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ABSTRACT

This paper introduces DeepCircuitX, a comprehensive multimodal dataset de-
signed to advance RTL code understanding, generation, and completion tasks in
hardware design automation. Unlike existing datasets, which focus either on file-
level RTL code or downstream netlist and layout data, DeepCircuitX spans repos-
itory, file, module, and block-level RTL code, providing a more holistic resource
for training and evaluating large language models (LLMs). The dataset is en-
riched with Chain of Thought (CoT) annotations that offer detailed functionality
and structure descriptions at multiple levels, enhancing its utility for RTL code
understanding, generation, and completion.
In addition to RTL data, DeepCircuitX includes synthesized netlists and power-
performance-area (PPA) metrics, allowing for early-stage design exploration and
PPA prediction directly from RTL code. We establish comprehensive benchmarks
for RTL code understanding, generation, and completion using open-source mod-
els such as CodeLlama, CodeT5+, and CodeGen, demonstrating substantial im-
provements in task performance. Furthermore, we introduce and evaluate models
for PPA prediction, setting new benchmarks for RTL-to-PPA analysis. We con-
duct human evaluations and reviews to confirm the high quality and functionality
of the generated RTL code and annotations. Our experimental results show that
DeepCircuitX significantly improves model performance across multiple bench-
marks, underscoring its value as a critical resource for advancing RTL code tasks
in hardware design automation.

1 INTRODUCTION

Register Transfer Level (RTL) modeling stands as a pivotal and early step in the Electronic Design
Automation (EDA) flow. RTL code, such as Verilog and VHDL, acts as a high-level abstraction
that represents the functionality of hardward designs, bridging between design specifications and
circuit implementations. Following RTL modeling, engineers across various departments in a semi-
conductor companies translate RTL code into netlists, floorplans and layouts. Consequently, RTL
representation significantly impacts the quality of circuit designs.

To enhance the current EDA tools for complex modern chip design and expedite time-to-market,
integration of Artificial Intelligence (AI) techniques into the EDA flow, particularly for RTL-related
tasks, has emerged as a promising avenue. For instance, Allam & Shalan (2024) employs large
language models (LLMs) to understand and describe RTL designs in natural language to assist
engineers. Cui et al. (2024); Thakur et al. (2023) focus on generating RTL code from the design
specification. Clearly, the effectiveness of deep learning models is heavily contingent upon the
quality of the training data (Chang et al., 2024). However, we observe that existing RTL datasets
suffer from notable limitations, hindering the application of AI-based solutions in practical RTL
modeling and verification.

One prominent limitation is the narrow scope of most datasets. Since the semiconductor ecosystem
is far inferior to software openness, the accessible designs are limited. Many datasets either focus on
a limited set of circuit types, often centering around a single design such as processors (Chai et al.,
2022; Jiang et al., 2024)), or indiscriminately collect all Verilog files without accounting for their
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correctness and distribution (Thakur et al., 2023; Wu et al., 2024). This restricted diversity hampers
the generalizability and effectiveness of these datasets.

Another critical limitation is the lack of focus on circuit implementation in RTL-based datasets. For
instance, RTLLM (Lu et al., 2024) gathers RTL specifications and verifies the functional correctness
of RTL code, while Chang et al. (2024) ensures functionality when constructing and augmenting
datasets. However, these works do not consider or include circuit-level information, such as netlists
and layouts, which are crucial in later stages of the EDA flow. As a result, these datasets overlook the
correlation between RTL code and its corresponding circuit implementations. Consequently, train-
ing RTL models with the existing datasets that both guarantee functional correctness and optimize
Power, Performance, and Area (PPA) remains a significant challenge.

To overcome these limitations, we present a multimodal circuit dataset for deep learning in EDA.
Our dataset is meticulously curated according to the scope of the real-world chip and collect more
than 4,000 circuit design projects from various data sources. Unlike previous datasets that provide
verilog files only, each data point in our dataset is structured as a complete repository and also
splitted into files, modules and blocks for various scenarios. This multi-tiered structure enables
training models at different scales, making it suitable for a variety of LLMs and models. Moreover,
the repository-level data allows logic synthesis and physical design flows to convert RTL code into
various circuit modalities, including Control/Data Flow Graph (CDFG) of RTL code, And-Invertor
Graph (AIG), post-mapping netlist, floorplaning and layout. Therefore, we can build the interactions
between RTL designs and circuit implementations.

Furthermore, we meticulously label the circuits for unimodal RTL tasks and cross-modal PPA pre-
diction to enhance accessibility of our dataset. We propose a Chain of Thought (CoT)(Wei et al.,
2022) detailed annotation method to generate descriptions and comments for each of the four levels,
namely, repo-level, file-level, module-level and block-level. By using GPT-4(Achiam et al., 2023)
and Claude(Anthropic, 2024), we leverage annotations from higher levels to assist in annotating
lower levels. Additionally, we generate question-answer pairs to help describe the functionality and
key features of each code segment, enabling better training data for LLMs. Moreover, we provide
the corresponding logic synthesis results for the cross-stage PPA prediction on RTL code.

With this dataset, we can construct a variety of pre-training tasks, evaluation tasks, and benchmarks,
enabling the study of LLM performance on RTL code understanding and completion. Our experi-
ments include tasks that assess LLMs’ abilities in RTL code comprehension, generation and comple-
tion, we trained various models, including CodeLLama(Roziere et al., 2023), CodeT5+(Wang et al.,
2023), CodeGen(Nijkamp et al., 2022), and DeepSeek(Liu et al., 2024; Zhu et al., 2024), across dif-
ferent scales ranging from 220M to 16B on our dataset. The results demonstrate two key findings:
1) Every large model fine-tuned on our dataset significantly outperforms its original, non-fine-tuned
counterpart across all metrics, highlighting the effectiveness of our data. 2) LLMs of different scales,
such as the 220M CodeT5, 7B and 16B models, show substantial improvements after fine-tuning,
reflecting the adaptability and generalization capabilities of our dataset across varying model sizes.
Moreover, to prove the contribution of our dataset on the EDA tasks, we utilize learning-based PPA
prediction models, the results show that accurate predicting PPA on early stage still poses a ques-
tion, providing valuable insights for future research in RTL and hardware design automation. And
the pipeline and framework are illustrated in Figure 1.

