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Abstract

Large language models (LLMs) are increasingly
used for querying purposes, but their associated
costs vary significantly. This study investigates
the pricing structures of popular LLM APIs, such
as GPT-4, ChatGPT, and J1-Jumbo, revealing sub-
stantial fee differences. To mitigate the expense
of using LLMs on extensive queries and text, we
propose three strategies: prompt adaptation, LLM
approximation, and LLM cascade. We present
FrugalGPT, an adaptable LLM cascade that in-
telligently selects LLM combinations to reduce
costs by up to 98% while matching or improving
the accuracy of individual LLMs. This work es-
tablishes a foundation for sustainable and efficient
LLM utilization, offering valuable insights and
practical techniques for users.

1. Introduction
We are in the midst of an explosion of large language models
(LLMs). The alluring possibilities of using LLMs for large-
scale applications such as commerce, science, and finance
have led a growing number of companies (OpenAI, AI21,
CoHere, etc.) to offer LLMs as services.

While LLMs such as GPT-4 achieves unprecedented perfor-
mance in tasks such as question answering, using them for
high-throughput applications can be very expensive. For
example, ChatGPT is estimated to cost over $700,000 per
day to operate (Cosa), and using GPT-4 to support cus-
tomer service can cost a small business over $21,000 a
month (Cosb). In addition to the financial cost, using the
largest LLMs encures substantial environmental and energy
impact (BGMMS21; WRG+22), affecting the social wel-
fare of current and future generations.

There are many LLMs now available via APIs and they
charge heterogeneous prices. The cost of using a LLM API
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Figure 1. Our vision for reducing LLM cost while improving ac-
curacy. (a) The standard usage sends queries to a single LLM (e.g.
GPT-4), which can be expensive. (b) Our proposal is to use prompt
adaption, LLM approximation and LLM cascade to reduce the
inference cost. By optimizing over the selection of different LLM
APIs (e.g., GPT-J and GPT-4) as well as prompting strategies (such
as few-shot (LSZ+21) and chain-of-thought (CoT) (WWS+22)),
we can achieve substantial efficiency gains.

typically consists of three components: 1) prompt cost (pro-
portional to the length of the prompt), 2) generation cost
(proportional to the generation length), and 3) sometimes
a fixed cost per query. We compared the cost associated
with using 12 different commercial LLMs from mainstream
providers including OpenAI, AI21, CoHere and Textsynth
(Table 1). Their cost can differ by up to 2 orders of mag-
nitudes: for example, the prompt cost for 10M tokens is
$30 for OpenAI’s GPT-4 but only $0.2 for GPT-J hosted by
Textsyth. Given the heterogeneous cost and quality, how
to leverage the full set of LLM options is a key challenge
for pracitioners. Moreover, relying on one API provider is
not reliable if that provider becomes unavailable, potentially
due to spiking demand.

Our contributions. We lay out our vision of a flexible
framework that uses LLM APIs to process natural language
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queries within a budget, termed FrugalGPT. The first half
of this paper is structured as a position piece, where we
discuss three main strategies for cost reduction: prompt
adaptation, LLM approximation, and LLM cascade (Figure
1). The prompt adaptation explores how to identify effective
prompts to save cost. LLM approximation aims to create
simpler and cheaper LLMs to match a powerful LLM on
specific tasks. LLM cascade focuses on how to adaptively
choose which LLM APIs to use for different queries.

To illustrate the potential of these ideas, we implement and
evaluate a simple version of FrugalGPT using LLM cascade
in the second half. On each dataset and task, FrugalGPT
learns to adaptively triage different queries in the dataset to
different combinations of LLMs, including ChatGPT (Cha),
GPT-3 (BMR+20) and GPT-4 (Ope23). Our experiments
show that FrugalGPT saves up to 98% of the inference
cost of the best individual LLM API while matching its
performance on the downstream task. We believe this is
only the tip of the iceberg and we hope FrugalGPT opens
a new window toward reducing LLMs’ inference cost and
improving its performances.

