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Abstract

This paper explores how to harvest precise object seg-
mentation masks while minimizing the human interaction
cost. To achieve this, we propose an Inside-Outside Guid-
ance (I0G) approach in this work. Concretely, we lever-
age an inside point that is clicked near the object center
and two outside points at the symmetrical corner locations
(top-left and bottom-right or top-right and bottom-left) of a
tight bounding box that encloses the target object. This re-
sults in a total of one foreground click and four background
clicks for segmentation. The advantages of our I0G are
four-fold: 1) the two outside points can help to remove dis-
tractions from other objects or background; 2) the inside
point can help to eliminate the unrelated regions inside the
bounding box; 3) the inside and outside points are easily
identified, reducing the confusion raised by the state-of-the-
art DEXTR in labeling some extreme samples; 4) our ap-
proach naturally supports additional clicks annotations for
further correction. Despite its simplicity, our IOG not only
achieves state-of-the-art performance on several popular
benchmarks, but also demonstrates strong generalization
capability across different domains such as street scenes,
aerial imagery and medical images, without fine-tuning. In
addition, we also propose a simple two-stage solution that
enables our 10G to produce high quality instance segmen-
tation masks from existing datasets with off-the-shelf bound-
ing boxes such as ImageNet and Open Images, demonstrat-
ing the superiority of our IOG as an annotation tool.

1. Introduction

Over the past few years, we have witnessed a revolution-
ary advancement in semantic [44, 40, 68, 69, 10, 11, 12,
, 15, 31] and instance segmentation [25, 36, 8, 60, 13,

] for different domains, such as general

], autonomous driving [17, 48, 21], aerial
], medical diagnosis [22, 56], efc. Suc-
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Figure 1. (a) User inputs of DEXTR [46]. (b) User inputs of the
proposed IOG method. (c) An overview of our IOG framework.

cessful segmentation models are usually built on the shoul-
ders of large volumes of high-quality training data. How-
ever, the process to create the pixel-level training data nec-
essary to build these models is often expensive, laborious
and time-consuming. Thus, interactive segmentation, which
allows the human annotators to quickly extract the object-
of-interest by providing some user inputs such as bounding
boxes [66, 52, 64] or clicks [67, 38, 45, 37], appears to be an
attractive and efficient way to reduce the annotation effort.

Recently, Maninis et al. [40] explored the use to extreme
points of an object (left-most, right-most, top, bottom pix-
els) for interactive image segmentation. Despite its sim-
plicity, the extreme points have demonstrated fast interac-
tive annotation speed and high segmentation quality across
different application domains. Nevertheless, we argue that
the clicking paradigm of extreme points also brings some
issues: 1) annotating extreme points requires users to care-
fully click at the object boundaries, which usually consumes
much more time as compared to the common clicking set-
ting where users can click at any of the interior and exterior
of object regions; 2) the annotation process can sometimes
be confusing when multiple extreme points appear at sim-
ilar spatial locations (pencil in Figure 1(a)) or when there
are unrelated objects or background lying inside the target
object (dog in Figure 1(a)).

To tackle the aforementioned issues as well as to pro-


https://github.com/shiyinzhang/Inside-Outside-Guidance

mote the effectiveness and efficiency of the interactive pro-
cess, we propose an approach named Inside-Outside Guid-
ance (IOG), which requires only three points (an inside
point and two outside points) to indicate the target object.
Specifically, the inside point usually locates around the cen-
ter of the object instance while the two outside ones can
be clicked at any symmetrical corner locations of a tight
bounding box enclosing the target instance (either the top-
left and bottom-right or top-right and bottom-left pixels).
Figure 1(b) shows two examples of our proposed labeling
scheme. Similar to [46], our IOG relaxes the generated
bounding box by several pixels before cropping from the
input image to include context. This results in a total of
one foreground and four background clicks (two clicked
outside points and two additional inferred ones based on
the bounding box), which are then encoded as foreground/
background localization heatmaps and concatenated with
the cropped image for training the segmentation network.
The overview of our IOG is shown in Figure 1(c).

