

FFT-BASED DYNAMIC SUBSPACE SELECTION FOR LOW-RANK ADAPTIVE OPTIMIZATION OF LARGE LANGUAGE MODELS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

011 Low-rank optimization has emerged as a promising direction in training large
 012 language models (LLMs) to improve running time and reduce the memory usage
 013 of adaptive optimizers by constraining learning to a lower-dimensional space. Prior
 014 work typically projects gradients of linear layers using approaches based on Singu-
 015 lar Value Decomposition (SVD) or QR-decomposition. Applying these techniques
 016 individually to each layer in large models is computationally expensive and incurs
 017 additional memory costs due to storing the projection matrices. In this work, we
 018 propose a computationally efficient and conceptually simple, two-step procedure
 019 to approximate SVD/QR-based gradient projections into lower-dimensional spaces
 020 by using a predefined orthogonal matrix of the Discrete Cosine Transform (DCT).
 021 We dynamically select columns from the DCT matrix based on their alignment
 022 with the gradient of each layer. The effective projection matrices are obtained via a
 023 simple `matmul` with the DCT matrix in $O(n^3)$ time, followed by a lightweight
 024 sorting step to identify the most relevant basis vectors. For large layers, DCT can
 025 be computed via Makhoul’s N -point algorithm based on Fast Fourier Transform
 026 (FFT) in $O(n^2 \log(n))$ time. Due to the predefined nature of the orthogonal bases,
 027 they are computed once at the start of training. Our numerical experiments on both
 028 pre-training and fine-tuning tasks demonstrate the effectiveness of our dual strategy
 029 in approximating optimal low-rank projections, obtaining an approach with rank-
 030 independent running time that matches the performance of costly SVD/QR-based
 031 methods while achieving faster runtime and reduced memory usage by up to 25%
 032 across different model sizes.

1 INTRODUCTION

033 The Adam optimizer (Kingma & Ba, 2014) and its regularized version AdamW (Loshchilov & Hutter,
 034 2019) have become the standard approach for optimizing deep neural networks in various settings.
 035 With the recent increase in scale of LLMs up to billions and trillions of parameters, training with
 036 AdamW becomes more and more challenging, as its internal state requires two momentum buffers
 037 that scale with the model size. This practical problem paved the way for a line of research that focuses
 038 on reducing the memory usage of optimizer states in the context of adaptive gradient optimization.
 039 These approaches range from quantizing the states to 8 bits (Dettmers et al., 2021) to the recent
 040 GaLore optimizer (Zhao et al., 2024) inspired from the LoRA techniques (Hu et al., 2021; Lialin et al.,
 041 2023), that compresses the gradient matrix using low-rank decomposition based on SVD. Several
 042 improvements to GaLore have been proposed to enhance its performance, such as LDAdam (Robert
 043 et al., 2025), FRUGAL (Zmushko et al., 2024), FIRA (Chen et al., 2024), BAdam (Luo et al., 2024),
 044 Q-GaLore (Zhang et al., 2024). The key aspect of GaLore and its later improvements is the low-rank
 045 decomposition based on matrix factorization, such as SVD or QR decomposition.

046 Recently, the Muon (Jordan et al., 2024) optimizer sparked the community’s attention due to the
 047 faster convergence in pretraining settings, achieved by orthogonalizing the momentum matrix using
 048 Newton-Schulz, an iterative procedure difficult to parallelize for large-scale pretraining runs *as the*
 049 *full-sized matrices must be materialized* on GPU. The Dion optimizer (Ahn et al., 2025) aims to reduce
 050 this overhead by employing low-rank, orthogonal updates. However, it requires storing a projection
 051 matrix for each layer and uses QR-decomposition to orthogonalize the low-rank components, making
 052 its running time dependent on the rank.

053 All these SVD/QR-based techniques are known to be computationally intensive as they have to be
 054 invoked for each linear layer, either at each step (for, e.g., LDAdam, Muon) or once at a few steps

(for, e.g., GaLore). To mitigate the high computational and memory costs of these procedures, we ask: *can we find an alternative low-rank projection approach to serve as an accurate replacement for the orthogonal matrices in SVD/QR for low-rank compression of optimizer states, that is much cheaper to compute, and portable across memory-efficient optimizers?*

Contributions. In this work, we address our research question by proposing a cheaper alternative to the orthogonal matrices computed via SVD/QR. Concretely, we propose using the orthogonal matrices from the general class of Discrete Fourier Transforms, such as the Discrete Cosine Transform (DCT), which has been successfully used in image compression for the JPEG algorithm. To the best of our knowledge, we are the first to use it in the context of low-rank adaptive gradient optimization. We summarize our contributions as follows:

- We propose a dynamic column selection approach to adaptively choose columns from a fixed orthogonal matrix to compute a low-rank projection of the input matrix. The effective projection matrix is obtained from the fixed orthogonal matrix by indexing the columns (Section 2.1);
- We motivate that DCT is a good candidate for our dynamic column selection approach due to the reduced time complexity to compute the alignments with the input matrix via the Makhoul’s N -point algorithm (Makhoul, 1980) to compute a fast DCT with $O(n^2 \log(n))$ time complexity compared to $O(n^3)$ incurred by a basic matrix multiplication. This can yield speedups of up to $8 - 50 \times$ in computing the alignments for large layers (Appendix C).
- We theoretically justify our dynamic column selection approach to compute the most significant columns of any fixed orthogonal matrix (including the DCT-based) to obtain a projection matrix tailored to each layer (Section 4);
- We show the DCT-based projection is a fast and accurate replacement for the orthogonal matrices computed via SVD/QR for the Muon- and Adam-like optimizers (such as Dion, FRUGAL, FIRA, LDAdamW) in the context of low-rank compression of optimizer states. We reduce the running time and improve the memory usage as we store only one DCT matrix per GPU for the entire network, computed once at the beginning of the training. In addition, we store only r (rank) integers, representing the indices of the most significant columns for each layer instead of storing one low-rank projection matrix.
- We propose two standalone optimizers that use the DCT-based dynamic column selection approach:
 1. **Trion** (Section 2.3), which improves Dion by replacing the Power-Iteration with our DCT-based dynamic column selection approach to compute a low-rank representation of the momentum buffer, followed by orthogonalization via Newton-Schulz iteration. We provide a DDP-compatible implementation that communicates orthogonal, low-rank momentum across devices and compute the final layer updates locally using the projection matrix obtained from DCT. To the best of our knowledge, we are the first ones to reduce the complexity of Newton-Schulz using a low-rank approximation of momentum.
 2. **DCT-AdamW** (Section 2.4), which replaces the SVD-based low-rank projections and optionally adds quantized error feedback for the projection error. Further, DCT-AdamW rotates the momentum buffers such that new low-rank gradients are correctly incorporated, and thus allows changing the low-rank subspace every step.

