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ABSTRACT
The density of states (DOS) is a spectral property of materials, which provides
fundamental insights on various characteristics of materials. In this paper, we
propose a model to predict the DOS by reflecting the nature of DOS: DOS
determines the general distribution of states as a function of energy. Specifi-
cally, we integrate the heterogeneous information obtained from the crystal struc-
ture and the energies via multi-modal transformer, thereby modeling the com-
plex relationships between the atoms in the crystal structure, and various en-
ergy levels. Extensive experiments on two types of DOS, i.e., Phonon DOS
and Electron DOS, with various real-world scenarios demonstrate the superior-
ity of DOSTransformer. The source code for DOSTransformer is available at
https://github.com/HeewoongNoh/DOSTransformer.

1 INTRODUCTION
Despite the recent progress of machine learning (ML) in materials science, most ML models de-
veloped in the field have been focused on material properties consisting of single-valued properties
Kong et al. (2022), e.g., band gap energy Lee et al. (2016), formation energy Ward et al. (2016),
and Fermi energy Xie & Grossman (2018). On the other hand, spectral properties are ubiquitous in
materials science, characterizing various properties of materials, e.g., X-ray absorption, dielectric
function, and electronic density of states Kong et al. (2022) (See Figure 1(a)).

The density of states (DOS), which is the main focus of this paper, is a spectral property that pro-
vides fundamental insights on various characteristics of materials, even enabling direct computation
of single-valued properties Fung et al. (2022). For example, DOS is utilized as a feature of ma-
terials for analyzing the underlying reasons for changes in electrical conductivity Deringer et al.
(2021). Moreover, band gaps and edge positions, which can be directly derived from DOS, are uti-
lized to discover new photoanodes for solar fuel generation Singh et al. (2019); Yan et al. (2017).
Consequently, investigating the ML capability for DOS prediction moves it one step closer to the
fundamentals of materials science, thereby accelerating the materials discovery process However,
credible computation of DOS requires expensive time/financial costs of exhaustively conducting ex-
periments with expertise knowledge Chandrasekaran et al. (2019); Del Rio et al. (2020). Therefore,
alternative algorithmic approaches for DOS calculation are necessary, whereas ML capabilities for
learning such spectral properties of the crystal structure are relatively under-explored.

Existing studies for DOS prediction with ML models mainly focus on obtaining high-quality rep-
resentations of crystal structures. Specifically, Chandrasekaran et al. (2019); Del Rio et al. (2020)
predict DOS with multi-layered perceptrons (MLPs) given rule-based fingerprints of each grid point
and atom, respectively. Inspired by the recent success of graph neural networks (GNNs) on a variety
of tasks in biochemistry Gilmer et al. (2017); Stokes et al. (2020); Jiang et al. (2021), Fung et al.
(2022) leverages GNNs to encode crystal structures to predict DOS with additional physical prop-
erties. Moreover, Chen et al. (2021) predicts phonon-DOS with euclidean neural networks Thomas
et al. (2018); Kondor et al. (2018); Weiler et al. (2018), which by construction are equivariant to 3D
rotations, translations, and inversion, aiming to capture a full crystal symmetry.

Despite their success, existing ML methods for DOS prediction overlook the nature of DOS calcula-
tion: DOS determines the general distribution of states as a function of energy. That is, DOS of the
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Figure 1: (a) Crystal structure and its various types of properties. (b) Overall model architecture.

crystal structure is determined by not only the structure itself but also the energy levels. Therefore,
integrating heterogeneous signals from both the crystal structure and the energy is crucial for DOS
prediction, which however has been overlooked by existing studies Chandrasekaran et al. (2019);
Del Rio et al. (2020); Fung et al. (2022); Chen et al. (2021).