Our IOG strategy not only improves the annotation speed
by reducing the confusion raised by [46], but also naturally
supports annotation of additional points at the erroneous re-
gions for further refinement. We perform extensive exper-
iments on PASCAL [20], GrabCut [52] and COCO [41] to
demonstrate the effectiveness of our IOG as an annotation
tool. In particular, given only three points, our IOG achieves
93.2% mloU score on PASCAL, which is the new state-of-
the-art. Our IOG further improves to 94.4% when the 4th
click is added for interactive correction.

In addition, we also show that our model generalizes
well in cross-domain annotation, where our PASCAL-
or COCO-trained model produces high quality segmenta-
tion masks when annotating street scenes [17], aerial im-
agery [57, 16] and medical images [22] without fine-tuning.
Beyond this, we also propose a simple two-stage solution
that enables our IOG to harvest precise instance segmen-
tation masks from the off-the-shelf datasets with bound-
ing box annotations such as ImageNet [53] and Open Im-
ages [35] without any human interaction. Finally, we re-
lease Pixel-ImageNet!, a dataset with 0.615M instance
masks of ImageNet [53] collected using our IOG. We hope
this work can significantly benefit the future researchers in
collecting large-scale pixel-level annotations.

2. Related Work

Interactive Segmentation: Most interactive segmentation
methods target at relieving human effort when labeling
pixel-level annotations with the help of bounding box [66,

, 52], clicks [67, 38, 37, 45] or contours [7, |, 42] as guid-
ance. GrabCut [52] employs bounding boxes to guide the
segmentation process, which is one of the pioneering works

lhttps://qithub.com/shiyinzhanq/Pixel—Imaquet

for interactive segmentation task. Similarly, Xu et al. [66]
also take bounding boxes as inputs to train a deep con-
volutional neural network (CNN) for interactive segmenta-
tion. On the other hand, iFCN [67] is proposed to conduct
interactive segmentation by guiding a CNN with positive
(foreground) and negative (background) points clicked by
the users. RIS-Net [38] improves the iFCN by augment-
ing a local context branch. Recently, Maninis et al. [40]
propose DEXTR that leverages only 4 extreme points for
segmentation and achieve the new state-of-the-art. Com-
paring with DEXTR, we further advance the interactive an-
notation process by reducing the number of clicks required
from 4 to 3. Our IOG not only tackles the issues raised by
DEXTR, but also achieves much better segmentation per-
formance. Beyond the above mentioned approaches, some
other works [7, 1, 42] alternatively propose to conduct in-
teractive segmentation by directly predicting a polygon or
spline around the target object.

Weakly Supervised Segmentation: Among many alter-
natives in addressing the expensive pixel-level annotations,
weakly supervised learning has been extensively studied in
the literature. Particularly, image-level labels [50, 61, 63,

, 27, 32], points [3, 51], bounding boxes [18, 33] and
scribbles [39, 58, 59] have been employed as guidance to
supervise the training of semantic segmentation networks.
Different from these methods, our proposed IOG still relies
on fully annotated masks as supervision and utilizes three
additional points as the guidance to produce the segmenta-
tion mask of the target object.

Semantic Segmentation: Fully convolutional networks
(FCN) [44, 40, 68, 69, 10, 11, 12, 30, 15] has greatly
advanced the semantic image segmentation. The success
of CNN-based interactive segmentation has benefited sig-
nificantly from the development of FCNs. Specifically,
FCN [44], DeepLab series [10, 11, 12] and PSP [68] have
been directly applied to tackle the interactive segmenta-
tion [67, 38, 45, 46]. In this work, we investigate which
type of network is more suitable for conducting interactive
segmentation tasks and choose to adopt a coarse-to-fine net-
work structure [14] as the backbone of our IOG method. We
experimentally validate our choice can further boost the ac-
curacy of interactive segmentation by a large margin.