2 METHOD

This section presents our dynamic column selection approach that works with any orthogonal matrix, briefly introduces the Discrete Cosine Transform (DCT) and the motivation of using it and finally introduces the two algorithms we propose: Trion as an improvement to Dion to replace Power-Iteration and DCT-AdamW as an improvement to low-rank AdamW variants to replace SVD/QR.

2.1 DYNAMIC COLUMN SELECTION

General View. Given an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$, we want to compute a projection matrix $Q_r \in \mathbb{R}^{n \times r}$ by selecting r columns from Q to project the gradient $G \in \mathbb{R}^{n \times n}$ to an r -dimensional space $g = GQ_r \in \mathbb{R}^{n \times r}$. First, we compute the similarities matrix $S = GQ$ containing the scalar products between rows of G and columns of Q . We rank the columns of S based on their ℓ_1 - or ℓ_2 -norm and then pick the indices of the largest r columns according to the chosen norm, which we use to index columns in Q to obtain Q_r . The i^{th} column in matrix S contains the scalar products between each row of G and i^{th} column of Q , as detailed in Appendix B. We view these scalar products as similarities (or alignments) of rows in G with columns of Q and we want to choose the columns

108 of Q with largest similarity with rows of G . Using this approach, we ensure a dynamic mechanism
 109 to choose the most appropriate columns of Q for the current gradient matrix G to minimize the
 110 projection error (see Section 4). Each layer will have its own set of r indices for the columns. The
 111 dynamic behavior comes from the n -choose- r possible sets of indices to select from.

112 The rule of thumb in the low-rank factorization methods for optimization we are targeting in this
 113 work is to compress the smallest dimension of a matrix to r dimensions (e.g. from $\mathbb{R}^{n \times m}$ to $\mathbb{R}^{n \times r}$
 114 for $n \geq m$). Usually, the smallest dimension of the gradient matrix is d_{model} , the hidden (embedding)
 115 size of the model. As a result, the memory overhead of our dynamic column selection approach is the
 116 cost of storing only one orthogonal matrix $Q \in \mathbb{R}^{d_{\text{model}} \times d_{\text{model}}}$ (DCT in our case) per GPU for the
 117 entire model and r integers for the corresponding column indices from Q for each layer to create Q_r .
 118

119 2.2 DISCRETE COSINE TRANSFORM

120 The Discrete Cosine Transform (DCT) is widely used in the signal processing and data compression
 121 literature (e.g., JPEG algorithm for image compression) and consists of n orthogonal basis vectors
 122 whose components are cosines (Strang, 1999). There are minor variations of DCT and in this
 123 work we will use DCT-II/III. We denote the DCT-III matrix of order n by $Q \in \mathbb{R}^{n \times n}$, defined as
 124 $Q_{ij} = \sqrt{2/n} \cdot \cos \frac{i(2j+1)\pi}{2n}$, with $i, j \in [n]$, where the first row has to be divided by $\sqrt{2}$ in order for Q
 125 to be orthogonal, i.e. $Q^\top Q = I_n$. The DCT-II matrix is the transpose of DCT-III. In Appendix A, we
 126 provide details on how we can efficiently materialize the DCT matrix on GPU. Once we compute Q ,
 127 we can use it in the dynamic column selection approach to efficiently compute low-rank projections
 128 of any two-dimensional matrix.

129 In Appendix C, we discuss why we choose DCT matrix. In short, the particular structure of DCT
 130 allows us to enable fast computation for the similarities matrix S in $O(n^2 \log(n))$ time using the
 131 Makhoul’s N -point algorithm (see Appendix D) instead of $O(n^3)$ time for basic matmul.
 132

133 2.3 TRION: DCT-BASED IMPROVEMENT TO DION

134 In this section, we present how we can apply the DCT-based dynamic column selection approach
 135 to compute low-rank projection of momentum in the context of Dion (Ahn et al., 2025) to obtain a
 136 faster and more accurate optimizer, which we call Trion, presented in Algorithm 1.

137 Dion uses Power-Iteration to compute a low-rank projection and orthogonalizes it using QR-
 138 decomposition, whose running time depends on the rank r . Instead, we propose replacing these
 139 techniques with a rank independent approach to compute the low-rank projection based on DCT
 140 matrix, which requires computing the similarity matrix S_t , followed by a top- r ranking to determine
 141 the indices of columns that best align with the momentum matrix, denoted by the set i_t . The matrix S_t
 142 represents the DCT of the momentum matrix and it can be computed using the Makhoul’s algorithm
 143 or simply by only one matrix multiplication $S_t = B_t D_C$, where $B_t \in \mathbb{R}^{R \times C}$ is the momentum and
 144 $D_C \in \mathbb{R}^{C \times C}$ is the DCT matrix.

145 Once we determine the indices i_t of the most significant columns in D_C , we can extract the low-rank
 146 momentum b_t from the similarity matrix S_t , as well as the projection matrix Q_t by indexing D_C ,
 147 which will be used in (a) computing the projection error Δ_t and (b) projecting the orthogonal low-rank
 148 momentum back to the higher dimensional space to update the model.

