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Abstract: This paper presents a data-driven strategy to streamline the deployment
of model-based controllers in legged robotic hardware platforms. Our approach
leverages a model-free safe learning algorithm to automate the tuning of control
gains, addressing the mismatch between the simplified model used in the control
formulation and the real system. This method substantially mitigates the risk of
hazardous interactions with the robot by sample-efficiently optimizing parameters
within a probably safe region. Additionally, we extend the applicability of our
approach to incorporate the different gait parameters as contexts, leading to a safe,
sample-efficient exploration algorithm capable of tuning a motion controller for
diverse gait patterns. We validate our method through simulation and hardware
experiments, where we demonstrate that the algorithm obtains superior performance
on tuning a model-based motion controller for multiple gaits safely.
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1 Introduction
A model-based control strategy facilitates quick adaptation to various robots and eliminates the
need for offline training, thereby streamlining the design and test phases. However, it requires an
accurate dynamics model of the system, which is often unavailable due to our limited understanding
of real-world physics and inevitable simplifications to reduce the computational burden. As a
result, these controllers typically underperform on actual hardware without considerable parameter
fine-tuning. This tuning process is not only time-consuming but can also harm the hardware platform.
Additionally, it often requires reiteration for diverse environments or movement patterns.

This work explores the challenge of determining optimal control gain parameters for a model-based
legged locomotion controller. In doing so, we aim to bridge the disparity between simplified models
and actual hardware behavior, consequently improving the controller’s robustness and tracking
accuracy. To this end, we employ a safe learning algorithm, namely GOSAFEOPT [1] to automate
the parameter tuning process, enabling the online identification of optimal control gain parameters
within a safe region. Furthermore, we extend GOSAFEOPT by incorporating various gait parameters
as contexts [2]. This facilitates more sample-efficient learning of control gains tailored for distinct
gait patterns and allows for fluid online adjustments of the control gains during operation.

We demonstrate our method on the quadruped robot Unitree Go1 [3] in both simulation and hardware
experiments. In our simulation experiments, we show that contextual GOSAFEOPT outperforms
other model-free safe exploration baselines while ensuring zero unsafe interactions. Moreover,
when trained across varied gait patterns, the experimental results clearly indicate that our contextual
GOSAFEOPT delivers a considerable performance boost. Moving to our hardware experiments,
contextual GOSAFEOPT finds optimal feedback controller gains for both trot and crawl gaits in only
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50 learning steps, all while avoiding any unsafe interaction with the real robot. The resulting controller
gains, together with our model-based controller, ensure robust legged locomotion against perturbations
and environmental uncertainties. In addition, our tests reveal that GOSAFEOPT can effectively suggest
reasonably good controller gains for previously unseen gait patterns such as flying trot and pronk.

In summary, (i) we formulate the problem of safe control parameter tuning for a model-based legged lo-
comotion controller as constrained optimization, (ii) we extend GOSAFEOPT to account for contextual
scenarios while providing theoretical safety and optimality guarantees, (iii) we demonstrate the superi-
ority of contextual GOSAFEOPT over other state-of-the-art safe exploration algorithms in supporting
diverse gait patterns, and (iv) we show that our method successfully and safely tunes control gains
on the hardware and enhances the robustness and tracking performance of the controller significantly.

2 Related Work
Bridging the reality gap in legged locomotion tasks Several previous studies have emphasized
the importance of considering an actuator behavior and identifying the system latency to successfully
bridge the reality gap in legged robot systems [4, 5, 6]. These studies develop a simulation model of
a legged robot system incorporating either modeled or learned actuator dynamics and train a control
policy that can be effectively deployed to the robot hardware.

Incorporating this strategy into a model-based control framework is an area of active investigation.
Rather, in the context of model-based control, it is typically more straightforward to introduce
adjustable control gain parameters and fine-tune them to align with the real-world behaviors of
the robot. For instance, Kim et al. [7] use joint position- and velocity-level feedback to joint torque
command in order to address any discrepancy between the actual torque output and the intended
torque command for robots with proprioceptive actuators [8]. However, the fine-tuning of these
parameters continues to present a significant challenge. Schperberg et al. [9] utilize the unscented
Kalman filter algorithm to recursively tune control parameters of a model-based motion controller
online, and they successfully demonstrate it on the simulated quadrupedal robot in the presence of
sensor noise and joint-level friction. However, their proposed tuning method is inherently unsafe
and can therefore lead to arbitrary harmful interactions with the system. In contrast, our method
aims to optimize control gains while avoiding any unsafe interactions with the robot hardware.

Safe exploration for controller parameter tuning Training a controller directly on hardware
is a challenging task, as it requires sample efficient and safe exploration to avoid possible damage
to the robot. In such settings, Bayesian optimization (BO [10]) emerges as a suitable framework due
to its sample efficiency. A notable example in the field of legged robotics comes from Calandra et al.
[11], who successfully employed BO to learn optimal gait parameters for a bipedal robot platform.

BO methods can be easily adapted to constrained settings for safe learning. Gelbart et al.
[12], Hernández-Lobato et al. [13], Marco et al. [14] utilize constrained BO for finding safe optimal
controller parameters. However, these works do not provide safety assurance during exploration.
In contrast, methods such as SAFEOPT [15, 16] and its extensions [1, 17, 18, 19] guarantee safety
throughout the entire learning and exploration phases. SAFEOPT leverages regularity properties of
the underlying optimization to expand the set of safe controllers. This expansion is inherently local,
and accordingly SAFEOPT can miss the global optimum. For dynamical systems, Baumann et al.
[19] introduced GOSAFE, a global safe exploration algorithm which, unlike SAFEOPT, is capable
of identifying the global optimum. However, the BO routine proposed in GOSAFE is expensive and
sample inefficient which limits the scalability of the method. To this end, Sukhija et al. [1] introduce
GOSAFEOPT. GOSAFEOPT leverages the underlying Markovian structure of the dynamical system
to overcome the GOSAFE’s restrictions. As a result, it can perform global safe exploration for
realistic and high-dimensional dynamical systems.

In this work, we extend GOSAFEOPT to a contextual setting and apply it to systematically tune the
model-based controller of a quadruped robot for various gait patterns. Our proposed method not
only guarantees safety and global optimality but also scales effectively to systems with relatively
high-dimensional search space that involves a twenty-four-dimensional state space, six-dimensional
parameter space, and five-dimensional context space.
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3 Problem Setting

Safe learning formulation The dynamics of robotic systems can generally be described as an
ordinary differential equation (ODE) of the form ṡ = f(s,u) where u ∈ U ⊂ Rdu is the control
signal and s ∈ S ⊂ Rds is the state of the robot. Due to the reality gap, disparities can arise between
the real-world dynamics and the dynamics model f . This often results in a significant divergence
between the behaviors of models and actual real-world systems, thereby making the control of
intricate and highly dynamic systems like quadrupeds particularly challenging.

