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ABSTRACT

Low-rank optimization has emerged as a promising direction in training large
language models (LLMs) to improve running time and reduce the memory usage
of adaptive optimizers by constraining learning to a lower-dimensional space. Prior
work typically projects gradients of linear layers using approaches based on Singu-
lar Value Decomposition (SVD) or QR-decomposition. Applying these techniques
individually to each layer in large models is computationally expensive and incurs
additional memory costs due to storing the projection matrices. In this work, we
propose a computationally efficient and conceptually simple, two-step procedure
to approximate SVD/QR-based gradient projections into lower-dimensional spaces
by using a predefined orthogonal matrix of the Discrete Cosine Transform (DCT).
We dynamically select columns from the DCT matrix based on their alignment
with the gradient of each layer. The effective projection matrices are obtained via a
simple matmul with the DCT matrix in O(n?) time, followed by a lightweight
sorting step to identify the most relevant basis vectors. For large layers, DCT can
be computed via Makhoul’s N-point algorithm based on Fast Fourier Transform
(FFT) in O(n?log(n)) time. Due to the predefined nature of the orthogonal bases,
they are computed once at the start of training. Our numerical experiments on both
pre-training and fine-tuning tasks demonstrate the effectiveness of our dual strategy
in approximating optimal low-rank projections, obtaining an approach with rank-
independent running time that matches the performance of costly SVD/QR-based
methods while achieving faster runtime and reduced memory usage by up to 25%
across different model sizes.

1 INTRODUCTION

The Adam optimizer (Kingma & Ba, 2014) and its regularized version AdamW (Loshchilov & Hutter,
2019) have become the standard approach for optimizing deep neural networks in various settings.
With the recent increase in scale of LLMs up to billions and trillions of parameters, training with
AdamW becomes more and more challenging, as its internal state requires two momentum buffers
that scale with the model size. This practical problem paved the way for a line of research that focuses
on reducing the memory usage of optimizer states in the context of adaptive gradient optimization.
These approaches range from quantizing the states to 8 bits (Dettmers et al., 2021) to the recent
GaLore optimizer (Zhao et al., 2024) inspired from the LoRA techniques (Hu et al., 2021; Lialin et al.,
2023), that compresses the gradient matrix using low-rank decomposition based on SVD. Several
improvements to Gal.ore have been proposed to enhance its performance, such as LDAdam (Robert
et al., 2025), FRUGAL (Zmushko et al., 2024), FIRA (Chen et al., 2024), BAdam (Luo et al., 2024),
Q-GaLore (Zhang et al., 2024). The key aspect of GaLore and its later improvements is the low-rank
decomposition based on matrix factorization, such as SVD or QR decomposition.

Recently, the Muon (Jordan et al., 2024) optimizer sparked the community’s attention due to the
faster convergence in pretraining settings, achieved by orthogonalizing the momentum matrix using
Newton-Schulz, an iterative procedure difficult to parallelize for large-scale pretraining runs as the
full-sized matrices must be materialized on GPU. The Dion optimizer (Ahn et al., 2025) aims to reduce
this overhead by employing low-rank, orthogonal updates. However, it requires storing a projection
matrix for each layer and uses QR-decomposition to orthogonalize the low-rank components, making
its running time dependent on the rank.

All these SVD/QR-based techniques are known to be computationally intensive as they have to be
invoked for each linear layer, either at each step (for, e.g., LDAdam, Muon) or once at a few steps
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(for, e.g., GaLore). To mitigate the high computational and memory costs of these procedures, we
ask: can we find an alternative low-rank projection approach to serve as an accurate replacement
for the orthogonal matrices in SVD/QR for low-rank compression of optimizer states, that is much
cheaper to compute, and portable across memory-efficient optimizers?

Contributions. In this work, we address our research question by proposing a cheaper alternative
to the orthogonal matrices computed via SVD/QR. Concretely, we propose using the orthogonal
matrices from the general class of Discrete Fourier Transforms, such as the Discrete Cosine Transform
(DCT), which has been successfully used in image compression for the JPEG algorithm. To the best
of our knowledge, we are the first to use it in the context of low-rank adaptive gradient optimization.
We summarize our contributions as follows:

* We propose a dynamic column selection approach to adaptively choose columns from a fixed
orthogonal matrix to compute a low-rank projection of the input matrix. The effective projection
matrix is obtained from the fixed orthogonal matrix by indexing the columns (Section 2.1);

* We motivate that DCT is a good candidate for our dynamic column selection approach due to
the reduced time complexity to compute the alignments with the input matrix via the Makhoul’s
N-point algorithm (Makhoul, 1980) to compute a fast DCT with O(n? log(n)) time complexity
compared to O(n?) incurred by a basic matrix multiplication. This can yield speedups of up to
8 — 50x in computing the alignments for large layers (Appendix C).