149 We would like to emphasize that we input the low-rank momentum $b_t \in \mathbb{R}^{R \times r}$ to Newton-Schulz
 150 and not the original momentum buffer $B_t \in \mathbb{R}^{R \times C}$, which significantly reduces the computational
 151 overhead. Moreover, we can use the efficient triton kernels provided in the Muon implementation
 152 from the official Dion repository¹ to speed up the computations even further for large ranks r , as
 153 Newton-Schulz will operate with $r \times r$ matrices.

154 **Communication in Distributed Training.** We develop the Trion optimizer on top of the published
 155 code for the Muon² optimizer that leverages the ZeRO (Rajbhandari et al., 2020) approach in
 156 Distributed Data Parallel (DDP) settings. Specifically, the model update O_t for a layer is computed
 157 only on one GPU, and the result is communicated to other GPUs using all-gather, drastically
 158 reducing the computation costs for large models (under the assumption that communication is
 159 cheaper than computation itself). Since we replicate the DCT matrix on each GPU, we would like to

1¹github.com/microsoft/dion

2²Keller Jordan’s Muon implementation

162 emphasize that we communicate only low-rank terms o_t from the source GPU (the one computing
 163 the update) to other devices and perform the step $O_t = o_t Q_t^\top$ locally on each device. This way, we
 164 do not communicate full size, orthogonal matrices O_t , but only low-rank versions o_t , thus reducing
 165 the overall iteration time.

166 This is particularly useful in the FSDP-compatible implementation, where we can materialize the
 167 full low-rank matrices o_t on each device using all-to-all (see this Muon implementation³) to
 168 perform Newton-Schulz on a low-rank input, followed by a resharding. After resharding, each GPU
 169 can compute the individual slice of O_t and update its own shard. However, the FSDP implementation
 170 requires deciding how each layer should be sharded based on whether that particular layer requires a
 171 left- or right-projection in order to avoid unwanted calls to communication primitives to materialize
 172 full tensors to compute the alignments S .

Algorithm 1 Trion Optimizer

```

1: Define the DCT-II/III matrix  $D_C \in \mathbb{R}^{C \times C}$ 
2: for  $t = \{1, 2, \dots, T\}$  do
3:    $G_t = \nabla_\theta L(\theta_t) \in \mathbb{R}^{R \times C}$ 
4:    $B_t = M_{t-1} + G_t \in \mathbb{R}^{R \times C}$ 
5:    $S_t = \text{MAKHOUL}(B_t) \in \mathbb{R}^{R \times C}$   $\triangleright$  or  $S_t = B_t \cdot D_C$  to compute similarities;
6:    $i_t = \text{DYNAMICCOLUMNSELECTION}(S, r) \in \mathbb{N}^r$   $\triangleright$  select largest  $r$  columns by  $\ell_1/\ell_2$ -norm
7:    $Q_t = D_C[:, i_t] \in \mathbb{R}^{C \times r}$   $\triangleright$  projection matrix containing most significant  $r$  columns
8:    $b_t = S_t[:, i_t] \in \mathbb{R}^{R \times r}$   $\triangleright$  extract low-rank momentum from the similarity matrix  $S$ 
9:    $\Delta_t = B_t - b_t Q_t^\top$   $\triangleright$  the error is  $b_t Q_t^\top$  and replaces  $P_t R_t^\top$  error from Dion
10:   $M_t = \mu B_t + (1 - \mu) \Delta_t = B_t - (1 - \mu) b_t Q_t^\top$   $\triangleright$  update momentum with error feedback
11:   $o_t = \text{NEWTONSCHULZ}(b_t) \in \mathbb{R}^{R \times r}$   $\triangleright$  Newton-Schulz applied on low-rank  $b_t$ 
12:   $O_t = o_t Q_t^\top \in \mathbb{R}^{R \times C}$   $\triangleright$  project orthogonalized low-rank momentum to original size
13:   $\theta_{t+1} = (1 - \lambda \eta_t) \theta_t - \eta_t \max(1, \sqrt{R/C}) O_t \in \mathbb{R}^{R \times C}$ 
14: end for

```

2.4 DCT-ADAMW

190 We propose DCT-AdamW, a standalone low-rank version of AdamW with DCT-based projection
 191 that has the option to use quantized error feedback (EF) (Seide et al., 2014; Karimireddy et al.,
 192 2019; Alistarh et al., 2018) and ensures momentum buffers integrate gradients from the same lower
 193 dimensional subspaces in a similar way as in LDAdamW (Robert et al., 2025). In contrast to
 194 LDAdamW, which has to store two consecutive projection matrices per layer, we only have to store
 195 two sets of r indices per layer. Prior work MicroAdam (Modoranu et al., 2024) quantized the error
 196 feedback down to 4-bits in the context of compressing the optimizer state using sparsity. In our setup,
 197 the lowest resolution we can quantize EF to is 8-bits without degrading the optimizer performance. For
 198 space constraints reasons, we present the pseudocode of our DCT-AdamW optimizer in Appendix E.

3 EXPERIMENTS

201 In this section we present our numerical results. Our main goal is to show that our DCT-based
 202 dynamic column selection approach at least recovers the performance of the original algorithms
 203 which we integrate it in. Specifically, we evaluate Trion against Dion, where we directly compare
 204 the DCT-based projection followed by Newton-Schulz iteration with QR-based Power-Iteration. In
 205 addition, we replace the SVD-based projection in FRUGAL and FIRA optimizers with our DCT
 206 approach. In the end, we compare LDAdamW with our standalone DCT-AdamW optimizer. In our
 207 pretraining experiments, we compare training/validation perplexity and for fine-tuning we compare
 208 the evaluation accuracy, as well as memory usage and running time for both scenarios. In the
 209 remaining part of the paper, we focus on presenting our pretraining (PT) results and the fine-tuning
 210 (FT) results are presented in Appendix H.

211 We train from scratch models from the Llama family with 350M, 800M and 1.3B parameters using
 212 Chinchilla-optimal token counts (20 tokens per parameter) from the C4 (Raffel et al., 2020) dataset
 213 and sequence length 512. All PT experiments are run in Distributed Data Parallel (DDP) settings on
 214 8x H100 Nvidia GPUs using global batch size 512 with local batch size 64 per GPU (unless otherwise
 215 specified explicitly).