A common solution to this problem is using a feedback policy to rectify the model inaccuracies. Given
a desired input signal u∗, desired state s∗, and true system state s, we formulate a parameterized
feedback control policy in the form u = πθ(u

∗, s∗, s) that steers s to closely align with s∗. The
parameters θ are picked to minimize the tracking error. A common example of such a feedback policy
is PD control, where u = u∗ + θ(s∗ − s), where θ ∈ Rdu×ds corresponds to the controller gains.
Typically, choosing the parameters θ involves a heuristic process, requiring experimental iterations
with the physical hardware. However, such interactions can be unpredictably risky and could possibly
cause damage to the hardware.

In this work, we formalize the tuning process as a constrained optimization problem:

max
θ∈Θ

g(θ) such that qi(θ) ≥ 0,∀i ∈ Iq, (1)

where g is an objective function (or reward function), qi are constraints with Iq = {1, . . . , c}, and
Θ is a compact set of parameters over which we optimize. Since the true dynamics are unknown,
we cannot solve Equation (1) directly. Instead, we interact with the robot to learn g(θ) and qi(θ),
and solve the optimization problem in a black-box fashion. As we interact directly with the robot
hardware, it is important that the learning process is sample-efficient and safe, i.e., constraints qi are
not violated during learning.

Extension to a contextual setting Our goal is to find optimal control gains specific to individual
gait patterns and facilitate seamless online transitions across various gaits. Each gait pattern
demonstrates unique dynamic properties. Therefore, the optimal feedback parameters θ vary
depending on the gait pattern in question. We consider gaits as contexts z from a (not necessarily
finite) set of contexts Z [2]. Contexts are essentially external variables specified by the user. We
broaden our initial problem formulation from Equation (1) to accommodate these contexts;

max
θ∈Θ

g(θ, z) such that qi(θ, z) ≥ 0,∀i ∈ Iq, (2)

where z ∈ Z is the context, which in our scenario, is the parameters of the gait of interest.

Assumptions We reiterate and discuss the assumptions for GOSAFEOPT [1] in Appendix A. To
summarize, we assume the following: (i) an initial safe set of parameters is known, (ii) the objective
and constraints lie in a reproducing kernel Hilbert space with bounded norm, (iii) measurement noises
are i.i.d. sub-Gaussian, (iv) the control frequency is sufficiently high to capture the state evolution,
and (v) constraints qi(θ, z) can be defined as the minimum of a state-dependent function q̄i(θ, s, z)
along the trajectory starting in s0 with policy πθ.

4 Control Gain Optimization for Model-based Legged Locomotion Control
4.1 Control Pipeline
Model-based locomotion controller Our locomotion controller utilizes a combination of the model
predictive control (MPC) and the whole-body control (WBC) method following the previous work by
Kim et al. [7], Kang et al. [20], and Kang et al. [21]. The MPC generates dynamically consistent base
and foot trajectories by finding an optimal solution of a finite-horizon optimal control problem, using
a simplified model. To convert these trajectories into joint-level control signals, we implement a WBC
method that incorporates a more sophisticated dynamics model and takes into account the physical con-
straints of the robot. More specifically, we use a WBC formulation similar to the one presented by Kim
et al. [7]. This method calculates the desired generalized coordinates x∗, speed ẋ∗, and acceleration
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Figure 1: Overview of the system. The control gain tuner determines the optimal gains kp,kd

for the locomotion controller given gait parameters zg as a context variable. In order to learn the
map between the optimal gains and context variable, we use a safe Bayesian optimization algorithm,
which finds optimal gains by minimizing the mismatch between desired joint states s̄∗ and actual
joint states s̄ while ensuring no safety breach during the learning process.

ẍ∗ on a kinematic level while respecting task priority via the null-space projection [22]. Subsequently,
it finds the desired joint torques τ ∗ by solving a quadratic program that aligns with the desired general-
ized acceleration, adhering to the motion equations of the floating base and other physical constraints.
For a more detailed explanation of the WBC formulation, the reader is referred to Appendix D.

We emphasize that the feed-forward torque commands τ ∗ by themselves fail to produce the desired
motion on the robot hardware due to model discrepancies. Particularly, we observed the actuator dy-
namics and joint friction, which are impractical to include in the system model, contribute significantly
to this model mismatch. As a practical solution, we compute the final joint torque commands τ cmd =
τ ∗ + kp(x̄

∗ − x̄) + kd( ˙̄x
∗ − ˙̄x) with the feedback gains kp ∈ Rdu×dx̄ and kd ∈ Rdu×dx̄ and send

them to the robot. Here, x̄, ˙̄x represent the joint angles and speeds (we use s̄ to represent the concate-
nated vector of x̄ and ˙̄x), while x̄∗, ˙̄x∗ denote their desired values. We treat the feedback gains kp and
kd as the parameters θ that we want to optimize using data samples collected from hardware directly.

Gait parameterization We parameterize a quadrupedal gait pattern with zg = [dg, tgs , o
g
1, o

g
2, o

g
3],

where dg is the duty cycle for gait g, tgs is the gait duration, and ogi are the phase offsets of legs two
to four respectively, starting counterclockwise with the rear left leg. The duty cycle is defined as the
contact duration divided by the stride duration. In general, the optimal feedback parameters (k∗

p,k
∗
d)

change with the gait. We show this empirically in Section 5.