Related Works. Prompt Engineering. Prompt en-
gineering has emerged as a discipline for crafting
prompts to enhance LLMs’ performance across vari-
ous applications. Recent developments include few-
shot (BMR+20), chain-of-thought (WWS+22), knowledge
enhancement (LLL+21; KSL+22), and numerous other
prompting techniques (MDL+23; KTF+22; ZSH+22). Ex-
isting prompt engineering approaches often aim to provide
detailed task explanations and in-context examples, result-
ing in long and expensive prompts.

System Optimization for LLMs. Numerous efforts have
aimed to accelerate the training and inference time of
modern deep learning models through system optimiza-
tion (HMD15; Cas19; JZA19; RRWN11). Recent work
focuses on post-training quantization (BHS+22; YLW+23;
XLS+22), training pipeline parallelism (LZG+21), and
hardware-aware pruning (KFA23) tailored for LLMs. Sys-
tem optimization requires modifications to LLMs’ internal
states (e.g., model weights), but many commercial LLM
APIs do not release their models.

ML-as-a-Service. LLM APIs constitute a crucial com-
ponent of the rapidly expanding machine-learning-as-a-
service (MLaaS) industry. Recent studies have demonstrated
the diversity of different ML APIs’ predictions (BG18;
KNL+20; CCZZ21) and proposed strategies for leverag-
ing various classification ML APIs to improve perfor-
mance (CZZ20; CZZ22). The outputs of LLM APIs encom-
pass the entire natural language space, but existing work re-
quires a fixed (and known) label set. Moreover, both prompt
choices and LLM API selections significantly impact gener-

ative tasks’ performance, resulting in a considerably larger
optimization space than standard classification.

2. Scope and Problem Statement
Natural language query answering. In this paper, we
concentrate on the standard natural language query answer-
ing task, where the objective is to answer a query q sampled
from a natural language query distribution Q. Various real-
world natural language tasks, such as news classification,
reading comprehension, and commonsense reasoning, can
be formulated as query-answering problems.

LLM marketplace. We consider answering queries via
the LLM market, which comprises K different LLM APIs,
denoted by {fi(·)}Ki=1. Each fi(·) : P 7→ A is a function
that, given a prompt p from the prompt space P , generates
an answer from the answer distribution A. Note that to use
LLM APIs, one has to convert each query q to some prompt
first. LLM APIs are associated with their own cost, typically
consisting of three components: a portion proportional to
the length of the prompt, a portion proportional to the length
of the generated answer, and (sometimes) a fixed cost per
query. Formally, given a prompt p, the cost of using the ith
LLM API is denoted by ci(p) ≜ c̃i,2∥fi(p)∥+c̃i,1∥p∥+c̃i,0,
where c̃i,j , j = 0, 1, 2 are constants.

Problem statement: budget-aware LLM API usage.
Our goal is leveraging LLM APIs within a budget constraint.
Formally, this can be formulated as maximizing the overall
task performance E(q,a)∈Q×A[r(a, â(s, q))], while ensur-
ing the average cost is bounded by a user-defined value b,
i.e., E(q,a)∈Q×A[c(s, q)] ≤ b. Here, a denotes the correct
answer to the query q, â(s, q) is the generated answer by
some strategy s for query q, and c(s, q) is the associated
cost for processing query q using strategy s. The reward
function r(·, ·) measures how closely the generated answer
aligns with the correct one. It is crucial to note that the
search space for the strategy is vast, encompassing factors
such as which prompts to use, which LLM APIs to employ,
and how to aggregate their responses.

3. How to Use LLMs Cheaply and Accurately
Now we present our vision on how to use LLM APIs within
a budget. As shown in Figure 1 (b), we discuss three cost-
reduction strategies: prompt adaptation, LLM approxima-
tion, and LLM cascade. We focus on one exemplar instance
within each category, due to space limit.