The main contributions of our work are summarized as follows:

• We propose a holistic dataset including over 4,000 repository-level RTL projects, covering
chip-level, IP-level, module-level and RISCV designs, and incorporating a diverse range
of functional and algorithmic keywords, as well as High-Level Synthesis (HLS) data con-
verted to RTL.

• Our dataset is organized into four levels, namely, repository, file, module, and block levels,
allowing models to be trained at different scales and enabling broader applications in EDA
tasks such as synthesis, netlist generation, PPA analysis, and layout design.

• We propose a Chain of Thought (CoT) annotation method using GPT-4 and Claude to
generate detailed comments, descriptions, and question-answer pairs, improving training
data for LLMs in RTL code understanding and generation.
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• We create pre-training and evaluation benchmarks for LLMs on RTL tasks such as code
understanding, completion, and neural network-based PPA prediction, demonstrating the
effectiveness, adaptability and generalization capabilities of our dataset for both RTL code
comprehension and EDA tasks.

Github
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Chip: 
- Voice Processor
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Figure 1: Pipeline overview of the proposed framework, illustrating the key stages: data collection
from GitHub using keywords, data annotation via chain-of-thought (COT), circuit transformation,
and evaluation, including RTL code tasks for LLM and PPA prediction.

2 RELATED WORK

2.1 PREVIOUS DATASET IN EDA

AI-based methodologies excel in addressing classification, prediction, and optimization tasks, mak-
ing them well-suited for chip design. Over the past decade, the integration of AI into Electronic
Design Automation (EDA) has emerged as an attractive direction in the fields of chip design and
semiconductor industry, which is well surveyed in Huang et al. (2021); Chen et al. (2024).

The cornerstone of training AI models lies in the quality of the dataset utilized. In the domain
of EDA, existing datasets can be broadly categorized into two classes. Firstly, there are uni-
modal datasets or benchmarks such as ISCAS’89 (Brglez et al., 1989), ITC’99 (Davidson, 1999),
IWLS’05 (Albrecht, 2005) and EPFL (Amarú et al., 2015) benchmarks, which offer open-source
circuit netlists primarily for front-end applications like logic synthesis and design for test. Shrestha
et al. (2024) presents a dataset of physical designs generated from the IWLS’05 benchmark circuit
suite, utilizing the open-source 130nm Process Design Kit (PDK) by Skywater and the OpenROAD
toolkit (Ajayi & Blaauw, 2019). Despite these efforts, these datasets still lack in providing compre-
hensive insights into cross-stage EDA tasks, such as optimizing circuit designs at the front-end for
improved PPA metrics during the back-end stage.

Secondly, other multimodal circuit datasets are generated using EDA tools. For instance, Circuit-
Net (Chai et al., 2022; Jiang et al., 2024) creates a dataset through logic synthesis and physical de-
sign, where the circuit designs are synthesized into gate-level netlists and transformed into layouts
using commercial EDA tools. Jiang et al. (2024) expand this work by providing data for million-
gate designs such as CPUs, GPUs, and AI chips, and using the 14nm FinFET technology node to
capture the increased complexity of manufacturing and modeling. Nonetheless, the existing datasets
encompass a limited range of circuit designs, thereby constraining the generalizability of subsequent
model training efforts.
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2.2 RTL-STAGE UNDERSTANDING, COMPLETION, AND GENERATION

Thakur et al. (2023) collects approximately 50,000 open-source Verilog code samples and fine-
tunes five pre-trained LLMs, with model sizes ranging from 345 million to 16 billion parameters.
Liu et al. (2023) introduces a comprehensive evaluation dataset consisting of 156 problems sourced
from HDLBits and developed a benchmarking framework to automatically test the functional cor-
rectness of Verilog code completions. Similarly, Thakur et al. (2024) fine-tunes existing LLMs on
Verilog datasets collected from GitHub and textbooks, evaluating the functional correctness of the
generated code using a custom test suite. Chang et al. (2024) designs a data augmentation frame-
work for training Chip Design LLMs, enabling them to generate Verilog code, EDA scripts, and
coordinate EDA workflows based on natural language design descriptions. They also benchmark
their approach by fine-tuning Llama 2 models with 7 billion and 13 billion parameters. Lastly,
Zhang et al. (2024) presents the MG-Verilog dataset, an open-source dataset that meets essential
criteria for high-quality hardware data, facilitating the effective use of LLMs in hardware design.
However, these datasets focus solely on file-level RTL code, neglecting the comprehensive infor-
mation contained within entire RTL project designs, modules, and code blocks. As a result, they
fail to provide the multimodal data, such as netlists and PPA metrics, that can be obtained through
synthesis. Moreover, existing studies primarily focus on RTL code generation and completion, often
overlooking the critical aspects of annotations, comments, and descriptions for RTL code. Hence,
there has been little progress in advancing RTL code understanding tasks, particularly for LLMs.

3 METHODOLOGY

3.1 DATA PREPARATION

Our dataset distinguishes itself by focusing on chip-level, IP-level, module-level RTL designs, and
RISC-V architectures. We compile a list of 222 keywords representing these levels from sources like
Alldatasheet (Alldatasheet, 2003) and other relevant websites. Examples include chip-level designs
such as voice processors, audio processors, and video processors; IP-level designs like DMA, PCI,
and true random number generators; and module-level designs including 4-bit binary full adders,
arithmetic logic units, and multiplier-accumulators. We collect over 4,000 repository-level RTL
projects, which encompass 140,000 RTL files across 77 functional categories, as shown in Table 1.
Moreover, the detailed data cases are illustrated in Figure 2.