3. Method
3.1. Inside-Outside Guidance

Our Inside-Outside Guidance clicking paradigm consists
of three points: an interior click (inside point) located
roughly at the object center and two exterior clicks (outside
points) at any symmetrical corner locations (either fop-left
and bottom-right or top-right and bottom-left) that form an
almost-tight bounding box enclosing the target-of-interest
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Figure 2. Inside-Outside guidance. (a) The vertical and horizontal guide lines are used to assist the user in clicking on the corner of an
imaginary box enclosing the object. (b) A box is generated on-the-fly when the user moves the cursor. (c) An interior click is placed around
the object center. (d) The box is relaxed by several pixels before cropping to include context. The interior click (red) with four exterior
clicks (two clicked corners and two automatically inferred ones) (blue) constitute our Inside-Outside guidance that encode the foreground
and background regions, respectively. (e¢) Our method naturally supports additional clicks annotation for further refinement.

(Figure 2). In this way, the two exterior clicks, together
with two additional inferred ones based on the generated
bounding box, provide an “outside” guidance (indicating
the background regions) while the interior click gives an
“inside” guidance (indicating the foreground regions), thus
giving the name Inside-Outside Guidance (10G).

Outside guidance: The outside guidance is formulated by
the corners of the bounding box enclosing the object. How-
ever, it was previously reported that drawing a tight box can
be time consuming ([55] reported 25.5s for drawing one
box on ImageNet [53]%). This is due to the difficulty of
clicking on the corners of an imaginary box where these
corners are often not on the object [49]. Thus, several ad-
justments are usually required to ensure the resulting box is
tight. However, with some simple modifications to the an-
notation interface, such as using a horizontal and a vertical
guide line to make the box visible when clicking on a cor-
ner, the burden of drawing a bounding box can be largely
relieved as shown in Figure 2(a)-(b). Moreover, in our case,
we do not necessarily need a tight bounding box where an
almost-tight box usually suffices. In our user study, we ob-
serve that drawing a bounding box typically take about 6.7s
with the help of the guide lines.

Inside guidance: The inside guidance is formulated as an
interior click located around the object center for disam-
biguating the segmentation target since there could be mul-
tiple objects within the same box. To simulate clicks anno-
tated by human annotators, we propose to sample the inside
point at the location that is furthest away from the object
boundaries. In particular, let O denotes the pixels belong-
ing to the object, we first compute a distance map D based
on Euclidean distance transformation as follows:

D; = min dist(i, j 1
Join, ist(i, ) (1

where D, refers to the value of D at pixel location ¢ while

2Some papers reported much faster timings (e.g. [54] reported 10.21s
while [19] reported 7.0s). However, [49] argue that the annotated boxes
are of low quality (not tight around the object).

dist(¢, 7) denotes the Euclidean distance between pixel lo-
cations ¢ and j. Then, the interior click is sampled at the
location k = arg maxy;co D;. The validity of such sam-
pling scheme is verified in Section 4.5 by comparing with
the actual interior clicks collected from real users. Note that
annotating the inside point is very fast, taking about 1.5s in
our user study.

Clicks representations: We use the same clicks represen-
tation as DEXTR[46] by centering a 2D Gaussian around
each click, creating two separate heatmaps for foreground
and background clicks. The resulting heatmaps are con-
catenated with the RGB input image to form a 5-channel
input for the network. Similar to [46], the bounding box is
first relaxed by several pixels to include context, followed
by cropping to focus on the object-of-interest (Figure 2(d)).

Compared with existing clicks-based [67, 46] and box-
based [66] interactive segmentation approaches, our pro-
posed I0G has the best of both worlds: (i) flexibility: since
the annotated three points are encoded as foreground and
background clicks, our IOG naturally supports additional
clicks annotations for further correction (Figure 2(e)); (ii)
more information: our approach encodes more prior in-
formation about the object, including the location of hard
background and the rough size of the target.

3.2. Segmentation Network

Here, we discuss the architectural design of our seg-
mentation network. We employ a ResNet-50 [26]-based
DeepLabv3+ [12] as our starting point and we already
observe decent segmentation performance (90.0% IoU on
PASCAL), demonstrating the effectiveness of our proposed
IOG. Nevertheless, closer inspection on the segmentation
quality reveals that segmentation errors mostly occur along
the object boundaries as shown in Figure 3. Simply replac-
ing the backbone with a deeper network such as ResNet-101
only brings marginal improvement (Vanilla IOG in Figure
6 right), suggesting some architectural modifications have
to be made to ensure the network focuses on refining the
inaccurate segmentation along the object boundaries.
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Figure 3. Qualitative comparison in terms of segmentation
errors. Note that the segmentation errors mostly occur along
the object boundaries when using DeepLabv3+ [12] as backbone
whereas our coarse-to-fine structure produces precise boundaries.

