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ABSTRACT

In this paper, we study the problem of high-dimensional sparse quadratic discrim-
inant analysis (QDA). We propose a novel classification method, termed SSQDA,
which is constructed via constrained convex optimization based on the sample
spatial median and spatial sign covariance matrix under the assumption of an ellip-
tically symmetric distribution. The proposed classifier is shown to achieve the op-
timal convergence rate over a broad class of parameter spaces, up to a logarithmic
factor. Extensive simulation studies and real data applications demonstrate that
SSQDA is both robust and efficient, particularly in the presence of heavy-tailed
distributions, highlighting its practical advantages in high-dimensional classifica-
tion tasks.

1 INTRODUCTION

Discriminant analysis plays an important role in real-world applications, such as face recogni-
tion (Im—ef-all, 20TY), business forecasting Inam_ef all (Z0T¥) and gene expression analysis (fom-
barf_ef_all, D010, Kochan et all, Z01Y9). The quadratic discriminant classification (QDA) rule
(given by (I)) was first proposed as the Bayesian rule for two multivariate normal distributions
(Np(p1,31), Np(py, X2)) with different covariance:
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Owing to its flexibility and ease of use, QDA criterion has been extensively adopted across diverse
domains for classification tasks.

The emergence of big data has broght high-dimensional data to the forefront, playing an increasingly
vital role in fields such as genomics and economics. In high dimensional setting, where the dimen-
sion p can be much larger than the sample size n ,the conventional QDA which plug in the sample
mean and sample covariance as the estimator may not be feasible. Therefore, numberous studies
have been looking into high-dimensional QDA. Cai & Zhang (2021) demonstrates that without im-
posing any structural assumptions on the parameters, consistent classification is unattainable when
p # o(n) . Ci& Shad (Z0135) propose SQDA by imposing sparse assumption on ft, — 41, 31 and X
and establish corresponding asymptotic optimality. Jiang et al] (2(1IX) observe that D = Q5 — 4
and 6 = (01 +92)(p; — 4 can be respectively interpreted as quadratic and linear terms measuring
the difference between two classes, playing a more critical role in the QDA criterion. Consequently,
they impose sparsity assumptions on the quantities, and directly estimate these two terms by solving
an optimization problem with ¢; penalty. A similar approach is reflected in Cair & Zhang (2021),
where sparsity assumptions are imposed on D = Q5 — €7 and 8 = Qs(; — p5), which are esti-
mated through ¢;-norm minimization with an /., constrain. The optimazation problem builds upon
sample mean and sample covariance. This spirit was first introduced in Caief-all (2Z01T) for preci-
sion matrix estimation and has been proven to achieve faster convergence rate when the population
distribution has polynomial tails, compared to the ¢;-MLE approach.

However, all the discussions above are based on normal distributions, with relatively limited research
on quadratic discriminant analysis for heavy-tailed distributions like multivariate t-distribution. In
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low-dimensional settings, Bose ef all (2019) extended the QDA criterion to elliptically symmet-

ric distributions by introducing an adjustment coefficient to log }g;} Building upon Bose ef all

(20T5), Ghosh“ef all (P02T) further improved the estimators to enhance the QDA criterion’s robust-
ness against outliers in the sample data.

In the context of elliptical distributions, spatial-sign-based methods have demonstrated notable ro-
bustness and efficiency, particularly in high-dimensional settings. These procedures have been suc-
cessfully applied to a variety of statistical problems. For hypothesis testing, spatial-sign-based ap-
proaches have been used in high-dimensional sphericity testing (Zouefall, 20T4)), location parameter
testing (Wang et all, POTS; Feng & Sur, Z016; Feng et all, Z016), and white noise testing (Paindav
eine & Verdeboud, DOT6A; Zhao efall, P073). In financial applications, Cinef-all (Z023) proposed
a high-dimensional alpha test for linear factor pricing models. Recently, Feng (2024)) developed a
spatial-sign-based method for high-dimensional principal component analysis. For covariance ma-
trix estimation under elliptical distributions, Raninen_ef all (Z021), Raninen & Olhila (Z021), and
Ollila & Breloyi (2027) proposed a series of linear shrinkage estimators based on spatial-sign covari-
ance matrices. In addition, Cu & Feng (2025) introduced a spatial-sign-based approach for estimat-
ing the inverse of the shape matrix, with applications to elliptical graphical models and sparse linear
discriminant analysis. Collectively, these works underscore the spatial-sign methods robustness and
efficiency in dealing with heavy-tailed distributions across a broad spectrum of high-dimensional
statistical challenges.