4.2 Contextual GOSAFEOPT

We model the unknown objective and constraint functions h(·, i) (i = 0 for the objective, i ∈ Iq for
constraints) through Gaussian Process regression [23]. To this end, given a dataset {vj ,yj}j≤n, with
vj = (θj , zj) and the kernel k, we calculate mean and uncertainty estimations of h(·, i):

µn(v, i) = k⊤
n (v)(Kn + σ2I)−1yn,i,

σ2
n(v, i) = k(v,v)− k⊤

n (v)(Kn + σ2I)−1kn(v),
(3)

where yn,i = [yj,i]
⊤
j≤n are the observations of h(·, i), kn(v) = [k(v,vj)]

⊤
j≤n, and Kn =

[k(vj ,vl)]j,l≤n is the kernel matrix. We leverage these estimates to provide high-probability frequen-
tist confidence intervals.
Lemma 1 (Confidence intervals, Theorem 2 of [24] and Lemma 4.1 of [16]). Let h be defined as

h(θ, z, i) =

{
g(θ, z) if i = 0,

qi(θ, z) if i ∈ Iq.
(4)

For any δ ∈ (0, 1) and under Assumptions 2 and 3 from Appendix A, with probability at least 1− δ it
holds jointly for all n, i,z,θ that

|h(θ, z, i)− µn(θ, z, i)| ≤ βn(δ) · σn(θ, z, i) (5)

with βn(δ) ≤ O(B + 4σ
√

2(γn|I| + 1 + log(1/δ))) where

γn = max
A⊂Θ×Z×I

|A|≤n

I(yA;hA). (6)
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Here, I(yA;hA) denotes the mutual information between hA = [h(v)]v∈A, if modeled with a
GP, and the noisy observations yA at hA. It quantifies the reduction in uncertainty about h upon
observing yA at points A. The quantity γn is a Bayesian construct, however, in the frequentist setting
it quantifies the complexity of learning the function h. It is instance-dependent and can be bounded
depending on the domain Θ×Z × I and kernel function k (see Appendix B).

Given the confidence interval from Equation (5), we define a confidence set for each context z,
parameter θ and index 0 ≤ i ≤ c, as

C0(θ, z, i) =

{
[0,∞] if θ ∈ S0(z) and i ≥ 1,

[−∞,∞] otherwise,
(7)

Cn(θ, z, i) = Cn−1(θ, z, i) ∩ [µn(θ, z, i)± βn(δ) · σn(θ, z, i)] , (8)

We refer to ln(θ, z, i) = minCn(θ, z, i) as the lower bound, un(θ, z, i) = maxCn(θ, z, i) the
upper bound, and wn(θ, z, i) = un(θ, z, i)− ln(θ, z, i) the width of our confidence set.

4.2.1 Algorithm

Given (user-specified) context zn ∈ Z , an episode n of contextual GOSAFEOPT is performed in one
of two alternating stages: local safe exploration (LSE) and global exploration (GE).

Local safe exploration During the LSE stage, we explore the subset of the parameter space Θ
which is known to be safe, and learn backup policies for all the states on the trajectories visited
during LSE. In this stage, the parameters are selected according to the acquisition function

θn = argmax
θ∈Gn−1(zn)∪Mn−1(zn)

max
i∈I

wn−1(θ, zn, i) (9)

where, Gn(zn) ⊆ Sn(zn) is a set of expanders (c.f., Equation (16) in Appendix B) and
Mn(zn) ⊆ Sn(zn) is a set of maximizers (c.f., Equation (18) in Appendix B). Intuitively,
Gn(zn) ∪Mn(zn) represents those parameters that can potentially lead to an expansion of the safe
set Sn(zn) or potentially be a solution to the optimization problem of Equation (2) with context zn.

Global exploration Once LSE converges (see Equation (21) in Appendix B), we run the GE stage
where we evaluate possibly unsafe policies and trigger a backup policy whenever necessary. If no
backup policy is triggered, we conclude that the evaluated policy is safe and add it to our safe set.
After a new parameter is added to the safe set during GE, we continue with LSE.

The parameters are selected according to the acquisition function

θn = argmax
θ∈Θ\(Sn−1(zn)∪E(zn))

max
i∈I

wn−1(θ, zn, i) (10)

where E denotes all parameters which have been shown to be unsafe (see line 7 of Algorithm 4 in
Appendix B). If all parameters have been determined as either safe or unsafe, i.e., Θ \ (Sn(zn) ∪
E(zn)) = ∅, then GE has converged.

Summary A detailed description of the contextual GOSAFEOPT algorithm is provided in Ap-
pendix B.2. GOSAFEOPT alternates between local safe exploration and global exploration. Therefore,
it can seek for the optimum globally. In Figure 5 of Appendix C, we analyze the algorithm using a
simple example for better understanding.

The only difference between the contextual and non-contextual variants is that contextual
GOSAFEOPT maintains separate sets Sn, Cn,Bn,Dn, E , and XFail for each context z ∈ Z . For
any given context z ∈ Z , the running best guess of contextual GOSAFEOPT for the optimum is
θ̂n(z) = argmaxθ∈Sn(z) ln(θ, z, 0).

4.2.2 Theoretical Results

In the following, we state our main theorem, which extends the safety and optimality guarantees from
Sukhija et al. [1] to the contextual case.

5



We say that the solution to Equation (2), θ∗(z), is discoverable if there exists a finite ñ such that
θ∗(z) ∈ R̄z

ϵ (Sñ(z)). Here, R̄z
ϵ (S) ⊆ Θ represents the largest safe set which can be reached safely

from S ⊆ Θ up to ϵ-precision (c.f., Equation (20) in Appendix B).

Theorem 1. Consider any ϵ > 0 and δ ∈ (0, 1). Further, let Assumptions 1 to 5 from Appendix A
hold and βn(δ) be defined as in Lemma 1. For any context z ∈ Z , let ñ(z) be the smallest integer
such that

n(z)

βñ(z)(δ) · γn(z)|I|(z)
≥ C|Θ|2

ϵ2
where n(z) =

ñ(z)∑
n=1

1{z = zn} (11)

and C = 32/ log(1 + σ−2). Here, γn(z) = maxA⊂Θ×I,|A|≤n I(yA,z;hA,z) ≤ γn denotes the
mutual information between hA,z = [h(θ, z, i)](θ,i)∈A and corresponding observations.

Then, when running contextual GOSAFEOPT and if θ∗(z) is discoverable, the following inequalities
jointly hold with probability at least 1− 2δ:

1. ∀n ≥ 0, t ≥ 0, i ∈ Iq : q̄i(θn, s(t), z) ≥ 0, (safety)

2. ∀z ∈ Z, n ≥ ñ(z) : g(θ̂n(z), z) ≥ g(θ∗(z), z)− ϵ. (optimality)

It is natural to start for each i ∈ I with kernels kZi and kΘi on the space of contexts and the space of
parameters, respectively, and to construct composite kernels ki = kZi ⊗ kΘi or ki = kZi ⊕ kΘi as the
product or sum of the pairs of kernels (see section 5.1 of [2]). In this case, the information gain γn is
sublinear in n for common choices of kernels kZi and kΘi implying that n∗(z) is finite.

