42.42 45.56 67.45 71.64 63.62 68.57
Runtime 1h 53m 1h 58m 8h 5m 8h 24m 19h 13m 19h 42m

256

r/d 1/4 1/8 1/8
Train Loss 2.715 2.741 2.533 2.546 2.476 2.492
Train PPL 15.11 15.51 12.61 12.78 11.92 12.11
Val Loss 2.727 2.750 2.503 2.519 2.423 2.440
Val PPL 15.30 15.64 12.22 12.42 11.28 11.47
Memory (GB) 42.42 45.59 67.45 71.75 63.62 68.58
Runtime 1h 53m 2h 3m 8h 3m 8h 36m 19h 13m 20h 6m

512

r/d 1/2 1/4 1/4
Train Loss 2.708 2.718 2.528 2.535 2.470 2.481
Train PPL 15.01 15.16 12.54 12.63 11.84 11.97
Val Loss 2.718 2.727 2.499 2.509 2.420 2.430
Val PPL 15.15 15.29 12.18 12.30 11.25 11.36
Memory (GB) 42.42 45.99 67.45 71.81 63.62 68.73
Runtime 1h 54m 2h 14m 8h 3m 8h 48m 19h 13m 20h 44m

Table 1: Perplexity, Memory, and Running Time Comparison for Trion and Dion. d stands for the
embedding dimensionality of the model. The 1.3B model was trained with local batch size 32.

Performance In Table 1, we show Trion consistently achieves lower training and validation loss,
which also translates to lower perplexities. At the top row of Figure 3 we show the training loss
curve of Trion is lower than Dion across iterations. This is an indication that our DCT-based dynamic
column selection algorithm, followed by orthogonalization via Newton-Schulz can successfully
replace the Power-Iteration procedure in Dion.

Memory Usage. In Table 1, we show Trion has a lower memory requirement across all experiments
since it allocates only one DCT matrix per GPU of size d× d, from which we select r columns using
the indices of the most significant columns. In contrast, Dion stores a projection matrix for each layer.
This design difference translates to around 10% lower memory footprint for Trion compared to Dion.

Runtime. We would like to emphasize that the running time of Trion does not depend on rank,
as can be seen from the reported runtime across different ranks in Table 1: Trion achieves nearly
constant runtime for each model size across all ranks, while the runtime of Dion clearly depends on
the rank because of the QR-decomposition. This represents an advantage of Trion for much larger
scales compared to Dion. At the bottom row of Figure 3 we present the wall clock time for the
two optimizers for rank 256 across all three models we tested on. Concretely, for a fixed running
time budget, Trion consistently achieves lower training loss than Dion. Trion is faster than Dion by
2.5 − 4.5% for rank 128, 4.5 − 9% for rank 256 and 8 − 18% for rank 512 (the overhead of Dion
increases with rank). It is important to mention that the embedding size d of the models we used in
our work is too small to see a significant difference in the runtime between Makhoul’s algorithm and
matmul when computing the column similarities. However, our benchmark presented in Appendix D
shows the advantage of using Makhoul’s algorithm at scale compared to matmul.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Factorization Accuracy. In order to understand why our low-rank projection in Trion is more
accurate than Power-Iteration in Dion, we compute the ℓ2−norm of projection errors between the
accumulators Bt and the corresponding orthogonal updates that each optimizer uses to update the
model: ∆dion

t = ||Bt − PtQ
⊤
t ||2 for Dion and ∆trion

t = ||Bt −Ot||2 for Trion. In Figure 1 we show
the projection errors for the linear layers of the first transformer block in a Llama-30M model and
provide more information in Appendix F.