In this paper, we formulate the DOS prediction problem as a multimodal learning problem, which
recently got a surge of interest from ML researchers in various domains thanks to its capability of
extracting and relating information from heterogeneous data types Lin et al. (2015); Wang et al.
(2016); Bayoudh et al. (2020); Baltrušaitis et al. (2018). Specifically, we propose a multimodal
transformer model for DOS prediction, named DOSTransformer, which incorporates the crystal
structure and the energy as heterogeneous modalities. Distinguished from exising studies, DOS-
Transformer learns embeddings of energy that are used for modeling complex relationships between
the atoms in crystal structure and various energy levels through a cross-attention mechanism. By
doing so, DOSTransformer obtains multiple representations for a single crystal structure according
to various energy levels, enabling the prediction of a single DOS value on each energy level.

Our extensive experiments on two types of DOS, i.e., Phonon DOS and Electron DOS, and three
data split strategies for real-world materials discovery, i.e., one in-distribution split (random split),
and two out-of-distribution splits (split according to the number of atom species, and the crystal
systems), demonstrate the superiority of DOSTransformer compared with previous methods. To
the best of our knowledge, this is the first work to model the complex relationship between the
crystal structure and various energy levels for predicting DOS of the crystal structure.

2 PRELIMINARIES

Notations. Let G = (V,A) denote a crystal structure, where V = {v1, . . . , vn} represents the set
of atoms, and A ⊆ V × V represents the set of edges connecting the atoms in the crystal structure.
Moreover, G is associated with a feature matrix X ∈ Rn×F and an adjacency matrix A ∈ Rn×n

where Aij = 1 if and only if (vi, vj) ∈ A and Aij = 0 otherwise.

Task: Density of States Prediction. Given a set of crystals DG = {G1,G2, . . . ,GN} and a set of
energies DE = {E1, E2, . . . , EM}, our goal is to train a model M that predicts the DOS of a crystal
structure given a set of energies, i.e., Yi = M(Gi,DE), where Yi ∈ RM is an M dimensional
vector containing the DOS values of a crystal structure Gi at each energy E1, . . . , EM , and Yi

j ∈ R
is the DOS value of Gi at energy level Ej .

3 METHODOLOGY

In this section, we introduce our proposed method named DOSTransformer, a novel DOS predic-
tion framework that learns the complex relationship between the atoms in the crystal structure and
various energy levels by utilizing a cross-attention mechanism of the multi-modal transformer. The
overall model architecture is depicted in Figure 1 (b).

3.1 CRYSTAL ENCODER

Before modeling the pairwise interaction between the atoms and the energies, we first encode the
crystal structure with GNNs to learn the representation of each atom, which contains not only the
feature information but also the structural information. Formally, given a crystal structure G =
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(X,A), we generate an atom embedding matrix for the crystal structure as follows:
H = GNN(X,A), (1)

where H ∈ Rn×d is an atom embedding matrix for G, whose i-th row indicates the representation of
atom vi, and we stackL′ layers of GNNs. Among various GNNs, we adopt graph networks Battaglia
et al. (2018) as our crystal encoder, which is a generalized and extended version of various GNNs.

3.2 MULTI-MODAL TRANSFORMER

After obtaining the atom embedding matrix H, we model the relationship between the atoms and
various energy levels via a cross-attention mechanism of the multi-modal transformer. Specifically,
we expect the multi-modal transformer to generate the energy-specific representation of the crystal
by repeatedly reinforcing the energy representation with the crystal structure. To do so, we first
introduce a learnable embedding matrix E0 ∈ RM×d, whose j-th row, i.e., E0

j , indicates the embed-
ding of energy Ej ∈ DE . Then, we present a cross-modal attention for fusing the information from
the crystal structure into energy as follows:

El = Cross-Attention(QEl−1 ,K,V) ∈ RM×d

= Softmax(
El−1H⊤

√
d

)H,
(2)

where l = 1, . . . , L indicates the index number of the transformer layer. In contrast to conventional
Transformers, which use learnable weight matrices for query Q, key K, and value V, we directly
employ the previously obtained energy embedding matrix El−1 as the query matrix and the atom
embedding matrix H as the key and value matrices. Based on the above cross-attention mechanism,
we obtain the crystal-specific energy embedding El ∈ RM×d by aggregating the information
regarding the atoms in the crystal structure that was important at the given energy level. Conse-
quently, the model learns the crystal-specific energy embedding matrix EL ∈ RM×d that reflects
the complex relationship between the atoms in the crystal structure and various energy levels.

