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Abstract

As deep learning continues to evolve, the need
for data efficiency becomes increasingly impor-
tant. Considering labeling large datasets is both
time-consuming and expensive, active learning
(AL) provides a promising solution to this chal-
lenge by iteratively selecting the most informa-
tive subsets of examples to train deep neural net-
works, thereby reducing the labeling cost. How-
ever, the effectiveness of different AL algorithms
can vary significantly across data scenarios, and
determining which AL algorithm best fits a given
task remains a challenging problem. This work
presents the first differentiable AL strategy search
method, named AutoAL, which is designed on
top of existing AL sampling strategies. AutoAL
consists of two neural nets, named SearchNet
and FitNet, which are optimized concurrently un-
der a differentiable bi-level optimization frame-
work. For any given task, SearchNet and Fit-
Net are iteratively co-optimized using the la-
beled data, learning how well a set of candi-
date AL algorithms perform on that task. With
the optimal AL strategies identified, SearchNet
selects a small subset from the unlabeled pool
for querying their annotations, enabling efficient
training of the task model. Experimental results
demonstrate that AutoAL consistently achieves
superior accuracy compared to all candidate AL
algorithms and other selective AL approaches,
showcasing its potential for adapting and inte-
grating multiple existing AL methods across di-
verse tasks and domains. Code is available at:
https://github.com/haizailache999/AutoAL.
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1. Introduction
With the development of deep learning (DL) techniques,
large volumes of high-quality labeled data have become
increasingly crucial as the model training processes are
usually data hungry (Ren et al., 2021; Zhan et al., 2022).
Active learning (AL) addresses this challenge by iteratively
selecting the most informative unlabeled samples for anno-
tation, thereby boosting model efficiency (Xie et al., 2021;
Wang et al., 2023). Deep active learning strategies are
typically divided into two categories: uncertainty-based
and representativeness/diversity-based approaches (Sener
& Savarese, 2017; Zhu & Bento, 2017; Ash et al., 2019).
Uncertainty-based methods focus on querying samples the
model is most uncertain about, while diversity-based strate-
gies aim to select a diverse subset of samples that effectively
represent the entire dataset (Citovsky et al., 2021). Both
strategies have limitations, especially in batch selection and
varying dataset complexities, leading to the inconsistency
of the strategy efficiency (Ren et al., 2021). Hybrid strate-
gies, which balance uncertainty and diversity (Zhan et al.,
2021a;b), offer partial solutions. However, these strategies
rely on strategy choices and subjective experiment settings,
which can be ineffective in real-life applications.

Previous works (Baram et al., 2004; Hsu & Lin, 2015; Pang
et al., 2018) have explored selecting among different AL
strategies to achieve optimal selections without human ef-
fort. SelectAL (Hacohen & Weinshall, 2024) introduces
a method for dynamically choosing AL strategies for dif-
ferent deep learning tasks and budgets by estimating the
relative budget size of the problem. It involves evaluating
the impact of removing small subsets of data points from the
unlabeled pool to predict how different AL strategies would
perform. However, this strategy depends on approximating
the reduction in generalization error on small subsets, which
would not fully capture the complexities of real-world tasks.
Zhang et al. (2024) proposes to select the optimal batch of
AL strategy from hundreds of candidates, aiming to maxi-
mize future cumulative rewards based on noisy past reward
observations of each candidate algorithm. However, both
the computational cost and the lack of differentiability make
the optimization of these works inefficient.

To address these challenges, we propose AutoAL, an au-
tomated active learning framework that leverages differen-
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tiable query strategy search. AutoAL offers two key advan-
tages: 1) it enables automatic and efficient updates during
optimization, allowing the model to adapt seamlessly; 2)
it is inherently data-driven, leveraging the underlying data
distribution to guide the AL strategy selection. However,
integrating multiple AL strategies into the candidate pool
makes achieving differentiability difficult. To overcome
this issue, AutoAL leverages a bi-level optimization frame-
work that smoothly integrates and optimizes different AL
strategies. We design two neural networks: SearchNet and
FitNet. FitNet is trained on the labeled dataset to adap-
tively yield the informativeness of each unlabeled sample.
Guided by FitNet’s task loss, SearchNet is efficiently op-
timized to accurately select the best AL strategy. Instead
of searching over a discrete set of candidate AL strategies,
we relax the search space to a continuous domain, allowing
SearchNet to be optimized via gradient descent based on
FitNet’s output. The gradient-based optimization, which
is more data-efficient than traditional black-box searches,
enables AutoAL to achieve state-of-the-art performance in
strategy selection with significantly reduced computational
costs. Our key contributions are as follows:

• We introduce a novel AutoAL framework for differen-
tiable AL query strategy search. To the best of our knowl-
edge, AutoAL is the first automatic query strategy search
algorithm that can be trained in a differentiable way,
achieving highly efficient updates of query strategy in
a data-driven manner.

• AutoAL is built upon existing AL strategies (i.e.,
uncertainty-based and diversity-based). By incorporat-
ing most AL strategies into its search space, AutoAL
leverages the advantages of these strategies by finding the
most effective ones for specific AL settings, objectives, or
data distributions.

• We evaluate AutoAL across various AL tasks. Given the
importance of AL in domain-specific tasks, particularly
where data quality and imbalance are concerns, we con-
ducte extensive experiments on both nature image datasets
and medical datasets. The results demonstrate that Au-
toAL consistently outperforms all candidate strategies and
other state-of-the-art AL methods across these datasets.

2. Related Work
Active Learning. Active Learning has been studied for
decades to improve the model performance using small
sets of labeled data, significantly reducing the annotation
cost (Cohn et al., 1996; Settles, 2009; Zhan et al., 2021b).
Most AL research focuses on pool-based AL, which identi-
fies and selects the most informative samples from a large
unlabeled pool iteratively. Pool-based AL sampling strate-
gies are generally categorized into two primary branches:

diversity-based and uncertainty-based. The diversity-based
methods select the batch of samples that can best represent
the entire dataset distribution. CoreSet (Sener & Savarese,
2017) selects a batch of representative points from a core
set, which is a subsample of the dataset that effectively
serves as a proxy for the entire set. In contrast, uncertainty-
based methods focus on selecting the samples with high
uncertainty, which is due to the data generation or the model-
ing/learning process. Bayesian Active Learning by Disagree-
ments (BALD) (Gal et al., 2017) chooses data points that are
expected to maximize the mutual information between pre-
dictions and model posterior. Meta-Query Net (Park et al.,
2022) trains an MLP that receives one open-set score and
one AL score as input and outputs a balanced meta-score for
sample selection in the open-set dilemma. Yoo & Kweon
(2019) incorporates a loss prediction strategy by appending
a compact parametric module designed to forecast the loss
of unlabeled inputs relative to the target model. This is
achieved by minimizing the discrepancy between the pre-
dicted loss and the actual target loss. It requires subjective
judgment and strategic selection of active learning methods
to be effective on specific datasets in real-world settings.

Adaptive Sample Selection in AL. Neither diversity-
based nor uncertainty-based methods are perfect in all data
scenarios. Diversity-based methods tend to perform better
when the dataset contains rich category content and large
batch size, while uncertainty-aware methods typically per-
form better in opposite settings (Zhan et al., 2021b; Citovsky
et al., 2021). Several past works have explored adaptive
selection in active learning to solve this problem. A com-
mon approach is to choose the best AL strategy from a set
of candidate methods and use it to query unlabeled data,
such as (Hacohen & Weinshall, 2024) and (Zhang et al.,
2024) introduced in Section 1. Active Learning By Learn-
ing (ALBL) (Hsu & Lin, 2015) adaptively selects from a
set of existing algorithms based on their estimated contribu-
tion to learning performance. It frames each candidate as a
bandit machine, converting the problem into a multi-armed
bandit scenario. However, none of these methods leverage
the differentiable framework for automatic AL selection.
Compared to the methods mentioned above, AutoAL first
relaxes the search space to be continuous, thus can opti-
mize automatically via gradient descent. This framework
enables AutoAL to seamlessly integrate multiple existing
AL strategies and rapidly adapt to select the optimal strat-
egy based on the labeled pool. The simple gradient-based
optimization is much more data-efficient than traditional
black-box searches. Therefore, AutoAL can significantly
reduce computational costs compared to these methods.