* We theoretically justify our dynamic column selection approach to compute the most significant
columns of any fixed orthogonal matrix (including the DCT-based) to obtain a projection matrix
tailored to each layer (Section 4);

* We show the DCT-based projection is a fast and accurate replacement for the orthogonal matrices
computed via SVD/QR for the Muon- and Adam-like optimizers (such as Dion, FRUGAL, FIRA,
LDAdamW) in the context of low-rank compression of optimizer states. We reduce the running
time and improve the memory usage as we store only one DCT matrix per GPU for the entire
network, computed once at the beginning of the training. In addition, we store only r (rank)
integers, representing the indices of the most significant columns for each layer instead of storing
one low-rank projection matrix.

* We propose two standalone optimizers that use the DCT-based dynamic column selection approach:

1. Trion (Section 2.3), which improves Dion by replacing the Power-Iteration with our DCT-
based dynamic column selection approach to compute a low-rank representation of the
momentum buffer, followed by orthogonalization via Newton-Schulz iteration. We provide a
DDP-compatible implementation that communicates orthogonal, low-rank momentum across
devices and compute the final layer updates locally using the projection matrix obtained
from DCT. To the best of our knowledge, we are the first ones to reduce the complexity of
Newton-Schulz using a low-rank approximation of momentum.

2. DCT-AdamW (Section 2.4), which replaces the SVD-based low-rank projections and op-
tionally adds quantized error feedback for the projection error. Further, DCT-AdamW rotates
the momentum buffers such that new low-rank gradients are correctly incorporated, and thus
allows changing the low-rank subspace every step.

2 METHOD

This section presents our dynamic column selection approach that works with any orthogonal matrix,
briefly introduces the Discrete Cosine Transform (DCT) and the motivation of using it and finally
introduces the two algorithms we propose: Trion as an improvement to Dion to replace Power-
Iteration and DCT-AdamW as an improvement to low-rank AdamW variants to replace SVD/QR.

2.1 DYNAMIC COLUMN SELECTION

General View. Given an orthogonal matrix ) € R™*™, we want to compute a projection matrix
Q, € R™™" by selecting r columns from @ to project the gradient G € R™*" to an r-dimensional
space g = GQ, € R™*". First, we compute the similarities matrix S = G containing the scalar
products between rows of G and columns of (). We rank the columns of S based on their ¢;- or
{5-norm and then pick the indices of the largest r columns according to the chosen norm, which we
use to index columns in @ to obtain @,.. The i*" column in matrix S contains the scalar products
between each row of G and i column of @, as detailed in Appendix B. We view these scalar products
as similarities (or alignments) of rows in G with columns of () and we want to choose the columns
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of () with largest similarity with rows of GG. Using this approach, we ensure a dynamic mechanism
to choose the most appropriate columns of () for the current gradient matrix G to minimize the
projection error (see Section 4). Each layer will have its own set of r indices for the columns. The
dynamic behavior comes from the n-choose-r possible sets of indices to select from.

The rule of thumb in the low-rank factorization methods for optimization we are targeting in this
work is to compress the smallest dimension of a matrix to r dimensions (e.g. from R™*™ to R™*"
for n > m). Usually, the smallest dimension of the gradient matrix is dyodel, the hidden (embedding)
size of the model. As a result, the memory overhead of our dynamic column selection approach is the
cost of storing only one orthogonal matrix ) € R%modetXdmodet (DCT in our case) per GPU for the
entire model and r integers for the corresponding column indices from () for each layer to create Q..

2.2 DISCRETE COSINE TRANSFORM

The Discrete Cosine Transform (DCT) is widely used in the signal processing and data compression
literature (e.g., JPEG algorithm for image compression) and consists of n orthogonal basis vectors
whose components are cosines (Strang, 1999). There are minor variations of DCT and in this
work we will use DCT-II/III. We denote the DCT-III matrix of order n by Q € R™*", defined as

Qij = /2 /m-cos W, with 4, j € [n], where the first row has to be divided by v/2 in order for Q
to be orthogonal, i.e. QT Q = I,,. The DCT-II matrix is the transpose of DCT-IIL. In Appendix A, we
provide details on how we can efficiently materialize the DCT matrix on GPU. Once we compute (),
we can use it in the dynamic column selection approach to efficiently compute low-rank projections

of any two-dimensional matrix.