To construct the RTL-language dataset, we organize the data into four distinct levels: repository, file,
module, and block. We employ a Chain of Thought (CoT) approach for RTL code annotation, lever-
aging GPT-4 (Achiam et al., 2023) and Claude (Anthropic, 2024) to generate detailed comments,
descriptions, and question-answer pairs. This methodology enhances the training data for large lan-
guage models (LLMs) in RTL code understanding and generation, with further details provided in
Section 3.2. Additionally, to develop the multimodal dataset, we synthesize the RTL projects to ob-
tain netlists, power, performance, and area (PPA) metrics, as well as layout designs. Further details
will be discussed in Section 3.3.2.

Table 1: Summary of data across different levels in DeepCircuitX. The table presents the number of
function categories, repositories, and RTL files at the Chip, IP, Module, and RISC-V levels.

Level Function Categories Repo Number RTL File Number
Chip Level 17 109 5508
IP Level 3 225 12961
Module Level 57 2383 38692
RISCV - 2078 98450
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3.2 LANGUAGE-RTL CODE DATASET CONSTRUCTION

3.2.1 CHAIN OF THOUGHT (COT) FOR RTL CODE ANNOTATION

The Chain of Thought (CoT) reasoning method, commonly used in deep learning and natural lan-
guage processing, simulates human reasoning by guiding models through structured steps. We adopt
this approach to create detailed annotations for Verilog code, ensuring a comprehensive understand-
ing at different levels of the RTL design. The annotation process is carried out at three distinct
levels: module-level, block-level, and repository-level. The detailed pipeline is shown in Figure 4
in the Appendix.

Module-Level Annotations To annotate RTL modules, we utilize a multi-round question-
answering approach to extract key information from the Verilog code, focusing on aspects such
as the module’s name, input/output ports, and internal signals. This process begins with structured
questions designed to clarify both what the module does (What) and how it achieves this function-
ality (How). The responses provide the foundational details about the module’s components and
behavior. Using this information, a detailed specification is created that summarizes the module’s
name, its purpose, the roles of the input and output ports, and an explanation of the internal signals.
Additionally, the specification includes a breakdown of the functional blocks within the module. Fi-
nally, with this specification and the original code, ChatGPT generates a concise yet comprehensive
module-level annotation, encapsulating both the functionality and the implementation details.

Block-Level Annotations Block-level annotations offer detailed insights into the functionality of
specific sections within an RTL module. Given the complexity of Verilog code, which often includes
nested structures, segmenting it using regular expressions alone can be challenging. To address this,
we leverage GPT-4 for handling these intricacies. The code is divided into distinct functional blocks,
including constructs such as always, initial, task, function, generate, assign, and
final blocks. While regular expressions are employed to improve segmentation accuracy for
straightforward patterns, GPT-4 is crucial for managing more complex structures. Once the blocks
are identified, each is annotated to describe both its purpose and how it functions, ensuring that the
role of each block within the module is clearly defined, thereby enhancing the overall understanding
of the module’s functionality.

Repo-Level Annotations At the repository level, we aim to provide an overarching understanding
of the entire RTL project. This includes information about the structure, purpose, and interconnec-
tions of various modules and files within the repository. To achieve this, we gather the file structure
information and combine it with module-level annotations to form a complete picture of the project.
GPT-4 is then used to summarize the contents of the repository, producing a top-down view of how
individual files and modules work together. This approach allows the repo-level annotation to reflect
both functional and design-level details, capturing the broader goals of the RTL project.

Table 2: Summary of annotated RTL categories at the module, block, and repository levels in Deep-
CircuitX. The table highlights the number of annotated modules, blocks, and repositories for each
RTL category, including Chip, IP, Module, and RISC-V.

RTL categories Module-Level Block-Level Repo-Level
Chip 5471 36955 84
IP 12863 20101 183
Module 28901 - 1389
RISCV 2116 - 560

3.2.2 DATASET FOR RTL CODE UNDERSTANDING, COMPLETION AND GENERATION

In addition to annotations, we constructed a dataset that supports three distinct tasks related to RTL
code: understanding, completion, and generation. Table 3 shows the data counts across RTL
categories (IP, Module, RISC-V, and Chip) for each task.
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Table 3: Data counts for code generation, code completion, and comment generation tasks across
different categories.

Tasks Dataset IP Module RISC-V Chip All
RTL Code Understanding 6386 14499 1348 3922 26155
RTL Code Completion 6178 14131 1312 3822 25443
RTL Code Generation 6479 16511 1393 3950 28333

RTL Code Understanding This task evaluates the model’s ability to interpret and describe RTL
code. Given a module’s RTL code as input, the model generates a detailed, concise description,
covering key aspects such as the module’s purpose, input/output signals, internal logic, and overall
behavior. This task is crucial for assessing the model’s ability to generate human-readable explana-
tions for code analysis and documentation.

RTL Code Completion In this task, the model is provided with a partial RTL code (typically the
module header with input/output ports and parameters). The goal is for the model to complete the
code by generating the missing internal logic, control structures, and signal definitions. This task
mirrors autocompletion functionality found in modern code editors and evaluates the model’s ability
to infer and generate code from context.

RTL Code Generation In the RTL code generation task, the model is tasked with producing a
full implementation of RTL code based on a high-level description and specified input and output
parameters. The goal is to generate a fully functional Verilog module that adheres to the provided
specifications. This task assesses the model’s ability to translate design requirements into precise
RTL implementations, which is critical for automating the hardware design process.