PT with LDAdamW. We train Llama-800M on 80B tokens (100 tokens per parameter) from C4 using
LDAdam and DCT-AdamW described in Algorithm 2. In particular for our approach, we use EF
quantized to 8-bits and some further optimizations from the ZeRO-redundancy optimizer (Rajbhandari
et al., 2020), where one layer is updated on a single GPU and then it is broadcasted to the other GPUs.
This way, we obtain lower memory usage by replacing redundant operations in the optimizer with
communication, since the GPUs receiving the updated layer parameters do not allocate any state. In
Figure 2 we present the training loss curves for full-rank AdamW (for reference), LDAdamW and
DCT-AdamW and we are interested in directly comparing the last two. We observe that DCT-AdamW
has lower training loss than LDAdamW, which also translates to lower perplexities in Table 2. Due
to relatively high rank, the memory usage of LDAdamW is close to the memory usage of AdamW
because it stores two projection matrices to be able to rotate the momentum buffers. In contrast,
DCT-AdamW stores only two sets of r indices instead of storing the actual projection matrices, which
drastically reduces the memory usage, coupled with the ZeRO-redundancy trick. In terms of running
time, DCT-AdamW is faster than LDAdamW by 10h 7m (≈ 25.75%) and slower than AdamW by
1h 55m (≈ 5%).

0 500 1000 1500 2000
Training Step

9.75
10.00
10.25
10.50
10.75
11.00
11.25

Pr
oj

ec
tio

n
Er

ro
r

transformer.h.0.attn.c_attn.weight

Dion
Trion

0 500 1000 1500 2000
Training Step

9.50
9.75

10.00
10.25
10.50
10.75
11.00
11.25

Pr
oj

ec
tio

n
Er

ro
r

transformer.h.0.mlp.c_proj.weight

Dion
Trion

0 500 1000 1500 2000
Training Step

10.2

10.4

10.6

10.8

11.0

11.2

Pr
oj

ec
tio

n
Er

ro
r

transformer.h.0.mlp.w1.weight

Dion
Trion

Figure 1: Projection errors for Dion and Trion for a few layers from the first transformer block on
Llama-30M (d = 640, r = 128).

AdamW LDAdamW DCT-AdamW

Train PPL 12.88 15.10 14.95

Val. PPL 11.73 13.91 13.69

Mem. (GiB) 73.72 72.10 57.82

Time 1d 13h 22m 2d 1h 24m 1d 15h 17m

Table 2: Pre-training results on Llama-800M
for AdamW, LDAdamW and DCT-AdamW
with 100 tokens/parameter. AdamW is the
full-rank optimizer and is added for reference.

0 50000 100000 150000 200000 250000 300000
iter

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Tr
ai

ni
ng

 L
os

s

LDAdamW
AdamW
DCT-AdamW

300000 301000 302000 303000 304000 305000

2.45

2.50

2.55

2.60

2.65

Figure 2: Pre-training Llama-800M with DCT-
AdamW and LDAdam on 80B tokens from C4.

PT with FRUGAL/FIRA. We replace the SVD projection with our DCT approach and test it on
Llama-800M model using 16B tokens from the C4. For space constraints reasons, we present the
results in Appendix G.

4 THEORETICAL GUARANTEES
In this section, we provide a theoretical justification for our two-step procedure to approximate
SVD-based gradient projections. First, we rigorously show that adaptively selecting columns of
an orthogonal matrix based on their alignment with the gradient matrix is an optimal strategy for
minimizing the reconstruction error. This approach leads to a contractive compression scheme,
which is commonly exploited in the analysis of compressed adaptive optimization algorithms. Next,
to justify the specific use of the DCT matrix, we demonstrate that it naturally serves as a linear
approximation of the left or right eigenbases of the gradient matrices.
4.1 OPTIMALITY OF NORM-BASED RANKING PROCEDURE

Let G ∈ Rn×m be the gradient matrix and Q ∈ Rn×n is orthogonal, namely QQ⊤ = In (without
loss of generality, we consider left multiplication). For a given rank r ≤ n, let Qr be a n × r