In Appendix C, we discuss why we choose DCT matrix. In short, the particular structure of DCT
allows us to enable fast computation for the similarities matrix S in O(n?log(n)) time using the
Makhoul’s N-point algorithm (see Appendix D) instead of O(n?) time for basic matmul.

2.3 TRION: DCT-BASED IMPROVEMENT TO DION

In this section, we present how we can apply the DCT-based dynamic column selection approach
to compute low-rank projection of momentum in the context of Dion (Ahn et al., 2025) to obtain a
faster and more accurate optimizer, which we call Trion, presented in Algorithm 1.

Dion uses Power-Iteration to compute a low-rank projection and orthogonalizes it using QR-
decomposition, whose running time depends on the rank r. Instead, we propose replacing these
techniques with a rank independent approach to compute the low-rank projection based on DCT
matrix, which requires computing the similarity matrix S, followed by a top-r ranking to determine
the indices of columns that best align with the momentum matrix, denoted by the set ¢;. The matrix Sy
represents the DCT of the momentum matrix and it can be computed using the Makhoul’s algorithm
or simply by only one matrix multiplication S; = B; D¢, where B; € R**¢ is the momentum and
D¢ € RE%C is the DCT matrix.

Once we determine the indices ¢; of the most significant columns in D¢, we can extract the low-rank
momentum b; from the similarity matrix S, as well as the projection matrix Q); by indexing D¢,
which will be used in (a) computing the projection error A; and (b) projecting the orthogonal low-rank
momentum back to the higher dimensional space to update the model.

We would like to emphasize that we input the low-rank momentum b, € R**" to Newton-Schulz
and not the original momentum buffer B; € R, which significantly reduces the computational
overhead. Moreover, we can use the efficient triton kernels provided in the Muon implementation
from the official Dion repository' to speed up the computations even further for large ranks r, as
Newton-Schulz will operate with r x r matrices.

Communication in Distributed Training. We develop the Trion optimizer on top of the published
code for the Muon > optimizer that leverages the ZeRO (Rajbhandari et al., 2020) approach in
Distributed Data Parallel (DDP) settings. Specifically, the model update O; for a layer is computed
only on one GPU, and the result is communicated to other GPUs using all-gather, drastically
reducing the computation costs for large models (under the assumption that communication is
cheaper than computation itself). Since we replicate the DCT matrix on each GPU, we would like to

'github.com/microsoft/dion
2Keller Jordan’s Muon implementation
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emphasize that we communicate only low-rank terms o; from the source GPU (the one computing
the update) to other devices and perform the step O; = 0;Q, locally on each device. This way, we
do not communicate full size, orthogonal matrices O, but only low-rank versions o, thus reducing
the overall iteration time.

This is particularly useful in the FSDP-compatible implementation, where we can materialize the
full low-rank matrices o; on each device using al1-to-all (see this Muon implementation *) to
perform Newton-Schulz on a low-rank input, followed by a resharding. After resharding, each GPU
can compute the individual slice of O; and update its own shard. However, the FSDP implementation
requires deciding how each layer should be sharded based on whether that particular layer requires a
left- or right-projection in order to avoid unwanted calls to communication primitives to materialize
full tensors to compute the alignments .S.

Algorithm 1 Trion Optimizer

1: Define the DCT-II/III matrix D € RE*C
2: fort={1,2,...,T} do
3: Gt = V()L(et) S RRXC

4: B, = M;_1 + G, € REXC

5: S; = MAKHOUL(B;) € REXC >or S; = By - D¢ to compute similarities;
6: iy = DYNAMICCOLUMNSELECTION(S, ) € N i select largest  columns by £; /¢3-norm
7: Q: = D¢l i) € RExr > projection matrix containing most significant r columns
8: by = Si[:, 1) € REXT > extract low-rank momentum from the similarity matrix .S
9: Ay = By — th: > the error is th;'— and replaces PtR;r error from Dion
10: M; = uB; + (1 — p)Ay = By — (1 — u)b;Q; > update momentum with error feedback
11: 0; = NEWTONSCHULZ(b;) € RE*" > Newton-Schulz applied on low-rank b,
12: O = 0,Q] € REXC > project orthogonalized low-rank momentum to original size
13: 0t+1 == (1 - )\’/]f)@t — max(l, R/C) Ot S RRXC
14: end for