Strategy 1: LLM cascade. The increasing availability
of LLM APIs with heterogeneous performance and costs
presents a unique opportunity for data-adaptive LLM se-
lection. Appropriately selecting which LLMs to use can
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(b) Prompt selection
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GPT-4
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Prompt: Q1+A1,Q2+A2,Q3+A3,Q4+A4
 Q: What is the result of 
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 Q: What is the result of 
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Prompt: Q2+A2,Q4+A4

 Q: What is the result of 
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o/w

Q: What helps prey hide? camouflage

(a) LLM cascade

score < 0.5

GPT-J GPT-4GPT-3
camouflage camouflage camouflage

accept answer

score < 0.9

accept answer accept answer

Figure 2. Illustrations of cost-saving strategies. (a) LLM cascade employs different LLM APIs for different queries. (b) Prompt selection
uses a subset of in-context examples as the prompt to reduce the size of the prompt. (c) Completion cache stores and reuses an LLM
API’s response when a similar query is asked.

provide both cost reduction and performance improvements.
LLM cascade, as illustrated in Figure 2 (a), is one such ex-
ample. LLM cascade sends a query to a list of LLM APIs
sequentially. If one LLM API’s response is reliable, then
its response is returned, and no further LLMs in the list are
needed. The remaining LLM APIs are queried only if the
previous APIs’ generations are deemed insufficiently reli-
able. Query cost is significantly reduced if the first few APIs
are relatively inexpensive and produce reliable generations.
Below we propose a concrete cascade strategy, which we
will experimentally test in the next section.

The key components of our LLM cascade consist of two
elements: (i) a generation scoring function and (ii) an LLM
router. The generation scoring function, denoted by gi(·, ·) :
Q×A 7→ [0, 1], generates a reliability score given a query
and an answer produced by the ith LLM API. The LLM
router selects m LLM APIs to include in the list. Let LLL ∈
[K]m denote the indexes of the m APIs selected by the
router. Given a new query, it iteratively invokes the ith
API in the list to obtain an answer fLi

(q). Then, it uses
the scoring function to generate a score gi(q, fLi(q)). It
returns the generation if the score is higher than a threshold
τττ i, and queries the next service otherwise.

The scoring function can be obtained by training a regres-
sion model that learns whether a generation is correct from
the query and a generated answer. Learning the selected list
LLL and the threshold vectors τττ can be modeled as a constraint

optimization problem:

max
LLL,τττ

E [r(a, fLz
(q))]

s.t. E

[
z∑

i=1

c̃Li,2∥fLi
(q)∥+ c̃Li,1∥q∥+ c̃Li,0

]
≤ b,

z = min
i∈[K]:gi(q,fLi

(q))≥τττ i

i

Here, z denotes the LLM API at which the router stops and
returns the answer, the first constraint ensures the average
cost is bounded by the budget, and the objective measures
the quality of the generation fLz

(q) for a query q compared
to the true answer a.

Strategy 2: Prompt adaptation. The cost of an LLM
query increases linearly with the size of the prompt. Con-
sequently, a logical approach to reduce the cost of using
LLM APIs involves decreasing the prompt’s size, a process
we refer to as prompt adaptation. Prompt selection (as il-
lustrated in Figure 2 (b)) is a natural example of prompt
adaptation: rather than employing a prompt containing nu-
merous examples that demonstrate how to perform a task,
one can retain a small subset of examples in the prompt.
This results in a smaller prompt and subsequently lower
cost. An intriguing challenge of prompt selection lies in
determining which examples to maintain for various queries
without compromising task performance.
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Strategy 3: LLM approximation. The concept of LLM
approximation is quite simple: if an LLM API is too costly,
one can approximate it using more affordable models or
infrastructures. One example is the completion cache: as
depicted in Figure 2 (c), the fundamental idea involves stor-
ing the response locally in a cache (e.g., a database) when
submitting a query to an LLM API. To process a new query,
we first verify if a similar query has been previously an-
swered. If so, the response is retrieved from the cache. An
LLM API is invoked only if no similar query is discovered
in the cache. The completion cache provides substantial
cost savings when similar queries are frequently posed. For
instance, consider a search engine powered by an LLM API.
If numerous users search for the same or similar keywords
simultaneously, the completion cache facilitates answering
all their queries by invoking the LLM only once.