3.3 MULTIMODAL TRANSFORMATION OF RTL CODE

3.3.1 GRAPH-BASED CODE REPRESENTATION

Abstract Syntax Tree (AST) serves as a tree-based representation to model the structure of program-
ming code, extensively used in syntax analysis and compilation. In the context of Verilog code,
each node within the AST denotes a variable or operator, and the edges formulate the relations be-
tween these nodes. Additionally, Control/Data Flow Graph (CDFG) (Orailoglu & Gajski, 1986) is
a another graph-based code representation to visualize how data moves between registers and how
control signals dictate the operation of the design. CDFG proves advantages for modeling and ver-
ifying the functionality of RTL designs (Coussy et al., 2009; Vasudevan et al., 2021). We generate
the AST and CDFG of RTL designs with open-source tools Yosys (Wolf, 2016) and customized
Pyverilog (Takamaeda-Yamazaki, 2015).

3.3.2 CIRCUIT NETLIST SYNTHESIS

Our dataset contains RTL repositories with module invocations and complete Verilog files, enabling
us to derive the circuit netlists via logic synthesis process. For each RTL repository, we employ
the commerical tool Synopsys Design Compiler 2019.12 to transform HDL code into netlists. The
RTL designs are mapped into several open-source technology libraries, including GlobalFoundries
180nm, skywater 130nm, ihp-sg 130nm, nangate 45nm and asap 7nm. Each RTL file is synthe-
sized using both the compile and compile ultra commands. By toggling the set max area 0 option,
we obtain both the default netlist and a netlist optimized for maximum area constraints. We as-
sess the internal, transition, and leakage power of each mapped netlist using PrimeTime (Synopsys,
2023.12). The critical path delay is reported by the Design Compiler.

Finally, we store the post-mapping netlist into both verilog format (.v files) and Standard Delay
Format (SDF) (Sagdeo, 1998) (.sdf files). Moreover, we record the logic synthesis reports (.rpt files)
with maximum path delay, area and dynamic power for the following experiments. We also convert
the post-mapping netlist into And-Inverter Graph (AIG) format, a prevalent and widely-adopted
common format for netlist learning (Li et al., 2022; Shi et al., 2023; 2024; Deng et al., 2024), using
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abc (Brayton & Mishchenko, 2010) tool for further investigation. The multi-modal data cases are
illustrated in Figure 3.

4 BENCHMARK AND EXPERIMENTS

4.1 OVERVIEW

To evaluate our multi-modal dataset DeepCircuitX and establish benchmarks, we design experi-
ments of human evaluation in Section 4.2, RTL code tasks in Section 4.3 and Section 4.4, and PPA
prediction experiments in Section 4.5.

Specially, in Section 4.3 and Section 4.4, we establish benchmarks for LLMs tailored to RTL tasks,
utilizing open-source models such as CodeLlama (Roziere et al., 2023), CodeT5+ (Wang et al.,
2023), deepseek-coder (Guo et al., 2024) and CodeGen (Nijkamp et al., 2022). Our annotated data
is employed to fine-tune these models for RTL code understanding, completion, and generation
tasks. Here is an concise iintroduction of the based-LLMs we select:

• CodeLlama is fine-tuned Llama on a diverse corpus of code from various programming
languages, enabling it to understand syntax, semantics, and the context of code snippets.

• CodeT5+ is an enhanced version of the original CodeT5 model, specifically optimized for
code understanding and generation tasks. Building on the strengths of its predecessor.

• CodeGen is trained on GPT-3 (Floridi & Chiriatti, 2020) by a diverse range of programming
languages and employs advanced techniques to understand and generate code efficiently.

• DeepSeek-V2-lite (Liu et al., 2024) has broader applicability on general tasks of natural
language and DeepSeek-Coder-V2-lite (Zhu et al., 2024) focuses on code-related tasks,
offering fine-tuned capabilities for high-quality code generation and synthesis.

4.2 HUMAN EVALUATION

To evaluate the effectiveness of our generating comments approach and the quality of the annota-
tions, we conduct a series of evaluation criteria and metrics involving human reviews by independent
experienced engineers. We employ the following metrics: Accuracy, Completeness and Understand-
able Clarity. The detailed grading criteria is introduced in the Appendix A.

Engineers are tasked with analyzing both the RTL code and the accompanying annotations based
on specific criteria, ensuring a thorough evaluation of the provided information. Subsequently, they
assign a grade to each metric on a scale from 1 to 4, with 4 indicating the highest quality and 1
indicating the lowest. To ensure fairness, each generated text is reviewed by 5 individuals, and the
average score is recorded in Table 4. We observe that the code annotations in DeepCircuitX exhibit
high quality, with all metrics scoring above 3.5 out of 4.

Table 4: Human evaluation grading of repo-level annotation and module-level annotation, we use the
metrics of accuracy, completeness, understandable clarity to evaluate the quality of our annoation.

Metrics Repo Annotation Module Annotaion
Accuracy 3.74/4 3.5/4
Completeness 3.79/4 3.78/4
Understandable Clarity 3.84/4 3.76/4

4.3 RTL CODE UNDERSTANDING

4.3.1 EVALUATION METRICS

BLEU measures n-gram overlap (1 to 4) between generated text and reference translations, incorpo-
rating a brevity penalty. METEOR accounts for synonymy and stemming, calculating a harmonic
mean of precision and recall. ROUGE focuses on summarization, with variants like ROUGE-N for

7
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n-gram overlap and ROUGE-L for the longest common subsequence, emphasizing recall to assess
content relevance.

4.3.2 ANALYSIS

The experimental results, shown in Table 5, demonstrate the performance of various base Large
Language Models (LLMs) and fine-tuned LLMs on our RTL code understanding benchmark, using
evaluation metrics BLEU-4, METEOR, ROUGE-1, ROUGE-2, and ROUGE-L.