The theorem is proven in Appendix B.3. Comparing to contextual SAFEOPT [16] which is only
guaranteed to converge to safe optima in R̄z

ϵ (S0(z)), the global exploration steps of contextual
GOSAFEOPT can also discover a safe optimum which was not reachable from the initial safe seed.
We remark that Theorem 1 is a worst-case result and, in particular, disregards a possible statistical
dependence between different contexts. In practice, if a kernel is chosen which does not treat all
contexts as independent, then the convergence can be much faster as knowledge about a particular
context can be transferred to other contexts.

5 Experimental results
We evaluate the performance of contextual GOSAFEOPT using the Unitree Go1 robot in both physical
simulation and hardware experiments. In the experiments, we use the following objective and
constraint functions:

g(θ, z) = −
∑
t≥0

∥s̄∗(t)− s̄(t, z,θ)∥2Qg
, q(θ, z) = min

t≥0
v − ∥s̄∗(t)− s̄(t, z,θ)∥2Qq

, (12)

where s̄ is joint-level states of the system (i.e. joint angles and speeds), s̄∗ denotes its desired values,
and both Qg and Qq are positive semi-definite matrices. Additionally, we define an error threshold,
v, that the norm of the state error shouldn’t surpass throughout the entire duration. Further details
of the experimental setup are provided in Appendix E. We also made the implementation available
online1 and uploaded a video showcasing the experiments2.

Simulation experiments In our simulation experiments, we contrasted the learning curves of
contextual GOSAFEOPT to SAFEOPT, and GOSAFEOPT without contexts. Additionally, we evaluate
GP-UCB [25], an unconstrained BO algorithm. To simulate the model mismatches and uncertainties,
we introduced disturbances in the form of joint impedances at every joint (see Appendix E for more
details). These disturbances destabilize the system, leading to constraint violations. To adhere to the
prerequisites of the safe BO algorithms, we initiate all experiments with roughly hand-tuned control
gains that are safe, yet suboptimal.

1https://github.com/lasgroup/gosafeopt
2https://youtu.be/zDBouUgegrU
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Figure 2: Simulation experiments. On the left, we display the learning curves of the BO algorithms
trained with trot gait. After completing this training, we started new training for crawl gait and
included the contextual variants of GOSAFEOPT and SAFEOPT in the assessment to investigate the
impact of contextual settings on learning performance as illustrated on the right.
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Figure 3: Hardware experiments. On the left, we present the learning curve of Contextual
GOSAFEOPT. It shows that the algorithm successfully tunes the controller gains for trot, and then
subsequently for crawl. In the center, we compare the performance of the optimized control gains
of trot when applied to crawl, against the gains specifically optimized for crawl. On the right, we
present the tracking error of the hip joint for the front-left leg with trot and crawl gait at initialization
(trot: yellow, crawl: violet) and after optimization (trot: green, crawl: blue).

We optimized joint-level feedback gains for two different gaits; trot and crawl sequentially. All simu-
lation experiments were conducted using ten different seeds, and we report the mean with one standard
error in the Figure 2. Throughout our experiments, all of the safe algorithms met safety constraints. In
contrast, the standard GP-UCB method violates the constraints in 4.7% and 8% of all evaluations for
the trot and crawl gaits respectively. In Figure 2’s left plot, we illustrate the normalized performance of
GOSAFEOPT and SAFEOPT w.r.t. our objective for the trot gait. The learning curves clearly indicate
that GOSAFEOPT’s global exploration facilitates faster identification of better control gains. Notably,
the GOSAFEOPT algorithm performs nearly as well as GP-UCB but without any constraint violations.

In the second test, we contrasted the contextual variants of GOSAFEOPT and SAFEOPT with their
non-contextual counterparts. The results, as depicted in the right part of Figure 2, suggest that the
contextual variants yield superior optima, with the contextual GOSAFEOPT algorithm emerging as
the standout performer. The contextual variants leverage the information collected from the previous
training with the trot gait, enabling them to identify better optima for the newly introduced crawl
gait more efficiently. Additionally, they evade unsafe or unstable evaluations, unlike GP-UCB. The
gait parameters we used for the trot and crawl gaits are provided in Appendix E.1.

Hardware experiments Similarly to the simulation experiments, we first tune the controller for the
trot gait and subsequently for the crawl gait. In Figure 3’s left plot, we report the mean performance
with one standard error, based on experiments conducted using three different seeds. In all our
experiments, we note that the contextual GOSAFEOPT algorithm results in zero constraint violations.

In our hardware experiments, we confirmed that different gait patterns require distinct sets of control
gains. As shown in the center plot of Figure 3, the best-performing parameters for the trot gait do not
perform well on the crawl gait. However, as we train with a context for the new gait pattern crawl,
there is a notable improvement in the reward. Here, we highlight that the contextual GOSAFEOPT
can harness previously gathered data when encountering new gait patterns, accelerating the discovery
of optimal gains for the new gait.
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Figure 4: Robustness test. Compared to the roughly hand-tuned initial gains (left), the optimal gains
derived from our method (right) significantly improve the motion controller’s robustness against
external pushes (top) and slippery contacts caused by socks on the robot’s feet (bottom).

Additionally, in the right plot of Figure 3, we evaluate the tracking performance of our tuned controller,
focusing on the hip joint’s joint-angle tracking. When comparing the initial and the tuned controller
across both trot and crawl gaits, it’s evident that the tuned controller has a significantly reduced
tracking error. For a comprehensive view, the error plots for other joints are provided in Appendix E.

To assess the robustness of the locomotion controller with the optimal control gains, we introduced
uncertainties in the form of external forces and simulated slippery conditions by placing socks on
the robot’s feet, as depicted in Figure 4. Our experiments demonstrate that the robustness of our
controller is significantly enhanced after the tuning process, and it is able to recover from pushes and
retain stability on a slippery surface. On the other hand, the controller with the initial control gains is
more vulnerable to these uncertainties and tends to easily crash.

Finally, we also highlight the zero-shot generalization capabilities of our method for unseen gait
patterns through a learned model. While flying trot and pronk gaits were not presented during the
training, the learned model effectively suggests reasonably good control gains for these gaits. We
encourage readers to view the accompanying video2 for a more in-depth understanding.