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

10000 12500 15000 17500 20000 22500 25000 27500
iter

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Tr
ai

ni
ng

 L
os

s

Trion
Dion

22000 23000 24000 25000 26000

2.78

2.80

2.82

2.84

0:16 0:33 0:50 1:06 1:23 1:40 1:56
Wall Clock Time

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Tr
ai

ni
ng

 L
os

s

Trion
Dion

(a) Llama-350M

10000 20000 30000 40000 50000 60000
iter

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Tr
ai

ni
ng

 L
os

s

Trion
Dion

56000 57000 58000 59000 60000 61000
2.52

2.53

2.54

2.55

2.56

1:23 2:46 4:10 5:33 6:56 8:20
Wall Clock Time

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Tr
ai

ni
ng

 L
os

s

Trion
Dion

(b) Llama-800M

20000 40000 60000 80000 100000
iter

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Tr
ai

ni
ng

 L
os

s

Trion
Dion

94000 95000 96000 97000 98000 99000

2.44

2.45

2.46

0 2:46 5:33 8:20 11:06 13:53 16:40 19:26
Wall Clock Time

2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Tr
ai

ni
ng

 L
os

s

Trion
Dion

(c) Llama-1.3B

Figure 3: Training Loss across iterations (top row) and wall clock time (bottom row) for three
Llama models trained with Dion and Trion optimizers on C4 using 20 tokens per parameter and rank
r = 256. For a clearer visualization, the training loss curve was smoothed using a moving average
with a window size of 200 and we zoom-in on the last 5000 training steps.

sub-matrix of Q composed of r columns. We are interested in the reconstruction error between
G and QrQ

⊤
r G, where Q⊤

r performs projection and Qr performs back-projection. While we may
choose any matrix norm to measure the reconstruction error, the standard Frobenius norm makes
the derivation cleaner. Specifically, using the definition of the Frobenius norm ∥G∥2F = tr(G⊤G),
linearity of trace and Q⊤

r Qr = Ir due to orthogonality of Q, we decompose the reconstruction error:

∥G−QrQ
⊤
r G∥2F = tr(G⊤(I −QrQ

⊤
r)

⊤(I −QrQ
⊤
r)G) = tr(G⊤(I −QrQ

⊤
r)G)

= tr(G⊤G−G⊤QrQ
⊤
r G) = tr(G⊤G)− tr(G⊤QrQ

⊤
r G)

= ∥G∥2F − ∥Q⊤
r G∥2F = ∥G∥2F −

∑r
i=1 ∥q⊤i G∥22,

where qi’s are the columns of Qr. From this identity, we conclude that to minimize the reconstruc-
tion error, the optimal strategy is to maximize the alignments ∥q⊤i G∥22 for all selected columns
qi. Furthermore, since ∥q⊤1 G∥22 + ∥q⊤2 G∥22 + · · · + ∥q⊤n G∥22 = ∥Q⊤G∥2F = tr(G⊤QQ⊤G) =
tr(G⊤G) = ∥G∥2F, following the optimal strategy of selecting r columns from Q, we have
∥G−QrQ

⊤
r G∥2F = ∥G∥2F −

∑r
i=1 ∥q⊤i G∥22 ≤ ∥G∥2F −

r
n

∑n
i=1 ∥q⊤i G∥22 =

(
1− r

n

)
∥G∥2F. Thus,

the proposed norm-based selection strategy for any orthogonal matrix Q induces a low-rank compres-
sion scheme that is contractive with a factor 1− r/n. Contractivness of the compression scheme is the
key property in the convergence analysis of compressed optimization (Stich et al., 2018; Richtárik
et al., 2021; Li et al., 2022; Modoranu et al., 2024; Robert et al., 2025).

We can extend the above argument for any p-norm over vectorized matrices, for which the Frobenius
norm is the special case of p = 2. Then, we have:
∥G−QrQ

⊤
r G∥p =

∥∥∑n
i=1 qiq

⊤
i G−

∑r
i=1 qiq

⊤
i G

∥∥
p
=

∥∥∑n
i=r+1 qiq

⊤
i G

∥∥
p

(a)

≤
∑n

i=r+1

∥∥qiq⊤i G∥∥
p

(b)
=

∑n
i=r+1 ∥qi∥p

∥∥q⊤i G∥∥
p

(c)

≤ max(1, n
1
p−

1
2)

∑n
i=r+1

∥∥q⊤i G∥∥
p
,

where (a) follows from the triangle inequality of the p-norm, (b) follows from the definition of
p-norms for matrices, namely ∥uv⊤∥p = (

∑
i,j u

p
i v

p
j)

1/p = (
∑

i u
p
i

∑
j v

p
j)

1/p = ∥u∥p∥v∥p for two
column-vectors u and v of the same size, (c) follows from the relationship between ℓp norms and that
∥qi∥2 = 1, i.e., ∥v∥p ≤ n

1
p−

1
2 ∥v∥2 if p ≤ 2 and ∥v∥p ≤ ∥v∥2 if p ≥ 2.