3.3 ENERGY DECODER

After obtaining the crystal-specific energy embedding matrix EL,i of a crystal structure Gi, the DOS
value at each energy level Ej , i,e., Ŷi

j , is given as follows:

Ŷi
j = ϕ(EL,i

j + α · gi), (3)

where ϕ : Rd → R1 is a parameterized MLP for predicting DOS from the given crystal-specific
energy embedding of crystal structure Gi at energy level j, i.e., EL,i

j and gi ∈ Rd, which is a sum
pooled representation of crystal Gi, and α is a learnable parameter. Note that EL,i

j indicates j-th row
of energy embedding matrix EL,i

j . Finally, DOSTransformer is trained to minimize the root mean
squared error loss L between the predicted target value Ŷi

j and the ground truth target value Yi
j ,

i.e., L = 1
N ·M

∑N
i=1

∑M
j=1

√
(Ŷi

j −Yi
j)

2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use two datasets to comprehensively evaluate the performance of DOSTransformer,
i.e., Phonon DOS and Electron DOS. We provide more details on datasets in Appendix A.1.

Evaluation Protocol. For Phonon DOS, we evaluate DOSTransformer with given data splits in a
previous work Chen et al. (2021). For Electron DOS, we evaluate DOSTransformer in three data
splits, i.e., one in-distribution split and two out-of-distribution splits. For in-distribution, we ran-
domly split the dataset into train/valid/test of 80/10/10%. On the other hand, for out-of-distribution,
we evaluate the model performance on the crystal structures that 1) contain a different number of
atom species with the training set, and 2) belong to different crystal systems that were not included
in the training set. Moreover, we predict the Fermi energy of the crystal structure based on the pre-
dicted DOS to evaluate how much physically meaningful DOS is predicted by the proposed method.
We provide further details on data split and evaluation on Fermi energy in Appendix A.2.
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Methods Compared. We mainly compare DOSTransformer to recently proposed state-of-the-art
method, i.e., E3NN Chen et al. (2021). We also compare DOSTransformer to simple baseline
methods, i.e., MLP and Graph Network Battaglia et al. (2018), which predicts the entire DOS se-
quence directly from the learned representation of the crystal structure. Moreover, to evaluate the
effectiveness of the transformer layer that considers the relationship between the atoms and various
energy levels, we integrate energy embeddings into baseline methods for DOS prediction as done
in Equation 3. We provide more details on the implementation and compared methods in Appendix
A.3 and A.4, respectively.

Evaluation Metrics. The performance of DOSTransformer is mainly evaluated in terms of RMSE
and MAE following previous work Chen et al. (2021).

Table 1: Overall model performance.

Energy
In-Distribution Out-of-Distribution (Electron DOS)

Phonon DOS Electron DOS Scenario 1: # Atom species Scenario 2: Crystal System
RMSE MAE RMSE MAE Fermi E. RMSE MAE Fermi E. RMSE MAE Fermi E.

MLP ✗
0.1719 0.1131 0.2349 0.1829 2.1314 0.2655 0.2043 2.3852 0.2584 0.1984 2.4863
(0.0006) (0.0001) (0.0008) (0.0009) (0.0908) (0.0025) (0.0022) (0.0916) (0.0026) (0.0028) (0.3264)

Graph Network ✗
0.1650 0.1067 0.1529 0.1152 1.5693 0.2225 0.1676 1.9237 0.2041 0.1523 1.7790
(0.0030) (0.0033) (0.0011) (0.0008) (0.0321) (0.0005) (0.0010) (0.1501) (0.0013) (0.0009) (0.0832)

E3NN ✗
0.1356 0.0809 0.1514 0.1108 1.5790 0.2104 0.1524 1.7308 0.1858 0.1349 1.8642
(0.0019) (0.0014) (0.0013) (0.0009) (0.0415) (0.0007) (0.0007) (0.0357) (0.0006) (0.0004) (0.0169)