Initially, the original versions of the LLMs, such as CodeLLama, CodeT5+, CodeGen2, and
DeepSeek, exhibit relatively low performance across most metrics. For example, CodeLLama (orig-
inal) achieves a BLEU-4 score of 0.0828, while CodeGen2.5 (original) shows moderate improve-
ment with a BLEU-4 score of 0.1060. Among the original models, DeepSeek-Coder-V2-lite (origi-
nal) stands out, significantly outperforming others with a BLEU-4 score of 2.2387 and a ROUGE-1
score of 30.3208, indicating its strong baseline performance even before fine-tuning.

After fine-tuning on our dataset, every large model demonstrates significantly better performance
across BLEU-4, METEOR, ROUGE-1, ROUGE-2, and ROUGE-L metrics compared to their origi-
nal, non-fine-tuned counterparts. This highlights the effectiveness of our dataset. Moreover, models
of various sizes, such as the 220M CodeT5, as well as larger 7B and 16B models, all show sub-
stantial improvements after fine-tuning. This indicates that our dataset is well-suited for models of
different scales, providing strong adaptability and generalization.

Overall, the fine-tuned LLMs significantly outperform their original counterparts, indicating the
importance of fine-tuning on domain-specific datasets like ours.

Table 5: The results of our base-LLMs and fine-tuned LLMs by our training dataset on our RTL
code understanding benchmark.

Based LLM BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L
CodeLLama (original) 0.0828 5.9414 11.0046 0.3139 0.2581
CodeT5+ 220m-bimoal (original) 0.1410 4.3277 10.9925 0.5076 9.3043
CodeGen2 (original) 0.1082 3.7890 8.0311 0.1173 7.2161
CodeGen2.5 (original) 0.1060 4.8271 9.4001 0.3698 8.5856
DeepSeek-Coder-V2-lite (original) 2.2387 24.3311 30.3208 6.3163 27.4282
DeepSeek-V2-lite (original) 0.2311 3.3951 7.3720 0.2646 6.3360

CodeLLama (7b) 0.8619 18.2621 25.0461 6.4493 22.8182
CodeT5+ (220m-bimodal) 4.9067 23.5043 34.8671 9.9023 32.1642
CodeGen2 (1b) 7.7605 27.8049 37.2150 13.1385 34.0647
CodeGen2.5 (7b) 13.6858 34.7494 43.5244 18.5249 40.2223
DeepSeek-Coder-V2-lite (16b) 11.9180 33.5011 41.8527 17.2014 38.0473
DeepSeek-V2-lite (16b) 13.6972 39.5962 43.3732 19.0589 39.5962

4.4 RTL CODE COMPLETION AND GENERATION

4.4.1 EVALUATION METRICS

In the realm of RTL code completion and generation, the evaluation of model performance is critical
to advancing intelligent programming tools. The Pass@k metric serves as a pivotal measure in this
domain, quantifying the accuracy of code generation models by assessing their ability to produce
valid solutions within the top-k predictions. Specifically, Pass@k evaluates whether the correct
code snippet appears among the model’s top k outputs, thereby providing insights into both the
effectiveness and reliability of the model’s predictions.

4.4.2 ANALYSIS

Table 6 compares the performance of both original and fine-tuned LLMs on RTL code completion
and generation tasks, focusing on Pass@1 and Pass@5. Notably, every model fine-tuned with our
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dataset significantly outperforms its original, non-fine-tuned counterpart, demonstrating the effec-
tiveness of our data. Additionally, for models of different scales, such as the 220M CodeT5 and 7B
models, the results after fine-tuning show substantial improvements. This highlights the adaptability
and generalization capability of our dataset across various model sizes.

Table 6: Pass@K results for RTL code completion and generation across various LLMs.

Based LLM Pass@1 Pass@5
RTLLM VerilogEval RTLLM VerilogEval

CodeLLama (original) 0 0.64% 0 0
CodeT5+ 220m-bimodal (original) 0 0 0 0

CodeGen2 (original) 0 0 0 0.64%
CodeGen2.5 (original) 17.24% 23.08% 17.24% 24.36%

CodeLLama (7b) 6.90% 1.92% 6.90% 6.41%
CodeT5+ (220m-bimodal) 3.45% 4.49% 3.45% 4.49%

CodeGen2 (1b) 13.79% 10.90% 13.79% 10.90%
CodeGen2.5 (7b) 24.14% 24.36% 24.14% 25%

4.5 PPA PREDICTION

4.5.1 OVERVIEW

Optimizing Power, Performance, and Area (PPA) stands out as a primary objective in the circuit
design process. Estimating PPA metrics at an early stage not only boosts design efficiency but also
empowers a more agile response to evolving design requirements and constraints. Unlike previous
RTL datasets that solely gather Verilog files, our datasets encompass entire repositories, allowing
us to obtain post-mapping netlists and logic synthesis reports by EDA tools. Consequently, we can
parse the PPA metrics from the logic synthesis reports and predict them for the corresponding RTL
designs at an early stage. In this subsection, we formulate the PPA prediction task within our dataset
and assess the effectiveness of current learning-based prediction models (Xu et al., 2022; Sengupta
et al., 2022; Fang et al., 2023).

4.5.2 EVALUATION METRICS

We regard the circuit charateristics of the post-mapping netlist produced by the Design Compiler
tool with default settings as the ground truth for PPA metrics. Specifically, we define the dynamic
power under random workloads as the Power metric, the maximum path delay as the Delay metric
and the total cell area as the Area metric.

We use Mean Absolute Error Percentage (MAPE) and Root Relative Square Error (RRSE) to eval-
uate the prediction accuracy of PPA. It should be denoted that the PPA predictor trained on the
datasets generated with a certain technology library cannot be generalized to another, as the PPA
metrics of netlists are strongly linked to the technology library. Therefore, we choose the netlists
and logic synthesis reports with a specific library, which keeps consistency with the settings in Xu
et al. (2022); Sengupta et al. (2022); Fang et al. (2023). We opt for skywater 130nm library in the
following experiments.