In this work, we propose to adopt a coarse-to-fine de-
sign for addressing the aforementioned issue (Figure 4). In
particular, we employ a cascaded structure similar to [14]
which was originally proposed for human pose estimation
task. Specifically, the segmentation network consists of two
subnetworks. The first subnetwork, CoarseNet applies an
FPN-like design [40] that progressively fuses the seman-
tic information from the deeper layers with low-level de-
tails from the earlier layers via lateral connections. Dif-
ferent from [14], we also append a pyramid scene parsing
(PSP) module [68] at the deepest layer for enriching the
representation with global contextual information. Given
a coarse prediction from the CoarseNet, the second sub-
network, FineNet aims at recovering the missing boundary
details. This is achieved with a multi-scale fusion struc-
ture that fuses the information across different levels in the
CoarseNet via upsampling and concatenation operations.
Similar to [14], we also apply more convolution blocks for
features at deeper layers for better trade-off between the ac-
curacy and efficiency. We refer the readers to the supple-
mentary materials for more details. Note that we do not
claim any novelty in the network design. Instead, our con-
tribution lies in the finding that a coarse-to-fine structure is
necessary for obtaining more precise segmentation masks
whereas stacking more layers does not. We believe other
coarse-to-fine structure might also work and we leave it as
our future works.

Training and testing: Our segmentation network is trained
end-to-end using binary cross-entropy loss. In addition, we
also apply side losses at each level of CoarseNet as a form of
deep supervision [14]. During inference, the segmentation
mask is obtained by simply thresholding the final network
prediction. Since our approach does not involve any post-
processing, it is extremely fast, where a single forward pass
on a ResNet-101 backbone typically requires only 20 ms
on a Nvidia GeForce GTX 1080 GPU. It is thus well-suited
for practical interactive image segmentation application.

(c) Refinement

Global
........ K, context
’—“ —l axt
—* 4x1
. ¥ — . 2x1
4 ——— /A
3 —

(a) CoarseNet (b) FineNet

Figure 4. Network Architecture. (a)-(b) Our segmentation net-
work adopts a coarse-to-fine structure similar to [14], augmented
with a pyramid scene parsing (PSP) module [68] for aggregating
global contextual information. (c) We also append a lightweight
branch before the PSP module to accept the additional clicks input
for interactive refinement.

3.3. Beyond Three Clicks...

Although our IOG approach requires only three clicks
to perform segmentation, our framework naturally sup-
ports interactive adding of new foreground and background
clicks for further refinement if the user is not satisfied with
the current segmentation output. To achieve this, we ap-
pend a lightweight branch before the PSP module to ac-
cept the two-channel Gaussian heatmaps encoding all the
foreground and background clicks (Figure 4(c)). We em-
pirically found that this setting not only works better than
modifying the inputs at the beginning of the segmentation
network, but also runs much faster since the encoder fea-
tures only needs to be computed once.

During training, we adopt an iterative training strategy to
simulate the interactive process where an additional click is
introduced to the erroneous regions by the user for correc-
tion. More specifically, an initial segmentation mask is first
obtained given only three clicks. A new click is then added
to the center of the largest erroneous region and second for-
ward pass is conducted. Results presented in Section 4.3
shows that such iterative training strategy is necessary.

4. Experiments

We conduct extensive experiments on 11 publicly
available benchmarks, including PASCAL [20], Grab-
Cut [52], COCO [41], ImageNet [53], Open Images [53],
Cityscapes [17], Rooftop [57], Agriculture-Vision [16],
ssTEM [22], Pascal-Context [47], and COCO-Stuff [0], to
demonstrate the effectiveness and the generalization capa-
bilities of our IOG. We choose ResNet-50 and ResNet-101
as the two backbones of the IOG for fair comparison with
previous approaches. Following the common practice [46],
we employ PASCAL as the main benchmark to verify the
importance of each component proposed in our IOG.