MLP ✓
0.1445 0.0965 0.1604 0.1228 1.8488 0.2080 0.1566 1.9343 0.1905 0.1445 2.2635
(0.0000) (0.0000) (0.0011) (0.0009) (0.0636) (0.0006) (0.0004) (0.0440) (0.0010) (0.0008) (0.0401)

Graph Network ✓
0.1316 0.0900 0.1344 0.1000 1.5459 0.1958 0.1451 1.7543 0.1759 0.1297 1.7548
(0.0016) (0.0008) (0.0006) (0.0007) (0.0276) (0.0008) (0.0007) (0.0568) (0.0009) (0.0008) (0.0889)

E3NN ✓
0.1262 0.0765 0.1498 0.1109 1.6158 0.2072 0.1540 1.9004 0.1842 0.1348 1.8819
(0.0005) (0.0008) (0.0008) (0.0008) (0.0311) (0.0005) (0.0016) (0.1281) (0.0005) (0.0007) (0.0732)

DOSTransformer ✓
0.1283 0.0786 0.1283 0.0918 1.4387 0.1918 0.1373 1.6159 0.1722 0.1231 1.7267
(0.0017) (0.0013) (0.0005) (0.0006) (0.0221) (0.0006) (0.0005) (0.0608) (0.0013) (0.0012) (0.0672)

4.2 EXPERIMENTAL RESULTS

The experimental results on two datasets with various evaluation protocols are given in Table 1.
We have the following observations: 1) Comparing the baseline methods that overlook the energy
levels (i.e., Energy ✗) with their counterparts that incorporate the energy and the crystal structure
as heterogeneous modalities through the energy embeddings (i.e., Energy ✓), we find out that using
the energy embeddings consistently enhances the model performance. This indicates that making
predictions on each energy-level is crucial for DOS prediction, which also aligns with the domain
knowledge of materials science, i.e., DOS determines the general distribution of states as a func-
tion of energy. 2) On the other hand, DOSTransformer outperforms previous methods that do not
consider the complex relationships between the atoms in crystal structure and various energy levels.
This implies that naively integrating the energy information cannot fully benefit from the energy
information. We further analyze the model performance in terms of the out-of-distribution scenar-
ios, i.e., different atom species numbers and the crystal systems in Appendix A.5.1. 3) Moreover,
regarding the capability of predicting the Fermi energy, we observe that predicting the Fermi energy
based on the DOS predicted by DOSTransformer consistently outperforms that of baseline meth-
ods. This indicates that DOSTransformer predicts physically meaningful DOS, which can further
accelerate the materials discovery process. 4) In the case of Phonon DOS, DOSTransformer per-
forms on par with E3NN with energy embeddings. This is because the dataset contains a limited
number of crystals (1,522 species) compared with the Electron DOS dataset (38,889 species). How-
ever, considering that Electron DOS is much more complex than Phonon DOS in a variety of ways
Kong et al. (2022), and that we are interested in a general prediction method that can be applied to
various types of crystals, we argue that DOSTransformer is practical in the real-world application.

5 CONCLUSION

In this paper, we propose DOSTransformer, which predicts the DOS of a crystal structure by mod-
eling the complex relationships between the atoms in the crystal structure and various energy levels.
Extensive experiments verify that incorporating energy information is crucial in predicting the DOS
of a crystal structure, and modeling the complex relationship via cross-attention can further improve
the model performance.
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A APPENDIX

A.1 DATASETS

In this section, we provide further details on the dataset used during training.

A.1.1 PHONON DOS

We use the Phonon DOS dataset following the instructions of the official Github repository1 of
a previous work Chen et al. (2021). This dataset contains 1,522 crystals whose phonon DOS is
calculated from density functional perturbation theory (DFPT) by a previous work Petretto et al.
(2018). We use the data splits provided in the Github repository to evaluate model performance in
the Phonon DOS dataset.