2.4 DCT-AbDAMW

We propose DCT-AdamW, a standalone low-rank version of AdamW with DCT-based projection
that has the option to use quantized error feedback (EF) (Seide et al., 2014; Karimireddy et al.,
2019; Alistarh et al., 2018) and ensures momentum buffers integrate gradients from the same lower
dimensional subspaces in a similar way as in LDAdamW (Robert et al., 2025). In contrast to
LDAdamW, which has to store two consecutive projection matrices per layer, we only have to store
two sets of r indices per layer. Prior work MicroAdam (Modoranu et al., 2024) quantized the error
feedback down to 4-bits in the context of compressing the optimizer state using sparsity. In our setup,
the lowest resolution we can quantize EF to is 8-bits without degrading the optimizer performance. For
space constraints reasons, we present the pseudocode of our DCT-AdamW optimizer in Appendix E.

3 EXPERIMENTS

In this section we present our numerical results. Our main goal is to show that our DCT-based
dynamic column selection approach at least recovers the performance of the original algorithms
which we integrate it in. Specifically, we evaluate Trion against Dion, where we directly compare
the DCT-based projection followed by Newton-Schulz iteration with QR-based Power-Iteration. In
addition, we replace the SVD-based projection in FRUGAL and FIRA optimizers with our DCT
approach. In the end, we compare LDAdamW with our standalone DCT-AdamW optimizer. In our
pretraining experiments, we compare training/validation perplexity and for fine-tuning we compare
the evaluation accuracy, as well as memory usage and running time for both scenarios. In the
remaining part of the paper, we focus on presenting our pretraining (PT) results and the fine-tuning
(FT) results are presented in Appendix H.

We train from scratch models from the Llama family with 350M, 800M and 1.3B parameters using
Chinchilla-optimal token counts (20 tokens per parameter) from the C4 (Raffel et al., 2020) dataset
and sequence length 512. All PT experiments are run in Distributed Data Parallel (DDP) settings on
8x H100 Nvidia GPUs using global batch size 512 with local batch size 64 per GPU (unless otherwise
specified explicitly).

3github.com/microsoft/dion/blob/main/dion/muon.py#L22
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PT with Trion. Our purpose is to show that our DCT-based dynamic column selection approach
can successfully replace the QR-based Power-Iteration procedure in Dion and at least recovers the
performance for the best hyper-parameters reported by the original work. In Table 1, we present our
results, which are obtained using the optimal learning rate = 0.01 (as reported by the original Dion
paper) and weight decay A = 0.01. We report the average values across 3 seeds for train/validation
loss and perplexity, maximum allocated memory (read directly from the GPU) and the lowest running
time across all runs. We experiment with ranks 128, 256 and 512, the rank-to-dimension ratio is
r/d € {1/16,1/8,1/4,1/2}, equivalent to 6.25%, 12.5%, 25% and 50% of the full rank d, where d
is model’s embedding dimension.

Rank r  Metric 350M (d = 1024) 800M (d = 2048) 1.3B* (d = 2048)
Trion Dion Trion Dion Trion Dion
r/d 1/8 1/16 1/16
128 Tra@n Loss 2.726 2.764 2.532 2.555 2.475 2.503
Train PPL 15.29 15.89 12.59 12.89 11.90 12.24
Val Loss 2.736 2.773 2.505 2.527 2.422 2.448
Val PPL 15.43 16.00 12.25 12.52 11.27 11.56
Memory (GB) 42.42 45.56 67.45 71.64 63.62 68.57
Runtime 1h53m 1h58m 8hS5m 8h24m 19h13m 19h 42m
r/d 1/4 1/8 1/8
256 Train Loss 2.715 2.741 2.533 2.546 2.476 2.492
Train PPL 15.11 15.51 12.61 12.78 11.92 12.11
Val Loss 2.727 2.750 2.503 2.519 2.423 2.440
Val PPL 15.30 15.64 12.22 12.42 11.28 11.47
Memory (GB) 42.42 45.59 67.45 71.75 63.62 68.58
Runtime 1h533m 2h3m 8h3m 8h36m 19h13m 20h 6m
r/d 1/2 1/4 1/4
512 Train Loss 2.708 2.718 2.528 2.535 2.470 2.481
Train PPL 15.01 15.16 12.54 12.63 11.84 11.97
Val Loss 2.718 2.727 2.499 2.509 2.420 2.430
Val PPL 15.15 15.29 12.18 12.30 11.25 11.36
Memory (GB) 42.42 45.99 67.45 71.81 63.62 68.73
Runtime 1Th54m 2h14m 8h3m 8h48m 19h13m 20h 44m