4.1. Implementation Details

Simulated inside-outside points: We use the ground truth
masks to generate the inside-outside points for training. For



Number of Clicks ToU(%) @ 4 clicks

Methods PASCAL@85% GrabCut@90% PASCAL GrabCut
Graph cut [5] > 20 > 20 41.1 59.3
Random walker [23] 16.1 15 55.1 56.9
Geodesic matting [2] > 20 > 20 459 55.6
iFCN [66] 8.7 7.5 75.2 84.0
RIS-Net [38] 5.7 6 80.7 85.0
DEXTR [46] 4 4 91.5 94.4
Lietal. [37] - 4.79 - -
ITIS [45] 34 5.7

FCTSFN [28] 4.58 3.76

I0G-ResNet101 (ours) 3 3 93.2% 96.3*
10G-ResNet101 (ours) 4 4 94.4 96.9

Table 1. Comparison with the state-of-the-art methods on PAS-
CAL and GrabCut in terms of the number of clicks to reach a
certain IoU and in terms of quality at 4 clicks. *denotes the IoU of
our IOG given only 3 clicks.

Train Test DEXTR [46] ours

Unseen Classes  PASCAL  COCO MVal (seen) 79.9% 81.7%
PASCAL COCO MVal (unseen) 80.3% 82.1%

PASCAL COCO MVal 80.1% 81.9%

Generalization  COCO COCO MVal 82.1% 85.2%
© " coco PASCAL 87.8% 91.6%
PASCAL PASCAL 89.8% 93.2%

Table 2. Comparison in terms of generalization ability between the
state-of-the-art DEXTR and our I0G.

outside points, we take the corners of the bounding-box ex-
tracted from ground truth masks and relax by 10 pixels to
simulate a loosen box provided by real users. For inside
point, we sample a click that is furthest from the object
boundaries and apply random perturbation. The effects of
perturbation will be studied in Section 4.5.

Training and testing details: 10G is trained on PASCAL
2012 Segmentation ° for a maximum of 100 epochs or on
MS COCO 2014 for a maximum of 10 epochs. We acquire
the results from the best performing epoch. For PASCAL,
the batch size is set to 5 whereas for COCO, we train on 2
GPUs with an effective batch size of 10. For COCO, we
also construct a set of “void” pixels around the boundaries
of the ground truth masks and ignore them during training.
The learning rate, momentum and weight decay are set to
107%,0.9 and 5 x 104, respectively.

4.2. Comparison with the State-of-the-Arts

We first compare our IOG with the state-of-the-art ap-
proaches on two popular benchmarks, i.e., PASCAL VOC
val set and GrabCut. Table 1 summarizes the number of
clicks needed for each method to reach a certain perfor-
mance, and the corresponding IoU scores when only 4
clicks are provided. It can be observed that our IOG outper-
forms all others by more than 1.7% and 1.9% on PASCAL
and GrabCut, respectively. When allowing iterative refine-

3We denote the PASCAL train set augmented with additional labels
from SBD [24] and the one without SBD labels as PASCAL-10k (10,582
images) and PASCAL-1k (1,464 images), respectively.

Backbone Context FineNet Side losses Dataset ToU
ResNet-50 X v v PASCAL-1k  91.2
ResNet-50 v X v PASCAL-1k  90.8
ResNet-50 v v X PASCAL-1k  90.6
ResNet-50 v v v PASCAL-1k  91.6
ResNet-50 v v v PASCAL-10k 92.8
ResNet-101 v v v PASCAL-1k  92.0
ResNet-101 v v v PASCAL-10k 93.2

Table 3. Ablation Study. Justification of each component in the
segmentation network on the PASCAL VOC 2012 val set.

ment (i.e. from 3 to 4 clicks), the performance can be further
enhanced to 94.4% and 96.9%, which well demonstrate the
effectiveness of our IOG in handling the additional user in-
puts for further correction.