³github.com/microsoft/dion/blob/main/dion/muon.py#L22

PT with Trion. Our purpose is to show that our DCT-based dynamic column selection approach can successfully replace the QR-based Power-Iteration procedure in Dion and at least recovers the performance for the best hyper-parameters reported by the original work. In Table 1, we present our results, which are obtained using the optimal learning rate $\eta = 0.01$ (as reported by the original Dion paper) and weight decay $\lambda = 0.01$. We report the average values across 3 seeds for train/validation loss and perplexity, maximum allocated memory (read directly from the GPU) and the lowest running time across all runs. We experiment with ranks 128, 256 and 512, the rank-to-dimension ratio is $r/d \in \{1/16, 1/8, 1/4, 1/2\}$, equivalent to 6.25%, 12.5%, 25% and 50% of the full rank d , where d is model’s embedding dimension.

Rank r	Metric	350M ($d = 1024$)		800M ($d = 2048$)		1.3B* ($d = 2048$)	
		Trion	Dion	Trion	Dion	Trion	Dion
r/d							
128	Train Loss	2.726	2.764	2.532	2.555	2.475	2.503
	Train PPL	15.29	15.89	12.59	12.89	11.90	12.24
	Val Loss	2.736	2.773	2.505	2.527	2.422	2.448
	Val PPL	15.43	16.00	12.25	12.52	11.27	11.56
	Memory (GB)	42.42	45.56	67.45	71.64	63.62	68.57
	Runtime	1h 53m	1h 58m	8h 5m	8h 24m	19h 13m	19h 42m
r/d							
256	Train Loss	2.715	2.741	2.533	2.546	2.476	2.492
	Train PPL	15.11	15.51	12.61	12.78	11.92	12.11
	Val Loss	2.727	2.750	2.503	2.519	2.423	2.440
	Val PPL	15.30	15.64	12.22	12.42	11.28	11.47
	Memory (GB)	42.42	45.59	67.45	71.75	63.62	68.58
	Runtime	1h 53m	2h 3m	8h 3m	8h 36m	19h 13m	20h 6m
r/d							
512	Train Loss	2.708	2.718	2.528	2.535	2.470	2.481
	Train PPL	15.01	15.16	12.54	12.63	11.84	11.97
	Val Loss	2.718	2.727	2.499	2.509	2.420	2.430
	Val PPL	15.15	15.29	12.18	12.30	11.25	11.36
	Memory (GB)	42.42	45.99	67.45	71.81	63.62	68.73
	Runtime	1h 54m	2h 14m	8h 3m	8h 48m	19h 13m	20h 44m

Table 1: Perplexity, Memory, and Running Time Comparison for Trion and Dion. d stands for the embedding dimensionality of the model. The 1.3B model was trained with local batch size 32.

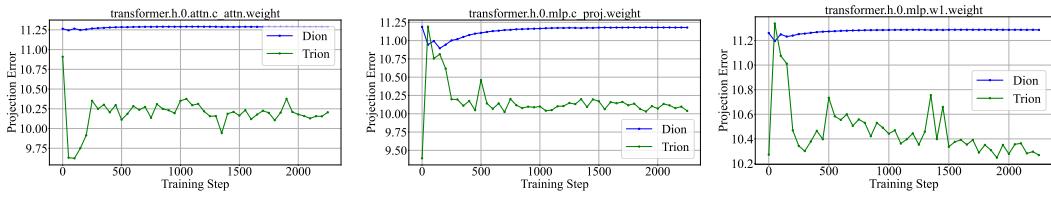
Performance In Table 1, we show Trion consistently achieves lower training and validation loss, which also translates to lower perplexities. At the top row of Figure 3 we show the training loss curve of Trion is lower than Dion across iterations. This is an indication that our DCT-based dynamic column selection algorithm, followed by orthogonalization via Newton-Schulz can successfully replace the Power-Iteration procedure in Dion.

Memory Usage. In Table 1, we show Trion has a lower memory requirement across all experiments since it allocates only one DCT matrix per GPU of size $d \times d$, from which we select r columns using the indices of the most significant columns. In contrast, Dion stores a projection matrix for each layer. This design difference translates to around 10% lower memory footprint for Trion compared to Dion.

Runtime. We would like to emphasize that the running time of Trion does not depend on rank, as can be seen from the reported runtime across different ranks in Table 1: Trion achieves nearly constant runtime for each model size across all ranks, while the runtime of Dion clearly depends on the rank because of the QR-decomposition. This represents an advantage of Trion for much larger scales compared to Dion. At the bottom row of Figure 3 we present the wall clock time for the two optimizers for rank 256 across all three models we tested on. Concretely, for a fixed running time budget, Trion consistently achieves lower training loss than Dion. Trion is faster than Dion by 2.5 – 4.5% for rank 128, 4.5 – 9% for rank 256 and 8 – 18% for rank 512 (the overhead of Dion increases with rank). It is important to mention that the embedding size d of the models we used in our work is too small to see a significant difference in the runtime between Makhoul’s algorithm and matmul when computing the column similarities. However, our benchmark presented in Appendix D shows the advantage of using Makhoul’s algorithm at scale compared to matmul.

270 **Factorization Accuracy.** In order to understand why our low-rank projection in Trion is more
 271 accurate than Power-Iteration in Dion, we compute the ℓ_2 -norm of projection errors between the
 272 accumulators B_t and the corresponding orthogonal updates that each optimizer uses to update the
 273 model: $\Delta_t^{\text{dion}} = \|B_t - P_t Q_t^\top\|_2$ for Dion and $\Delta_t^{\text{trion}} = \|B_t - O_t\|_2$ for Trion. In Figure 1 we show
 274 the projection errors for the linear layers of the first transformer block in a Llama-30M model and
 275 provide more information in Appendix F.