4.2 DCT AS LINEAR APPROXIMATION OF THE GRADIENT EIGENBASIS

Given a real-valued gradient matrix G ∈ Rn×m and its SVD decomposition G = UΣV ⊤, our goal
is to find fast approximation of (without loss of generality) its left eigenvectors stacked in U ∈ Rn×n.
As GG⊤ = UΣ2U⊤, it is equivalent to approximate the eigenvectors of symmetric matrix GG⊤.

Our argument starts from a linear algebra decomposition result, originally motivated by the optical
information processing literature to factorize linear transformations that can be implemented optically

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(Müller-Quade et al., 1998; Schmid et al., 2000). The result states that any square matrix M of shape
n × n over the complex numbers C can be decomposed into a product of diagonal and circulant
matrices, i.e., M = D1C2D3 . . . D2k−3C2k−2D2k−1, where D’s are diagonal matrices and C’s are
circulant matrices. Circulant matrices are a special class of Toeplitz matrices in which each row is a
cyclic right shift of the previous one as shown below:

C =


c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

...
... · · ·

...
...

c1 c2 · · · cn−1 c0

 , F =
1√
n

[
wij

]n−1

i,j=0
, where w = e

2πi
n . (1)

The number of factors 2k − 1 in this decomposition has been shown to be up to 2n− 1 for almost
all matrices (in the sense of Lebesgue measure), and it is further conjectured that a decomposition
with up to n factors is sufficient (Huhtanen & Perämäki, 2015). Since circulant matrices can be
diagonalized using the discrete Fourier transform (DFT) matrix F (see equation 1), i.e., C = F ∗DF 4

(Golub & Van Loan, 2013), we can decompose the matrix F ∗MF with M = GG⊤ and arrive at the
following decomposition for GG⊤:

GG⊤ = (FD1F
∗)D2(FD3F

∗)D4 · · ·D2k−2(FD2k−1F
∗). (2)

Notice the analogy between this matrix decomposition and the Taylor expansion for functions. Since
the space of matrices is finite-dimensional, the signal-matrix can be recovered using finitely many
“variable” D’s, in contrast to the infinite series required for function expansions. Keeping this analogy
in mind, just as loss functions are linearly approximated at each iteration in first-order optimization
algorithms, we consider a “linear” approximation of the decomposition equation 2 by including only
a single variable D, i.e., GG⊤ ≈ FD1F

∗.

This directly implies that we approximate the eigenvectors U by the DFT matrix F . However, since
the matrix GG⊤ is real and symmetric by design, its eigenvalues are real, and the real part Re(F)
also forms an approximate eigenbasis that better aligns with U . Finally, we observe that the real part
Re(F) corresponds to the discrete cosine transform (DCT), up to minor variations.

5 RELATED WORK

Our approach aims to improve existing optimizers from prior work in the literature, which we group
into two categories: optimizers that speed up convergence at the expense of increased FLOPs and
optimizers focused on reducing the running time and memory usage by compressing the gradient via
low-rank matrix factorization.

Fast Convergence Optimizers. Muon optimizer (Jordan et al., 2024) has recently stood up in the
literature for its fast convergence rate due to the orthogonalized momentum update. The purpose of
the orthogonalization is to push the singular values of the momentum matrix towards 1. It speeds up
convergence by increasing the importance (singular values) of directions in the momentum matrix,
which otherwise would have a low impact over the optimization.

The most straightforward approach to computing an orthogonal update is to use the UV ⊤ from the
SVD decomposition of the momentum matrix. Since SVD is expensive, it is replaced by an iterative
procedure called Newton-Schulz, which involves computing the odd powers of the momentum matrix
up to 5th order and multiplying by some carefully chosen constants. While the Newton-Schulz
procedure delivers an accurate approximation of UV ⊤, the odd powers in the polynomial involve full-
size matrix multiplications. This is in particular difficult for large scale settings, where the full matrices
have to be materialized on a GPU before running Newton-Schulz, which increases communication
and memory usage. Dion optimizer (Ahn et al., 2025) aims to reduce the communication overhead by
using low-rank, orthogonal updates computed via Power-Iteration, that requires QR decomposition
with running time depending on the rank.