Bilevel Optimization. Bilevel optimization is a hierarchi-
cal mathematical framework where the feasible region of
one optimization task is constrained by the solution set of
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Figure 1. Overall framework of differentiable query strategy search for automated active learning (AutoAL). AutoAL leverages labeled
pool to train the FitNet and SearchNet in a bi-level optimization mode. Data samples with the largest search score are then selected from
the unlabeled pool.

another optimization task (Liu et al., 2021). It has gained sig-
nificant attention due to its nested problem structure, which
allows the two tasks to optimize jointly. Bilevel optimization
adapts to many DL applications (Chen et al., 2022), such as
hyperparameter optimization (Chen et al., 2019; MacKay
et al., 2019), meta-knowledge extraction (Finn et al., 2017),
neural architecture search (Liu et al., 2018; Hu et al., 2020),
and active learning (Sener & Savarese, 2017). For instance,
Sener & Savarese (2017) formulates AL as a bi-level coreset
selection problem and designs a 2-approximation method to
select a subset of data that represents the entire dataset. In
this work, we novelly formulate the Al query strategy search
as a bi-level optimization problem, i.e., iteratively updating
FitNet and using its task loss to guide the optimization of
SearchNet. We further reformulate it as a differentiable
learning paradigm to enable a more efficient selection of
examples across various objectives and data distributions.

3. Methodology
3.1. Problem Setting

Pool-based AL focuses on selecting the most informative
data iteratively from a large pool of unlabeled independent
and identically distributed (i.i.d.) data samples until a fixed
budget is exhausted or the expected model performance has
been reached. Specifically, in AL processes, assuming that
we have an initial seed labeled set L = {(xj , yj)}Mj=1 and a
large unlabeled data pool U = {xi, }Ni=1, where M ≪ N ,
yi ∈ {0, 1} is the class label of xi for binary classification
and yi ∈ {1, ..., p} for multi-class classification. In each

iteration, we select a batch of the most informative data
Q∗ = argmaxbx∈U α(x,Ω) with batch size b from U based
on the basic learned model Ω and the acquisition function
α(x,Ω), and query their labels from oracle/annotator. With
these samples, the expected loss function f of the basic
learned model can be minimized. L and U are then updated.

The performance of existing AL methods relies on the
choice of query strategies, which should be carefully
adapted to different tasks or applications. To achieve a ro-
bust and adaptive AL performance, this work novelly creates
an automated AL strategy selection framework. AutoAL in-
tegrates two neural nets, FitNet ΩF and SearchNet ΩS upon
each basic learned model Ω to select the best AL strategy be-
fore selecting Q. To facilitate automatic selection, AutoAL
incorporates them into a bi-level optimization framework
and relaxes the search space to enable differentiable up-
dates. We discuss more details of AutoAL framework in the
following sections.

3.2. Automated Active Learning

We propose Automated Active Learning (AutoAL), which
aims to adaptively deliver the optimal query strategy for
each sample in a given unlabeled data pool. Specifically,
AutoAL consists of two neural networks: FitNet ΩF and
SearchNet ΩS . ΩS selects the optimal AL strategy from
a set A, which contains K candidate AL sampling strate-
gies {Aκ}κ∈[K] (e.g., BALD, Maximum Entropy, etc). ΩF

models the data distribution within the unlabeled dataset
and guides the training of SearchNet ΩS . Since annotations
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for the unlabeled data cannot be accessed directly by the
model Ω, AutoAL requires no data from the unlabeled pool
U , using only the labeled dataset L for training.

In AutoAL, each AL iteration consists of C cycles. In each
cycle c, the labeled data L is randomly split into two equal-
sized subsets: training and validation sets. FitNet ΩF com-
putes the cross-entropy loss L (Zhang & Sabuncu, 2018)
for data. Meanwhile, SearchNet ΩS generates scores for
the samples, which are used to rank them. This raises a
key question: If only the training set is available, without
access to the unlabeled pool, can ΩS still effectively select
the optimal samples?