6 Conclusion

In this work, we extend GOSAFEOPT to the contextual setting and showcase its efficacy in adjusting
the control parameters for a model-based legged locomotion controller through both simulation and
hardware experiments. In our experiments, contextual GOSAFEOPT demonstrated superior conver-
gence for newly introduced gait patterns by drawing upon information from previous training sessions.
Additionally, our results confirmed that contextual GOSAFEOPT can effectively identify better optima
without violating safety constraints. Across all of our experiments, contextual GOSAFEOPT outper-
forms prior approaches by a large margin and successfully finds optimal control gains for different
quadrupedal gait patterns. After the fine-tuning process, we found that our model-based controller
exhibits a considerable improvement in robustness to various types of uncertainties, significantly
enhancing the system’s reliability. We highlight that the applicability of our proposed algorithm
extends beyond our current scenario. For instance, we are interested in applying this method to a
more diverse set of quadrupedal gait patterns and extend its scope to encompass non-periodic and
unstructured gait patterns. Furthermore, we stress that the algorithm is controller- or robot-agnostic,
making it a pivotal tool for addressing the reality gap across various contexts.

Limitations While the algorithm provides theoretical safety guarantees, it is often uncertain in
real-world applications whether all theoretical prerequisites are fulfilled. For instance, even though
the surrogate model might be Lipschitz-continuous, the Lipschitz constant is generally not known
a priori, i.e., Assumption 2 from Appendix A may not be satisfied. This often results in a too
conservative choice of parameters. Furthermore, a wrong parameter choice for the backup prior can
result in unsafe global exploration or no global exploration at all. In general, while safe exploration
methods such as SAFEOPT and GOSAFEOPT have been successfully applied on several practical
domains [1, 17, 18, 26, 27, 28], bridging the disparity between theoretical foundations and real-world
application remains a topic of active investigation [29, 30, 31].
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A Assumptions

In this section, we reiterate the assumptions by Sukhija et al. [1] for GOSAFEOPT.

Assumption 1 (Initial safe seed). For any episode n ≥ 1 with (user-specified) context zn ∈ Z , a
non-empty initial safe set of parameters Sn−1(zn) ⊂ Θ is known. That is, for all θ ∈ Sn−1(zn) and
all i ∈ Iq , qi(θ, zn) ≥ 0.

Here, Sn(z) ⊇ S0(z) denotes the safe set after episode n for the given context z as defined in
Equation (15) in Appendix B. Given the prior knowledge of the dynamics, a conservative safe set
of parameters represents some initial stable feedback controller. Accordingly, this assumption is
typically satisfied in practice. The assumption is necessary as, in principle, during each iteration, an
adversarial context could be chosen for which the initial safe set does not include any safe parameters.

Assumption 2 (Continuity of objective and constraints). Let h be defined as

h(θ, z, i) =

{
g(θ, z) if i = 0,

qi(θ, z) if i ∈ Iq.
(13)

We assume that h lies in a reproducing kernel Hilbert space (RKHS) associated with a kernel k
and has a bounded norm in that RKHS, that is, ∥h∥k ≤ B. Furthermore, we assume that g and
qi (∀i ∈ Iq) are Lipschitz-continuous with known Lipschitz constants.

This is a common assumption in the model-free safe exploration literature [16, 19, 1]. Sukhija et al.
[1] discuss the practical implications of this assumption in more detail.

Assumption 3. We obtain noisy measurements of h with measurement noise i.i.d. σ-sub-Gaussian.
Specifically, for a measurement yi of h(θ, z, i), we have yi = h(θ, z, i) + ϵi with ϵi σ-sub-Gaussian
for all i ∈ I where we write I = {0, . . . , c}.

Assumption 4. We observe the state s(t) every ∆t seconds. Furthermore, for any s(t) and ρ ∈ [0, 1],
the distance to s(t + ρ∆t) induced by any action is bounded by a known constant Ξ, that is,
∥s(t+ ρ∆t)− s(t)∥ ≤ Ξ.

Assumption 4 is crucial to guarantee safety in continuous time even though the state is measured at
discrete time instances. For highly dynamical systems, such as quadrupeds, the observation frequency
is typically very high, e.g., 500Hz - 1 kHz, and accordingly Ξ is small.

Assumption 5. We assume that, for all i ∈ {1, . . . , c}, qi is defined as the minimum of a state-
dependent function q̄i along the trajectory starting in s0 with controller πθ. Formally,

qi(θ, z) = min
s′∈ξ(s0,θ,z)

q̄i(s
′, z,θ), (14)

with ξ(s0,θ,z) = {s0+
∫ t

0
f(s(τ),πθ(s(τ), z)) dτ | t ≥ 0} representing the trajectory of s(t) under

policy parameter θ and context z starting from s0 at time 0.

Assumption 5 is an assumption on our choice of the constraint. Many common constraints, such as
the minimum distance to an obstacle along a trajectory, satisfy this assumption.

B Proofs

B.1 Definitions

We begin by re-stating definitions of sets used by GOSAFEOPT [1] with an additional context variable.

Fix an arbitrary context z ∈ Z . The safe set is defined recursively as

Sn(z) =
⋂
i∈Iq

⋃
θ′∈Sn−1(z)

{θ ∈ Θ | ln(θ′, z, i)− LΘ(z) ∥θ − θ′∥ ≥ 0} (15)
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where LΘ(z) is the joint Lipschitz constant of g and the constraints qi under context z. The expanders
are defined as

Gn(z) = {θ ∈ Sn(z) | en(θ, z) > 0} with (16)
en(θ, z) = |{θ′ ∈ Θ \ Sn(z) | ∃i ∈ Iq : un(θ, z, i)− LΘ(z) ∥θ − θ′∥ ≥ 0}| (17)

and the maximizers are defined as

Mn(z) = {θ ∈ Sn(z) | un(θ, 0) ≥ max
θ′∈Sn(z)

ln(θ
′, 0)}. (18)

The analysis requires the ϵ-slacked safe region R̄z
ϵ (S) given an initial safe seed S ⊆ Θ, which is

defined recursively as

Rz
ϵ (S) = S ∪ {θ ∈ Θ | ∃θ′ ∈ S such that ∀i ∈ Iq : qi(θ′, z)− ϵ− LΘ(z) ∥θ − θ′∥ ≥ 0}, (19)

R̄z
ϵ (S) = lim

n→∞
(Rz

ϵ )
n(S) (20)

where (Rz
ϵ )

n denotes the nth composition of Rz
ϵ with itself.

B.2 Algorithm

B.2.1 Local Safe Exploration

During LSE, we keep track of a set of backup policies B(z) ⊆ Θ × X and observations of h for
each context z ∈ Z , which we denote by D(z) ⊆ Θ× R|I|. An LSE step is described formally in
Algorithm 1.