In this paper, we present SSQDA (Spatial-Sign based Sparse Quadratic Discriminant Analysis), an
innovative approach to solve quadratic classification problems involving high-dimensional data from
elliptically symmetric populations. Follow the spirits of Cat & Zhang (Z02T), we first estimate D
and 3 directly using ¢;-norm minimization with an ¢, constrain based on sample spatial median
and sample spatial covariance. The estimation of log-determinant of the covariance matrices term
in () also follows the same procedure of Cai & Zhang (Z021). It is worth noting that while sample
spatial covariance proves to be a robust estimator of the shape matrix, the differing scales of 3; and
35 necessitate additional estimation of the covariance matrix’s trace in SSQDA. Subsequently, we
evaluate the impacts of the spatial-sign covariance, spatial median as well as the trace-estimator and
establish the convergence rate of the misclassification error for SSQDA under elliptically symmet-
ric distributions. To thoroughly evaluate the performance of SSQDA, we conduct comprehensive
simulation studies and real-data analyses. The results show that SSQDA outperforms other com-
petitors, especially in high-dimensional and elliptical settings. We also extend the methodology of
SSQDA from two groups classification to multi-group setting. Our research provides, to the best
of our knowledge, the first systematic extension of QDA to high-dimensional elliptical distributions
accompanied by explicit convergence rate.

The rest of the paper is organized as follows. In Section D, we presents the detail of SSQDA.
Section B gives the convergence rate of misclassification error of SSQDA under certain conditions.
Simulation studies and real data studies are carried out in Section B and Section B. The proof of the
some lemmas and main theorems are provided in Section BA73.

1.1 NOTATIONS

We begin with basic notations and definitions. To begin with, 1{ A} denote the indicator function for
an event A . Let X be any random vector or random variable, X ; be the corresponding i.i.d. copy
of X. For a vector u, ||ul1, HuHQ, HuHOO denotes the £1, {5, ¢, norm respectively. For a matrix
M = (m;j)pxq » the entry-wise maximum norm is defined by ||[M||max = maxi<;<p,1<j<qMij
. And |M||F, ||M||2, |IM]|; denote the Frobenius norm, spectral norm and matrix {; norm. The
number of non-zero entries is denoted by ||ul|g, || M]|o. The restricted spectral norm is defined by
= SUD|y =1, |ufo<s IMull2 . We define the trace of M by tr(M) = >°7_, m;; and
|M] is the determinant of M. When M is a symmetric matrix with dimensions p X p, let A;(M)
be the ¢ th eigenvalue of M with A\,(M) < --- < A\(M) .We denote a A b := min{a,b} and
a Vb := max{a, b}. For two sequences with positive entries {a,}, {b,} , we have a,, < b, if there
exists positive constants ¢y, ¢s , so that ¢ia,, < b,coa,. We write a,, < by, if there exists constant ¢ ,

~

so thata,, < cby, forall n. The spatial sign function is defined as U (X)) = 577 XI -1{X # 0}. Lastly,
[i(s;k) ={u € RP : ||ull2 = 1, |Jus<|l1 < |lus||1, for some S C {1, -k} with |[S;| = s}.
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2 SPATIAL SIGN BASED QUADRATIC DISCRIMINANT ANALYSIS IN SPARSE
SETTING

Assuming two p dimensional normal distributions N, (g1, 31) (noted by class 1) and N (p,, X5)
(noted by class 2), with different covariance matrices, Quadratic Discriminant Analysis (QDA) rule
is widely used to classify a new sample into one of these populations. Given equal priority proba-
bilities, the QDA rule given by:

Q(z) = (z— 1) D(z — py) — 26" oz — o) — log<§;:> 2)

where D = 3! = 5,71 = Qy — Q1,8 = py — py, o = Ptk

As the Bayesian discriminant method for normal distribution, QDA achieves the lowest mis-
classification probability when all the parameters iy, pto, 2337, 3o, 7, T2 are known. However,

in most cases all the above parameters are unknown. Instead, two sets of training samples,
ii.d i.i.d

X1, Xn, N Np(pq,31), Y1,Yo, - Y, "~ Np(py, Xo) are given. A common ap-

. . . . A~ o 1 ni ~ _

proach is to estimate mean and covariance matrix by sample mean fi; = - 27::1 X, g =
. - . T

n2 LS Yi and sample covariance matrix 3 = - LS (X — i) (X — )", B =

n2—1 2 (Y — o) (Y — fis)" . respectively, and plug the estimators into the QDA rules ().