Our key design is intuitive: SearchNet ΩS treats the training
batch as the labeled pool and the validation batch as the un-
labeled pool. This allows ΩS to simulate the process of AL
selection, without direct access to the actual unlabeled data
pool. The output of ΩS is shown in Figure 1, a sample-wise
score that aggregates the candidate AL strategy selection.
The output of ΩS is the informative loss of each sample.
The optimization goal of ΩS is to select data with higher
losses, as they are expected to provide more informative up-
dates to the neural network. For ΩF , the training objective
is to minimize the loss of the selected samples, particularly
those prioritized by ΩS . AutoAL is formulated as a bi-level
optimization problem, as the optimization of ΩF is depen-
dent only on itself, but the optimization of ΩS depends on
the optimal ΩF .

Ω∗
S = argmax

ΩS

∑M/2

j=1
LS((xj , yj),ΩS ,Ω

∗
F ), (1)

s.t. Ω∗
F = argmin

ΩF

∑M/2

j=1
LF ((xj , yj),ΩF ).

LF and LS represent the losses of ΩF and ΩS , respectively.
The neural nets ΩF and ΩS are optimized jointly as out-
lined in Eq. 1. At the lower level of the nested optimization
framework, ΩF is optimized to approach the distribution
of the dataset. At the upper level, ΩS is optimized to out-
put the informativeness of each data, based on the optimal
distribution returned from ΩF .

3.3. Differentiable Query Strategy Optimization

Although Eq. 1 shows an effective framework for auto-
matically deriving the optimal query strategy, solving the
bi-level optimization problem is inefficient in practice. To
address this, we derive a probabilistic query strategy coupled
with a differentiable optimization framework, improving the
efficiency of the optimization process.

Probabilistic query strategy. During training, for each la-
beled data xj ,we query a score Sκ(xj) from each candidate
AL sampling strategy Ai, where Sκ(xj) ∈ 0, 1 indicates
whether the sample is selected. To model the overall score

S(xj), which is a combination of all the AL search scores
Sκ(xj), we adopt a Gaussian Mixture approach (Reynolds
et al., 2009), which has been proved efficient in AL (Zhao
et al., 2020):

p(S) =
∑k

k=1
πk N (S |µk,Σk), (2)

{π̂k, µ̂k, Σ̂k} = arg maxπk,µk,Σk

M∏
j=1

p(S(xj)), (3)

where πk is the weight of the k-th gaussian component and
N is the probability density function. Then we generate
samples according to the Gaussian Mixture model and get
the t-th maximum value, where t is the ratio of batch size b
to the total pool size M+N . Wκ,j is the probability of each
query strategy for each sample predicted from the neural
network ΩS .

Ssample ∼
∑K

k=1
π̂k N (S | µ̂k, Σ̂k), (4)

Ŝκ(xj ,ΩS) = (Sκ(xj)− ϑt(Ssample)) ∗Wκ,j . (5)

A sample with a higher score Ŝ indicates that it has been
selected by more candidate AL strategies, and therefore
should be given higher priority for labeling.

Differentiable acquisition function optimization. If we
limit the individual query score Sκ(xj) to discrete values
{0, 1}, the bi-level optimization objective of Eq. 1 becomes
non-differentiable and still difficult to optimize. To en-
able differentiable optimization, we relax the categorical
selection of strategies into a continuous space, we apply a
Sigmoid function over all possible strategies.:

S̄(xj) =
∑
κ∈K

λ

1 + exp(−Θ
(j)
S′
κ
)
Ŝκ(xj ,ΩS), (6)

where the strategy mixing weights for each sample j is pa-
rameterized by a vector Θ(j) of dimension |A|. λ is a scaling
vector. S̄(xj) is the final differentiable learning objective
function, which can be optimized with back-propagation.
Therefore, ΩF and ΩS can be efficiently optimized under
Eq. 1.