4.5.3 ANALYSIS

We collect 146 RTL designs for training and 10 designs for testing, with these designs containing
more than 10k cells after logic synthesis and closely resembling practical designs. To explore the
data scalability of PPA prediction models, we sample the training dataset size to 10%, 50% and
100%. It should be denoted that we exclude the model (Sengupta et al., 2022) for the delay predic-
tion as it cannot support this task. According to the prediction results shown in Table 7, we conclude
three observations. Firstly, the accuracy of predictions improves as the training data volume in-
creases. For instance, the MAPE of area prediction is 4.3201 with 10% data and decreases to 0.3303
with 100% data. Secondly, PPA predictors demonstrate weaker performance in delay prediction.
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Table 7: PPA prediction results of learning-based models (the lower, the better).

Model Data Area Power Delay
MAPE RRSE MAPE RRSE MAPE RRSE

Xu et al. (2022)
10% 1.9379 1.4913 1.9045 1.1362 49.3638 6.6901
50% 0.7811 1.9041 0.8425 1.1759 47.7314 2.8816
100% 0.6564 1.7197 0.7549 1.1740 4.7392 2.3647

Sengupta et al. (2022)
10% 1.9066 1.0802 10.2783 14.7510 - -
50% 0.7954 0.6133 0.7478 0.3539 - -
100% 0.5996 0.5074 0.7343 0.6558 - -

Fang et al. (2023)
10% 1.3405 1.1197 2.3253 29.7767 80.7779 8.5936
50% 0.5640 0.9982 1.7237 29.8749 24.7716 6.8725
100% 0.3303 0.7605 0.6501 2.2541 3.4769 4.2863

For example, both models exhibit unsatisfactory performance, where (Xu et al., 2022) shows 4.7392
MAPE and (Fang et al., 2023) has 3.4769 MAPE. This suggests that estimating timing characteris-
tics in the early stages using path features on RTL-based graphs is still difficult, as logic synthesis
tools heavily optimize logic to minimize maximum path delays. Thirdly, in comparison to the orig-
inally reported performance on simple benchmarks, these models exhibit diminished performance
on designs more than 10k cells in our dataset. Therefore, how to accurately predict PPA of practical
designs remains an opening question, necessitating further exploration in the EDA community.

5 LIMITATION

One key limitation of DeepCircuitX is that it emphasizes the diversity of RTL project categories,
but does not focus as much on the quantity of RTL code. Additionally, due to time constraints and
the speed of annotation, we selected only high-quality data for annotation and processing, including
synthesis for AST, CDFG, PPA, and Netlist generation. Furthermore, we have not yet conducted
specific experiments to evaluate the quality of the generated AST and CDFG representations. In
future iterations of DeepCircuitX, we plan to conduct comprehensive experiments to assess the
quality and performance of the AST, CDFG, and Netlist components.

6 CONCLUSION

In this paper, we introduce DeepCircuitX, a comprehensive and multimodal dataset tailored to
advancing RTL code understanding, generation, and completion tasks in hardware design automa-
tion. By offering a holistic resource that spans repository, file, module, and block-level RTL code,
DeepCircuitX enables large language models to better tackle the complexities of hardware design.
The integration of Chain of Thought (CoT) annotations further enhances the dataset’s value by
providing detailed insights into functionality and structure, thereby improving model training and
performance across a variety of RTL tasks. Our experiments demonstrate that models trained on
DeepCircuitX significantly outperform existing methods in tasks like code understanding, genera-
tion, and completion, as well as in RTL-to-PPA prediction. The inclusion of synthesized netlists and
PPA metrics opens up new avenues for early-stage design exploration, offering a practical tool for
both researchers and practitioners in electronic design automation (EDA). As a result, DeepCircuitX
establishes new benchmarks for RTL tasks, setting a foundation for future innovations in hardware
design automation and demonstrating the potential of LLMs to transform this critical domain.
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A HUMAN EVALUATION GRADING CRITERIA

1. The grading criteria of Accuracy

• 4: Completely Accurate: The annotation accurately captures all functionalities, I/O signals,
and operational logic without errors.

• 3: Partially Accurate: The annotation contains some inaccuracies in a limited number of
functionalities, I/O signals, or operational logic descriptions.

• 2: Not Quite Accurate: The annotation has significant inaccuracies affecting a majority of
functionalities, I/O signals, or operational logic descriptions.

• 1: Completely Incorrect: The annotation fails to accurately describe the functionalities, I/O
signals, or operational logic.

2. The grading criteria of Completeness

• 4: Fully Complete: The annotation provides a comprehensive explanation of overall func-
tionality, I/O signals, and operational logic.

• 3: Mostly Complete: The annotation is largely complete but misses minor details regarding
overall functionality, I/O signals, or operational logic.

• 2: Not Quite Complete: The annotation is partially complete but misses many details re-
garding overall functionality, I/O signals, or operational logic.

• 1: Incomplete: The annotation lacks significant portions of the overall functionality, I/O
signals, or operational logic.

3. The grading criteria of Understandable Clarity

• 4: Clear and Concise: The annotation is articulated clearly with minimal redundancy.
• 3: Relatively Clear: The annotation is generally clear but contains some redundant infor-

mation.
• 2: Vague: The annotation is unclear and lacks precision.
• 1: Inaccurate or Incomplete: The annotation is both inaccurate and incomplete.
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B CASE: ANNOTATION

As illustrated in Figure 2, our dataset preserves the original file structure of the repository while
extracting repository-level annotations and providing multi-level annotations for each Verilog file in
the original repository. For each Verilog file, all annotation information is stored in a folder named
”*<original file name>*”, which contains:

• <original file name>.txt: A text file containing the module-level annotations;
• <original file name>.v: The original Verilog file;
• blocks: A folder that contains the original code for each block from the Verilog file

(block{i}.v) along with the corresponding block-level annotations (block{i}.txt).
Each annotation includes the line numbers indicating the block’s position in the original
code and a comment describing its functionality;

• intermediate comment: A folder containing intermediate results generated by the
LLM during the Chain of Thought (CoT) process;

• spec: A folder containing a file named spec.txt, which provides a detailed specifica-
tion of the module.

