
Under review as a conference paper at ICLR 2023

k-MEDIAN CLUSTERING VIA METRIC EMBEDDING:
TOWARDS BETTER INITIALIZATION WITH PRIVACY

Anonymous authors
Paper under double-blind review

ABSTRACT

In clustering algorithms, the choice of initial centers is crucial for the quality of the
learned clusters. We propose a new initialization scheme for the k-median problem
in the general metric space (e.g., discrete space induced by graphs), based on the
construction of metric embedding tree structure of the data. From the tree, we
propose a novel and efficient search algorithm, for good initial centers that can be
used subsequently for the local search algorithm. The so-called HST initialization
method can produce initial centers achieving lower errors than those from another
popular initialization method, k-median++, with comparable efficiency. Our HST
initialization can also be easily extended to the setting of differential privacy (DP)
to generate private initial centers. We show that the error of applying DP local
search followed by our private HST initialization improves previous results on
the approximation error, and approaches the lower bound within a small factor.
Experiments demonstrate the effectiveness of our proposed methods.

1 INTRODUCTION

Clustering is an important problem in unsupervised learning that has been widely studied in statistics,
data mining, network analysis, etc. (Punj and Stewart, 1983; Dhillon and Modha, 2001; Banerjee
et al., 2005; Berkhin, 2006; Abbasi and Younis, 2007). The goal of clustering is to partition a set of
data points into clusters such that items in the same cluster are expected to be similar, while items in
different clusters should be different. This is concretely measured by the sum of distances (or squared
distances) between each point to its nearest cluster center. One conventional notion to evaluate a
clustering algorithms is: with high probability,

cost(C,D) ≤ γOPTk(D) + ξ,

where C is the centers output by the algorithm and cost(C,D) is a cost function defined for C on
dataset D. OPTk(D) is the cost of optimal (oracle) clustering solution on D. When everything is
clear from context, we will use OPT for short. Here, γ is called multiplicative error and ξ is called
additive error. Alternatively, we may also use the notion of expected cost.

Two popularly studied clustering problems are 1) the k-median problem, and 2) the k-means problem.
The origin of k-median dates back to the 1970’s (e.g., Kaufman et al. (1977)), where one tries to find
the best location of facilities that minimizes the cost measured by the distance between clients and
facilities. Formally, given a set of points D and a distance measure, the goal is to find k center points
minimizing the sum of absolute distances of each sample point to its nearest center. In k-means, the
objective is to minimize the sum of squared distances instead. Particularly, k-median is usually the
one used for clustering on graph/network data. In general, there are two popular frameworks for
clustering. One heuristic is the Lloyd’s algorithm (Lloyd, 1982), which is built upon an iterative
distortion minimization approach. In most cases, this method can only be applied to numerical data,
typically in the (continuous) Euclidean space. Clustering in general metric spaces (discrete spaces) is
also important and useful when dealing with, for example, the graph data, where Lloyd’s method
is no longer applicable. A more broadly applicable approach, the local search method (Kanungo
et al., 2002; Arya et al., 2004), has also been widely studied. It iteratively finds the optimal swap
between the center set and non-center data points to keep lowering the cost. Local search can achieve
a constant approximation ratio (γ = O(1)) to the optimal solution for k-median (Arya et al., 2004).

Initialization of cluster centers. It is well-known that the performance of clustering can be highly
sensitive to initialization. If clustering starts with good initial centers (i.e., with small approxi-
mation error), the algorithm may use fewer iterations to find a better solution. The k-median++

1

Under review as a conference paper at ICLR 2023

algorithm (Arthur and Vassilvitskii, 2007) iteratively selects k data points as initial centers, favoring
distant points in a probabilistic way. Intuitively, the initial centers tend to be well spread over the
data points (i.e., over different clusters). The produced initial center is proved to have O(log k)
multiplicative error. Follow-up works of k-means++ further improved its efficiency and scalability,
e.g., Bahmani et al. (2012); Bachem et al. (2016); Lattanzi and Sohler (2019). In this work, we pro-
pose a new initialization framework, called HST initialization, based on metric embedding techniques.
Our method is built upon a novel search algorithm on metric embedding trees, with comparable
approximation error and running time as k-median++. Moreover, importantly, our initialization
scheme can be conveniently combined with the notion of differential privacy (DP).

Clustering with Differential Privacy. The concept of differential privacy (Dwork, 2006; McSherry
and Talwar, 2007) has been popular to rigorously define and resolve the problem of keeping useful
information for model learning, while protecting privacy for each individual. Private k-means problem
has been widely studied, e.g., Feldman et al. (2009); Nock et al. (2016); Feldman et al. (2017), mostly
in the continuous Euclidean space. The paper (Balcan et al., 2017) considered identifying a good
candidate set (in a private manner) of centers before applying private local search, which yields
O(log3 n) multiplicative error and O((k2+d) log5 n) additive error. Later on, the Euclidean k-means
errors are further improved to γ = O(1) and ξ = O(k1.01 · d0.51 + k1.5) by Stemmer and Kaplan
(2018), with more advanced candidate set selection. Huang and Liu (2018) gave an optimal algorithm
in terms of minimizing Wasserstein distance under some data separability condition.

For private k-median clustering, Feldman et al. (2009) considered the problem in high dimensional
Euclidean space. However, it is rather difficult to extend their analysis to more general metrics in
discrete spaces (e.g., on graphs). The strategy of (Balcan et al., 2017) to form a candidate center
set could as well be adopted to k-median, which leads to O(log3/2 n) multiplicative error and
O((k2 + d) log3 n) additive error in high dimensional Euclidean space. In discrete space, Gupta
et al. (2010) proposed a private method for the classical local search heuristic, which applies to both
k-medians and k-means. To cast privacy on each swapping step, the authors applied the exponential
mechanism of (McSherry and Talwar, 2007). Their method produced an ϵ-differentially private
solution with cost 6OPT +O(△k2 log2 n/ϵ), where△ is the diameter of the point set. In this work,
we will show that our HST initialization can improve DP local search for k-median (Gupta et al.,
2010) in terms of both approximation error and efficiency.

The main contributions of this work include :

• We introduce the Hierarchically Well-Separated Tree (HST) to the k-median clustering
problem for initialization. We design an efficient sampling strategy to select the initial
center set from the tree, with an approximation factor O(logmin{k,△}) in the non-private
setting, which is O(logmin{k, d}) when△ = O(d) (e.g., bounded data). This improves
the O(log k) error of k-means/median++ in e.g., the lower dimensional Euclidean space.

• We propose a differentially private version of HST initialization under the setting of Gupta
et al. (2010) in discrete metric space. The so-called DP-HST algorithm finds initial centers
with O(log n) multiplicative error and O(ϵ−1△k2 log2 n) additive error. Moreover, run-
ning DP-local search starting from this initialization gives O(1) multiplicative error and
O(ϵ−1△k2(log log n) log n) additive error, which improves previous results towards the
well-known lower bound O(ϵ−1△k log(n/k)) on the additive error of DP k-median (Gupta
et al., 2010) within a small O(k log log n) factor. This is the first clustering initialization
method with differential privacy guarantee and improved error rate in general metric space.

• We conduct experiments on simulated and real-world datasets to demonstrate the effective-
ness of our methods. In both non-private and private settings, our proposed HST-based
approach achieves smaller cost at initialization than k-median++, which may also lead to
improvements in the final clustering quality.

2 BACKGROUND AND SETUP

Definition 2.1 (Differential Privacy (DP) (Dwork, 2006)). If for any two adjacent data sets D and
D′ with symmetric difference of size one, for any O ⊂ Range(A), an algorithmA satisfies

Pr[A(D) ∈ O] ≤ eϵPr[A(D′) ∈ O],

then algorithmA is said to be ϵ-differentially private.

2

Under review as a conference paper at ICLR 2023

Intuitively, DP requires that after removing any observation, the output of D′ should not be too
different from that of the original dataset D. Smaller ϵ indicates stronger privacy, which, however,
usually sacrifices utility. Thus, one central topic in DP is to balance the utility-privacy trade-off.

To achieve DP, one approach is to add noise to the algorithm output. The Laplace mechanism adds
Laplace(η(f)/ϵ) noise to the output, which is known to achieve ϵ-DP. The exponential mechanism
is also a tool for many DP algorithms. Let O be the set of feasible outputs. The utility function
q : D × O → R is what we aim to maximize. The exponential mechanism outputs an element
o ∈ O with probability P [A(D) = o] ∝ exp(ϵq(D,o)

2η(q)), where D is the input dataset and η(f) =

sup|D−D′|=1 |f(D)− f(D′)| is the sensitivity of f . Both mechanisms will be used in our paper.

2.1 k-MEDIAN CLUSTERING

Following Arya et al. (2004); Gupta et al. (2010), the problem of k-median clustering (DP and
non-DP) studied in our paper is stated as below.
Definition 2.2 (k-median). Given a universe point set U and a metric ρ : U × U → R, the goal of
k-median to pick F ⊆ U with |F | = k to minimize

k-median: costk(F,U) =
∑
v∈U

min
f∈F

ρ(v, f). (1)

Let D ⊆ U be a set of demand points. The goal of DP k-median is to minimize

DP k-median: costk(F,D) =
∑
v∈D

min
f∈F

ρ(v, f). (2)

At the same time, the output F is required to be ϵ-differentially private to D. We may drop “F ” and
use “costk(U)” or “costk(D)” if there is no risk of ambiguity.

To better understand the motivation of the DP clustering, we provide a real-world example as follows.
Example 2.3. Consider U to be the universe of all users in a social network (e.g., Twitter). Each user
(account) is public, but also has some private information that can only be seen by the data holder.
Let D be users grouped by some feature that might be set as private. Suppose a third party plans to
collaborate with the most influential users in D for e.g., commercial purposes, thus requesting the
cluster centers of D. In this case, we need a strategy to safely release the centers, while protecting
the individuals in D from being identified (since the membership of D is private).

The local search procedure for k-median proposed by Arya et al. (2004) is summarized in Algorithm 1.
First we randomly pick k points in U as the initial centers. In each iteration, we search over all
x ∈ F and y ∈ U , and do the swap F ← F − {x} + {y} such that F − {x} + {y} improves the
cost of F the most (if more than factor (1− α/k) where α > 0 is a hyper-parameter). We repeat the
procedure until no such swap exists. Arya et al. (2004) showed that the output centers F achieves 5
approximation error to the optimal solution, i.e., cost(F) ≤ 5OPT .

Algorithm 1: Local search for k-median clustering (Arya et al., 2004)
Input: Data points U , parameter k, constant α
Initialization: Randomly select k points from U as initial center set F
while ∃ x ∈ F, y ∈ U s.t. cost(F − {x}+ {y}) ≤ (1− α/k)cost(F) do

Select (x, y) ∈ Fi × (D \ Fi) with argminx,y{cost(F − {x}+ {y})}
Swap operation: F ← F − {x}+ {y}

Output: Center set F

2.2 k-MEDIAN++ INITIALIZATION

Although local search is able to find a solution with constant error, it takes O(n2) per iteration (Re-
sende and Werneck, 2007) in expected O(k log n) steps (in total O(kn2 log n)) when started from
random center set, which would be slow for large datasets. Indeed, we do not need such complicated
algorithm to reduce the cost at the beginning, i.e., when the cost is large. To accelerate the process,

3

Under review as a conference paper at ICLR 2023

1

2
3

4

5 6

7 8

9

10

4,2,…,10

10

10

[1,2,3] [6,4,5,7,8,9]

1 [3,2] [5,4,6] [8,7] 9

Level 3

Level 2

Level 1

Figure 1: An illustrative example of a 3-level padded decomposition and corresponding 2-HST. Left:
The thickness of the ball represents the level. The color corresponds to the levels in the HST in the
right panel. “△”’s are the center nodes of partitions (balls), and “×”’s are non-center data points.
Right: The resulting 2-HST generated from the padded decomposition.

efficient initialization methods find a “roughly” good center set as the starting point for local search.
In the paper, we compare our new initialization scheme mainly with a popular (and perhaps most
well-known) initialization method, the k-median++ (Arthur and Vassilvitskii, 2007) (see Algorithm 6
in the Appendix). Arthur and Vassilvitskii (2007) showed that the output centers C by k-median++
achieves O(log k) approximation error with time complexity O(nk). Starting from the initialization,
we only need to run O(k log log k) steps of the computationally heavy local search to reach a constant
error solution. Thus, initialization may greatly improve the clustering efficiency.

3 INITIALIZATION VIA HIERARCHICALLY WELL-SEPARATED TREE (HST)

In this section, we propose our novel initialization scheme for k-median clustering, and provide our
analysis in the non-private case solving (1). The idea is based on the metric embedding theory. We
will start with an introduction to the main tool used in our approach.

3.1 HIERARCHICALLY WELL-SEPARATED TREE (HST)

In this paper, for an L-level tree, we will count levels in descending order down the tree. We use hv

to denote the level of v, and ni be the number of nodes at level i. The Hierarchically Well-Separated
Tree (HST) is based on the padded decompositions of a general metric space in a hierarchical
manner (Fakcharoenphol et al., 2004). Let (U, ρ) be a metric space with |U | = n, and we will refer
to this metric space without specific clarification. A β–padded decomposition of U is a probabilistic
distribution of partitions of U such that the diameter of each cluster Ui ∈ U is at most β, i.e.,
ρ(u, v) ≤ β, ∀u, v ∈ Ui, i = 1, ..., k. The formal definition of HST is given as below.
Definition 3.1. Assume minu,v∈U ρ(u, v) = 1 and denote △ = maxu,v∈U ρ(u, v). An α-
Hierarchically Well-Separated Tree (α-HST) with depth L is an edge-weighted rooted tree T , such
that an edge between any pair of two nodes of level i− 1 and level i has length at most△/αL−i.

In this paper, we consider α = 2-HST for simplicity, as α only affects the constants in our theoretical
analysis. Figure 1 is an example L = 3-level 2-HST (right panel), along with its underlying padded
decompositions (left panel). A 2-HST can be built as follows: we first find a padded decomposition
PL = {PL,1, ..., PL,nL

} of U with parameter β = △/2. The center of each partition in PL,j serves
as a root node in level L. Then, we re-do a padded decomposition for each partition PL,j , to find
sub-partitions with diameter β = △/4, and set the corresponding centers as the nodes in level L− 1,
and so on. Each partition at level i is obtained with β = △/2L−i. This process proceeds until a
node has a single point (leaf), or a pre-specified tree depth is reached. More details can be found in
Algorithm 7 in the Appendix A. Blelloch et al. (2017) proposed an efficient HST construction in
O(m log n) time, where n and m are the number of nodes and edges in a graph, respectively.

The first step of our method is to embed the data points into a HST (see Algorithm 2). Next, we
will describe our new strategy to search for the initial centers on the tree (w.r.t. the tree metric).
Before moving on, it is worth mentioning that, there are polynomial time algorithms for computing
an exact k-median solution in the tree metric (Tamir (1996); Shah (2003)). However, the dynamic
programming algorithms have high complexity (e.g., O(kn2)), making them unsuitable for the
purpose of fast initialization. Moreover, it is unknown how to apply them effectively to the private

4

Under review as a conference paper at ICLR 2023

Algorithm 2: NDP-HST initialization
Input: U ,△, k
Initialization: L = log△, C0 = ∅, C1 = ∅
Call Algorithm 7 to build a level-L 2-HST T using U
for each node v in T do

Nv ← |U ∩ T (v)|
score(v)← Nv · 2hv

while |C1| < k do
Add top (k − |C1|) nodes with highest score to C1

for each v ∈ C1 do
C1 = C1 \ {v}, if ∃ v′ ∈ C1 such that v′ is a descendant of v

C0 = FIND-LEAF(T,C1)
Output: Initial center set C0 ⊆ U

Algorithm 3: FIND-LEAF (T,C1)
Input: T , C1

Initialization: C0 = ∅
for each node v in C1 do

while v is not a leaf node do
v ← argw max{Nw, w ∈ ch(v)}, where ch(v) denotes the children nodes of v

Add v to C0
Output: Initial center set C0 ⊆ U

case. As will be shown, our new algorithm 1) is very efficient, 2) gives O(1) approximation error in
the tree metric, and 3) can be effectively extended to DP easily.

3.2 HST INITIALIZATION ALGORITHM

Let L = log∆ and suppose T is a level-L 2-HST in (U, ρ), where we assume L is an integer. For
a node v at level i, we use T (v) to denote the subtree rooted at v. Let Nv = |T (v)| be the number
of data points in T (v). The search strategy for the initial centers, NDP-HST initialization (“NDP”
stands for “Non-Differentially Private”), is presented in Algorithm 2 with two phases.

Subtree search. The first step is to identify the subtrees that contain the k centers. To begin with, k
initial centers C1 are picked from T who have the largest score(v) = N(v) · 2hv . This is intuitive,
since to get a good clustering, we typically want the ball surrounding each center to include more
data points. Next, we do a screening over C1: if there is any ancestor-descendant pair of nodes, we
remove the ancestor from C1. If the current size of C1 is smaller than k, we repeat the process until k
centers are chosen (we do not re-select nodes in C1 and their ancestors). This way, C1 contains k
root nodes of k disjoint subtrees.

Leaf search. After we find C1 the set of k subtrees, the next step is to find the center in each subtree
using Algorithm 3 (“FIND-LEAF”). We employ a greedy search strategy, by finding the child node
with largest score level by level, until a leaf is found. This approach is intuitive since the diameter of
the partition ball exponentially decays with the level. Therefore, we are in a sense focusing more and
more on the region with higher density (i.e., with more data points).

The complexity of our search algorithm is given as follows.

Proposition 3.2 (Complexity). Algorithm 2 takes O(dn log n) time in the Euclidean space.

Remark 3.3. The complexity of HST initialization is in general comparable to O(dnk) of k-
median++. Our algorithm would be faster if k > log n, i.e., the number of centers is large.

3.3 APPROXIMATION ERROR OF HST INITIALIZATION

Firstly, we show that the initial center set produced by NDP-HST is already a good approximation to
the optimal k-median solution. Let ρT (x, y) = dT (x, y) denote the “2-HST metric” between x and

5

Under review as a conference paper at ICLR 2023

y in the 2-HST T , where dT (x, y) is the tree distance between nodes x and y in T . By Definition 3.1
and since△ = 2L, in the analysis we assume equivalently that the edge weight of the i-th level 2i−1.
The crucial step of our analysis is to examine the approximation error in terms of the 2-HST metric,
after which the error can be adapted to the general metrics by the following Lemma (Bartal, 1996).
Lemma 3.4. In a metric space (U, ρ) with |U | = n and diameter △, it holds that E[ρT (x, y)] =
O(min{log n, log△})ρ(x, y). In the Euclidean space Rd, E[ρT (x, y)] = O(d)ρ(x, y).

Recall C0, C1 from Algorithm 2. We define

costTk (U) =
∑
y∈U

min
x∈C0

ρT (x, y), (3)

costTk
′(U,C1) = min

|F∩T (v)|=1,
∀v∈C1

∑
y∈U

min
x∈F

ρT (x, y), (4)

OPTT
k (U) = min

F⊂U,|F |=k

∑
y∈U

min
x∈F

ρT (x, y) ≡ min
C′

1

costTk
′(U,C ′

1). (5)

For simplicity, we will use costTk
′(U) to denote costTk

′(U,C1). Here, OPTT
k (5) is the cost of the

global optimal solution with 2-HST metric. The last equivalence in (5) holds because the optimal
centers set can always located in k disjoint subtrees, as each leaf only contain one point. (3) is the
k-median cost with 2-HST metric of the output C0 of Algorithm 2. (4) is the oracle cost after the
subtrees are chosen. That is, it represents the optimal cost to pick one center from each subtree in C1.
Firstly, we bound the approximation error of subtree search and leaf search, respectively.
Lemma 3.5 (Subtree search). costTk

′(U) ≤ 5OPTT
k (U).

Lemma 3.6 (Leaf search). costTk (U) ≤ 2costTk
′(U).

Combining Lemma 3.5 and Lemma 3.6, we obtain
Theorem 3.7 (2-HST error). Running Algorithm 2, we have costTk (U) ≤ 10OPTT

k (U).

Thus, HST-initialization produces an O(1) approximation to OPT in the 2-HST metric. Define
costk(U) as (1) for our HST centers, and the optimal cost w.r.t. ρ as

OPTk(U) = min
|F |=k

∑
y∈U

min
x∈F

ρ(x, y). (6)

We have the following result based on Lemma 3.4.
Theorem 3.8. In general metric space, the expected k-median cost of Algorithm 2 is E[costk(U)] =
O(min{log n, log△})OPTk(U).
Remark 3.9. In the Euclidean space, Makarychev et al. (2019) proved O(log k) random projections
suffice for k-median to achieve O(1) error. Thus, if△ = O(d) (e.g., bounded data), by Lemma 3.4,
HST initialization is able to achieve O(log(min{d, k})) error, which is better than O(log k) of
k-median++ when d is small.

NDP-HST Local Search. We are interested in the approximation quality of standard local search
(Algorithm 1), when initialized by our NDP-HST.
Theorem 3.10. NDP-HST local search achieves O(1) approximation error in expected
O(k log logmin{n,△}) number of iterations for input in general metric space.

Before ending this section, we remark that the initial centers found by NDP-HST can
be used for k-means clustering analogously. For general metrics, E[costkm(U)] =
O(min{log n, log△})2OPTkm(U) where costkm(U) is the optimal k-means cost. See Appendix D
for the detailed (and similar) analysis.

4 HST INITIALIZATION WITH DIFFERENTIAL PRIVACY

In this section, we consider initialization method with differential privacy (DP). Recall (2) that U
is the universe of data points, and D ⊂ U is a demand set that needs to be clustered with privacy.

6

Under review as a conference paper at ICLR 2023

Algorithm 4: DP-HST initialization
Input: U,D,△, k, ϵ
Build a level-L 2-HST T based on input U
for each node v in T do

Nv ← |D ∩ T (v)|
N̂v ← Nv + Lap(2(L−hv)/ϵ)

score(v)← N̂(v) · 2hv

Based on N̂v , apply the same strategy as Algorithm 2: find C1; C0 = FIND-LEAF(C1)
Output: Private initial center set C0 ⊆ U

Algorithm 5: DP-HST local search
Input: U , demand points D ⊆ U , parameter k, ϵ, T
Initialization: F1 the private initial centers generated by Algorithm 4 with privacy ϵ/2
Set parameter ϵ′ = ϵ

4△(T+1)

for i = 1 to T do
Select (x, y) ∈ Fi× (V \Fi) with prob. proportional to exp(−ϵ′× (cost(Fi−{x}+ {y}))
Let Fi+1 ← Fi − {x}+ {y}

Select j from {1, 2, ..., T + 1} with probability proportional to exp(−ϵ′ × cost(Fj))
Output: F = Fj the private center set

Since U is public, simply running initialization algorithms on U would preserve the privacy of D.
However, 1) this might be too expensive; 2) in many cases one would probably want to incorporate
some information about D in the initialization, since D could be a very imbalanced subset of U . For
example, D may only contain data points from one cluster, out of tens of clusters in U . In this case,
initialization on U is likely to pick initial centers in multiple clusters, which would not be helpful for
clustering on D. Next, we show how our proposed HST initialization can be easily combined with
differential privacy that at the same time contains information about the demand set D, leading to
improved approximation error (Theorem 4.3). Again, suppose T is an L = log△-level 2-HST of
universe U in a general metric space. Denote Nv = |T (v) ∩D| for a node point v. Our private HST
initialization (DP-HST) is similar to the non-private Algorithm 2. To gain privacy, we perturb Nv by
adding i.i.d. Laplace noise:

N̂v = Nv + Lap(2(L−hv)/ϵ),

where Lap(2(L−hv)/ϵ) is a Laplace random number with rate 2(L−hv)/ϵ. We will use the perturbed
N̂v for node sampling instead of the true value Nv, as described in Algorithm 4. The DP guarantee
of this initialization scheme is straightforward by the composition theory (Dwork, 2006).
Theorem 4.1. Algorithm 4 is ϵ-differentially private.

Proof. For each level i, the subtrees T (v, i) are disjoint to each other. The privacy used in i-th level
is ϵ/2(L−i), and the total privacy is

∑
i ϵ/2

(L−i) < ϵ.

We now consider the approximation error. As the structure of the analysis is similar to the non-DP
case, we present the main result here and defer the detailed proofs to Appendix C.
Theorem 4.2. Algorithm 4 finds initial centers such that

E[costk(D)] = O(log n)(OPTk(D) + kϵ−1△ log n).

DP-HST Local Search. Similarly, we can use private HST initialization to improve the performance
of private k-median local search, which is presented in Algorithm 5. After initialization, the DP local
search procedure follows Gupta et al. (2010) using the exponential mechanism.
Theorem 4.3. Algorithm 5 achieves ϵ-differential privacy. With probability (1− 1

poly(n)), the output
centers admit

costk(D) ≤ 6OPTk(D) +O(ϵ−1k2△(log log n) log n)

in T = O(k log log n) iterations.

7

Under review as a conference paper at ICLR 2023

The DP local search with random initialization (Gupta et al., 2010) has 6 multiplicative error and
O(ϵ−1△k2 log2 n) additive error. Our result improves the log n term to log log n in the additive error.
Meanwhile, the number of iterations needed is improved from T = O(k log n) to O(k log log n)
(see Appendix B for an empirical justification). Notably, it has been shown in Gupta et al. (2010)
that for k-median problem, the lower bounds on the multiplicative and additive error of any ϵ-DP
algorithm are O(1) and O(ϵ−1△k log(n/k)), respectively. Our result matches the lower bound on the
multiplicative error, and the additive error is only worse than the bound by a factor of O(k log log n)
which would be small in many cases. To our knowledge, Theorem 4.3 is the first result in literature to
improve the error of DP local search in general metric space.

5 EXPERIMENTS

5.1 DATASETS AND ALGORITHMS

Discrete Euclidean space. Following previous work ., we test k-median clustering on the MNIST
hand-written digit dataset (LeCun et al., 1998) with 10 natural clusters (digit 0 to 9). We set U as
10000 randomly chosen data points. We choose the demand set D using two strategies: 1) “balance”,
where we randomly choose 500 samples from U ; 2) “imbalance”, where D contains 500 random
samples from U only from digit “0” and “8” (two clusters). We note that, the imbalanced D is a very
practical setting in real-world scenarios, where data are typically not uniformly distributed. On this
dataset, we test clustering with both l1 and l2 distance as the underlying metric.

Metric space induced by graph. Random graphs have been widely considered in testing k-median
methods (Balcan et al., 2013; Todo et al., 2019). The construction of graphs follows a similar
approach as the synthetic pmedinfo graphs provided by the popular OR-Library (Beasley, 1990). The
metric ρ for this experiment is the shortest (weighted) path distance. To generate a size n graph, we
first randomly split the nodes into 10 clusters. Within each cluster, each pair of nodes is connected
with probability 0.2 and weight drawn from standard uniform distribution. For each pair of clusters,
we randomly connect some nodes from each cluster, with weights following uniform [0.5, r]. A
larger r makes the graph more separable, i.e., clusters are farther from each other (see Appendix B
for example graphs). We present two cases: r = 1 and r = 100. For this task, U has 3000 nodes,
and the private set D (500 nodes) is chosen using similar “balanced” and “imbalanced” scheme as
described above. In the imbalanced case, we choose D randomly from only two clusters.

Algorithms. We compare the following clustering algorithms in both non-DP and DP setting:
(1) NDP-rand: Local search with random initialization; (2) NDP-kmedian++: Local search with
k-median++ initialization (Algorithm 6); (3) NDP-HST: Local search with NDP-HST initialization
(Algorithm 2), as described in Section 3; (4) DP-rand: Standard DP local search algorithm (Gupta
et al., 2010), which is Algorithm 5 with initial centers randomly chosen from U ; (5) DP-kmedian++:
DP local search with k-median++ initialization run on U ; (6) DP-HST: DP local search with
HST-initialization (Algorithm 5). For non-DP tasks, we set L = 6. For DP clustering, we use L = 8.

For non-DP methods, we set α = 10−3 in Algorithm 1 and the maximum number of iterations as
20. To examine the quality of initialization as well as the final centers, We report both the cost at
initialization and the cost of the final output. For DP methods, we run the algorithms for T = 20 steps
and report the results with ϵ = 1. We test k ∈ {2, 5, 10, 15, 20}. The average cost over T iterations
is reported for more robustness. All results are averaged over 10 independent repetitions.

5.2 RESULTS

The results on MNIST dataset are given in Figure 2. The comparisons are similar for both l1 and l2:
• From the left column, the initial centers found by HST has lower cost than k-median++ and

random initialization, for both non-DP and DP setting, and for both balanced and imbalanced
demand set D. This confirms that the proposed HST initialization is more powerful than
k-median++ in finding good initial centers.

• From the right column, we also observe lower final cost of HST followed by local search in
DP clustering. In the non-DP case, the final cost curves overlap, which means that despite
HST offers better initial centers, local search can always find a good solution eventually.

8

Under review as a conference paper at ICLR 2023

2 5 10 15 20
k

4

5

6
in

iti
al

 c
os

t

104 Balanced D

MNIST - l
1

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

3.5

4

4.5

5

5.5

k-
m

ed
ia

n
co

st

104 Balanced D

MNIST - l
1

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

4

5

6

7

in
iti

al
 c

os
t

104 Imbalanced D

MNIST - l
1

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

3.5

4

4.5

5

5.5

6

k-
m

ed
ia

n
co

st

104 Imbalanced D

MNIST - l
1

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

3500

4000

4500

5000

in
iti

al
 c

os
t

Balanced D

MNIST - l
2

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

3500

4000

4500

k-
m

ed
ia

n
co

st

Balanced D

MNIST - l
2

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

3500

4000

4500

5000

5500

in
iti

al
 c

os
t

Imbalanced D

MNIST - l
2

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

3500

4000

4500

k-
m

ed
ia

n
co

st

Imbalanced D

MNIST - l
2

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

Figure 2: k-median cost on MNIST dataset. 1st column: initial cost. 2nd column: final output cost.

2 5 10 15 20
k

0

500

1000

in
iti

al
 c

os
t

Balanced D

GRAPH r = 100

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

0

500

1000

k-
m

ed
ia

n
co

st

Balanced D

GRAPH r = 100

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

0

200

400

600

800

in
iti

al
 c

os
t

Imbalanced D

GRAPH r = 100 NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

0

100

200

300

k-
m

ed
ia

n
co

st

Imbalanced D

GRAPH r = 100

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

40

60

80

100

in
iti

al
 c

os
t

Balanced D

GRAPH r = 1

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

20

40

60

80

100

k-
m

ed
ia

n
co

st

Balanced D

GRAPH r = 1

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

20

40

60

80

100

in
iti

al
 c

os
t

Imbalanced D

GRAPH r = 1

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

20

40

60

80

k-
m

ed
ia

n
co

st

Imbalanced D

GRAPH r = 1

NDP-HST
NDP-kmedian++
NDP-rand
DP-HST
DP-kmedian++
DP-rand

Figure 3: k-median cost on graph dataset. 1st column: initial cost. 2nd column: final output cost.

• The advantage of DP-HST, in terms of both the initial and the final cost, is more significant
when D is an imbalanced subset of U . As mentioned before, this is because our DP-HST
initialization approach also privately incorporates the information of D.

The results on graphs are reported in Figure 3, which give similar conclusions. In all cases, our
proposed HST scheme finds better initial centers with smaller cost than k-median++. Moreover,
HST again considerably outperforms k-median++ in the private and imbalanced D setting, for both
r = 100 (highly separable) and r = 1 (less separable). The advantages of HST over k-median++ are
especially significant in the harder tasks when r = 1, i.e., the clusters are nearly mixed up.

6 CONCLUSION

In this paper, we propose a new initialization framework for the k-median problem in general metric
space. Our approach is called HST initialization, which leverages tools from metric embedding theory.
Our novel tree search approach has comparable efficiency and approximation error to the popular
k-median++ initialization. Moreover, we propose differentially private (DP) HST initialization
algorithm, which adapts to the private demand point set, leading to better clustering performance.
When combined with subsequent DP local search heuristic, our algorithm is able to improve the
additive error of DP local search, which is close to the theoretical lower bound within a small factor.
Experiments with Euclidean metrics and graph metrics verify the effectiveness of our methods, which
improve the cost of both the initial centers and the final k-median output.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Ameer Ahmed Abbasi and Mohamed F. Younis. A survey on clustering algorithms for wireless
sensor networks. Comput. Commun., 30(14-15):2826–2841, 2007.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1027–
1035, New Orleans, LA, 2007.

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristics for k-median and facility location problems. SIAM J. Comput., 33
(3):544–562, 2004.

Olivier Bachem, Mario Lucic, S. Hamed Hassani, and Andreas Krause. Approximate k-means++ in
sublinear time. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI), pages 1459–1467, Phoenix, AZ, 2016.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii. Scalable
k-means++. Proc. VLDB Endow., 5(7):622–633, 2012.

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means and k-median
clustering on general communication topologies. In Advances in Neural Information Processing
Systems (NIPS), pages 1995–2003, Lake Tahoe, NV, 2013.

Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang Zhang. Differ-
entially private clustering in high-dimensional euclidean spaces. In Proceedings of the 34th
International Conference on Machine Learning (ICML), pages 322–331, Sydney, Australia, 2017.

Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering with bregman
divergences. J. Mach. Learn. Res., 6:1705–1749, 2005.

Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In
Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS), pages
184–193, Burlington, VT, 1996.

John E Beasley. OR-Library: distributing test problems by electronic mail. Journal of the Operational
Research Society, 41(11):1069–1072, 1990.

Pavel Berkhin. A survey of clustering data mining techniques. In Grouping Multidimensional Data,
pages 25–71. Springer, 2006.

Guy E. Blelloch, Yan Gu, and Yihan Sun. Efficient construction of probabilistic tree embeddings. In
Proceedings of the 44th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 26:1–26:14, Warsaw, Poland, 2017.

Inderjit S. Dhillon and Dharmendra S. Modha. Concept decompositions for large sparse text data
using clustering. Mach. Learn., 42(1/2):143–175, 2001.

Cynthia Dwork. Differential privacy. In Proceedings of the 33rd International Colloquium on
Automata, Languages and Programming (ICALP),Part II, pages 1–12, Venice, Italy, 2006.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. Private coresets. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing (STOC), pages 361–370, Bethesda, MD,
2009.

Dan Feldman, Chongyuan Xiang, Ruihao Zhu, and Daniela Rus. Coresets for differentially private
k-means clustering and applications to privacy in mobile sensor networks. In Proceedings of the
16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN),
pages 3–15, Pittsburgh, PA, 2017.

10

Under review as a conference paper at ICLR 2023

Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differentially private
combinatorial optimization. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1106–1125, Austin, TX, 2010.

Zhiyi Huang and Jinyan Liu. Optimal differentially private algorithms for k-means clustering. In
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS), pages 395–408, Houston, TX, 2018.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and
Angela Y. Wu. A local search approximation algorithm for k-means clustering. In Proceedings of
the 18th Annual Symposium on Computational Geometry (CG), pages 10–18, Barcelona, Spain,
2002.

Leon Kaufman, Marc Vanden Eede, and Pierre Hansen. A plant and warehouse location problem.
Journal of the Operational Research Society, 28(3):547–554, 1977.

Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In Proceedings
of the 36th International Conference on Machine Learning (ICML), pages 3662–3671, Long Beach,
CA, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2):129–136, 1982.

Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 1027–1038, Phoenix, AZ, 2019.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Proceedings of
the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 94–103,
Providence, RI, 2007.

Richard Nock, Raphaël Canyasse, Roksana Boreli, and Frank Nielsen. k-variates++: more pluses
in the k-means++. In Proceedings of the 33nd International Conference on Machine Learning
(ICML), pages 145–154, New York City, NY, 2016.

Girish Punj and David W Stewart. Cluster analysis in marketing research: Review and suggestions
for application. Journal of Marketing Research, 20(2):134–148, 1983.

Mauricio G. C. Resende and Renato Fonseca F. Werneck. A fast swap-based local search procedure
for location problems. Ann. Oper. Res., 150(1):205–230, 2007.

Rahul Shah. Faster algorithms for k-median problem on trees with smaller heights. Technical report,
2003.

Uri Stemmer and Haim Kaplan. Differentially private k-means with constant multiplicative error.
In Advances in Neural Information Processing Systems (NeurIPS), pages 5436–5446, Montréal,
Canada, 2018.

Arie Tamir. An o(pn2) algorithm for the p-median and related problems on tree graphs. Oper. Res.
Lett., 19(2):59–64, 1996.

Keisuke Todo, Atsuyoshi Nakamura, and Mineichi Kudo. A fast approximate algorithm for k-median
problem on a graph. In Proceedings of the 15th International Workshop on Mining and Learning
with Graphs (MLG), Anchorage, AK, 2019.

11

Under review as a conference paper at ICLR 2023

Supplemental Materials

A POSTPONED ALGORITHM

A.1 k-MEDIAN++

In the paper, we compared our HST initialization mainly with another (perhaps most well-known)
initialization algorithm for clustering, the k-median++ (Arthur and Vassilvitskii, 2007). For reference,
we present the concrete procedures in Algorithm 6. Here, the function D(u,C) is the shortest distance
from a data point u to the closest (center) point in set C. Arthur and Vassilvitskii (2007) showed that
the output centers C by k-median++ achieves O(log k) approximation error, in O(dnk) time.

Algorithm 6: k-median++ initialization (Arthur and Vassilvitskii, 2007)
Input: Data points U , number of centers k
Randomly pick a point c1 ∈ U and set F = {c1}
for i = 2 to k do

Select ci = u ∈ U with probability ρ(u,F)∑
u′∈U ρ(u′,F)

F = F ∪ {ci}
Output: k-median++ initial center set F

A.2 HST CONSTRUCTION

As presented in Algorithm 7, the construction starts by applying a permutation π on U , such that in
following steps the points are picked in a random sequence. We first find a padded decomposition
PL = {PL,1, ..., PL,nL

} of U with parameter β = △/2. The center of each partition in PL,j serves
as a root node in level L. Then, we re-do a padded decomposition for each partition PL,j , to find
sub-partitions with diameter β = △/4, and set the corresponding centers as the nodes in level L− 1,
and so on. Each partition at level i is obtained with β = △/2L−i. This process proceeds until a node
has a single point, or a pre-specified tree depth is reached. In Figure 1, we provide an example of
L = 3-level 2-HST (left panel), along with its underlying padded decompositions (right panel).

Algorithm 7: Build 2-HST(U,L)
Input: Data points U with diameter△, L
Randomly pick a point in U as the root node of T
Let r = △/2
Apply a permutation π on U // so points will be chosen in a random sequence
for each v ∈ U do

Set Cv = [v]
for each u ∈ U do

Add u ∈ U to Cv if d(v, u) ≤ r and u /∈
⋃

v′ ̸=v Cv′

Set the non-empty clusters Cv as the children nodes of T
for each non-empty cluster Cv do

Run 2-HST(Cv, L− 1) to extend the tree T ; stop until L levels or reaching a leaf node
Output: 2-HST T

12

Under review as a conference paper at ICLR 2023

B MORE EXPERIMENTS

B.1 EXAMPLES OF GRAPH DATA

In Figure 4, we plot two example graphs (subgraphs of 50 nodes) with r = 100 and r = 1. When
r = 100, the graph is highly separable (i.e., clusters are far from each other). When r = 1, the
clusters are harder to be distinguished from each other.

1

2
3

4

5

6

7

8

9

10

11

12

13
14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
41

42

43

44

45
46

47

48

49

50

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 50

Figure 4: Example of synthetic graphs: subgraph of 50 nodes. Left: r = 1. Right: r = 100. Darker
and thicker edged have smaller distance. When r = 100, the graph is more separable.

B.2 RUNNING TIME COMPARISON WITH k-MEDIAN++

In Proposition 3.2, we show that our HST initialization algorithm admits O(dn log n) complexity
when considering the Euclidean space. With a smart implementation of Algorithm 6 where each
data point tracks its distance to the current closest candidate center in C, k-median++ has O(dnk)
running time. Therefore, the running time of our algorithm is in general comparable to k-median++.
Our method would run faster if k = Ω(log n). In Figure 5, we plot the empirical running time of
HST initialization against k-median++, on MNIST dataset with l2 distance (similar comparison holds
for l1). From the left subfigure, we see that k-median++ becomes slower with increasing k, and our
method is more efficient when k > 20. In the right panel, we observe that the running time of both
methods increases with larger sample size n. Our HST algorithm has a slightly faster increasing rate,
which is predicted by the complexity comparison (n log n v.s. n). However, this difference in log n
factor would not be too significant unless the sample size is extremely large. Overall, our numerical
results suggest that in general, the proposed HST initialization would have similar efficiency as
k-median++ in common practical scenarios.

2 5 10 20 30
k

0

0.2

0.4

0.6

tim
e

(s
)

500 1000 2000 3000 5000
n

0

0.4

0.8

1.2

tim
e

(s
)

Figure 5: Empirical time comparision of HST initialization v.s. k-median++, on MNIST dataset with
l2 distance. Left: The running time against k, on a subset of n = 2000 data points. Right: The
running time against n, with k = 20 centers.

13

Under review as a conference paper at ICLR 2023

B.3 IMPROVED ITERATION COST OF DP-HST

In Theorem 4.3, we show that under differential privacy constraints, the proposed DP-HST (Algo-
rithm 5) improves both the approximation error and the number of iterations required to find a good
solution of classical DP local search (Gupta et al., 2010). In this section, we provide some numerical
results to justify the theory.

First, we need to properly measure the iteration cost of DP local search. This is because, unlike the
non-private clustering, the k-median cost after each iteration in DP local search is not decreasing
monotonically, due to the probabilistic exponential mechanism. To this end, for the cost sequence
with length T = 20, we compute its moving average sequence with window size 5. Attaining the
minimal value of the moving average indicates that the algorithm has found a “local optimum”, i.e.,
it has reached a “neighborhood” of solutions with small clustering cost. Thus, we use the number of
iterations to reach such local optimum as the measure of iteration cost. The results are provided in
Figure 6. We see that on all the tasks (MNIST with l1 and l2 distance, and graph dataset with r = 1
and r = 100), DP-HST has significantly smaller iterations cost. In Figure 7, we further report the
k-median cost of the best solution in T iterations found by each DP algorithm. We see that DP-HST
again provide the smallest cost. This additional set of experiments again validates the claims of
Theorem 4.3, that DP-HST is able to found better initial centers in fewer iterations.

2 5 10 15 20
k

6

8

10

12

14

16

ite
ra

tio
ns

 to
 m

in
 c

os
t

MNIST - l
1

DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

4

6

8

10

12

14
ite

ra
tio

ns
 to

 m
in

 c
os

t

MNIST - l
2

DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

6

8

10

12

14

16

ite
ra

tio
ns

 to
 m

in
 c

os
t GRAPH r = 100

DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

6

8

10

12

14

16

ite
ra

tio
ns

 to
 m

in
 c

os
t

GRAPH r = 1

DP-HST
DP-kmedian++
DP-rand

Figure 6: Iteration cost to reach a locally optimal solution, on MNIST and graph datasets with
different k. The demand set is an imbalanced subset of the universe.

2 5 10 15 20
k

4

4.5

5

m
in

 k
-m

ed
ia

n
co

st

104 Imbalanced D

MNIST - l
1

DP-HST
DP-kmedian++
DP-rand

2 5 10 15 20
k

3000

3500

4000

m
in

 k
-m

ed
ia

n
co

st

Imbalanced D

MNIST - l
2

DP-HST
DP-kmedian++
DP-rand

Figure 7: The k-median cost of the best solution found by each differentially private algorithm. The
demand set is an imbalanced subset of the universe. Same comparison holds on graph data.

14

Under review as a conference paper at ICLR 2023

C PROOFS

The following composition result of differential privacy will be used in our proof.

Theorem C.1 (Composition Theorem (Dwork, 2006)). If Algorithms A1,A2, ...,Am are
ϵ1, ϵ2, ..., ϵm differentially private respectively, then the union (A1(D),A2(D), ...,Am(D)) is∑m

i=1 ϵi-DP.

C.1 PROOF OF LEMMA 3.5

Proof. Consider the intermediate output of Algorithm 2, C1 = {v1, v2, ..., vk}, which is the set of
roots of the minimal subtrees each containing exactly one output center C0. Suppose one of the
optimal “root set” that minimizes (4) is C∗

1 = {v′1, v′2, ..., v′k}. If C1 = C∗
1 , the proof is done. Thus,

we prove the case for C1 ̸= C∗
1 . Note that T (v), v ∈ C1 are disjoint subtrees. We have the following

reasoning.

• Case 1: for some i, j′, vi is a descendant node of v′j . Since the optimal center point f∗ is a
leaf node by the definition of (4), we know that there must exist one child node of v′j that
expands a subtree which contains f∗. Therefore, we can always replace v′j by one of its
child nodes. Hence, we can assume that vi is not a descendant of v′j .

Note that, we have score(v′j) ≤ score(vi) if v′j /∈ C∗
1 ∩C1. Algorithm 2 sorts all the nodes

based on cost value, and it would have more priority to pick v′j than vi if score(v′j) >
score(vi) and vi is not a child node of v′j .

• Case 2: for some i, j′, v′j is a descendant of vi. In this case, optimal center point f∗, which
is a leaf of T (vi), must also be a leaf node of T (v′j). We can simply replace C1 with the
swap C1 \ {vi}+ {v′j} which does not change costTk

′(U). Hence, we can assume that v′j is
not a descendant of vi.

• Case 3: Otherwise. By the construction of C1, we know that score(v′j) ≤
min{score(vi), i = 1, ..., k} when v′j ∈ C∗

1 \ C1. Consider the swap between C1 and
C∗

1 . By the definition of tree distance, we have OPTT
k (U) ≥

∑
vi∈C1\C∗

1
Nvi2

hvi , since
{T (vi), vi ∈ C1 \ C∗

1} does not contain any center of the optimal solution determined by
C∗

1 (which is also the optimal “root set” for OPTT
k (U)).

Thus, we only need to consider Case 3. Let us consider the optimal clustering with center set be
C∗ = {c∗1, c∗2, ..., c∗k} (each center c∗j is a leaf of subtree whose root be c′j), and S′

j be the leaves
assigned to c∗j . Let Sj denote the set of leaves in S′

j whose distance to c∗j is strictly smaller than its
distance to any centers in C1. Let Pj denote the union of paths between leaves of Sj to its closest
center in C1. Let v′′j be the nodes in Pj with highest level satisfying T (v′′j) ∩ C1 = ∅. The score of

v′′j is 2
hv′′

j N(v′′j). That means the swap with a center v′j into C1 can only reduce 4 · 2hv′′
j N(v′′j) to

costTk
′(U) (the tree distance between any leaf in Sj and its closest center in C1 is at most 4 · 2hv′′

j).
We just use v′j to represent v′′j for later part of this proof for simplicity. By our reasoning, summing
all the swaps over C∗

1 \ C1 gives

costTk
′(U)−OPTT

k (U) ≤ 4
∑

v′
j∈C∗

1 \C1

Nv′
j
2
hv′

j ,

OPTT
k (U) ≥

∑
vi∈C1\C∗

1

Nvi2
hvi .

Also, based on our discussion on Case 1, it holds that

Nv′
j
2
hv′

j −Nvi2
hvi ≤ 0.

Summing them together, we have costTk
′(U) ≤ 5OPTT

k (U).

15

Under review as a conference paper at ICLR 2023

C.2 PROOF OF LEMMA 3.6

Proof. Since the subtrees in C1 are disjoint, it suffices to consider one subtree with root v. With a
little abuse of notation, let costT1

′(v, U) denote the optimal k-median cost within the point set T (v)
with one center in 2-HST:

costT1
′(v, U) = min

x∈T (v)

∑
y∈T (v)

ρT (x, y), (7)

which is the optimal cost within the subtree. Suppose v has more than one children u,w, ..., otherwise
the optimal center is clear. Suppose the optimal solution of costT1

′(v, U) chooses a leaf node in
T (u), and our HST initialization algorithm picks a leaf of T (w). If u = w, then HST chooses the
optimal one where the argument holds trivially. Thus, we consider u ̸= w. We have the following
two observations:

• Since one needs to pick a leaf of T (u) to minimize costT1
′(v, U), we have costT1

′(v, U) ≥∑
x∈ch(v),x ̸=u Nx · 2hx where ch(u) denotes the children nodes of u.

• By our greedy strategy, costT1 (v, U) ≤
∑

x∈ch(u) Nx · 2hx ≤ costT1
′(v, U) +Nu · 2hu .

Since hu = hw, we have
2hu · (Nu −Nw) ≤ 0,

since our algorithm picks subtree roots with highest scores. Then we have costT1 (v, U) ≤
costT1

′(v, U) + Nw · 2hw ≤ 2costT1
′(v, U). Since the subtrees in C1 are disjoint, the union of

centers for OPTT
1 (v, U), v ∈ C1 forms the optimal centers with size k. Note that, for any data point

p ∈ U \ C1, the tree distance ρT (p, f) for ∀f that is a leaf node of T (v), v ∈ C1 is the same. That
is, the choice of leaf in T (v) as the center does not affect the k-median cost under 2-HST metric.
Therefore, union bound over k subtree costs completes the proof.

C.3 PROOF OF PROPOSITION 3.2

Proof. It is known that the 2-HST can be constructed in O(dn log n) (Bartal, 1996). The subtree
search in Algorithm 2 involves at most sorting all the nodes in the HST based on the score, which
takes O(nlogn). We use a priority queue to store the nodes in C1. When we insert a new node v into
queue, its parent node (if existing in the queue) would be removed from the queue. The number of
nodes is O(n) and each operation (insertion, deletion) in a priority queue based on score has O(log n)
complexity. Lastly, the total time to obtain C0 is O(n), as the FIND-LEAF only requires a top down
scan in k disjoint subtrees of T . Summing parts together proves the claim.

C.4 PROOF OF THEOREM 4.2

Similarly, we prove the error in general metric by first analyzing the error in 2-HST metric. Then the
result follows from Lemma 3.4. Let costTk (D), costTk

′(D) and OPTT
k (D) be defined analogously

to (3), (4) and (5), where “y ∈ U” in the summation is changed into “y ∈ D” since D is the demand
set. That is,

costTk (D) =
∑
y∈D

min
x∈C0

ρT (x, y), (8)

costTk
′(D,C1) = min

|F∩T (v)|=1,∀v∈C1

∑
y∈D

min
x∈F

ρT (x, y), (9)

OPTT
k (D) = min

F⊂D,|F |=k

∑
y∈D

min
x∈F

ρT (x, y) ≡ min
C′

1

costTk
′(D,C ′

1). (10)

We have the following.
Lemma C.2. costTk (D) ≤ 10OPTT

k (D) + 10ckϵ−1△ log n with probability 1− 4k/nc.

Proof. The result follows by combining the following Lemma C.4, Lemma C.5, and applying union
bound.

16

Under review as a conference paper at ICLR 2023

Lemma C.3. For any node v in T , with probability 1− 1/nc, |N̂v · 2hv −Nv · 2hv | ≤ cϵ−1△ log n.

Proof. Since N̂v = Nv + Lap(2(L−hv)/2/ϵ), we have

Pr[|N̂v −Nv| ≥ x/ϵ] = exp(−x/2(L−hv)).

As L = log△, we have

Pr[|N̂v −Nv| ≥ x△/(2hvϵ)] ≤ exp(−x).

Hence, for some constant c > 0,

Pr[|N̂v · 2hv −Nv · 2hv | ≤ cϵ−1△ log n] ≥ 1− exp(−c log n) = 1− 1/nc.

Lemma C.4 (DP Subtree Search). With probability 1 − 2k/nc, costTk
′(D) ≤ 5OPTT

k (D) +
4ckϵ−1△ log n.

Proof. The proof is similar to that of Lemma 3.5. Consider the intermediate output of Algorithm 2,
C1 = {v1, v2, ..., vk}, which is the set of roots of the minimal disjoint subtrees each containing
exactly one output center C0. Suppose one of the optimal “root set” that minimizes (4) is C∗

1 =
{v′1, v′2, ..., v′k}. Assume C1 ̸= C∗

1 . By the same argument as the proof of Lemma 3.5, we consider
for some i, j such that vi ̸= v′j , where vi is not a descendent of v′j and v′j is either a descendent
of vi. By the construction of C1, we know that score(v′j) ≤ min{score(vi), i = 1, ..., k} when
v′j ∈ C∗

1 \ C1. Consider the swap between C1 and C∗
1 . By the definition of tree distance, we have

OPTT
k (U) ≥

∑
vi∈C1\C∗

1
Nvi2

hvi , since {T (vi), vi ∈ C1 \ C∗
1} does not contain any center of the

optimal solution determined by C∗
1 (which is also the optimal “root set” for OPTT

k). Let us consider
the optimal clustering with center set be C∗ = {c∗1, c∗2, ..., c∗k} (each center c∗j is a leaf of subtree
whose root be c′j), and S′

j be the leaves assigned to c∗j . Let Sj denote the set of leaves in S′
j whose

distance to c∗j is strictly smaller than its distance to any centers in C1. Let Pj denote the union of
paths between leaves of Sj to its closest center in C1. Let v′′j be the nodes in Pj with highest level

satisfying T (v′′j) ∩ C1 = ∅. The score of v′′j is 2
hv′′

j N(v′′j). That means the swap with a center v′j
into C1 can only reduce 4 · 2hv′′

j N(v′′j) to costTk
′(U) (the tree distance between any leaf in Sj and

its closest center in C1 is at most 4 · 2hv′′
j). We just use v′j to represent v′′j for later part of this proof

for simplicity. Summing all the swaps over C∗
1 \ C1, we obtain

costTk
′(U)−OPTT

k (U) ≤ 4
∑

v′
j∈C∗

1 \C1

Nv′
j
2
hv′

j ,

OPTT
k (U) ≥

∑
vi∈C1\C∗

1

Nvi2
hvi .

Applying union bound with Lemma C.3, with probability 1− 2/nc, we have

Nv′
j
2
hv′

j −Nvi2
hvi ≤ 2cϵ−1△ log n.

Consequently, we have with probability, 1− 2k/nc,

costTk
′(D) ≤ 5OPTT

k (D) + 4c|C1 \ C∗
1 |ϵ−1△ log n

≤ 5OPTT
k (D) + 4ckϵ−1△ log n.

Lemma C.5 (DP Leaf Search). With probability 1− 2k/nc, Algorithm 4 produces initial centers
with costTk (D) ≤ 2costTk

′(D) + 2ckϵ−1△ log n.

17

Under review as a conference paper at ICLR 2023

Proof. The proof strategy follows Lemma 3.6. We first consider one subtree with root v. Let
costT1

′(v, U) denote the optimal k-median cost within the point set T (v) with one center in 2-HST:

costT1
′(v,D) = min

x∈T (v)

∑
y∈T (v)∩D

ρT (x, y). (11)

Suppose v has more than one children u,w, ..., and the optimal solution of costT1
′(v, U) chooses a

leaf node in T (u), and our HST initialization algorithm picks a leaf of T (w). If u = w, then HST
chooses the optimal one where the argument holds trivially. Thus, we consider u ̸= w. We have the
following two observations:

• Since one needs to pick a leaf of T (u) to minimize costT1
′(v, U), we have costT1

′(v, U) ≥∑
x∈ch(v),x ̸=u Nx · 2hx where ch(u) denotes the children nodes of u.

• By our greedy strategy, costT1 (v, U) ≤
∑

x∈ch(u) Nx · 2hx ≤ costT1
′(v, U) +Nu · 2hu .

As hu = hw, leveraging Lemma C.3, with probability 1− 2/nc,

2hu · (Nu −Nw) ≤ 2hu(N̂u − N̂w) + 2cϵ−1△ log n

≤ 2cϵ−1△ log n.

since our algorithm picks subtree roots with highest scores. Then we have costT1 (v,D) ≤
costTk

′(v,D) + Nw · 2hu + 2cϵ−1△ log n ≤ 2costTk
′(v,D) + 2cϵ−1△ log n with high probabil-

ity. Lastly, applying union bound over the disjoint k subtrees gives the desired result.

C.5 PROOF OF THEOREM 4.3

Proof. The privacy analysis is straightforward, by using the composition theorem (Theorem C.1).
Since the sensitivity of cost(·) is△, in each swap iteration the privacy budget is ϵ/2(T + 1). Also,
we spend another ϵ/2(T + 1) privacy for picking a output. Hence, the total privacy is ϵ/2 for local
search. Algorithm 4 takes ϵ/2 DP budget for initialization, so the total privacy is ϵ.

The analysis of the approximation error follows from Gupta et al. (2010), where the initial cost is
reduced by our private HST method. We need the following two lemmas.

Lemma C.6 (Gupta et al. (2010)). Assume the solution to the optimal utility is unique. For any
output o ∈ O of 2△ϵ-DP exponential mechanism on dataset D, it holds for ∀t > 0 that

Pr[q(D, o) ≤ max
o∈O

q(D, o)− (ln |O|+ t)/ϵ] ≤ e−t,

where |O| is the size of the output set.

Lemma C.7 (Arya et al. (2004)). For any set F ⊆ D with |F | = k, there exists some swap (x, y)
such that the local search method admits

costk(F,D)− costk(F − {x}+ {y}, D) ≥ costk(F,D)− 5OPT (D)

k
.

From Lemma C.7, we know that when costk(Fi, D) > 6OPT (D), there exists a swap (x, y) s.t.

costk(Fi − {x}+ {y}, D) ≤ (1− 1

6k
)costk(Fi, D).

At each iteration, there are at most n2 possible outputs (i.e., possible swaps), i.e., |O| = n2. Using
Lemma C.6 with t = 2 log n, for ∀i,

Pr[costk(Fi+1, D) ≥ costk(F
∗
i+1, D) + 4

log n

ϵ′
] ≥ 1− 1/n2,

where costk(F
∗
i+1, D) is the minimum cost among iteration 1, 2, ..., t + 1. Hence, we have that

as long as cost(Fi, D) > 6OPT (D) + 24k logn
ϵ′ , the improvement in cost is at least by a factor of

18

Under review as a conference paper at ICLR 2023

(1− 1
6k). By Theorem 4.2, we have costk(F1, D) ≤ C(log n)(6OPT (D) + 6k△ log n/ϵ) for some

constant C > 0. Let T = 6Ck log log n. We have that

E[cost(Fi, D)] ≤ (6OPT (D) + 6kϵ−1△ log n)C(log n)(1− 1/6k)6Ck log logn

≤ 6OPT (D) + 6kϵ−1△ log n ≤ 6OPT (D) +
24k log n

ϵ′
.

Therefore, with probability at least (1−T/n2), there exists an i ≤ T s.t. cost(Fi, D) ≤ 6OPT (D)+
24k logn

ϵ′ . Then by using the Lemma C.7, one will pick an Fj with additional additive error 4 lnn/ϵ′

to the min{cost(Fj , D), j = 1, 2, ..., T} with probability 1− 1/n2. Consequently, we know that the
expected additive error is

24k△ log n/ϵ′ + 4 log n/ϵ′ = O(ϵ−1k2△(log log n) log n),

with probability 1− 1/poly(n).

D EXTEND HST INITIALIZATION TO k-MEANS

Naturally, our HST method can also be applied to k-means clustering problem. In this section, we
extend the HST to k-means and provide some brief analysis similar to k-median. We present the
analysis in the non-private case, which can then be easily adapted to the private case. Define the
following costs for k-means.

costTkm(U) =
∑
y∈U

min
x∈C0

ρT (x, y)2, (12)

costTkm
′(U,C1) = min

|F∩T (v)|=1,∀v∈C1

∑
y∈U

min
x∈F

ρT (x, y)2, (13)

OPTT
km(U) = min

F⊂U,|F |=k

∑
y∈U

min
x∈F

ρT (x, y)2 ≡ min
C′

1

costTkm
′(U,C ′

1). (14)

For simplicity, we will use costTkm
′(U) to denote costTkm

′(U,C1) if everything is clear from context.
Here, OPTT

km (14) is the cost of the global optimal solution with 2-HST metric.

Lemma D.1 (Subtree search). costTkm
′(U) ≤ 17OPTT

km(U).

Proof. The analysis is similar with the proof of Lemma 3.5. Thus, we mainly highlight the difference.
Let us just use some notations the same as in Lemma 3.5 here. Let us consider the clustering with
center set be C∗ = {c∗1, c∗2, ..., c∗k} (each center c∗j is a leaf of subtree whose root be c′j), and S′

j be
the leaves assigned to c∗j in optimal k-means clustering in tree metric. Let Sj denote the set of leaves
in S′

j whose distance to c∗j is strictly smaller than its distance to any centers in C1. Let Pj denote the
union of paths between leaves of Sj to its closest center in C1. Let v′′j be the nodes in Pj with highest

level satisfying T (v′′j) ∩ C1 = ∅. The score of v′′j is 2
hv′′

j N(v′′j). That means the swap with a center

v′j into C1 can only reduce (4 · 2hv′′
j)2N(v′′j) to costTkm

′(U). We just use v′j to represent v′′j for later
part of this proof for simplicity. By our reasoning, summing all the swaps over C∗

1 \ C1 gives

costTkm
′(U)−OPTT

km(U) ≤
∑

v′
j∈C∗

1 \C1

Nv′
j
· (4 · 2hv′

j)2,

OPTT
km(U) ≥

∑
vi∈C1\C∗

1

Nvi(2
hvi)2.

Also, based on our discussion on Case 1, it holds that

Nv′
j
2
hv′

j −Nvi2
hvi ≤ 0.

Summing them together, we have costTkm
′(U) ≤ 17OPTT

km(U).

19

Under review as a conference paper at ICLR 2023

Next, we show that the greedy leaf search strategy (Algorithm 3) only leads to an extra multiplicative
error of 2.
Lemma D.2 (Leaf search). costTkm(U) ≤ 2costTkm

′(U).

Proof. Since the subtrees in C1 are disjoint, it suffices to consider one subtree with root v. With a
little abuse of notation, let costT1

′(v, U) denote the optimal k-means cost within the point set T (v)
with one center in 2-HST:

costT1
′(v, U) = min

x∈T (v)

∑
y∈T (v)

ρT (x, y)2, (15)

which is the optimal cost within the subtree. Suppose v has more than one children u,w, ..., otherwise
the optimal center is clear. Suppose the optimal solution of costT1

′(v, U) chooses a leaf node in
T (u), and our HST initialization algorithm picks a leaf of T (w). If u = w, then HST chooses the
optimal one where the argument holds trivially. Thus, we consider u ̸= w. We have the following
two observations:

• Since one needs to pick a leaf of T (u) to minimize costT1
′(v, U), we have costT1

′(v, U) ≥∑
x∈ch(v),x ̸=u Nx · (2hx)2 where ch(u) denotes the children nodes of u.

• By our greedy strategy, costT1 (v, U) ≤
∑

x∈ch(u) Nx ·(2hx)2 ≤ costT1
′(v, U)+Nu ·(2hu)2.

Since hu = hw, we have
2hu · (Nu −Nw) ≤ 0,

since our algorithm picks subtree roots with highest scores. Then we have costT1 (v, U) ≤
costT1

′(v, U) + Nw · (2hw)2 ≤ 2costT1
′(v, U). Since the subtrees in C1 are disjoint, the union

of centers for OPTT
1 (v, U), v ∈ C1 forms the optimal centers with size k. Note that, for any data

point p ∈ U \ C1, the tree distance ρT (p, f) for ∀f that is a leaf node of T (v), v ∈ C1 is the same.
That is, the choice of leaf in T (v) as the center does not affect the k-median cost under 2-HST metric.
Therefore, union bound over k subtree costs completes the proof.

We are ready to state the error bound for our proposed HST initialization (Algorithm 2), which is a
natural combination of Lemma D.1 and Lemma D.2.
Theorem D.3 (HST initialization). costTkm(U) ≤ 34OPTT

km(U).

We have the following result based on Lemma 3.4.
Theorem D.4. In a general metric space,

E[costkm(U)] = O(min{log n, log△})2OPTkm(U).

20

	Introduction
	Background and Setup
	k-Median Clustering
	k-median++ Initialization

	Initialization via Hierarchically Well-Separated Tree (HST)
	Hierarchically Well-Separated Tree (HST)
	HST Initialization Algorithm
	Approximation Error of HST Initialization

	HST Initialization with Differential Privacy
	Experiments
	Datasets and Algorithms
	Results

	Conclusion
	Postponed Algorithm
	k-median++
	HST Construction

	More Experiments
	Examples of Graph Data
	Running Time Comparison with k-median++
	Improved Iteration Cost of DP-HST

	Proofs
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Proposition 3.2
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Extend HST Initialization to k-Means