3.4. Learning and Algorithm of AutoAL

With differentiable query strategy optimization in Sec. 3.3,
we reformulate the bi-level optimization problem in Sec. 3.2
as efficient optimization objectives as follows:

LF =
1

B

(n+2)B∑
j′=1+(n+1)B

S̄detach(x
′
j)·L(x′

j , y
′
j)+λ̄Lre(t, B),

(7)
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LS = − 1

B

(n+1)B∑
j=1+nB

S̄(xj) · Ldetach(xj , yj)− λ̄Lre(t, B),

(8)
As described in section 3.2, in cycle c-2, ΩF is optimized
to get the data distribution. The final loss is calculated
according to Eq. 7. In cycle c-1, AutoAL optimizes ΩS to
get the data sample with highest loss. The loss function
from ΩF is detached to avoid updating itself, and the final
loss is calculated according to Eq. 8. Here we use negative
loss to achieve gradient ascent. For n ∈

{
0, 1, . . . ,

⌊
M
2B

⌋}
,

AutoAL additionally integrates a loss prediction module
according to (Yoo & Kweon, 2019) to help update ΩS , as

Lre(t, B) =

(
1

1 + exp (0.5 · |α− t ·B|)
− 0.5

)
. (9)

Lre represents a regularization loss that limits the number of
selected samples, as shown in Eq. 9. Here, α is the number
of selected samples, t is the ratio of the query batch size b
in each AL iteration to the total pool size M +N , and λ̄ is
a scaling vector. The final learning objective is to select the
most informative samples while effectively leveraging the
underlying data distribution.

The AutoAL algorithm is illustrated in Algorithm 1. In
each AL iteration, the labeled set is first used to train the
FitNet and SearchNet as described in section 3.2. Then the
optimal SearchNet Ω∗

S is applied to the unlabeled pool to
select a new batch of data, where Ω∗

S is used to generate
score S̄ for each sample xi, and Q∗ = argmaxbx∈U S̄(xi)
with top-b highest scoring samples are selected and labeled.
The labeled set L and the unlabeled set U are updated as
L = L+Q∗ and U = U −Q∗, respectively. The updated
labeled set is then used for task model training.

Algorithm 1 AutoAL: Automated Active Learning with
Differentiable Query Strategy Search
Input: K candidate algorithms A = {Aκ}κ∈[K], labeled pool

L = {(xj , yj)}Mj=1 and unlabled pool U = {xi}Ni=1, total
number of AL rounds R, batch size b, task model T .

Output: task model T
1: Initialize T
2: for c=1,...,R do
3: Optimize Ω∗

F , Ω∗
S according to Eq. 1;

4: Calculate S̄(xi) by Eq. 6 for all i ∈ N ;
5: Select the top b samples with the highest score S̄(xj);
6: Query label yi for all i ∈ b; Update L and U ;
7: Train task model T by using L;
8: end for
9: return T

4. Experiments
We empirically evaluate the performance of AutoAL on a
wide range of datasets with both nature and medical images.
These experiments demonstrate that AutoAL outperforms

the baselines by fully automating the training within the dif-
ferentiable bi-level optimization framework. Additionally,
we conduct ablation studies to analyze the contribution of
each module and examine the effects of the candidate AL
strategies, including different numbers of candidates.

4.1. Experiment Settings

Datasets and Baselines. We conduct AL experiments on
seven datasets: Cifar-10 and Cifar-100 (Krizhevsky et al.,
2009), SVHN (Netzer et al., 2011), TinyImageNet (Le &
Yang, 2015) in the nature image domain, and OrganCM-
NIST, PathMNIST, and TissueMNIST from MedMNIST
database (Yang et al., 2023) in the medical image do-
main. The details of datasets are presented in Appendix
Table 1. We compare our method against multiple AL
sampling strategies, including Maximum Entropy Sam-
pling (Shannon, 1948), Margin Sampling (Netzer et al.,
2011), Least Confidence (Wang & Shang, 2014), KMeans
Sampling (Ahmed et al., 2020), Bayesian Active Learn-
ing by Disagreements (BALD) (Gal et al., 2017), Variation
Ratios (VarRatio) (Freeman, 1965) and Mean Standard
Deviation (MeanSTD) (Kampffmeyer et al., 2016). We
also consider the state-of-the-art deep AL methods as base-
lines, including Batch Active learning by Diverse Gradient
Embeddings (BADGE) (Ash et al., 2019), Loss Prediction
Active Learning (LPL) (Yoo & Kweon, 2019), Variational
Adversarial Active Learning (VAAL) (Sinha et al., 2019),
Core-set Selection (Coreset) (Sener & Savarese, 2017), En-
semble Variance Ratio Learning (ENSvarR) (Beluch et al.,
2018), Deep Deterministic Uncertainty (DDU) (Mukhoti
et al., 2023). We also include ALBL (Hsu & Lin, 2015) to
compare AutoAL with existing selective AL strategies.