1https://github.com/zhantaochen/phonondos_e3nn
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A.1.2 ELECTRON DOS

We also use Electron DOS dataset that contains a further variety of crystal structures during training.
Electron DOS dataset consists of the materials and its electron DOS information that are collected
from Materials Project (MP) 2.

Data Preprocessing. In MP dataset, we exclude the materials that are tagged to include magnetism
because the DOS of magnetism materials is not accurate to be directly used for training machine
learning models Illas et al. (2004). We consider an energy grid of 201 points ranging from −5 to
5 eV with respect to the band edges with 50 meV intervals and the Fermi energy is all set to 0 eV
on this energy grid. Moreover, we normalize the DOS of each material to be in the range between
0 and 1. That is, the maximum and minimum value for each DOS is 1 and 0, respectively, for all
materials. Moreover, we smooth the DOS values with the Savitzky-Golay filter with the window
size of 17 and polyorder of 1 using scipy library following a previous work Chen et al. (2021).

Data Statistics. As described in the main manuscript, we further evaluate the model performance in
two out-of-distribution scenarios: Scenario 1: regarding the number of atom species, and Scenario
2: regarding the crystal systems. We provide detailed statistics of the number of crystals for each
scenario in Table 2 and Table 3.

Table 2: The number of crystals according to the number of atom species (Scenario 1).
Unary Binary Ternary Quaternary Quinary Senary Septenary

Total
(1) (2) (3) (4) (5) (6) (7)

# Crystals 386 9,034 21,794 5,612 1,750 279 34 38,889

Table 3: The number of crystals according to different crystal systems (Scenario 2).
Cubic Hexagonal Tetragonal Trigonal Orthorhombic Monoclinic Triclinic Total

# Crystals 8,385 3,983 5,772 3,964 8,108 6,576 2,101 38,889

A.2 EVALUATION PROTOCOL

Phonon DOS. As described in the main manuscript, we evaluate the model performance based on
the data splits given in a previous work Chen et al. (2021).

Electron DOS. On the other hand, for the Electron DOS dataset, we use different dataset split
strategies for each scenario. For the in-distribution setting, we randomly split the dataset into
train/valid/test of 80/10/10%. On the other hand, for the out-of-distribution setting, we split the
dataset regarding the structure of the crystals. For both scenarios, we generate training sets with
simple crystal structures and a valid/test set with more complex crystal structures. More specifi-
cally, in the scenario 1 (different number of atom species, i.e., # Atom species in Table 1), we use
binary and ternary crystals as training data and Unary, Quaternary, and Quinary crystals as valid
and test data. In the scenario 2 (different crystal systems, i.e., Crystal System in Table 1), we use
Cubic, Hexagonal, Tetragonal, Trigonal, and Orthorhombic crystals as training set and Monoclinic
and Triclinic as valid and test set. Please refer to Table 2 and Table 3 for detailed statistics for each
type of crystal structure.

Fermi Energy. We predict the Fermi energy of the crystal structures based on the DOS predicted
by the proposed method to evaluate how much physically meaningful DOS is predicted. To do so,
given the ground truth DOS, we first train a four-layered MLP with a non-linearity in each layer
to predict the Fermi energy of a crystal structure. Then, based on the obtained MLP weights, we
predict the Fermi energy given the predicted DOS as the input, and calculate the RMSE. By doing
so, we can evaluate how physically meaningful DOS is obtained from each model.