Algorithm 1 Local Safe Exploration (LSE)
Input: Current context zn, safe sets S, sets of backups B, datasets D, Lipschitz constants LΘ

1: Recommend parameter θn with Equation (9)
2: Collect R =

⋃
k∈N

{(θn, s(k))} and h(θn, zn, i) + εn

3: B(zn) = B(zn) ∪R, D(zn) = D(zn) ∪ {(θn, h(θn, zn, i) + εn)}
4: Update sets S(z), G(z), and M(z) for all z ∈ Z ▷ Equations (15), (16) and (18)

Return: S, B, D

The LSE stage terminates for some given context z ∈ Z when the connected safe set is fully explored
and the optimum within the safe set is discovered. This happens when the uncertainty among the
expanders and maximizers is less than ϵ and the safe set is not expanding

max
θ∈Gn−1(z)∪Mn−1(z)

max
i∈I

wn−1(θ, z, i) < ϵ and Sn−1(z) = Sn(z). (21)

B.2.2 Global Exploration

A GE step conducts an experiment about a candidate parameter θn ∈ Θ which may not be safe. If the
safety boundary is approached, GE conservatively triggers a safe backup policy. If, on the other hand,
the experiment is successful, a new (potentially disconnected) safe region was discovered which can
then be explored by LSE in the following steps. A GE step is described formally in Algorithm 2.

B.2.3 Boundary Condition

The boundary condition checks when the system is in the state s whether there is a backup (θs, ss) ∈
B(z) such that ss is sufficiently close to s to guarantee that θs can steer the system back to safety for
any state which may be reached in the next time step. If no such backups exist for the next states, a
backup is triggered at the current state. In this case, the backup parameter θ∗

s with the largest safety
margin is triggered:

θ∗
s = max

(θs,ss)∈Bn(zn)
min
i∈Iq

ln(θs, zn, i)− Lx ∥s− ss∥ . (22)
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Algorithm 2 Global Exploration (GE)
Input: zn, safe sets S, confidence intervals C, sets of backups B, datasets D, fail sets E and XFail

1: Recommend global parameter θn with Equation (10)
2: θ = θn, sFail = ∅, Boundary = False
3: while Experiment not finished do ▷ Rollout policy
4: if Not Boundary then
5: Boundary, θ∗

s = BOUNDARYCONDITION(zn, s(k),B)
6: if Boundary then ▷ Trigger backup policy
7: θ = θ∗

s , sFail = s(k)
8: E = E ∪ {θn}, XFail = XFail ∪ {sFail} ▷ Update fail sets
9: Execute until s(k)

10: Collect R =
⋃
k∈N

{(θn, s(k))}, and h(θn, zn, i) + εn

11: if Not Boundary then ▷ Successful global search
12: B(zn) = B(zn) ∪R and D(zn) = D(zn) ∪ {(θn, h(θn, zn, i) + εn)}
13: S(zn) = S(zn) ∪ {θn}
14: C(θn, zn, i) = C(θn, zn, i) ∩ [0,∞] for all i ∈ Iq
Return: S, C, B, D, E , XFail

Algorithm 3 BOUNDARYCONDITION

Input: context zn, state s, backups B
1: if ∀(θs, ss) ∈ B(zn),∃i ∈ Iq : ln(θs, zn, i)− Lx ∥s− ss∥+ Ξ < 0 then
2: Boundary = True, Calculate θ∗

s (Equation (22))
3: else
4: Boundary = False, θ∗

s = Null

return: Boundary, θ∗
s

B.2.4 Contextual GOSAFEOPT

The algorithm stops for a particular context z ∈ Z when

Equation (21) is satisfied︸ ︷︷ ︸
LSE converged

and Θ \ (Sn(zn) ∪ E(zn)) = ∅︸ ︷︷ ︸
GE converged

. (23)

The full algorithm is described in Algorithm 4.

Algorithm 4 Contextual GOSAFEOPT

Input: Domain Θ, Contexts Z , Sequence of contexts {zn ∈ Z}n≥1, k(·, ·), S0, C0, D0, ϵ
1: Initialize GP h(θ, z, i), E(z) = ∅, XFail(z) = ∅, B0(z) = {(θ, x0) | θ ∈ S0}
2: while ∃z ∈ Z such that GOSAFEOPT has not terminated for z (Equation (23)) do
3: if GOSAFEOPT has terminated for zn (Equation (23)) then ▷ Skip finished contexts
4: continue
5: for s ∈ XFail(zn) do ▷ Update fail sets
6: if Not BOUNDARYCONDITION(zn, s,Bn) then
7: E(zn) = E(zn) \ {θ}, XFail(zn) = XFail(zn) \ {s}
8: Update Cn(θ, z, i) ∀θ ∈ Θ, z ∈ Z , i ∈ I ▷ Update confidence intervals, Equation (8)
9: if LSE not converged for context zn (Equation (21)) then

10: Sn+1,Bn+1,Dn+1 = LSE(zn,Sn,Bn,Dn)
11: else
12: Sn+1, Cn+1,Bn+1,Dn+1, E ,XFail = GE(zn,Sn, Cn,Bn,Dn, E ,XFail)

return: {θ̂n(z) | z ∈ Z}
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B.3 Proof of Theorem 1

Proof. We first derive the sample complexity bound of non-contextual GOSAFEOPT. Then, we
extend this sample complexity bound to contextual GOSAFEOPT. We assume without loss of
generality that βn is monotonically increasing with n.

Sample complexity Assume first that the context is fixed, that is, ∀n ≥ 1 : zn = z. In this case,
the safety guarantee (with probability at least 1− δ) follows directly from Theorem 4.1 of Sukhija
et al. [1]. Thus, it remains to show that the optimality guarantee with the given sample complexity
holds also with probability at least 1− δ, as then their union holds jointly with probability at least
1− 2δ using a union bound.

It is straightforward to see (by employing Theorem 4.1 of Berkenkamp et al. [16]) that Theorem 4.2
of Sukhija et al. [1] holds for n∗ being the smallest integer such that

n∗ ≥
C|Θ|βn∗(δ)γn∗|I|

2ϵ2
(24)

where we use that |R̄z
0 (S)| ≤ |Θ| for any S ⊆ Θ and |Θ| + 1 ≤ 2|Θ|. Thus, whenever a new

disconnected safe region is discovered by GE, LSE is run for at most n∗ steps.

It follows from the stopping criterion of GE, Θ \ (Sn ∪ E) = ∅, that GE is run for at most |Θ|
consecutive steps (i.e., without an LSE-step in between). Clearly, a new disconnected safe region
can be discovered by GE at most |Θ| times, and hence, GOSAFEOPT terminates after at most |Θ|
iterations of at most n∗ LSE steps and at most |Θ| GE steps. Altogether, we have that the optimality
guarantee holds with probability at least 1− δ for ñ being the smallest integer such that

ñ =

⌈
C|Θ|2βñ(δ)γñ|I|

ϵ2

⌉
≥ |Θ| (n∗ + |Θ|) , (25)

completing the proof of Theorem 1 for non-contextual GOSAFEOPT.