For high dimensional data, where the dimension p is larger than the sample sizes ny,no , 3 and
33, are not invertible, which renders the direct plug-in method infeasible. Therefore, numerous
quadratic discriminant analysis methods designed for high-dimensional data have been proposed.
The method(SDAR) proposed in Cai & Zhang (2021)) estimates D and 3 = €256 in (1) directly by
solving the constrained #; minimization problem below:

D = arg min {|Vec( M1
DeR

1. A 1. N N .
‘221D22 + 522D21 — 31+ 3

< /\1,n} ©)

max

B = axg min {1811 : |28 — i+ n]|_ <} @

While SDAR method achieves a significant reduction in classification error rates in high-
dimensional normal settings compare to conventional QDA, it performs poorly for heavy-tailed
distributions like the multivariate t-distribution. In this paper, we focus on the setting that the two
classes X and Y are generated from the elliptical distribution, that is X ~ EC,(p,,31,7), Y ~
ECP([,I,Q, 22, ’I“), i.e

X =p, +7rTuq, Y = py +1T2uq,

where w;, i € {1,2} is uniformly distributed on the sphere SP~! and  is a scalar random variable
with E(r?) = p and is independent with w. If £; = Cov(X),X¥; = Cov(Y) exist, we have
3, = I‘lI‘lT7 >, = LT . We denote the precision matrix by Q; = E;l. In this case, we
use the sample spatial median and spatial-sign covariance matrix to estimate mean and covariance
matrix to improve robustness in in heavy-tailed setting.

The sample spatial median is defined as

n1 na

1, = arggéﬁggl\& — pulla, fiy = argggé},zlln — plf2-

The sample spatial sign covariance matrix is defined as

ni

. 1 . ; - 1 & N y
S; = " ZU(Xi — p)U(X; — llq)Ta S = . ZU(Yz — p)U(Y; — Hz)T~
i=1 1=1

Lu & Feng (2025) shows that pSi is a reliable estimator the shape matrix A; := 3%; . Therefore,

tr(E )

we estimate X; by 3; = tr(X;)S;. Similar to Chen & Qinl (Z010), tr(X;) is defined as
) = Diripn(Xi — X )T (X — X) S (Y =Y )T (YY)
! ni(ny — 1)(ny — 2) ’ na(ns — 1)(na — 2)

'[I'(Eg) =
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The consistency of the estimators will be discussed later. We replace the sample mean and sample
covariance matrix in (@) , (@) and estimate D = €, — €, directly by solving the optimization
problem:

N 1~ - 1~ - -
D € arg min {|Vec(D)||1 : HZlDEg + =3,DX; — 3 + 3
DEeRPXP 2 2

< Al,n} )

where A1, = ¢1.4/51 \[ k)g E | with some positive constant c¢;. Similarly, 3 = Q44 is

estimated by solving the optimization problem below:

B arg min {181+ D28 — iy + firloc < Ao} ©)

where A2, = c24/52 ( 1"% with co > 0. Given the estimators above, we propose the

quadratic classification rule(SSQDA)

Q(2) = (2 — 1,)"D(z — i) — 2B (2 — i) — log(|DZ1 + 1)),

where fi = % . The corresponding classification rules for a new sample z are as follows

o 1: Q(z)>0
GQ_{QIQ(Z)SO

Next sections will illustrate the excellent properties of SSQDA both theoretically and numerically.

3 THEORETICAL RESULTS

In this section, we first establish the convergence rate of the estimators D B proposed in (B) , (B)
and subsequently demonstrate that the classification error R(G ) converges to R(Gg) at a specific

rate. We consider the following assumptions.
Assumption 3.1. (The assumption of sparsity) Is1, 82 > 0, s.t. ||Vec(D)|lo < s1, [|Bllo < sa.

Assumption 3.2. (The bound of differential graph D and discriminating direction 3) My > 0, s.t.
D7, [IBl2 < Mo.

Assumption 3.3. Let Vo =A; ' i=10r2. 3T >0, 0< g < 1, so(p) > 0, s.t.
1 |[Vollz, <T.
2. maxi<i<p 5y [vif? < so(p).
Assumption 3.4. (The bound of covariance matrix)3 My, Ms > 0, s.t.
LMY < () <M (3) < M.
2. 1Bl max < Mo.

Assumption 3.5. (The order of the trace of covariance matrix) tr (X;) =< p The assumption can be
derived from directly.

Assumption 3.6. Let §, = E(677), & = || X — pll2, vi= ