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Abstract

Comprehensive evaluation of large language001
models (LLMs) typically requires large-scale002
benchmarks, which is costly in terms of both003
data annotation and computational resource004
needed for evaluation. To mitigate these chal-005
lenges, We propose an efficient evaluation006
framework that selects a question subset based007
on pre-tested results, thereby reducing the costs.008
We formulate the subset selection problem as009
an optimization task, solved using optimal ran-010
dom sampling and simulated annealing algo-011
rithms. We compare our approach with prior012
clustering-based methods and assess their re-013
liability in terms of score accuracy. Addition-014
ally, we perform semantic analysis and evaluate015
whether the selected subsets preserve the se-016
mantic information of the original benchmark017
using Wasserstein distance. Experimental re-018
sults show that our method outperforms previ-019
ous approaches in terms of reliability, as mea-020
sured by L2 norm. Our study provides an op-021
timized perspective for balancing evaluation022
efficiency and reliability in LLM assessments,023
while revealing the relationship between opti-024
mization methods and semantic retention.025

1 Introduction026

Large language models (LLMs) demonstrate strong027

and generalizable capabilities. To evaluate these028

models comprehensively and accurately, large-029

scale benchmarks such as MMLU (Hendrycks030

et al., 2020), GSM8K (Cobbe et al., 2021), and031

HellaSwag (Zellers et al., 2019) are often required.032

However, these evaluations are expensive, consum-033

ing significant time, computational resources, or034

API tokens (Liang et al., 2022).035

To alleviate these issues, efficient evaluation has036

recently gained growing attention. Vivek et al.037

(2023) have proposed clustering based on semantic038

information, using a subset of questions to predict039

the answers for the remaining ones. Polo et al.040
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Figure 1: Comparison of estimated accuracy and true
accuracy on MMLU for an evaluated LLM, using three
methods to select a subset of only 19% of the original
evaluation dataset: random sampling (sample), PCA-
based clustering (pca), and simulated annealing (anneal).
A more detailed quantitative comparison is provided in
Section 4.

(2024) have noted that evaluation benchmarks usu- 041

ally have a large number of pre-tested model results, 042

which can be explored to construct more reliable 043

and efficient evaluation datasets. 044

Nonetheless, these methods rely on heuristic 045

selection based on clustering. We argue that in- 046

stead of extracting relations between questions and 047

performing selection through clustering, directly 048

formulating an optimizable objective function can 049

more clearly improve evaluation reliability, achiev- 050

ing better results. An empirical comparison is 051

shown in Figure 1. 052

We hence propose an efficient evaluation where a 053

combinatorial optimization perspective is explored. 054

Specifically, the subset selection problem is refor- 055

mulated as a combinatorial optimization task. We 056

improve previous clustering methods and compare 057

them with the proposed new approach. We assess 058

the reliability of these methods in addressing model 059

evaluation efficiency using the L2 norm, indicating 060
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how well the selected subset predicts the full set’s061

results. Additionally, we conduct semantic analy-062

sis to visualize the semantic distribution of these063

subsets and compute the Wasserstein distance to064

evaluate how well the subset selection strategies065

preserve the semantic information of the original066

evaluation dataset.067

Experimental results demonstrate that our068

method outperforms previous methods in terms069

of reliability for specific compression rates, provid-070

ing a new perspective for balancing efficiency and071

reliability in LLM evaluations, while also revealing072

the relationship between optimization methods and073

semantic preservation.074

2 Problem Statement075

Given a benchmark B with a question set S =076

{q1, q2, . . . , qn}, and a set of m models L =077

{l1, l2, . . . , lm}, each model lj answers the i-th078

question qi in S, and is scored by an evaluator079

in B, yielding a score Yi,j ∈ [0, 1]. For questions080

with clear correct answers (e.g., multiple-choice),081

the score is binary, Yi,j ∈ {0, 1}.082

The accuracy of model lj on S is the mean score:083

A(S, lj) =
1

n

n∑
i=1

Yi,j .084

And the overall evaluation of L on S is represented
as a vector:

R(S,L) = (A(S, l1), A(S, l2), . . . , A(S, lm)).

Next, we aim to compress the question set.085

Given a compression rate c, we select a subset086

S′ ⊂ S such that n′ = ⌊cn⌋. Evaluating models087

on S′, we get new scores Y ′
i,j ∈ [0, 1], and the088

accuracy of model lj on S′ is:089

A(S′, lj) =
1

n′

n′∑
i=1

Y ′
i,j .090

The overall evaluation of L on S′ is:

R(S′,L) = (A(S′, l1), A(S
′, l2), . . . , A(S′, lm)).

To measure the reliability of S′ in approximating091

S, we define a loss function Q(S,S′,L), which092

measures the difference between the evaluation re-093

sults of S and S′, using L2 norm: 094

Q(S,S′,L) = ∥R(S,L)−R(S′,L)∥2 095

=

√√√√ m∑
j=1

(A(S, lj)−A(S′, lj))2 096

=

√√√√√ m∑
j=1

(∑n
i=1 Yi,j
n

−
∑n′

i=1 Y
′
i,j

n′

)2

. 097

Our goal is to select the subset S′ using a subset 098

selection strategy such that the value of the above 099

Q function is minimized, i.e., to maximize the re- 100

liability of predicting the full evaluation scores. It 101

is important to note that during the selection of S′, 102

we do not have direct access to the LLM set L, and 103

therefore cannot directly optimize the Q function. 104

This leads to the various strategies discussed in the 105

following sections. 106

3 Methodology 107

Fortunately, benchmarks that require efficient eval- 108

uation typically have a large number of pre-tested 109

model results. Let the benchmark B have a set 110

of pre-tested models L̂, which contains m̂ models. 111

The score Ŷi,j ∈ [0, 1] of model l̂j ∈ L̂ on question 112

qi ∈ S is known. We can use these existing results 113

to reasonably select the subset S′, which will be 114

used to evaluate the set of models L, thus con- 115

structing an efficient evaluation framework based 116

on pre-tested model results, as shown in Figure 2. 117

So how do we set up a reasonable subset selection 118

strategy? 119

Saranathan et al. (2024) has shown that random 120

sampling is already a good baseline method. In 121

clustering approaches, we treat the scores of ques- 122

tion qi on all models l̂j as the embedding of that 123

question, i.e., (Ŷi,1, Ŷi,2, . . . , Ŷi,m). Then, we ap- 124

ply K-Means (Hastie, 2009) clustering to form n′ 125

clusters and compute the size and center of each 126

cluster. The visualized clustering results can be 127

found in Section B of Appendix. We take the cen- 128

ter of each cluster as the selected subset S′, and 129

assign a weight to it proportional to the cluster size. 130

Further, we observe that we can directly estimate
the Q function using pre-tested results, and opti-
mize this estimate. For any selected subset S′, the
scores Ŷ ′

i,j ∈ [0, 1] of the pre-tested models on S′

are also known. Therefore, we obtain an estimate
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Figure 2: Efficient evaluation framework based on pre-
tested results: Select a question subset based on existing
results and use this subset to evaluate new models.

of the Q function:

Q̂(S,S′,L) = Q(S,S′, L̂)

=

√√√√√ m̂∑
j=1

(∑n
i=1 Ŷi,j
n

−
∑n′

i=1 Ŷ
′
i,j

n′

)2

This is a typical combinatorial optimization prob-
lem with the constraint that the subset size is fixed.
We can optimize the objective function using opti-
mal random sampling or simulated annealing (Kirk-
patrick et al., 1983). The optimal random sampling
method performs multiple rounds of random sam-
pling and selects the solution that minimizes the
objective function as the final S′. On the other
hand, the simulated annealing method starts with a
random initial solution and perturbs it in each itera-
tion. It decides whether to accept the new solution
based on the quality of the new solution and the
current temperature. The higher the temperature,
the greater the probability of accepting inferior so-
lutions. Specifically, the probability is given by:

p = e−
∆Q
T

where T is the current temperature, which de-131

creases exponentially after each round, i.e., Tnew =132

αTold, α < 1. And ∆Q represents the change in133

the Q function between the new and old solutions,134

i.e., ∆Q = Q(S,S′
new, L̂) − Q(S,S′

old, L̂). If135

∆Q < 0, the new solution is always accepted. The136

iterative details of the subset selection using the137

1. Generate 
a new subset.

2. Compare them
and accept the new subset
with probability p.

3. Set a new temperature.
Less likely to accept inferior solution.

Figure 3: Simulated annealing process: In each iteration,
a new solution is generated by replacing one element
of the subset. The acceptance of the new solution is
determined by a combination of solution quality and
temperature. The process continues with iterative cool-
ing until the target temperature is reached.

Dataset #Questions Evaluation Scope Answer Format

MMLU 14,042 Comprehensive Multiple-Choice
HellaSwag 10,042 Common Sense Multiple-Choice
GSM8K 1,319 Mathematics Deterministic

Table 1: Description of selected benchmarks.

simulated annealing method are shown in Figure 3. 138

In this iteration process, we also record the solution 139

that minimizes Q as the final S′. 140

To assess semantic preservation, we embed all 141

questions in the evaluation dataset and compute the 142

Wasserstein distance between the subset and the 143

full dataset, quantifying how well the subset retains 144

the original dataset’s semantic information. We 145

solve the Wasserstein distance using the Sinkhorn 146

algorithm (Cuturi, 2013), applying entropy regular- 147

ization for faster computation. 148

4 Experiment 149

We selected open-source evaluation benchmarks 150

with abundant pre-tested model results from the 151

Open LLM Leaderboard (Beeching et al., 2023). 152

For a given compression rate, we performed effi- 153

cient evaluations using different subset selection 154

strategies and analyzed their reliability and seman- 155

tic preservation. 156

The benchmarks we selected include MMLU 157

(Hendrycks et al., 2020), GSM8K (Cobbe et al., 158

2021), and HellaSwag (Zellers et al., 2019), each 159

differing in scale, the range of evaluation capabili- 160

ties, and the format of standard responses (Table 1), 161

demonstrating the versatility of our method across 162

different types of evaluation benchmarks.1 163

1These datasets and results are licensed for research use.
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Figure 4: Comparison of evaluation results between the full benchmark S and the selected subsets S′ across different
compression rates, using five methods: random sampling (sample), PCA-based clustering (pca), autoencoder-based
clustering (enc), optimal random sampling (bestsample), and simulated annealing (anneal).

The methods compared include random sam-164

pling, clustering-based methods using pre-tested165

model results, and combinatorial optimization166

methods. For the clustering-based method, we167

improved it by applying dimensionality reduction168

techniques. Polo et al. (2024) has shown that the169

performance of the same problem across different170

models is correlated, so the dimensions of the em-171

bedding have high information redundancy. We ap-172

plied both PCA and autoencoder methods to reduce173

its dimensionality. For the combinatorial optimiza-174

tion methods, we used optimal random sampling175

and simulated annealing, both set with a maximum176

of 100 iterations.177

For three benchmarks, we selected subsets S′178

with varying compression rates using the five meth-179

ods and evaluated the model set L. The results180

were compared with the full set S, and the L2181

norm of the difference vector was used as the error182

metric. The results are shown in Figure 4.183

The experimental results indicate that:184

1. Pure random sampling performs well on av-185

erage, but its stability is poor due to the in-186

fluence of the random seed, making further187

exploration of other methods necessary.188

2. Random sampling and combinatorial opti-189

mization methods result in the smallest error.190

3. Different dimensionality reduction techniques191

affect clustering results, which may be due192

to the intrinsic properties of the embedding.193

For example, for the GSM8K dataset, the pure194

linear mapping of PCA does not preserve the195

structure of the embedding well, while the au-196

toencoder, which adds non-linear layers, can197

do so effectively.198

To evaluate the semantic preservation, we con-199

ducted a semantic analysis on the MMLU evalua-200

0.05 0.12 0.19 0.26 0.33 0.40

Sample 1.2149 1.1069 1.0050 0.9127 0.8209 0.7341
PCA 1.2148 1.1163 1.0327 0.9491 0.8675 0.7901