A.3 IMPLEMENTATION DETAILS

In this section, we provide implementation details of DOSTransformer.
2https://materialsproject.org/
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Graph Neural Networks. Our graph neural networks consist of two parts, i.e., encoder and proces-
sor. Encoder learns the initial representation of atoms and bonds, while the processor learns to pass
the messages across the crystal structure. More formally, given an atom vi and the bond eij between
atom vi and vj , node encoder ϕnode and edge encoder ϕedge outputs initial representations of atom
vi and bond eij as follows:

h0
i = ϕnode(Xi), b0

ij = ϕedge(Bij), (4)

where X is the atom feature matrix whose i-th row indicates the input feature of atom vi, B ∈
Rn×n×Fe is the bond feature tensor with Fe features for each bond. With the initial representations
of atoms and bonds, the processor learns to pass messages across the crystal structure and update
atoms and bonds representations as follows:

bl+1
ij = ψl

edge(h
l
i,h

l
j ,b

l
ij), hl+1

i = ψl
node(h

l
i,

∑
j∈N (i)

bl+1
ij ), (5)

where N (i) is the neighboring atoms of atom vi, ψ is two layer MLPs with non-linearity, and
l = 0, . . . , L′. Note that hL′

i is equivalent to the i-th row of the atom embedding matrix H in
Equation 1.

Model Training. In all our experiments, we use the AdamW optimizer for model optimization. For
all the tasks, we train the model for 1,000 epochs with early stopping applied if the best validation
loss does not change for 50 consecutive epochs.

Hyperparameter Tuning. Detailed hyperparameter specifications are given in Table 4. For the hy-
perparameters in DOSTransformer, we tune them in certain ranges as follows: number of message
passing layers in GNN L′ in {2, 3, 4}, number of transformer layers for cross attention L in {2, 3,
4}, hidden dimension d in {64, 128, 256}, learning rate η in {0.0001, 0.0005, 0.001}, and batch size
B in {1, 4, 8}. We use the sum pooling to obtain the crystal i’s representation, i.e., gi. We report
the test performance when the performance on the validation set gives the best result.

Table 4: Hyperparameter specifications of DOSTransformer.
# Message Passing # Transformer Hidden Learning Batch

Layers (L′) Layers (L) Dim (d) rate (η) Size (B)
Phonon DOS 3 2 256 0.001 1

Electron DOS
Random 3 2 256 0.0001 8

Scenario 1: # Atom species 3 2 256 0.0001 8
Scenario 2: Crystal Systems 3 2 256 0.0005 8

A.4 METHODS COMPARED

In this section, we provide further details on the methods that are compared with DOSTrans-
former during experiments.

MLP. We first encode the atoms in a crystal with an MLP. Then, we obtain the representation of
crystal i, i.e., gi, by sum pooling the representations of its constituent atoms. With the crystal
representation, we predict DOS with an MLP predictor, i.e., Ŷi = ϕ′(gi), where ϕ′ : Rd → R201.

On the other hand, when we incorporate energy embeddings into the MLP, we predict DOS for
each energy j with a learnable energy embedding E0

j and obtained crystal representation gi, i.e.,
Ŷi

j = ϕ(E0
j + α · gi), where ϕ : Rd → R1 is a parameterized MLP.

Graph Network. We first encode the atoms in a crystal with a graph network. As done for MLP,
we obtain the representation of crystal i, i.e., gi, by sum pooling the representations of its con-
stituent atoms. With the crystal representation, we predict the DOS with an MLP predictor, i.e.,
Ŷi = ϕ′(gi), where ϕ′ : Rd → R201. Note that the only difference with MLP is that the atom rep-
resentations are obtained through the message passing scheme. We also compare the vanilla graph
networks with the one that incorporates the energy information by integrating the energy information
with initialized energy embeddings as we have done in MLP.

8
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E3NN. For E3NN, we use the official code published by the authors3, which implements equivariant
neural networks with E3NN python library4. After obtaining the crystal representation gi, all other
procedures have been done in the same manner with other baseline models, i.e., MLP and Graph
Network.

A.5 ADDITIONAL EXPERIMENTS

A.5.1 MODEL PERFORMANCE ANALYSIS

In this section, we provide detailed analyses on the model’s prediction in the out-of-distribution
scenarios. We have following observations: 1) We observe that DOSTransformer consistently out-
performs in both out-of-distribution scenarios, which demonstrates the superiority of DOSTrans-
former. 2) The performance of all the compared models generally degrades as the crystal structure
gets more complex. That is, models perform worse in Quinary crystals than in Quarternary crystals,
and worse in Triclinic crystals than in Monoclinic crystals. 3) On the other hand, it is not the case
in Unary crystal. This is because only one type of atom repeatedly appears in the crystal structure,
which cannot give enough information to the model. However, DOSTransformer also makes com-
parably accurate predictions in the Unary materials by modeling the complex relationship between
the atoms and various energy levels.