Implementation Details. For ΩF and ΩS , we build the
backbone using ResNet-18 (He et al., 2016). We also em-
ploy ResNet-18 as the classification model on all baselines
and AutoAL for fair comparison. Since AutoAL is built
upon existing AL strategies and focuses on selecting the op-
timal strategy, we integrate seven AL methods into AutoAL:
Maximum Entropy, Margin Sampling, Least Confidence,
KMeans, BALD, VarRatio, and MeanSTD. For the opti-
mization of ΩS and loss prediction module, we use SGD
optimizer (Ruder, 2016). For the optimization of ΩF , we
use Adam optimizer (Kingma, 2014). Both use 0.005 as
the learning rate. While training, FitNet will first update for
200 epochs using the validation queue, then ΩF , ΩS and the
loss prediction module will update iteratively with a total of
400 epochs. All experiments are repeated three times with
different randomly selected initial labeled pools, reporting
mean and standard deviation.
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Figure 2. Overall performance on seven benchmark datasets: natural image datasets (top) and medical image datasets (bottom).

4.2. Evaluation of Active Learning Performance

Fig. 2 shows the overall performance comparison of differ-
ent AL methods, where AutoAL consistently outperforms
the baselines across all datasets. Additionally, we have the
following observations:

1. Our method consistently outperforms the other ap-
proaches in terms of rounds, a crucial attribute for a
successful active learning method. This adaptability is
particularly valuable in real-world applications, where
the labeling budget may vary significantly across differ-
ent tasks. For instance, one might only have the resources
to annotate 10% of the data, rather than 20% or 40%.

2. Our method demonstrates robust performance not only
on easier datasets but also on more challenging ones,
such as Cifar-100, OrganCMNIST and TinyImageNet.
Cifar-100 and TinyImageNet has significantly more
classes than other datasets, while OrganCMNIST has
smaller data pool, with only 12, 975 images. These
challenges make active learning more difficult, yet our
method’s superior performance across these datasets
highlights its robustness and generalizability.

3. The labeled data vs. accuracy curves of our method are
relatively smooth compared to those of other methods.
The baseline methods sometimes show significant accu-
racy drops during certain active learning rounds. This
mainly dues to harmful data selection (Koh & Liang,
2017) or overfitting problem. However, by selecting the
optimal strategy thus selecting the informative data, Au-
toAL can alleviate the problem and make the curve much
more smooth than baseline strategies.

4. Our method shows smaller standard deviations, indicat-
ing that it is robust across repeated experiments. This
robustness is crucial for AL applications, especially in
a real-world setting, where the AL process is typically
conducted only once.

5. Different AL strategies produce varying results across
datasets. For instance, Margin Sampling underperforms
on the SVHN dataset, while KMeans Sampling and
VAAL yield the worst performance on the OrganCM-
NIST and Cifar-10 datasets. This variability highlights
the significance of our approach, which aims to identify
and select the optimal strategy for each dataset.
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Figure 3. Ablation study on three components of AutoAL. ‘ResNet Backbone’: without the loss prediction module, updating only
the ResNet. ‘Loss Prediction Module’: without updating the ResNet backbone, optimizing solely with the loss prediction module.
‘ResNet+Loss Prediction’: the full AutoAL pipeline.
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Figure 4. Ablation study on the size of the candidate pool in AutoAL strategy selection.

4.3. Ablation Studies

We perform the ablation study on two key components of
AutoAL: the SearchNet architecture and the AL candidate
strategies. Experiments are conducted on three datasets:
Cifar-100, SVHN, and OrganCMNIST, which are chosen
for their mix of natural and medical images, as well as the
increased difficulty they present for active learning applica-
tions.