Next, we compare the generalization ability between the
state-of-the-art DEXTR and our IOG on unseen classes and
across different datasets. Following the setting in [46], we
compare the performances on two benchmarks, i.e. PAS-
CAL and COCO mini-val (MVal). For the Unseen Classes
setting, we leverage the model trained on PASCAL and
evaluate its IoU on COCO MVal seen (i.e. images with
the same categories as PASCAL) and COCO MVal unseen
(i.e. images with different categories as PASCAL). For the
Generalization setting, we train the model on PASCAL (or
COCO) and evaluate the performance on COCO MVal (or
PASCAL), regardless of the testing categories. As shown
in Table 2, our IOG makes consistent improvements over
DEXTR on various settings despite using only 3 clicks.
Some qualitative results are shown in Figure 5.

4.3. Ablation Study

Justification of each component of IOG: We perform
ablation experiments on PASCAL VOC val set to validate
the effectiveness of each component in our segmentation
network. Particularly, we quantitatively justify various de-
sign choices, including the different backbones (ResNet-
50 vs. ResNet-101), different number of training images
(PASCAL-1K vs. PASCAL-10K), inclusion of PSP module
for global contextual information (Context), FineNet and
the use of side losses for training. As shown in Table 3,
“Context”, “FineNet” and “Side losses” can respectively
lead to performance boost of 0.4%, 0.8% and 1.0% under
the setting of ResNet-50 and PASCAL-1K. When augment-
ing additional labels from SBD (PASCAL-10k), the perfor-
mance can be further improved from 91.6% to 92.8%. Fi-
nally, we obtain the state-of-the-art performance when re-
placing the backbone with ResNet-101 (93.2%).

Iterative training for interactive refinement: In the pre-
vious section, we have demonstrated the effectiveness of
our IOG under the default setting when only 3 clicks are
provided. Next, we examine the case when the user is not
satisfied with the result and wants to annotate additional
clicks for further correction. Specifically, we progressively
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Figure 5. Qualitative results on PASCAL [20], PASCAL-Context [47], COCO [41] and COCO-Stuff [6]. Each instance with the
simulated inside-outside points and the corresponding segmentation masks are overlayed on the input image.

add a new click to the center of the largest erroneous re-
gions similar to [67, 45]. The results are summarized in
Figure 6 (left). We can observe that: 1) additional clicks
do not bring significant performance gains without iterative
training, demonstrating the importance of iterative training
for interactive refinement; 2) adding the clicks to the inter-
mediate layers of the segmentation network (Section 3.3) is
more effective than modifying the inputs at the beginning of
the network. An interesting observation is that adding clicks
to the beginning of the model without iterative training will
lead to performance degradation. One possible reason is
that the inside points always locate around the object cen-
ter whereas the newly added correction clicks are usually
distributed near the object boundaries, which confuses the
trained model and harms the performance. Some qualitative
examples of interactive refinement can be found in Figure 7.

I0OG points vs. extreme points: We study the perfor-
mance of our proposed IOG points when compared with
the extreme points used in DEXTR. For fair compari-
son, we use the released code* and re-train DEXTR using
DeepLabv3+ [12] as the fully convolutional architecture on
PASCAL-1K. All the models are pre-trained only on Ima-
geNet [53]. We conduct experiments using three different
backbones, i.e. ResNet-34, ResNet-50 and ResNet-101, to

4https://qithub.com/scaelles/DEXTR—PyTorch

Figure 6. (left) The effect of iterative training for interactive refine-
ment. “early” and “late” denote adding clicks input to the begin-
ning or intermediate layer of the network, respectively. “iter” im-
plies iterative training (Section 3.3) while “+” denotes training on
larger dataset (PASCAL-10k). (right) Comparison between I0G
points and extreme points.

validate the robustness of the proposed method. As shown
in Figure 6 (right), our proposed IOG points consistently
outperform the extreme points given the same network ar-
chitecture (Vanilla IOG vs. DEXTR). When using a coarse-
to-fine network structure (Section 3.2), we can see that our
10G significantly outperforms the baselines by a large mar-
gin. Interestingly, our IOG with ResNet-34 as backbone al-
ready surpasses the state-of-the-art DEXTR using ResNet-
101, demonstrating the effectiveness of the proposed 10G
over the extreme points.
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Figure 7. Interactive refinement. Our proposed I0OG supports
interactive adding of new clicks for further refinement.