When we construct the agent of module-level RTL code annotation, each round focuses on different
aspects of the code:

Round 1:

• What is the name of the module in the code?
• Provide a brief explanation of the module’s functionality.

Round 2:

• What are the input and output ports of the module?
• Provide a simple explanation of each input and output port, and their respective roles within

the module.

Round 3:

• What are the internal signals used in the module?
• Provide a brief explanation of each internal signal and its role in the module.

C CASE: CIRCUIT TRANSFORMATION

Figure 3 shows an example of our dataset after Circuit transformation, including the snippet of RTL
design, are report and the snippet of post-mapping netlist. The file structures are listed as follows:

• filelist.f: The list of all verilog used for logic synthesis.
• graph: The directory of graph-based circuit representations, including the CDFG
cdfg.json and AST ast.txt

• <lib name>/report: The directory of logic synthesis reports produced by the com-
merical EDA tool.

• <lib name>/netlist.v: The post-mapping netlist under technology library <lib
name>.

• <lib name>/netlist.sdf: The Standard Delay Format (SDF) file of post-mapping
netlist, indicating the wire connections and timing models of cells.

• <lib name>/netlist.aig: The And-Inverter Graph (AIG) file of circuit implemen-
tations, which is converted from post-mapping netlist with strash command in abc Bray-
ton & Mishchenko (2010).
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├── signal_pipeline.txt
├── bench
│  ├── *axis_async_fifo_tb*
│  │  ├── axis_async_fifo_tb.txt
│  │  ├── axis_async_fifo_tb.v
│  │  ├── blocks
│  │  │  ├── block1.txt
│  │  │  ├── block1.v
│  │  │  ├── ...
│  │  │  ├── block3.txt
│  │  │  └── block3.v
│  │  ├── intermediate_comment
│  │  │  ├── axis_async_fifo_tb_QA.json
│  │  │  └── ...
│  │  └── spec
│  │    └── spec.txt
│  ├── *tart_correlator_tb*
│  │  ├── blocks
│  │  ├── intermediate_comment
│  │  ├── spec
│  │  ├── tart_correlator_tb.txt
│  │  └── tart_correlator_tb.v
│  └── *top_tb*
│    ├── blocks
│    ├── intermediate_comment
│    ├── spec
│    ├── top_tb.txt
│    └── top_tb.v
├── lib
│  └── micron
│    ├── *ddr*
│    └── *ddr_parameters*

...

├── bench
│  ├── Makefile
│  ├── README.md
│  ├── axis_async_fifo_tb.v
│  ├── tart_correlator_tb.v
│  ├── test_vectors
│  │  ├── Cargo.toml
│  │  ├── Makefile
│  │  ├── README.md
│  │  ├── src
│  │  │  └── main.rs
│  │  ├── test_vectors_1000_8ant_1bit.txt
│  │  └── test_vectors_1000_8ant_2bit.txt
│  └── top_tb.v
├── lib
│  ├── axis_usbd
│  ├── micron
│  │  ├── ddr.v
│  │  └── ddr_parameters.v
│  ├── misc-verilog-cores.bash
│  ├── verilog-axis
│  └── verilog-axis.bash

...

Original Repo: signal_pipeline

Our Dataset: signal_pipeline

The repository named "signal_pipeline" is dedicated to handling and 
processing radio-frequency signals, primarily targeted for applications like 
software-defined radios and radio transmission systems. It includes a 
comprehensive suite of modules designed for various aspects of signal 
processing, such as buffering, correlating, accumulating, and multiplexing 
of signal data. Key modules like 'toy_correlator', 'tart_correlator', 
'correlate', 'visaccum', and 'sigbuffer' function to streamline the data flow 
through sequence control, data handling, and complex calculations over 
different clock domains. These are well-integrated via testbench modules 
('toy_correlator_tb', 'tart_correlator_tb', etc.) that simulate module 
operations under varying conditions to ensure reliability and correctness. 
Additionally, the repository architectures interfaces, including SPI and 
ULPI for USB, and implements FIFO methodologies (like 
'axis_async_fifo') to manage data queues efficiently. Modules such as 'top' 
and 'controller' manage the overarching hardware connections and 
operational synchronicity. The design complexity is further managed 
through implementation on FPGA platforms, with references to specific 
hardware configurations like GOWIN FPGAs. The repository not only 
handles signal processing tasks but also simulates the peripheral scenarios 
via modules like 'radio_dummy' and test configurations ensuring robust 
module verification and data integrity checks across the system.

Repo-Level Annotation

The 'axis_async_fifo_tb' is a testbench module for testing an AXI Stream 
FIFO (First-In, First-Out) interface with different parameter configurations 
like depth, data width, etc., and conditions like asynchronous resets, data 
generation, and data readiness. It includes two simulated clock domains 
for source (s_clk) and master (m_clk), along with internal signals for test 
inputs and capturing responses. It employs an instance of 'axis_async_fifo' 
module, stimulating it with generated data, and observes response status 
signals for validating the main module's operations.

Module-Level Annotation

Line number: 
[84, 137]
Comment: 
This block of code implements an AXIS asynchronous FIFO(First-In, 
First-Out) buffer. It allows data transfer between two clock domains, with 
the depth and data width controlled by the parametrized 'DEPTH' and 
'DATA_WIDTH'. Special features such as 'KEEP', 'LAST', 'ID', 'DEST', 
and 'USER' are enabled by their corresponding '_ENABLE' parameters. 
The AXIS FIFO instance is instantiated with a read clock (m_clk) and 
write clock (s_clk), and includes ports for data input (s_axis_tdata) and 
output (m_axis_tdata). Also, there are separate ports to monitor the status 
of the FIFO buffer, including overflow or the validity of frames.