Table 1. Summary of commercial LLM APIs. We use 14 LLM
APIs from 6 providers. The cost was retrieved in March 2023. The
cost can have three additive components: input (proportional to
the number of input tokens), output (proportional to the number of
generated tokens) and a fixed cost per request. IT and OT stand
for input tokens and output tokens. The unit is 10M. The LLMs’s
costs can differ by up to 2 orders of magnitudes. For example, to
process 10M input tokens, GPT-J from Textsynth costs only $0.2,
but OpenAI’s GPT-4 needs $30.

Provider API Size/B
Cost (USD)

IT OT request

OpenAI

GPT-Curie 6.7 2 2 0

ChatGPT NA 2 2 0

GPT-3 175 20 20 0

GPT-4 NA 30 60 0

AI21

J1-Large 7.5 0 30 0.0003

J1-Grande 17 0 80 0.0008

J1-Jumbo 178 0 250 0.005

Cohere
Xlarge 52 10 10 0

Medium 6.1 10 10 0

Textsynth

GPT-J 6 0.2 5 0

FAIRSEQ 13 0.6 15 0

GPT-Neox 20 1.4 35 0

Databricks Dolly 7 0.27 0.27 0

ForeFront QA 16 5.8 5.8 0

4. LLM Cascade Reduces Cost
In this section, we present an empirical study on the Frugal-
GPT LLM cascade. Our goal is focused on demonstrating
how much cost can be saved without hurting the accuracy.

98.2% 73.2%

59.2%

HEADLINES OVERRULING COQA
0

10

20

30

40

50

60

70
Best LLM API
FrugalGPT

C
os

t (
$)

Figure 3. Cost savings achieved by FrugalGPT to match the best
individual LLM APIs. Overall, FrugalGPT reduces the cost by
from 50% to 90%.

Setups: LLM APIs, Tasks, Datasets, and FrugalGPT
instances. We have selected 14 LLM APIs from 6 main-
stream providers, namely, OpenAI (Ope), AI21 (AI2), Co-
Here (CoH), Textsynth (Tex), Databricks (Dol), and Fore-
FrontAI (FFA). The details are summarized in Table 1.
FrugalGPT has been developed on top of these APIs and
evaluated on three datasets, namely, HEADLINES (SK21),
OVERRULING (ZGA+21) and COQA (RCM19). We fo-
cus on the LLM cascade approach with a cascade length
of 3, as this simplifies the optimization space and already
demonstrates exciting results.

Cost Savings. Here, we focus on examie if FrugalGPT
can reduce costs while maintaining accuracy and, if so,
by how much. Figure 3 displays the overall cost savings
of FrugalGPT, which range from 50% to 98%. This is
feasible because FrugalGPT identifies the queries that can be
accurately answered by smaller LLMs and, as a result, only
invokes those cost-effective LLMs. Powerful but expensive
LLMs, such as GPT-4, are utilized only for challenging
queries detected by FrugalGPT.

5. Discussions and Future Prospects
The substantial cost of employing LLMs in real-world sce-
narios presents a considerable barrier to their widespread
usage. In this paper, we outline and discuss practical strate-
gies for reducing the inference cost of using LLM APIs.
We also developed FrugalGPT to illustrate one of the cost-
saving strategies, LLM cascade. Our empirical findings
show that FrugalGPT can reduce costs by up to 98% while
preserving the performance of cutting-edge LLMs.
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