Table 1: Perplexity, Memory, and Running Time Comparison for Trion and Dion. d stands for the
embedding dimensionality of the model. The 1.3B model was trained with local batch size 32.

Performance In Table 1, we show Trion consistently achieves lower training and validation loss,
which also translates to lower perplexities. At the top row of Figure 3 we show the training loss
curve of Trion is lower than Dion across iterations. This is an indication that our DCT-based dynamic
column selection algorithm, followed by orthogonalization via Newton-Schulz can successfully
replace the Power-Iteration procedure in Dion.

Memory Usage. In Table 1, we show Trion has a lower memory requirement across all experiments
since it allocates only one DCT matrix per GPU of size d x d, from which we select r columns using
the indices of the most significant columns. In contrast, Dion stores a projection matrix for each layer.
This design difference translates to around 10% lower memory footprint for Trion compared to Dion.

Runtime. We would like to emphasize that the running time of Trion does not depend on rank,
as can be seen from the reported runtime across different ranks in Table 1: Trion achieves nearly
constant runtime for each model size across all ranks, while the runtime of Dion clearly depends on
the rank because of the QR-decomposition. This represents an advantage of Trion for much larger
scales compared to Dion. At the bottom row of Figure 3 we present the wall clock time for the
two optimizers for rank 256 across all three models we tested on. Concretely, for a fixed running
time budget, Trion consistently achieves lower training loss than Dion. Trion is faster than Dion by
2.5 — 4.5% for rank 128, 4.5 — 9% for rank 256 and 8 — 18% for rank 512 (the overhead of Dion
increases with rank). It is important to mention that the embedding size d of the models we used in
our work is too small to see a significant difference in the runtime between Makhoul’s algorithm and
matmul when computing the column similarities. However, our benchmark presented in Appendix D
shows the advantage of using Makhoul’s algorithm at scale compared to matmul.
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Factorization Accuracy. In order to understand why our low-rank projection in Trion is more
accurate than Power-Iteration in Dion, we compute the /5 —norm of projection errors between the
accumulators B, and the corresponding orthogonal updates that each optimizer uses to update the
model: Ador = || B, — P,Q/ ||2 for Dion and Ai°" = || B, — Oy||5 for Trion. In Figure 1 we show
the projection errors for the linear layers of the first transformer block in a Llama-30M model and
provide more information in Appendix F.

PT with LDAdamW. We train Llama-800M on 80B tokens (100 tokens per parameter) from C4 using
LDAdam and DCT-AdamW described in Algorithm 2. In particular for our approach, we use EF
quantized to 8-bits and some further optimizations from the ZeRO-redundancy optimizer (Rajbhandari
et al., 2020), where one layer is updated on a single GPU and then it is broadcasted to the other GPUs.
This way, we obtain lower memory usage by replacing redundant operations in the optimizer with
communication, since the GPUs receiving the updated layer parameters do not allocate any state. In
Figure 2 we present the training loss curves for full-rank AdamW (for reference), LDAdamW and
DCT-AdamW and we are interested in directly comparing the last two. We observe that DCT-AdamW
has lower training loss than LDAdamW, which also translates to lower perplexities in Table 2. Due
to relatively high rank, the memory usage of LDAdamW is close to the memory usage of AdamW
because it stores two projection matrices to be able to rotate the momentum buffers. In contrast,
DCT-AdamW stores only two sets of r indices instead of storing the actual projection matrices, which
drastically reduces the memory usage, coupled with the ZeRO-redundancy trick. In terms of running
time, DCT-AdamW is faster than LDAdamW by 10h 7m (= 25.75%) and slower than AdamW by
1h 55m (= 5%).

transformer.h.0.attn.c_attn.weight transformer.h.0.mlp.c_proj.weight transformer.h.0.mlp.w1.weight
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Figure 1: Projection errors for Dion and Trion for a few layers from the first transformer block on
Llama-30M (d = 640, r = 128).