SearchNet Architecture. Our SearchNet consists of two
main components: a ResNet-18 backbone and a loss pre-
diction module for sample loss prediction (Yoo & Kweon,
2019). In this ablation study, we disable one component
at a time and record the results. Fig. 3 illustrates the per-
formance, revealing the effectiveness of both ResNet-18
backbone and the loss prediction module. However, when
only the loss prediction module is used to optimize the net-
work, performance drops significantly. This aligns with our
intuition, as although the loss prediction module can assist

with network optimization, the main focus shifts from select-
ing the best AL strategy to merely minimizing the sample
loss. This misalignment will result in incorrect AL strategy
weight estimation (See Fig. 1).

Size of Active Learning Candidate Pool. Since AutoAL
is built on multiple AL strategies, we study how the size of
the AL candidate pool impacts performance. We start from
the Maximum Entropy as the sole candidate for the initial
baseline, then expand the candidate pool to three strategies
by adding Margin Sampling and Least Confidence. For the
pool of five candidates, we further include KMeans and
BALD. As shown in Fig. 4, for all three datasets, the single
candidate variation performs the worst but still outperforms
the Entropy Sampling baseline in Fig. 2. This is because
AutoAL does not directly query data samples with maxi-
mum entropy but queries the data with the highest score
from SearchNet, which has been optimized with the help of
the loss prediction module and FitNet. For Cifar-100 and
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Figure 5. AL strategy scores across different AL rounds on CIFAR-100 and OrganCMNIST datasets.

OrganCMNIST, AutoAL can perform well when there are
at least three candidates in the selection pool. However, for
SVHN, more AL candidates result in better performance.
This indicates that the upper bound of candidate pool size
varies across different datasets. In certain datasets, incorpo-
rating more active learning strategies yields better results,
but this is not the case for other datasets. Additionally,
pools with more candidates exhibit lower standard devi-
ations. This demonstrates AutoAL’s strong capability to
select the best AL strategy. It can consistently choose the
optimal one and exclude the less effective options.

4.4. AL Selection Strategy

Here, we examine which AL strategy is prioritized by Au-
toAL in different active learning rounds. For each AL strat-
egy candidate, we calculate the AL score of each image
according to Eq. 6. Notice that we don’t sum all the scores
according to the dimension of each active learning, but
compute the average value of all images over a round, and
normalize the results for visualization. As illustrated in
Fig. 5, in both experiments, KMeans dominate the sample
selection during the initial rounds, such as the first round,
but be de-prioritized in subsequent rounds. This indicates
that diversity-based measures, which select samples that
represent diverse regions of the data distribution, are more
critical in the early stages of active learning. In the early
rounds, when only a small percentage of the data has been
labeled, the model’s understanding of the entire data distri-
bution is limited. As a result, selecting samples that cover
a broad spectrum of the dataset becomes crucial to provide
the model with a more comprehensive view of the data.

On Cifar-100 dataset, both Least Confidence and MeanSTD,
two uncertainty-based measures, demonstrate improved per-
formance in the final rounds. AutoAL assigns them higher
priority to enhance overall performance. As the AL pro-

cess progresses and more diverse data become available,
the model attempts to develop a better understanding of the
underlying structure of the target data. Uncertainty-based
measures are more effective now because the major chal-
lenge switches to refining the decision boundaries. The
transition from diversity to uncertainty-based strategies is
consistent with the model’s evolving needs. In early rounds,
the model requires diversity to build a broad understanding
of the data, but once that foundation is established, its fo-
cus shifts toward uncertainty, which helps fine-tune model
decision-making ability. This adaptive approach ensures
the model targets the most diverse subsets at each stage of
learning process, from broad exploration in the early rounds
to fine-grained exploitation in the later rounds. By automat-
ically adjusting strategy priorities, AutoAL improves the
overall accuracy and shows stronger robustness.

5. Conclusion
In this paper, we have introduced AutoAL, the first auto-
mated search framework for deep active learning. AutoAL
employs two neural networks, SearchNet and FitNet, inte-
grated into a bilevel optimization framework to enable joint
optimizations. To efficiently solve the bi-level optimization
problem, we have proposed a probabilistic query strategy
that relaxes the search space from discrete to continuous,
enabling a differentiable and data-driven learning paradigm
for AutoAL. This framework not only accelerates the search
process but also ensures that AutoAL can generalize across
a wide range of tasks and datasets. Furthermore, AutoAL is
flexible, allowing for easy integration of most of the existing
active learning strategies into the candidate pool, making it
adaptable to evolving active learning techniques. Our ex-
tensive empirical evaluation, conducted across both natural
and medical image datasets, has demonstrated the robust-
ness and generalizability of AutoAL. The results show that
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AutoAL consistently outperforms baselines, highlighting its
capability to optimize sample selection and enhance model
performance. In future, we plan to apply AutoAL to boarder
machine learning tasks such as structured prediction and
consider more sophisticated AL method combinations.
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A. Appendix

Table 1. A summarization of datasets used in the experiments. The Imbalance Ratio (IR) is the ratio of the number of images in the
majority class to the number of images in the minority class. IR = 1 represents balance dataset.