Anneal 1.2105 1.1113 1.0090 0.9151 0.8244 0.7362

Table 2: Wasserstein distances between subsets selected
by different methods and the original set at different
compression rates. The top row lists the corresponding
compression rates c, with bold indicating the closest
and italics indicating the second closest.

tion benchmark. The methods compared include 201

random sampling, clustering with PCA reduction, 202

and combinatorial optimization with simulated an- 203

nealing. We used Sentence-BERT (Reimers, 2019) 204

for embedding and reduced the features to a two- 205

dimensional space to visualize the semantic distri- 206

bution, as shown in Section C of Appendix. The 207

Wasserstein distances obtained at different com- 208

pression rates are presented in Table 2. 209

The results show that the preservation of seman- 210

tic information correlates with evaluation accuracy. 211

However, the random sampling method preserves 212

semantic information better than the simulated an- 213

nealing method, reflecting some of the costs asso- 214

ciated with the single optimization goal. 215

5 Conclusion 216

In this paper, we have presented a combinatorial op- 217

timization approach for efficiently evaluating LLM 218

capabilities. We introduce a novel evaluation frame- 219

work and provide a comprehensive comparison, an- 220

alyzing semantic retention to ensure the subset’s 221

alignment with the original benchmark. 222

Our work offers a new perspective on optimizing 223

the balance between evaluation efficiency and reli- 224

ability, highlighting key insights into the relation- 225

ship between optimization techniques and semantic 226

preservation. 227
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Limitations228

Through experiments, we have shown the correla-229

tion between the semantic retention of subsets and230

evaluation accuracy. However, this correlation is231

not absolute. For instance, the simulated annealing232

method slightly underperforms random sampling233

in terms of semantic retention, which reflects some234

limitations of our approach. For example, in tasks235

requiring high semantic fidelity, our approach may236

not be sufficiently applicable.237

Future work may involve further refinement of238

the optimized function, including exploring differ-239

ent evaluation criteria and subset requirements, to240

investigate the generalizability of the combinatorial241

optimization approach.242

Optimizing methods combined with semantic243

analysis may also be an interesting direction, ex-244

ploring whether it is possible to optimize a given245

objective function while retaining semantic infor-246

mation, potentially further improving the robust-247

ness of subset for evaluating new models.248
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A Autoencoder Settings299

In the clustering method, we use a simple autoen-300

coder to reduce 200-dimensional real-valued vec-301

tors to a 20-dimensional space. The encoder part302

consists of three fully connected layers followed by303

a ReLU activation function, while the decoder is304

symmetric to the encoder. We use the embeddings305

from the pre-tested results as training data to en-306

sure that the autoencoder effectively preserves the307

structure of the data after dimensionality reduction.308

B Cluster Results309

We present visualizations of clustering results using310

PCA, derived from different scenarios in MMLU,311

with compress rate 0.05, to help better understand312

how clustering based on pre-tested model results313

can be applied to efficient LLM evaluation, as Fig-314

ure 5, 6, 7.315

C Semantic Distribution316

We present the visualized results of question sub-317

sets obtained by different methods, after sentence-318

BERT embedding and PCA dimensionality reduc-319

tion, to show their retention of the original eval-320

uation dataset’s semantics, as Figure 8, 9. These321

results may be helpful for future work on efficient322

LLM evaluation incorporating semantics.323
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Figure 5: Visualization of clustering results for the sce-
nario “miscellaneous” of MMLU, yielding a subset of
size 39.
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Figure 6: Visualization of clustering results for the sce-
nario “moral_scenarios” of MMLU, yielding a subset
of size 44.
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Figure 7: Visualization of clustering results for the sce-
nario “professional_law” of MMLU, yielding a subset
of size 76.
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Figure 8: Semantic distribution visualization of MMLU at a 0.05 compression rate for different methods.
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Figure 9: Semantic distribution visualization of MMLU at a 0.12 compression rate for different methods.
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