AdamW LDAdamW DCT-AdamW ;‘g o T
Train PPL 1288 15.10 1495 36— permy )
Val. PPL 11.73 13.91 13.69 éb i;‘
Mem. (GiB)  73.72 72.10 5782 ES
Time 1d 13h22m 2d 1h24m 1d 15h 17m =238
Table 2: Pre-training results on Llama-800M i'i

for AdamW, LDAdamW and DCT-AdamW 70 50000 100000 150000 200000 250000 300000
with 100 tokens/parameter. AdamW is the Figure 2: Pre-training L1fma-800M with DCT-
full-rank optimizer and is added for reference. AdamW and LDAdam on 80B tokens from C4.

PT with FRUGAL/FIRA. We replace the SVD projection with our DCT approach and test it on
Llama-800M model using 16B tokens from the C4. For space constraints reasons, we present the
results in Appendix G.

4 THEORETICAL GUARANTEES

In this section, we provide a theoretical justification for our two-step procedure to approximate
SVD-based gradient projections. First, we rigorously show that adaptively selecting columns of
an orthogonal matrix based on their alignment with the gradient matrix is an optimal strategy for
minimizing the reconstruction error. This approach leads to a contractive compression scheme,
which is commonly exploited in the analysis of compressed adaptive optimization algorithms. Next,
to justify the specific use of the DCT matrix, we demonstrate that it naturally serves as a linear
approximation of the left or right eigenbases of the gradient matrices.

4.1 OPTIMALITY OF NORM-BASED RANKING PROCEDURE

Let G € R™ ™ be the gradient matrix and Q) € R™*" is orthogonal, namely QQ " = I,, (without
loss of generality, we consider left multiplication). For a given rank r < n, let Q. bean x r
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Figure 3: Training Loss across iterations (top row) and wall clock time (bottom row) for three
Llama models trained with Dion and Trion optimizers on C4 using 20 tokens per parameter and rank
r = 256. For a clearer visualization, the training loss curve was smoothed using a moving average
with a window size of 200 and we zoom-in on the last 5000 training steps.

sub-matrix of ) composed of r columns. We are interested in the reconstruction error between
G and Q,Q, G, where Q| performs projection and (), performs back-projection. While we may
choose any matrix norm to measure the reconstruction error, the standard Frobenius norm makes
the derivation cleaner. Specifically, using the definition of the Frobenius norm ||G||% = tr(GT G),

linearity of trace and Q' Q,. = I,- due to orthogonality of (), we decompose the reconstruction error:

IG=Q:Q Gl = (G (I-QQ1) (I -Q:Q)G) = tr(G (I - QQ)G)
tr(GTG-GTQ,QG)=tr(GTG) —tr(GTQ,QG)

IGIE - QS GlIE = IGIE — 3251 lla GII3,

where g;’s are the columns of (),.. From this identity, we conclude that to minimize the reconstruc-
tion error, the optimal strategy is to maximize the alignments ||g,” G||3 for all selected columns
¢i. Furthermore, since [[¢f G||3 + [lg; GI3 + -+ + [l4, Gl = IQTG} = tr(GTQQTG) =
tr(GTG) = |G|, following the optimal strategy of selecting r columns from (), we have

T2 — 2 T T2 2 _rym T2 — : 2
IG = Q:Q, Glf = IGIE = i lle! GlI3 < IGIE — £ 577, o GlI3 = (1 = %) IG][§- Thus,
the proposed norm-based selection strategy for any orthogonal matrix () induces a low-rank compres-
sion scheme that is contractive with a factor 1 — 7/n. Contractivness of the compression scheme is the
key property in the convergence analysis of compressed optimization (Stich et al., 2018; Richtarik

et al., 2021; Li et al., 2022; Modoranu et al., 2024; Robert et al., 2025).

We can extend the above argument for any p-norm over vectorized matrices, for which the Frobenius
norm is the special case of p = 2. Then, we have:

(@)
IG = QrQGllp =Xy @idf G = Xy @iaf G, = |71 aa G|, < 0,4 [|laiad G,

n (C) L —= n
D5 lall, a7 G|, < max(tnr =4S 676,

where (a) follows from the triangle inequality of the p-norm, (b) follows from the definition of
p-norms for matrices, namely [[uv ™|, = (32, ; ufv})"» = (30, uf 32, 05)7 = |lullp||v]|, for two
column-vectors u and v of the same size, (c) follows from the relationship between £, norms and that

. 1_1 . .
lgill2 = 1. ie., [[oll, <nr™2[vflsif p < 2and [[o]l, < [jv]l2if p > 2.