Instead, we propose to reduce the overhead of Newton-Schulz in Muon and QR-decomposition in
Dion by factorizing the momentum to a low-rank matrix using our DCT-based dynamic column
selection approach and orthogonalizing the low-rank momentum using Newton-Schulz, then project
back to the original space to update the model parameters.

4F ∗ is the conjugate transpose of the complex matrix F .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Low-Rank Compression of Optimizer States. Most approaches use individual projection matrices
tailored to the gradient at each layer by invoking techniques based on quantization or matrix factor-
ization, such as SVD, QR or PCA to reduce the memory usage of the optimizer states stored in
GPU memory. The most common approach is to factorize the gradient to low-rank matrices. One pi-
oneering work in the context of low-rank adaptive optimization is the recent GaLore optimizer (Zhao
et al., 2024), which performs SVD once at a few steps to project the gradient to a lower-dimensional
space. GaLore was followed by several other optimizers that improve certain aspects of it. LDAdam
(Robert et al., 2025) aims to improve the computational runtime of GaLore by compressing the first
order momentum in AdamW, replacing SVD with a Block Power-Iteration (Bentbib & Kanber, 2015)
and performing a smooth subspace transition by rotating the first and second momentum accordingly
to incorporate gradients from the same subspace at each step.

By default, GaLore discards the projection error, which LDAdam stores and incorporates into the
gradient at the next step to improve convergence. In contrast, FRUGAL (Zmushko et al., 2024)
makes the distinction between the low-rank gradient (called state-full) and the projection error (called
state-free). The state-full gradient is used in AdamW, while the state-free gradient is fed to an
optimizer without a state, such as SignSGD. The main idea is to leverage the remaining gradient
information in the projection error since it is available at each step instead of discarding or storing it.
A concurrent work to FRUGAL is FIRA (Chen et al., 2024), which preserves the low-rank constraint
for memory efficiency while achieving full-rank performance by properly scaling the projection error.

Another approach worth mentioning is Online Subspace Descent Liang et al. (2024), which replaces
SVD projection with Online PCA and involves computing the projection matrix as a solution of an
optimization objective focused on: (a) minimizing the projection error and (b) forcing the projection
matrix to be orthogonal. The authors indicate that performing one step with Adam to solve this
additional optimization problem is enough to obtain a qualitatively good projection matrix P . In
contrast, our method does not introduce such overheads during training since the DCT matrix is
already computed at the beginning of training.

Despite all aforementioned approaches being similar in using SVD/QR-based projections, they differ
in a few aspects. The most important one in our view is how they handle the projection error and how
often they update the low-dimensional subspace, which we clarify in Table 3.

Our approach uses DCT projection coupled with a dynamic column selection to determine a projection
matrix tailored to the gradient/momentum for a particular layer and can be integrated into any
optimizer, regardless of the way it handles the projection error.

Low-rank Projection Type Frequency* Error
GaLore (Zhao et al., 2024) SVD 200 discard
FRUGAL (Zmushko et al., 2024)SVD, Random, RandPerm 200 feed to SignSGD
FIRA (Chen et al., 2024) SVD 200 norm-based scaling
LDAdam (Robert et al., 2025) Block Power-Iteration 1 error feedback
Dion (Ahn et al., 2025) Power-Iteration 1 save to momentum

Trion (this work) DCT 1 same as Dion
DCT-AdamW (this work) DCT any error feedback

Table 3: Properties of prior low-rank adaptive optimizers. The update frequency* 200 is the default
in GaLore that made the approach computationally feasible.

6 CONCLUSION AND LIMITATIONS

We introduced the Trion and DCT-AdamW optimizers that use our DCT-based dynamic column
selection to replace two techniques used to perform low-rank decomposition, that is, the inaccurate
Power-Iteration in Dion and the expensive SVD and QR-decomposition in FRUGAL/FIRA/LDAdam.
We showed that our work improves running time and memory usage. Moreover, it recovers the
accuracy of the original methods and thus serves as a cheaper alternative to these expensive and
inaccurate methods used to perform low-rank decomposition in adaptive gradient methods for both
pretraining and finetuning.