DataSet Training Size Test Size Class Numbers Imbalance Ratio

Nature Images

Cifar-10 50,000 10,000 10 1.0

Cifar-100 50,000 10,000 100 1.0

SVHN 73,257 26,032 10 3.0

TinyImageNet 100,000 10,000 200 1.0

Medical Images
OrganCMNIST 12,975 8,216 11 5.0

PathMNIST 89,996 7,180 9 1.6

TissueMNIST 165,466 47,280 8 9.1

A.1. Complexity Analysis

Table 2. The average runtime of the entire active learning (AL) process (including training and querying), where the runtime of Entropy-
Sampling is the unit time. We separate total time cost of AutoAL into three main parts: candidate ALs querying AL score for images
(AutoAL-ComputeALScore), SearchNet and FitNet updating (AutoAL-Search), and querying samples and training classification model
after AutoAL search (AutoAL-TrainResNet).

CIFAR-10 CIFAR-100 SVHN TinyImageNet OrganCMNIST PathMNIST TissueMNIST

EntropySampling 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MarginSampling 0.99 1.02 5.97 0.99 2.01 1.01 1.84
LeastConfidence 0.85 1.01 1.03 0.96 1.85 0.97 1.81

KMeansSampling 1.20 1.24 1.59 0.62 1.33 0.93 2.37
MeanSTD 1.46 1.18 0.89 0.23 2.07 0.85 2.35
VarRatio 1.40 1.17 0.87 0.87 1.87 0.78 2.30
BALD 1.48 1.18 0.90 0.92 2.04 1.02 1.86

BadgeSampling 1.83 4.09 2.34 8.32 1.21 1.49 2.52
LPL 2.03 0.87 0.98 0.37 1.87 1.35 1.77

ALBL 1.08 0.57 1.01 0.82 2.10 0.88 1.42
DDU 1.48 1.87 2.13 1.62 1.32 2.32 1.68

Coreset 1.68 1.42 1.07 1.34 1.25 1.47 2.05
VAAL 1.24 1.27 7.02 2.05 5.28 4.36 7.68

ENSvarR 4.21 4.52 6.58 12.27 8.33 7.63 10.46

AutoAL-ComputeALScore 2.34 2.03 2.80 3.40 3.79 3.24 1.74
AutoAL-Search 0.12 0.11 0.15 0.18 0.20 0.17 0.09

AutoAL-TrainResNet 1.57 1.36 1.88 2.28 2.55 2.18 1.15
AutoAL-Total 4.03 3.50 4.83 5.86 6.54 5.59 2.95

In this subsection, we perform additional analysis experiments to showcase AutoAL’s efficiency and generalizability. We
mainly use the average running time to verify the results, and all the experiments was done on one Nvidia A100 GPU. We
use the running time of EntropySampling as a benchmark and calculate other ALs running costs relative to it. We find:

1. Our AutoAL demonstrates its ability to generalize to large datasets, and the time cost is compatible to some of the
baselines such as ENSvarR.

2. We separate the total time cost of our method into three main parts, and the AL strategy sampling will cost the most time
and the update of SearchNet and FitNet will nearly cost none. This means AutoAL will time cost rely heavily on the
candidate pool. When the candidate ALs are fast enough, AutoAL will be in low cost and complexity.

3. We conducted the experiment on changing the candidate pool size, and we found that when there are 3 candidates,
the time cost is just 1.3x compared to EntropySampling, and our method with three candidates can also gain a high
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improvement on labeling accuracy. This will give real-world users flexibility in choosing the number of candidate ALs
considering both accuracy and complexity.
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