4.2 DCT AS LINEAR APPROXIMATION OF THE GRADIENT EIGENBASIS

Given a real-valued gradient matrix G € R™*™ and its SVD decomposition G = ULV T, our goal
is to find fast approximation of (without loss of generality) its left eigenvectors stacked in U € R"™*™,
As GG = UX2UT, it is equivalent to approximate the eigenvectors of symmetric matrix GG " .

Our argument starts from a linear algebra decomposition result, originally motivated by the optical
information processing literature to factorize linear transformations that can be implemented optically
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(Miiller-Quade et al., 1998; Schmid et al., 2000). The result states that any square matrix M of shape
n X n over the complex numbers C can be decomposed into a product of diagonal and circulant
matrices, i.e., M = D1C5Ds3 ... Doy _3C5;_2Dsk_1, where D’s are diagonal matrices and C’s are
circulant matrices. Circulant matrices are a special class of Toeplitz matrices in which each row is a
cyclic right shift of the previous one as shown below:

Co 1 C2 T Cn—1
Cn—1 Co C1 te Cn—2 1 on—1 2
cC=1| . , F=—1w"], _ , wherew=¢er. (1)
\/ﬁ i,7=0
C1 C2 =+ Cp-1 Co

The number of factors 2k — 1 in this decomposition has been shown to be up to 2n — 1 for almost
all matrices (in the sense of Lebesgue measure), and it is further conjectured that a decomposition
with up to n factors is sufficient (Huhtanen & Periamaiki, 2015). Since circulant matrices can be
diagonalized using the discrete Fourier transform (DFT) matrix F (see equation 1), i.e., C = F*DF*
(Golub & Van Loan, 2013), we can decompose the matrix F* M F with M = GG and arrive at the
following decomposition for GG T

GG'" = (FD1F*)Dy(FD3F*)Dy - Dop_o(F Do 1 F*). @

Notice the analogy between this matrix decomposition and the Taylor expansion for functions. Since
the space of matrices is finite-dimensional, the signal-matrix can be recovered using finitely many
“variable” D’s, in contrast to the infinite series required for function expansions. Keeping this analogy
in mind, just as loss functions are linearly approximated at each iteration in first-order optimization
algorithms, we consider a “linear” approximation of the decomposition equation 2 by including only
a single variable D, i.e., GG ~ FD,F*.

This directly implies that we approximate the eigenvectors U by the DFT matrix F'. However, since
the matrix GG is real and symmetric by design, its eigenvalues are real, and the real part Re(F)
also forms an approximate eigenbasis that better aligns with U. Finally, we observe that the real part
Re(F') corresponds to the discrete cosine transform (DCT), up to minor variations.

5 RELATED WORK

Our approach aims to improve existing optimizers from prior work in the literature, which we group
into two categories: optimizers that speed up convergence at the expense of increased FLOPs and
optimizers focused on reducing the running time and memory usage by compressing the gradient via
low-rank matrix factorization.

Fast Convergence Optimizers. Muon optimizer (Jordan et al., 2024) has recently stood up in the
literature for its fast convergence rate due to the orthogonalized momentum update. The purpose of
the orthogonalization is to push the singular values of the momentum matrix towards 1. It speeds up
convergence by increasing the importance (singular values) of directions in the momentum matrix,
which otherwise would have a low impact over the optimization.

The most straightforward approach to computing an orthogonal update is to use the UV " from the
SVD decomposition of the momentum matrix. Since SVD is expensive, it is replaced by an iterative
procedure called Newton-Schulz, which involves computing the odd powers of the momentum matrix
up to 5t order and multiplying by some carefully chosen constants. While the Newton-Schulz
procedure delivers an accurate approximation of UV T, the odd powers in the polynomial involve full-
size matrix multiplications. This is in particular difficult for large scale settings, where the full matrices
have to be materialized on a GPU before running Newton-Schulz, which increases communication
and memory usage. Dion optimizer (Ahn et al., 2025) aims to reduce the communication overhead by
using low-rank, orthogonal updates computed via Power-Iteration, that requires QR decomposition
with running time depending on the rank.