276 **PT with LDAdamW.** We train Llama-800M on 80B tokens (100 tokens per parameter) from C4 using
 277 LDAdam and DCT-AdamW described in Algorithm 2. In particular for our approach, we use EF
 278 quantized to 8-bits and some further optimizations from the ZeRO-redundancy optimizer (Rajbhandari
 279 et al., 2020), where one layer is updated on a single GPU and then it is broadcasted to the other GPUs.
 280 This way, we obtain lower memory usage by replacing redundant operations in the optimizer with
 281 communication, since the GPUs receiving the updated layer parameters do not allocate any state. In
 282 Figure 2 we present the training loss curves for full-rank AdamW (for reference), LDAdamW and
 283 DCT-AdamW and we are interested in directly comparing the last two. We observe that DCT-AdamW
 284 has lower training loss than LDAdamW, which also translates to lower perplexities in Table 2. Due
 285 to relatively high rank, the memory usage of LDAdamW is close to the memory usage of AdamW
 286 because it stores two projection matrices to be able to rotate the momentum buffers. In contrast,
 287 DCT-AdamW stores only two sets of r indices instead of storing the actual projection matrices, which
 288 drastically reduces the memory usage, coupled with the ZeRO-redundancy trick. In terms of running
 289 time, DCT-AdamW is faster than LDAdamW by 10h 7m ($\approx 25.75\%$) and slower than AdamW by
 290 1h 55m ($\approx 5\%$).



291 Figure 1: Projection errors for Dion and Trion for a few layers from the first transformer block on
 292 Llama-30M ($d = 640, r = 128$).

	AdamW	LDAdamW	DCT-AdamW
Train PPL	12.88	15.10	14.95
Val. PPL	11.73	13.91	13.69
Mem. (GiB)	73.72	72.10	57.82
Time	1d 13h 22m	2d 1h 24m	1d 15h 17m

300 Table 2: Pre-training results on Llama-800M
 301 for AdamW, LDAdamW and DCT-AdamW
 302 with 100 tokens/parameter. AdamW is the
 303 full-rank optimizer and is added for reference.

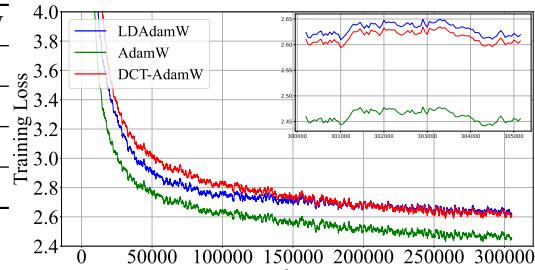
304 **PT with FRUGAL/FIRA.** We replace the SVD projection with our DCT approach and test it on
 305 Llama-800M model using 16B tokens from the C4. For space constraints reasons, we present the
 306 results in Appendix G.

307 4 THEORETICAL GUARANTEES

308 In this section, we provide a theoretical justification for our two-step procedure to approximate
 309 SVD-based gradient projections. First, we rigorously show that adaptively selecting columns of
 310 an orthogonal matrix based on their alignment with the gradient matrix is an optimal strategy for
 311 minimizing the reconstruction error. This approach leads to a contractive compression scheme,
 312 which is commonly exploited in the analysis of compressed adaptive optimization algorithms. Next,
 313 to justify the specific use of the DCT matrix, we demonstrate that it naturally serves as a linear
 314 approximation of the left or right eigenbases of the gradient matrices.

315 4.1 OPTIMALITY OF NORM-BASED RANKING PROCEDURE

316 Let $G \in \mathbb{R}^{n \times m}$ be the gradient matrix and $Q \in \mathbb{R}^{n \times n}$ is orthogonal, namely $QQ^\top = I_n$ (without
 317 loss of generality, we consider left multiplication). For a given rank $r \leq n$, let Q_r be a $n \times r$



318 Figure 2: Pre-training Llama-800M with DCT-
 319 AdamW and LDAdam on 80B tokens from C4.

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

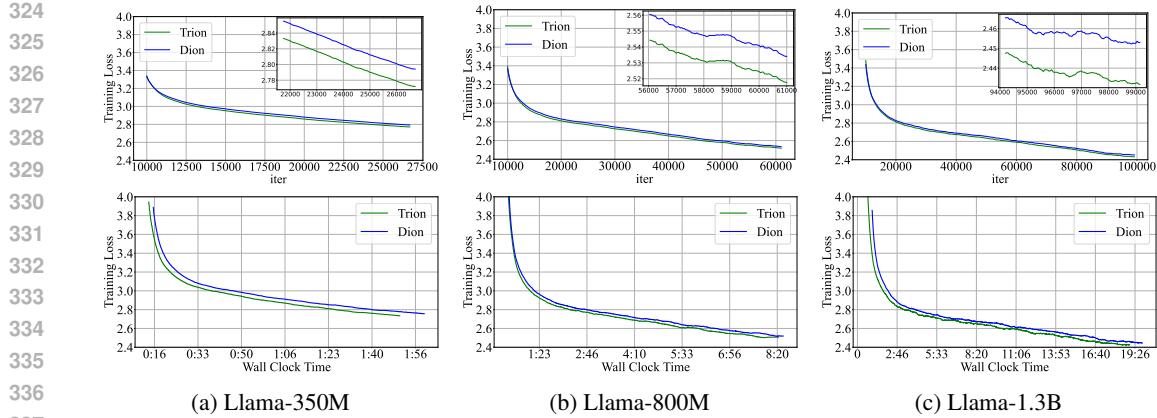


Figure 3: Training Loss across iterations (top row) and wall clock time (bottom row) for three Llama models trained with Dion and Trion optimizers on C4 using 20 tokens per parameter and rank $r = 256$. For a clearer visualization, the training loss curve was smoothed using a moving average with a window size of 200 and we zoom-in on the last 5000 training steps.