4.4. Cross-Domain Evaluation

In Section 4.2, we have demonstrated the generalization
capability of our IOG on unseen classes and across differ-
ent datasets (train on PASCAL and test on COCO and vice
versa). However, images in both the PASCAL and COCO
datasets are of general scenes while a powerful annota-
tion tool should generalize well even on different imagery
types. In the following section, we examine the generaliza-
tion ability of our model across different domains, including
non-PASCAL-style object categories and stuff categories.

Object categories: Following [42, 1], we evaluated the per-
formance of our IOG on 3 imagery types, including street
scenes (Cityscapes [17]), aerial imagery (Rooftop [57]) and
medical images (ssTEM [22]). The results are summarized
in Table 4, 5 and 6. We can see that our model outperforms
the baselines by a large margin on Rooftop and ssTEM
datasets even without fine-tuning. More interestingly, as
shown in Table 4, our PASCAL-trained model already per-
forms on-par with the Cityscapes-trained methods when
evaluating on the Cityscapes dataset. This suggests that our
IOG generalizes well even across different domains. More-
over, the model performance can be further improved by
fine-tuning using only 10% of the new dataset, where our
model significantly outperforms all the other baselines. In
addition, we also applied our IOG on the more challeng-
ing Agriculture-Vision dataset [16] and still achieved satis-
factory performance when using small amounts of data for
fine-tuning. Fig 8 provides some qualitative examples.

Stuff categories: In Fig 5, we show some qualitative re-
sults of our IOG fine-tuned on PASCAL-Context [47] and
COCO-Stuff [6] to verify the performance of our [OG when
segmenting “stuff” categories. The results show that our
IOG generalizes well to background classes too.

4.5. More Discussions

Robustness to user variance when choosing the inside
points: In the previous experiments, we examine the ef-

Methods Train Finetune  Backbone  #Clicks IoU
Curve-GCN [42]  Cityscapes N.A. ResNet-50 2 76.3
Curve-GCN [42]  Cityscapes N.A. ResNet-50 24 77.6
Curve-GCN [42]  Cityscapes N.A. ResNet-50 3.6 80.2
DEXTR [42] Cityscapes N.A. ResNet-101 4 79.4
10G (ours) PASCAL X ResNet-50 3 77.9
10G (ours) PASCAL v ResNet-50 3 82.2
10G (ours) PASCAL v ResNet-101 3 82.7
10G (ours) COCO v ResNet-101 3 83.8

Table 4. Cross domain analysis on Cityscapes [17]. “Fine-
tune” indicates that the method is fine-tuned on a small set of the
Cityscapes dataset (10%).

Methods Train Finetune  Backbone  #Clicks IoU
Curve-GCN [42]  CityScapes X ResNet-50 2 68.3
Curve-GCN [42]  CityScapes v ResNet-50 2 78.2
10G (ours) PASCAL X ResNet-50 3 90.7
10G (ours) PASCAL v ResNet-50 3 92.8
10G (ours) PASCAL v ResNet-101 3 93.6
10G (ours) COCO v ResNet-101 3 94

Table 5. Cross domain analysis on Rooftop [57]. Even with-
out fine-tuning, our method already outperforms Curve-GCN with
fine-tuning, showing the strong generalization of our approach.

Methods Train Finetune = Backbone  #Clicks IoU
Curve-GCN [42]  CityScapes X ResNet-50 2 60.9
10G (ours) PASCAL X ResNet-50 3 81.4
10G (ours) PASCAL X ResNet-101 3 83.7

Table 6. Cross domain analysis on ssTEM [22]. Note that ssSTEM
does not have a training split, therefore we do not perform fine-
tuning on this dataset.

Cityscapes Agriculture-Vision

Rooftop SSTEM

Figure 8. Cross-domain performance. Qualitative results of our
10G on Cityscapes, Agricultural-Vision, Rooftop, and ssTEM.

fectiveness of our IOG using the simulated inside-outside
points as inputs. Nevertheless, in practice, it is often dif-
ficult for the users to reach consensus when choosing the



Method r=20 r=10 r =30 r =50

Simulated inside points  93.2 92.9 92.8 92.0
Manual inside points 90.8410 91.6407 923102 92.0401

Table 7. Manual vs. simulated inside points. r denotes the ra-
dius of perturbation applied during training. All the models take
ResNet-101 as backbone and are trained on PASCAL-10k.