Multiple contexts Visiting other contexts Z \ {z} in between results in additional measurements
and increases the constant β, ensuring that the confidence intervals are well-calibrated. The only
difference in the proofs is the appearance of βn∗(z) rather than βn(z) in Equation (24). In the
contextual setting, n∗(z) is the smallest integer such that

n(z) ≥
C|Θ|βn∗(z)(δ)γn(z)|I|(z)

2ϵ2
(26)

where

n(z) =

n∗(z)∑
n=1

1{z = zn}

counts the number of episodes with context z until episode n∗(z). The bound on ñ(z) then follows
analogously to Equation (25).

C Comparison of SAFEOPT and GOSAFEOPT

To visually analyze the different exploration properties of SAFEOPT and GOSAFEOPT we use
the Pendulum Environment from OpenAI [33] as an example. The ideal trajectory is given by
some undisturbed controller. In our toy problem, we use a simple PD control which is sufficient
for the pendulum swing-up problem and various oscillating trajectories. To simulate the sim to
hardware gap, we artificially add a disturbance to the applied torque in the form of joint impedances
τ = τ ∗ − θd

p(x̃
∗ − x̃) + θd

d
˙̃x where θd

p and θd
d are unknown disturbance parameters and x̃∗, x̃ are

the desired and observed motor angles. We use GOSAFEOPT to tune an additional PD controller
which should follow the ideal trajectory and compensate for the artificial disturbance. Figure 5 shows
an example run of SAFEOPT and GOSAFEOPT. Whereas SAFEOPT is restricted to expanding the
initial safe region, GOSAFEOPT can discover new safe regions, and thus find a better optimum.
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Table 1: Here, we summarize different magnitudes of γn for composite kernels from Theorems 2
and 3 of Krause and Ong [2] and for individual kernels from Theorem 5 of Srinivas et al. [25] and
Remark 2 of Vakili et al. [32]. The magnitudes hold under the assumption that the domain of the
kernel is compact. γΘ and γZ denote the information gain for the kernels kΘ and kZ , respectively.
Bν is the modified Bessel function.

Kernel k(v,v′) γn

Product kΘ(v,v′) · kZ(v,v′) if kZ has rank at most d dγΘ
n + d log(n)

Sum kΘ(v,v′) + kZ(v,v′) γΘ
n + γZ

n + 2 log(n)

Linear v⊤v′ O (d log(n))

RBF e−
∥v−v′∥2

2l2 O
(
logd+1(n)

)
Matérn 1

Γ(ν)2ν−1

(√
2ν∥v−v′∥

l

)ν

Bν

(√
2ν∥v−v′∥

l

)
O
(
n

d
2ν+d log

2ν
2ν+d (n)

)
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Figure 5: Example run of SAFEOPT and GOSAFEOPT. The red circle denotes the initial safe
point. The black dots denote observed points. The green circle denotes the true safe optimum and the
blue circle denotes the optimal point determined by SAFEOPT and GOSAFEOPT after 150 iterations
respectively. The discovered safe sets are shown in black. GOSAFEOPT gets closer to the true
optimum by discovering new safe regions which are not connected to the initial safe region.

D Control Formulation

Our model-based motion controller integrates the MPC and WBC methods to enhance both robustness
and maneuverability. The MPC is responsible for generating base and foot trajectories, while the
WBC converts these trajectories into joint-level commands. For the MPC component, we employ the
model predictive control formulation proposed by Kang et al. [21, 34]. This formulation represents a
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finite-horizon optimal control problem as a nonlinear program utilizing the variable-height inverted
pendulum model. The optimal solution of the nonlinear program is determined by using a second-
order gradient-based method. For a more in-depth understanding of the MPC formulation, we direct
readers to the prior work by Kang et al. [21, 34].

We employ a slight modification of the WBC formulation introduced by Kim et al. [7], adapting
it to align with our MPC method. Following the method proposed by Kim et al. [7], we compute
the desired generalized coordinates x*, speed ẋ*, and acceleration ẍ* for a quadruped system at the
kinematic level. This process involves translating desired task space (Cartesian space) positions,
velocities, and accelerations into configuration space counterparts. Throughout this process, we
enforce task priority through iterative null-space projection [22]. The top priority is assigned to the
contact foot constraint task, followed by the base orientation tracking task. The base position tracking
task is given the third priority, and the swing foot tracking task is assigned the final priority.

Subsequently, we solve the following quadratic program:

min
δẍ,fc

∥δẍ∥2Q (27a)

s.t. Sf (Mẍ+ b+ g) = SfJ
⊤
c fc (27b)

ẍ∗∗ = ẍ∗ +
[
δẍ,0nj

]⊤
(27c)

Wfc ≥ 0, (27d)

where δẍ denotes a relaxation variables for the floating base acceleration and fc denotes contact
forces with the contact Jacobian Jc. Equation (27a) is the objective function that penalizes the
weighted norm of δẍ with the weight matrix Q. Equation (27b) corresponds to the equation of motion
of the floating base, representing the first six rows of the whole-body equation of motion, with Sf

being the corresponding selection matrix. Lastly, Equation (27d) sets forth the Coulomb friction
constraints. This procedure refines the desired generalized acceleration ẍ*, which is calculated at the
kinematic level, by incorporating the dynamic impacts of the robot’s movements.

Upon determining ẍ is determined, we compute the joint torque commands as follows:

τ ∗ = Mẍ∗∗ + b+ g − J⊤
c fc. (28)

The final torque commands are calculated using τ cmd = τ ∗ + kp(x̄
∗ − x̄) + kd( ˙̄x

∗ − ˙̄x) and
dispatched to the robot with the feedback gains kp ∈ Rdu×dx̄ and kd ∈ Rdu×dx̄ . Here, x̄, ˙̄x are
the joint angles and speeds, while x̄∗, ˙̄x∗ denote their desired values. As previously noted, this
step is crucial in dealing with model mismatches, specifically, the differences in joint-level behavior
stemming from actuator dynamics and joint friction.

E Experimental Details

E.1 Gait parameters

We used the following gait parameters for the simulation and the hardware experiments.