Instead, we propose to reduce the overhead of Newton-Schulz in Muon and QR-decomposition in
Dion by factorizing the momentum to a low-rank matrix using our DCT-based dynamic column
selection approach and orthogonalizing the low-rank momentum using Newton-Schulz, then project
back to the original space to update the model parameters.

*F* is the conjugate transpose of the complex matrix F'.
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Low-Rank Compression of Optimizer States. Most approaches use individual projection matrices
tailored to the gradient at each layer by invoking techniques based on quantization or matrix factor-
ization, such as SVD, QR or PCA to reduce the memory usage of the optimizer states stored in
GPU memory. The most common approach is to factorize the gradient to low-rank matrices. One pi-
oneering work in the context of low-rank adaptive optimization is the recent GalLore optimizer (Zhao
et al., 2024), which performs SVD once at a few steps to project the gradient to a lower-dimensional
space. GaLore was followed by several other optimizers that improve certain aspects of it. LDAdam
(Robert et al., 2025) aims to improve the computational runtime of GaL.ore by compressing the first
order momentum in AdamW, replacing SVD with a Block Power-Iteration (Bentbib & Kanber, 2015)
and performing a smooth subspace transition by rotating the first and second momentum accordingly
to incorporate gradients from the same subspace at each step.

By default, GaLore discards the projection error, which LDAdam stores and incorporates into the
gradient at the next step to improve convergence. In contrast, FRUGAL (Zmushko et al., 2024)
makes the distinction between the low-rank gradient (called state-full) and the projection error (called
state-free). The state-full gradient is used in AdamW, while the state-free gradient is fed to an
optimizer without a state, such as SignSGD. The main idea is to leverage the remaining gradient
information in the projection error since it is available at each step instead of discarding or storing it.
A concurrent work to FRUGAL is FIRA (Chen et al., 2024), which preserves the low-rank constraint
for memory efficiency while achieving full-rank performance by properly scaling the projection error.

Another approach worth mentioning is Online Subspace Descent Liang et al. (2024), which replaces
SVD projection with Online PCA and involves computing the projection matrix as a solution of an
optimization objective focused on: (a) minimizing the projection error and (b) forcing the projection
matrix to be orthogonal. The authors indicate that performing one step with Adam to solve this
additional optimization problem is enough to obtain a qualitatively good projection matrix P. In
contrast, our method does not introduce such overheads during training since the DCT matrix is
already computed at the beginning of training.

Despite all aforementioned approaches being similar in using SVD/QR-based projections, they differ
in a few aspects. The most important one in our view is how they handle the projection error and how
often they update the low-dimensional subspace, which we clarify in Table 3.

Our approach uses DCT projection coupled with a dynamic column selection to determine a projection
matrix tailored to the gradient/momentum for a particular layer and can be integrated into any
optimizer, regardless of the way it handles the projection error.

Low-rank Projection Type Frequency* Error
GalLore (Zhao et al., 2024) SVD 200 discard
FRUGAL (Zmushko et al., 2024)SVD, Random, RandPerm 200 feed to SignSGD
FIRA (Chen et al., 2024) SVD 200 norm-based scaling
LDAdam (Robert et al., 2025) Block Power-Iteration 1 error feedback
Dion (Ahn et al., 2025) Power-Iteration 1 save to momentum
Trion (this work) DCT 1 same as Dion
DCT-AdamW (this work) DCT any error feedback

Table 3: Properties of prior low-rank adaptive optimizers. The update frequency* 200 is the default
in GaLore that made the approach computationally feasible.

6 CONCLUSION AND LIMITATIONS

We introduced the Trion and DCT-AdamW optimizers that use our DCT-based dynamic column
selection to replace two techniques used to perform low-rank decomposition, that is, the inaccurate
Power-Iteration in Dion and the expensive SVD and QR-decomposition in FRUGAL/FIRA/LDAdam.
We showed that our work improves running time and memory usage. Moreover, it recovers the
accuracy of the original methods and thus serves as a cheaper alternative to these expensive and
inaccurate methods used to perform low-rank decomposition in adaptive gradient methods for both
pretraining and finetuning.

Our experiments are limited to models with at most 1.3B parameters for pretraining and additional
work is required to test our technique for larger models and beyond the Chinchilla-optimal token
counts, which would require significantly more computational resources.
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