sub-matrix of Q composed of r columns. We are interested in the reconstruction error between G and $Q_r Q_r^\top G$, where Q_r^\top performs projection and Q_r performs back-projection. While we may choose any matrix norm to measure the reconstruction error, the standard Frobenius norm makes the derivation cleaner. Specifically, using the definition of the Frobenius norm $\|G\|_F^2 = \text{tr}(G^\top G)$, linearity of trace and $Q_r^\top Q_r = I_r$ due to orthogonality of Q , we decompose the reconstruction error:

$$\begin{aligned} \|G - Q_r Q_r^\top G\|_F^2 &= \text{tr}(G^\top (I - Q_r Q_r^\top)^\top (I - Q_r Q_r^\top) G) = \text{tr}(G^\top (I - Q_r Q_r^\top) G) \\ &= \text{tr}(G^\top G - G^\top Q_r Q_r^\top G) = \text{tr}(G^\top G) - \text{tr}(G^\top Q_r Q_r^\top G) \\ &= \|G\|_F^2 - \|Q_r^\top G\|_F^2 = \|G\|_F^2 - \sum_{i=1}^r \|q_i^\top G\|_2^2, \end{aligned}$$

where q_i 's are the columns of Q_r . From this identity, we conclude that to minimize the reconstruction error, the optimal strategy is to maximize the alignments $\|q_i^\top G\|_2^2$ for all selected columns q_i . Furthermore, since $\|q_1^\top G\|_2^2 + \|q_2^\top G\|_2^2 + \dots + \|q_n^\top G\|_2^2 = \|Q^\top G\|_F^2 = \text{tr}(G^\top Q Q^\top G) = \text{tr}(G^\top G) = \|G\|_F^2$, following the optimal strategy of selecting r columns from Q , we have $\|G - Q_r Q_r^\top G\|_F^2 = \|G\|_F^2 - \sum_{i=1}^r \|q_i^\top G\|_2^2 \leq \|G\|_F^2 - \frac{r}{n} \sum_{i=1}^n \|q_i^\top G\|_2^2 = (1 - \frac{r}{n}) \|G\|_F^2$. Thus, the proposed norm-based selection strategy for any orthogonal matrix Q induces a low-rank compression scheme that is contractive with a factor $1 - r/n$. Contractiveness of the compression scheme is the key property in the convergence analysis of compressed optimization (Stich et al., 2018; Richtárik et al., 2021; Li et al., 2022; Modoranu et al., 2024; Robert et al., 2025).

We can extend the above argument for any p -norm over vectorized matrices, for which the Frobenius norm is the special case of $p = 2$. Then, we have:

$$\begin{aligned} \|G - Q_r Q_r^\top G\|_p &= \left\| \sum_{i=1}^n q_i q_i^\top G - \sum_{i=1}^r q_i q_i^\top G \right\|_p = \left\| \sum_{i=r+1}^n q_i q_i^\top G \right\|_p \stackrel{(a)}{\leq} \sum_{i=r+1}^n \|q_i q_i^\top G\|_p \\ &\stackrel{(b)}{=} \sum_{i=r+1}^n \|q_i\|_p \|q_i^\top G\|_p \stackrel{(c)}{\leq} \max(1, n^{\frac{1}{p} - \frac{1}{2}}) \sum_{i=r+1}^n \|q_i^\top G\|_p, \end{aligned}$$

where (a) follows from the triangle inequality of the p -norm, (b) follows from the definition of p -norms for matrices, namely $\|uv^\top\|_p = (\sum_{i,j} u_i^p v_j^p)^{1/p} = (\sum_i u_i^p \sum_j v_j^p)^{1/p} = \|u\|_p \|v\|_p$ for two column-vectors u and v of the same size, (c) follows from the relationship between ℓ_p norms and that $\|q_i\|_2 = 1$, i.e., $\|v\|_p \leq n^{\frac{1}{p} - \frac{1}{2}} \|v\|_2$ if $p \leq 2$ and $\|v\|_p \leq \|v\|_2$ if $p \geq 2$.

4.2 DCT AS LINEAR APPROXIMATION OF THE GRADIENT EIGENBASIS

Given a real-valued gradient matrix $G \in \mathbb{R}^{n \times m}$ and its SVD decomposition $G = U \Sigma V^\top$, our goal is to find fast approximation of (without loss of generality) its left eigenvectors stacked in $U \in \mathbb{R}^{n \times n}$. As $GG^\top = U \Sigma^2 U^\top$, it is equivalent to approximate the eigenvectors of symmetric matrix GG^\top .

Our argument starts from a linear algebra decomposition result, originally motivated by the optical information processing literature to factorize linear transformations that can be implemented optically

(Müller-Quade et al., 1998; Schmid et al., 2000). The result states that any square matrix M of shape $n \times n$ over the complex numbers \mathbb{C} can be decomposed into a product of diagonal and circulant matrices, i.e., $M = D_1 C_2 D_3 \dots D_{2k-3} C_{2k-2} D_{2k-1}$, where D 's are diagonal matrices and C 's are circulant matrices. Circulant matrices are a special class of Toeplitz matrices in which each row is a cyclic right shift of the previous one as shown below:

$$C = \begin{bmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \cdots & c_{n-2} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ c_1 & c_2 & \cdots & c_{n-1} & c_0 \end{bmatrix}, \quad F = \frac{1}{\sqrt{n}} [w^{ij}]_{i,j=0}^{n-1}, \text{ where } w = e^{\frac{2\pi i}{n}}. \quad (1)$$

The number of factors $2k - 1$ in this decomposition has been shown to be up to $2n - 1$ for almost all matrices (in the sense of Lebesgue measure), and it is further conjectured that a decomposition with up to n factors is sufficient (Huhtanen & Perämäki, 2015). Since circulant matrices can be diagonalized using the discrete Fourier transform (DFT) matrix F (see equation 1), i.e., $C = F^* D F$ ⁴ (Golub & Van Loan, 2013), we can decompose the matrix $F^* M F$ with $M = GG^\top$ and arrive at the following decomposition for GG^\top :

$$GG^\top = (FD_1F^*)D_2(FD_3F^*)D_4 \cdots D_{2k-2}(FD_{2k-1}F^*). \quad (2)$$

Notice the analogy between this matrix decomposition and the Taylor expansion for functions. Since the space of matrices is finite-dimensional, the signal-matrix can be recovered using finitely many “variable” D 's, in contrast to the infinite series required for function expansions. Keeping this analogy in mind, just as loss functions are linearly approximated at each iteration in first-order optimization algorithms, we consider a “linear” approximation of the decomposition equation 2 by including only a single variable D , i.e., $GG^\top \approx FD_1F^*$.