Table 5: Model performance in Out-of-Distribution scenarios.
Data split strategy Scenario 1: # Atom species Scenario 2: Crystal System

Energy Unary Quarternary Quinary Monoclinic Triclinic
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

MLP ✗
0.3502 0.2992 0.2531 0.1925 0.2850 0.2192 0.2550 0.1959 0.2699 0.2070
(0.0062) (0.0063) (0.0027) (0.0023) (0.0037) (0.0032) (0.0022) (0.0022) (0.0029) (0.0027)

Graph Network ✗
0.2717 0.2274 0.2124 0.1587 0.2464 0.1847 0.1996 0.1485 0.2194 0.1649
(0.0039) (0.0034) (0.0014) (0.0019) (0.0012) (0.0014) (0.0010) (0.0008) (0.0011) (0.0013)

E3NN ✗
0.2013 0.1610 0.2013 0.1443 0.2426 0.1767 0.1805 0.1305 0.2021 0.1488
(0.0035) (0.0034) (0.0009) (0.0011) (0.0014) (0.0012) (0.0003) (0.0004) (0.0009) (0.0006)

MLP ✓
0.2020 0.1685 0.1997 0.1492 0.2365 0.1782 0.1856 0.1406 0.2067 0.1578
(0.0007) (0.0005) (0.0014) (0.0009) (0.0006) (0.0009) (0.0007) (0.0003) (0.0010) (0.0008)

Graph Network ✓
0.1913 0.1585 0.1880 0.1379 0.2237 0.1663 0.1709 0.1257 0.1911 0.1423
(0.0023) (0.0021) (0.0011) (0.0004) (0.0016) (0.0012) (0.0004) (0.0003) (0.0013) (0.0011)

E3NN ✓
0.1937 0.1562 0.1985 0.1462 0.2383 0.1785 0.1787 0.1302 0.2012 0.1491
(0.0021) (0.0020) (0.0005) (0.0018) (0.0016) (0.0023) (0.0005) (0.0005) (0.0013) (0.0010)

DOSTransformer ✓
0.1792 0.1461 0.1846 0.1311 0.2188 0.1569 0.1668 0.1188 0.1880 0.1363
(0.0037) (0.0034) (0.0011) (0.0014) (0.0008) (0.0014) (0.0006) (0.0008) (0.0020) (0.0014)

A.5.2 MODEL TRAINING AND INFERENCE TIME

In this section, to verify the efficiency of DOSTransformer, we compare the training and inference
time of the methods during the experiment in Table 6. DOSTransformer and E3NN take similar
time per training epoch on the Phonon DOS dataset, while E3NN requires much more time per
training epoch on the Electron DOS dataset. This is because the Electron DOS dataset contains a
much more diverse and complex crystal structure compared to the Phonon DOS dataset, requiring
more time to learn equivariant representations for the structure. This demonstrates the practicality
of DOSTransformer in real-world applications compared with E3NN.

3https://github.com/ninarina12/phononDoS_tutorial
4https://docs.e3nn.org/en/latest/index.html
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Table 6: Training and inference time per epoch for each dataset (sec/epoch).

Energy
Training Inference

Phonon DOS Electron DOS Phonon DOS Electron DOS

MLP ✗ 4.12 23.79 1.36 2.66
Graph Network ✗ 16.20 59.98 1.73 3.48

E3NN ✗ 21.14 140.06 3.61 9.05
MLP ✓ 4.73 27.74 1.50 2.84

Graph Network ✓ 17.37 66.72 1.95 3.99
E3NN ✓ 22.68 149.39 3.83 9.84

DOSTransformer ✓ 22.09 82.00 2.11 4.88
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