Method Backbone Train ToU
(A) Crop ResNet-50 PASCAL-1k  87.5
(B) Geo ResNet-50  PASCAL-1k  89.5
(C) Sim ResNet-50  PASCAL-1k  86.1
(D) Outside only  ResNet-50  PASCAL-1k  89.5

(D) Outside only ResNet-101 PASCAL-10k 90.9
(E) 2-stage ResNet-101 PASCAL-10k 91.1

Table 8. Extension to dataset with box annotations only. All the
results are reported on PASCAL val using box annotations only.

inside points although the users usually make consistent
choices in annotating the outside points. The inconsistent
inputs between training and testing will often have a neg-
ative impact on the segmentation performance, especially
when applied to real annotation scenario.

To alleviate the negative effect caused by user variance
in selecting the inside points, we randomly perturb the po-
sition of the inside points during training. In particular, we
first identify a circular region centered at the inside point
extracted from the ground truth mask with a pre-defined ra-
dius (r). Then, we randomly sample a click from this re-
gion to serve as the inside point for training. To validate
the effectiveness of the proposed modification, we collected
the inside points annotations on all instances in PASCAL
val set from 5 different users. As shown in Table 7, we
first notice a large performance degradation when testing
the perturbation-free model with the human-provided in-
puts (from 93.2 to 90.8). However, the performance gaps
gradually reduce when larger perturbation is applied during
training. The model reaches the best trade-off when 7 is 30.

Extension to datasets with box annotations only: Many
existing off-the-shelf datasets such as ImageNet and Open
Images, have provided bounding box annotations. Here, we
explore how to quickly harvest high-quality instance seg-
mentation masks using our IOG when only bounding box
annotations are available. Specifically, we consider the an-
notated bounding box as an incomplete annotation for our
IOG where the inside point is absent. To this end, we pro-
pose a simple two-stage solution using a small network to
predict a coarse mask based on the bounding box, where the
mask is used to infer the inside point candidates for IOG
later. We compare this against the following baselines and
the results are summarized in Table 8.

(A) Crop: We train a network that takes the cropped RGB
image as input and predicts the segmentation.

(B) Geo: We train a network that takes the geometric cen-
ter of the box as inside point for segmentation.

Figure 9. Qualitative results on ImageNet (top) and Open Im-
age (bottom) using our proposed 2-stage approach. Note that
only bounding box annotations are provided.

(C) Sim: We train our IOG with simulated clicks (Section
3.1) but using the geometric center of the given box as
inside point during test time.

(D) Outside only: We train a single network that takes the
outside points only to perform segmentation.

(E) 2-stage: We extract the inside point from the segmen-
tation masks produced by (D) and pass to our IOG for
the final prediction.

We first observe that the setting (C) performs poorly due
to train-test inconsistency. On the other hand, the meth-
ods (B) and (D) have similar performance. This is be-
cause the geometric center of the box always locates the
same location after cropping, thus the network learns to ig-
nore this input. By adopting stronger backbone and more
training images, the performance of (D) can be further
improved. Finally, taking the inside point from the seg-
mentation masks predicted by (D) as inputs for our IOG
produces the best result. Some qualitative results on Im-
ageNet and Open Images are shown in Figure 9. With
the annotated bounding boxes (~0.615M) of ILSVRC-
LOC, we apply our IOG to collect their pixel-level an-
notations, named Pixel-ImageNet, which are publicly
available at https://github.com/shiyinzhang/
Pixel-ImageNet.

5. Conclusion

We propose a simple yet effective Inside-Outside Guid-
ance (I0G) approach for minimizing the labeling cost. The
proposed IOG requires only three points from the users, i.e.
an inside point near the object center and two outside points
that form a box enclosing the target object. In addition,
our method naturally supports interactive annotation of ad-
ditional points for further correction. Despite its simplicity,
extensive experiments show that our model generalizes well
across different datasets and domains, demonstrating its su-
periority as an annotation tool.
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