This directly implies that we approximate the eigenvectors U by the DFT matrix F . However, since the matrix GG^\top is real and symmetric by design, its eigenvalues are real, and the real part $\text{Re}(F)$ also forms an approximate eigenbasis that better aligns with U . Finally, we observe that the real part $\text{Re}(F)$ corresponds to the discrete cosine transform (DCT), up to minor variations.

5 RELATED WORK

Our approach aims to improve existing optimizers from prior work in the literature, which we group into two categories: optimizers that speed up convergence at the expense of increased FLOPs and optimizers focused on reducing the running time and memory usage by compressing the gradient via low-rank matrix factorization.

Fast Convergence Optimizers. Muon optimizer (Jordan et al., 2024) has recently stood up in the literature for its fast convergence rate due to the orthogonalized momentum update. The purpose of the orthogonalization is to push the singular values of the momentum matrix towards 1. It speeds up convergence by increasing the importance (singular values) of directions in the momentum matrix, which otherwise would have a low impact over the optimization.

The most straightforward approach to computing an orthogonal update is to use the UV^\top from the SVD decomposition of the momentum matrix. Since SVD is expensive, it is replaced by an iterative procedure called Newton-Schulz, which involves computing the odd powers of the momentum matrix up to 5th order and multiplying by some carefully chosen constants. While the Newton-Schulz procedure delivers an accurate approximation of UV^\top , the odd powers in the polynomial involve full-size matrix multiplications. This is in particular difficult for large scale settings, where the full matrices have to be materialized on a GPU before running Newton-Schulz, which increases communication and memory usage. Dion optimizer (Ahn et al., 2025) aims to reduce the communication overhead by using low-rank, orthogonal updates computed via Power-Iteration, that requires QR decomposition with running time depending on the rank.

Instead, we propose to reduce the overhead of Newton-Schulz in Muon and QR-decomposition in Dion by factorizing the momentum to a low-rank matrix using our DCT-based dynamic column selection approach and orthogonalizing the low-rank momentum using Newton-Schulz, then project back to the original space to update the model parameters.

⁴ F^* is the conjugate transpose of the complex matrix F .

432 **Low-Rank Compression of Optimizer States.** Most approaches use individual projection matrices
 433 tailored to the gradient at each layer by invoking techniques based on quantization or matrix factor-
 434 ization, such as SVD, QR or PCA to reduce the memory usage of the **optimizer states stored in**
 435 **GPU memory.** The most common approach is to factorize the gradient to low-rank matrices. One pi-
 436 oneering work in the context of low-rank adaptive optimization is the recent GaLore optimizer (Zhao
 437 et al., 2024), which performs SVD once at a few steps to project the gradient to a lower-dimensional
 438 space. GaLore was followed by several other optimizers that improve certain aspects of it. LDAdam
 439 (Robert et al., 2025) aims to improve the computational runtime of GaLore by compressing the first
 440 order momentum in AdamW, replacing SVD with a Block Power-Iteration (Bentbib & Kanber, 2015)
 441 and performing a smooth subspace transition by rotating the first and second momentum accordingly
 442 to incorporate gradients from the same subspace at each step.

443 By default, GaLore discards the projection error, which LDAdam stores and incorporates into the
 444 gradient at the next step to improve convergence. In contrast, FRUGAL (Zmushko et al., 2024)
 445 makes the distinction between the low-rank gradient (called state-full) and the projection error (called
 446 state-free). The state-full gradient is used in AdamW, while the state-free gradient is fed to an
 447 optimizer without a state, such as SignSGD. The main idea is to leverage the remaining gradient
 448 information in the projection error since it is available at each step instead of discarding or storing it.
 449 A concurrent work to FRUGAL is FIRA (Chen et al., 2024), which preserves the low-rank constraint
 450 for memory efficiency while achieving full-rank performance by properly scaling the projection error.

451 Another approach worth mentioning is Online Subspace Descent Liang et al. (2024), which replaces
 452 SVD projection with Online PCA and involves computing the projection matrix as a solution of an
 453 optimization objective focused on: (a) minimizing the projection error and (b) forcing the projection
 454 matrix to be orthogonal. The authors indicate that performing one step with Adam to solve this
 455 additional optimization problem is enough to obtain a qualitatively good projection matrix P . In
 456 contrast, our method does not introduce such overheads during training since the DCT matrix is
 457 already computed at the beginning of training.

458 Despite all aforementioned approaches being similar in using SVD/QR-based projections, they differ
 459 in a few aspects. The most important one in our view is how they handle the projection error and how
 460 often they update the low-dimensional subspace, which we clarify in Table 3.

461 Our approach uses DCT projection coupled with a dynamic column selection to determine a projection
 462 matrix tailored to the gradient/momentun for a particular layer and can be integrated into any
 463 optimizer, regardless of the way it handles the projection error.

464 Low-rank Projection	465 Type	466 Frequency*	467 Error
468 GaLore (Zhao et al., 2024)	469 SVD	470 200	471 discard
472 FRUGAL (Zmushko et al., 2024)	473 SVD, Random, RandPerm	474 200	475 feed to SignSGD
476 FIRA (Chen et al., 2024)	477 SVD	478 200	479 norm-based scaling
480 LDAdam (Robert et al., 2025)	481 Block Power-Iteration	482 1	483 error feedback
484 Dion (Ahn et al., 2025)	485 Power-Iteration	486 1	487 save to momentum
488 Trion (this work)	489 DCT	490 1	491 same as Dion
492 DCT-AdamW (this work)	493 DCT	494 any	495 error feedback

496 Table 3: Properties of prior low-rank adaptive optimizers. The update frequency* 200 is the default
 497 in GaLore that made the approach computationally feasible.