Block-Level Annotation

Detailed Specification
Module name: axis_async_fifo_tb. 
Module specification: The 'axis_async_fifo_tb' module serves as a 
testbench for the asynchronous FIFO memory queue which is designed 
using the AXI (Advanced eXtensible Interface) stream interfaces, 
specifically referred to as 'axis_async_fifo'. The crucial functionalities 
include the generation of various testing conditions such as asynchronous 
resets, data generation, validity, readiness signals, and more. 
Input ports incorporate s_clk (source clock), async_rst (asynchronous reset 
signal), s_axis_tdata (source AXI Stream input data), s_axis_tkeep and 
s_axis_tvalid (AXI Stream validity signals for tdata), s_axis_tlast (source 
AXI Stream signal indicating the last transfer in a packet) ……

Figure 2: Illustration of the dataset repository structure with multi-level annotations
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├── rtl
│ ├── README.md
│ ├── filelist.f
│ ├── process.v
│ └── image.v
├── graph
│ ├── cdfg.json
│ └── ast.txt
├── sky130
│ └── report
│ ├── area.rpt
│ ├── design.rpt
│ ├── power.rpt
│ └── timing.rpt
│ ├── netlist.v
│ ├── netlist.sdf
│ └── netlist.aig
├── asap7
│ └── report
│ ├── area.rpt
│ ├── design.rpt
│ ├── power.rpt
│ └── timing.rpt
│ ├── netlist.v
│ ├── netlist.sdf
│ └── netlist.aig

...

├── rtl
│ ├── README.md
│ ├── filelist.f
│ ├── process.v
│ └── image.v

Original Repo: Image-Processor

Our Dataset: Image-Processor

Library(s) Used: sky130_fd_sc_hd__tt_025C_1v80 
Number of ports:                           62
Number of nets:                        201016
Number of cells:                       200978
Number of combinational cells:         102674
Number of sequential cells:             98304
Number of macros/black boxes:               0
Number of buf/inv:                      31778
Number of references:                      13
Combinational area:             611959.402199
Buf/Inv area:                   119281.897054
Noncombinational area:         2951951.062500
Macro/Black Box area:                0.000000
Net Interconnect area:      undefined  (Wire load has zero net area)
Total cell area:               3563910.464699
Total area:                 undefined

Area Report (area.rpt)

sky130_fd_sc_hd__edfxtp_1 \data_reg[23][2][5] ( .D(n90603), .DE(n110473), 
.CLK(n80384), .Q(\data[23][2][5] ) );
sky130_fd_sc_hd__edfxtp_1 \data_reg[23][2][4] ( .D(n90179), .DE(n110473), 
.CLK(n80384), .Q(\data[23][2][4] ) );
sky130_fd_sc_hd__edfxtp_1 \data_reg[23][2][3] ( .D(n89755), .DE(n110473), 
.CLK(n80384), .Q(\data[23][2][3] ) );
sky130_fd_sc_hd__edfxtp_1 \data_reg[23][2][2] ( .D(n89331), .DE(n110473), 
.CLK(n80384), .Q(\data[23][2][2] ) );
sky130_fd_sc_hd__edfxtp_1 \data_reg[23][2][1] ( .D(n88907), .DE(n110473), 
.CLK(n80383), .Q(\data[23][2][1] ) );

Snippet of Post-Mapping Netlist (netlist.v)

Snippet of RTL Design (process.v)
always @(*) begin

case (state)
// IDLE state
IDLE: begin

mirror_done = 0;
out_we = 0;
row_index = 0;
col_index = 0;
next_state = Read_first_pixel;

end
... ...
endcase

end

Figure 3: Illustration of the dataset repository structure with Circuit Transformation
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Block Extraction

Always block

Initial block

Task block

Function block

Generate block

Final block

Assign block

Module Code

BlocksBlocks
BlocksBlocks

Based on the provided Verilog code, and its corresponding 
block of code, generate a brief summary of the block. 

...

[Function of the block]. 
[Implementation details of the block].

Refined Code

Delete the original comment

1. What are the internal signals used in the module?
2. Provide a simple explanation of each internal 
signal and its role in the module.

Module name: [module name]. 
Explanation: [module functionality].

1. What are the input and output ports of the 
module?
2. Provide a simple explanation of each input and 
output port and their role in the module.

Input ports: [input ports]
Explanation: [input port explanation]
Output ports: [output ports]
Explanation: [output port explanation]

1. What is the name of the module in the code?
2. Provide a simple explanation of the module's 
functionality based on the code and comments.

Module name: [module name]. 
Explanation: [module functionality].

Answers

Based on the provided original Verilog code, and 
above answers, generate a detailed specification for 
the module.

…

Module name: [module name]. Module 
specification: [module specification].

Block-level Annotation

Using the detailed specification and the original Verilog 
code, generate a concise module-level comment that 
describes:
1. What the module does (its functionality).
2. How the module achieves its functionality (the 
implementation details).

Module-level comment: [module-level comment].

Module-Level Annotation

Module’s Specification

Here are the module-level file descriptions and corresponding relative file paths from 
different files located in the repository called {repo_name}:

File path: {file_path} Description: {specification}
…

File path: {file_path} Description: {specification}
Based on these descriptions, please follow the command above to generate a repository-
level description that clearly and accurately reflects the details.'''

Repo-level Annotation

The {repo_name} repository is designed to implement a …

File 1

File n

Annotations

Specification

Annotations

Specification

Repo

Figure 4: Detailed procedures in our proposed method: CoT code-annotation.
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