Table 2: Gait parameters.
Trot Crawl Flying trot Pronk

Duration [s] 0.5 1.2 0.6 0.6
Duty cycle 0.5 0.75 0.4 0.9

Phase
Offsets

0.5 0.25 0.5 0.0
0.5 0.5 0.5 0.0
0 0.75 0 0.0
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E.2 Bayesian optimization

For all our experiments, we use a Matérn kernel with ν = 1.5 for the underlying Gaussian Process.
The lengthscales are fixed during the whole optimization process and set to

Table 3: Kernel lengthscales.
lengthscales

Simulation [0.1, 0.05, 0.1, 0.05, 0.1, 0.05, 0.1, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1]
Hardware [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5, 0.5, 0.5]

where the first n parameters correspond to the (kp,kd) pairs and the last parameters to the context.
For all experiments, we use β = 16 for the LCB on the constraints.

E.3 Simulation

We developed an emulator to simulate the control gain tuning process, utilizing the open-source rigid-
body simulation engine, the Open Dynamics Engine (ODE) [35]. To account for model mismatches
and uncertainties, we introduced disturbances based on the model detailed in subsequent sections.

Disturbance model We introduced joint-level disturbances by altering the torque exerted by each
motor. This method emulates the torque tracking discrepancies in motors, the damping effects
stemming from joint friction, and other model mismatches attributed to inaccuracies in the model.
More specifically, for ith motor of leg l, the applied motor torque is given by τ applied

i,l = αlτ
cmd
i,l +

θ⊤
l [x̄

∗
l,i − x̄l,i,− ˙̄xl,i]

⊤. In this equation, τ cmd is the torque command computed as described in
Appendix D, αl is a disturbance factor for leg l with α = [0.73, 0.9, 0.73, 0.9]⊤, and x̄, ˙̄x are the
joint angles and speeds, while x̄∗, ˙̄x∗ denote their desired values.

Reward function The joint states variable s̄ ∈ R24 of all 12 joints is described as a concatenated
vector of joint angles and joint speeds. We set the matrices from Equation (12) to Qg = I24×24

and Qi,j
q = 1{i = j ∧ i <= 12}.

E.4 Hardware

We slightly modify the reward function for the hardware experiment and include a penalty term on
the joint velocities.

ĝ(θ, z) = g(θ, z)− ∥s̄(t)∥2Qp
,

where the velocity state errors in Qg and Qq in Equation 12 are set to zero, since the joint speed
measurements are noisy finite difference approximations of the joint angles. Furthermore, we define
Qp to only include the noisy joint speeds observations. More specifically, we define Qi,j

q = Qi,j
q =

1{i = j ∧ i <= 12} and Qi,j
p = 1

21{i = j ∧ i > 12} and Qq,Qq,Qp ∈ R24×24. Experimental
results have shown, that adding a penalty term on the joint velocities acts as a regulator to prefer
solutions where motor vibrations are low. This has shown to improve overall convergence and to
visibly avoid solutions where motor vibrations are high.

Figure 6 shows that the optimal feedback control parameters drastically reduce motor vibrations and
increase the tracking performance.

F Practical modifications

F.1 Boundary conditions

We use the idea from Sukhija et al. [1] to reduce computational complexity by defining an interior and
marginal set. Intuitively, the interior set contains all observed states for which the safety margin is
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Figure 6: Joint angle tracking performance comparison. Joint angle tracking errors in degrees
(left) and joint angle measurements in degrees (right.) The yellow and violet regions represent the
initial control gains for trot and crawl respectively. Conversely, the green and blue regions indicate
the optimized gains for trot and crawl. It is evident from the plots that the refined gains yield a
substantially reduced tracking error with diminished jitter.

high and the marginal set includes all states where the safety margin is greater than a certain threshold.
More formally, Sukhija et al. [1] defines the interior and marginal set as :

ΩI,n = {xs ∈ X | (θ,xs) ∈ Bn : ∀i ∈ Iq, ln(θ, i) ≥ ηu} (29)
ΩM,n = {xs ∈ X | (θ,xs) ∈ Bn : ∀i ∈ Iq, ηl ≤ ln(θ, i) < ηu} (30)

The boundary condition is defined separately for the interior and marginal set. Firstly, the Euclidean
distance di between the observed state and all the backup states is calculated. If dmin = mini di = 0,
a backup policy for the observed state is known to be safe. Intuitively, the uncertainty if a backup
policy can safely recover from the observed state increases as dmin grows. If the observed state moves
too far away from the set of backup states, the closest backup policy is triggered. More formally,
a backup policy is triggered, if the ∄di s.t p(|x| ≥ di) > τ . The distribution over x is defined as
x ∼ N (0, σ2) and τm ≥ τi for the interior and marginal set, respectively. With σ2 and τi there are
two adjustable parameters to influence how conservative the backup policy acts.

Table 4: Boundary condition parameters

Parameter Value Description
Simulation
σ 2 Standard deviation of backup distribution
τi 0.2 Interior lower bound probability
τm 0.6 Marginal lower bound probability
Hardware
σ 2 Standard deviation of backup distribution
τi 0.05 Interior lower bound probability
τm 0.1 Marginal lower bound probability
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F.2 Optimization

The solution of the acquisition optimization problem formulated in 10 is approximated with the
standard particle swarm [36] algorithm, similar to [37].

At the beginning of each acquisition optimization, np particle positions are initialized. Rather than
initializing the positions over the whole domain, the positions are sampled from a list of known safe
positions in the current safe set.

For all experiments, the parameters in Table 5 are used.

Table 5: Swarmopt parameters
Parameter Value Description
Θg 1 Social coefficient
Θp 1 Cognitive coefficient
w 0.9 Inertial weight
n 100 Number of iterations
nr 100 Number of restarts if no safe set is found

F.3 Fix iterations and discard unpromising new detected safe regions

In practice, it is not practical to fully explore a safe set before the global exploration phase. For our
experiments, the number of iterations for the local and global exploration phase are fixed to nl = 10
and ng = 5, respectively. To avoid exploring for all nl steps in unpromising regions, we define
nd = 5 < nl and switch to local exploration of the best set if the best reward estimation of the current
set is much less than the best global reward estimate. That is, we switch to the best set if r̂∗i < cr̂∗

and nd = nl.

F.4 Posterior estimation

Each BO step requires the optimization of the GOSAFEOPT acquisition function to predict the next
parameters to evaluate. This paper uses the standard particle swarm [36] algorithm, which requires the
computation of the posterior distribution at each optimization step for all particles. To speed up the
computation of the posterior distribution, the paper uses Lanczos Variance Estimates Pleiss et al. [38].
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