498 6 CONCLUSION AND LIMITATIONS

499 We introduced the Trion and DCT-AdamW optimizers that use our DCT-based dynamic column
 500 selection to replace two techniques used to perform low-rank decomposition, that is, the inaccurate
 501 Power-Iteration in Dion and the expensive SVD and QR-decomposition in FRUGAL/FIRA/LDAdam.
 502 We showed that our work improves running time and memory usage. Moreover, it recovers the
 503 accuracy of the original methods and thus serves as a cheaper alternative to these expensive and
 504 inaccurate methods used to perform low-rank decomposition in adaptive gradient methods for both
 505 pretraining and finetuning.

506 Our experiments are limited to models with at most 1.3B parameters for pretraining and additional
 507 work is required to test our technique for larger models and beyond the Chinchilla-optimal token
 508 counts, which would require significantly more computational resources.

486 REFERENCES
487488 Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
489 updates, 2025. URL <https://arxiv.org/abs/2504.05295>.490 Dan Alistarh, Torsten Hoefer, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
491 Renggli. The convergence of sparsified gradient methods, 2018. URL <https://arxiv.org/abs/1809.10505>.492
493 Abdeslem Bentbib and A. Kanber. Block Power Method for SVD Decomposition. *Analele
494 Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica*, 23:45–58, 06 2015. doi:
495 10.1515/auom-2015-0024.496
497 Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
498 Fira: Can we achieve full-rank training of llms under low-rank constraint?, 2024. URL <https://arxiv.org/abs/2410.01623>.500
501 Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
502 quantization. *arXiv preprint arXiv:2110.02861*, 2021.503
504 Gene H. Golub and Charles F. Van Loan. *Matrix Computations - 4th Edition*. Johns Hopkins
505 University Press, Philadelphia, PA, 2013. doi: 10.1137/1.9781421407944. URL <https://epubs.siam.org/doi/abs/10.1137/1.9781421407944>.506
507 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
508 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.509
510 Marko Huhtanen and Allan Perämäki. Factoring matrices into the product of circulant and diagonal
511 matrices. *Journal of Fourier Analysis and Applications*, 2015.512
513 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
514 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.515
516 Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U. Stich, and Martin Jaggi. Error feedback
517 fixes signsgd and other gradient compression schemes, 2019. URL <https://arxiv.org/abs/1901.09847>.518
519 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.520
521 Xiaoyun Li, Belhal Karimi, and Ping Li. On distributed adaptive optimization with gradient compres-
522 sion. *arXiv preprint arXiv:2205.05632*, 2022.523
524 Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
525 training through low-rank updates, 2023. URL <https://arxiv.org/abs/2307.05695>.526
527 Kaizhao Liang, Bo Liu, Lizhang Chen, and qiang liu. Memory-efficient LLM training with online
528 subspace descent. In *The Thirty-eighth Annual Conference on Neural Information Processing
529 Systems*, 2024. URL <https://openreview.net/forum?id=P8rTCT6g45>.530
531 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *Proceedings of the
532 Seventh International Conference on Learning Representations*, 2019.533
534 Qijun Luo, Hengxu Yu, and Xiao Li. BAdam: A memory efficient full parameter training method for
535 large language models. *arXiv preprint arXiv:2404.02827*, 2024.536
537 J. Makhoul. A fast cosine transform in one and two dimensions. *IEEE Transactions on Acoustics,
538 Speech, and Signal Processing*, 28(1):27–34, 1980. doi: 10.1109/TASSP.1980.1163351.539 Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter
Richtarik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space overhead
and provable convergence, 2024. URL <https://arxiv.org/abs/2405.15593>.

540 J. Müller-Quade, H. Aagedal, Th. Beth, and M. Schmid. Algorithmic design of diffractive optical
 541 systems for information processing. *Physica D: Nonlinear Phenomena*, 120(1):196–205, 1998.
 542 ISSN 0167-2789. doi: [https://doi.org/10.1016/S0167-2789\(98\)00055-4](https://doi.org/10.1016/S0167-2789(98)00055-4). URL <https://www.sciencedirect.com/science/article/pii/S0167278998000554>. Proceedings
 543 of the Fourth Workshop on Physics and Consumption.

544 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 545 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 546 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

547 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
 548 tions toward training trillion parameter models. In *SC20: International Conference for High
 549 Performance Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.

550 Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A New, Simpler, Theoretically Better, and
 551 Practically Faster Error Feedback. *arXiv preprint arXiv:2106.05203*, 2021.

552 Thomas Robert, Mher Safaryan, Ionut-Vlad Modoranu, and Dan Alistarh. Ldadam: Adaptive
 553 optimization from low-dimensional gradient statistics, 2025. URL <https://arxiv.org/abs/2410.16103>.

554 Michael Schmid, Rainer Steinwandt, Jörn Müller-Quade, Martin Rötteler, and Thomas
 555 Beth. Decomposing a matrix into circulant and diagonal factors. *Linear Algebra
 556 and its Applications*, 306(1):131–143, 2000. ISSN 0024-3795. doi: [https://doi.org/10.1016/S0024-3795\(99\)00250-5](https://doi.org/10.1016/S0024-3795(99)00250-5). URL <https://www.sciencedirect.com/science/article/pii/S0024379599002505>.

557 Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
 558 application to data-parallel distributed training of speech DNNs. In *Fifteenth Annual Conference
 559 of the International Speech Communication Association*, 2014.

560 Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. *arXiv
 561 preprint arXiv:1809.07599*, 2018.

562 Gilbert Strang. The discrete cosine transform. *SIAM review*, 41(1):135–147, 1999.

563 Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
 564 Wang. Q-GaLore: Quantized galore with int4 projection and layer-adaptive low-rank gradients.
 565 *arXiv preprint arXiv:2407.08296*, 2024.

566 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 567 Tian. Galore: Memory-efficient ILM training by gradient low-rank projection. *arXiv preprint
 568 arXiv:2403.03507*, 2024.

569 Philip Zmushko, Aleksandr Beznosikov, Martin Takáč, and Samuel Horváth. Frugal: Memory-
 570 efficient optimization by reducing state overhead for scalable training, 2024. URL <https://arxiv.org/abs/2411.07837>.

571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593