Our experiments are limited to models with at most 1.3B parameters for pretraining and additional
work is required to test our technique for larger models and beyond the Chinchilla-optimal token
counts, which would require significantly more computational resources.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates, 2025. URL https://arxiv.org/abs/2504.05295.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
Renggli. The convergence of sparsified gradient methods, 2018. URL https://arxiv.org/
abs/1809.10505.

Abdeslem Bentbib and A. Kanber. Block Power Method for SVD Decomposition. Analele
Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 23:45–58, 06 2015. doi:
10.1515/auom-2015-0024.

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
Fira: Can we achieve full-rank training of llms under low-rank constraint?, 2024. URL https:
//arxiv.org/abs/2410.01623.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Gene H. Golub and Charles F. Van Loan. Matrix Computations - 4th Edition. Johns Hopkins
University Press, Philadelphia, PA, 2013. doi: 10.1137/1.9781421407944. URL https://
epubs.siam.org/doi/abs/10.1137/1.9781421407944.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Marko Huhtanen and Allan Perämäki. Factoring matrices into the product of circulant and diagonal
matrices. Journal of Fourier Analysis and Applications, 2015.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes, 2019. URL https://arxiv.org/
abs/1901.09847.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Xiaoyun Li, Belhal Karimi, and Ping Li. On distributed adaptive optimization with gradient compres-
sion. arXiv preprint arXiv:2205.05632, 2022.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates, 2023. URL https://arxiv.org/abs/2307.05695.

Kaizhao Liang, Bo Liu, Lizhang Chen, and qiang liu. Memory-efficient LLM training with online
subspace descent. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=P8rTCT6g45.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of the
Seventh International Conference on Learning Representations, 2019.

Qijun Luo, Hengxu Yu, and Xiao Li. BAdam: A memory efficient full parameter training method for
large language models. arXiv preprint arXiv:2404.02827, 2024.

J. Makhoul. A fast cosine transform in one and two dimensions. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(1):27–34, 1980. doi: 10.1109/TASSP.1980.1163351.

Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter
Richtarik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space overhead
and provable convergence, 2024. URL https://arxiv.org/abs/2405.15593.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

J. Müller-Quade, H. Aagedal, Th. Beth, and M. Schmid. Algorithmic design of diffractive optical
systems for information processing. Physica D: Nonlinear Phenomena, 120(1):196–205, 1998.
ISSN 0167-2789. doi: https://doi.org/10.1016/S0167-2789(98)00055-4. URL https://www.
sciencedirect.com/science/article/pii/S0167278998000554. Proceedings
of the Fourth Workshop on Physics and Consumption.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A New, Simpler, Theoretically Better, and
Practically Faster Error Feedback. arXiv preprint arXiv:2106.05203, 2021.

Thomas Robert, Mher Safaryan, Ionut-Vlad Modoranu, and Dan Alistarh. Ldadam: Adaptive
optimization from low-dimensional gradient statistics, 2025. URL https://arxiv.org/
abs/2410.16103.

Michael Schmid, Rainer Steinwandt, Jörn Müller-Quade, Martin Rötteler, and Thomas
Beth. Decomposing a matrix into circulant and diagonal factors. Linear Algebra
and its Applications, 306(1):131–143, 2000. ISSN 0024-3795. doi: https://doi.org/10.
1016/S0024-3795(99)00250-5. URL https://www.sciencedirect.com/science/
article/pii/S0024379599002505.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. arXiv
preprint arXiv:1809.07599, 2018.

Gilbert Strang. The discrete cosine transform. SIAM review, 41(1):135–147, 1999.

Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. Q-GaLore: Quantized galore with int4 projection and layer-adaptive low-rank gradients.
arXiv preprint arXiv:2407.08296, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Philip Zmushko, Aleksandr Beznosikov, Martin Takáč, and Samuel Horváth. Frugal: Memory-
efficient optimization by reducing state overhead for scalable training, 2024. URL https:
//arxiv.org/abs/2411.07837.

11

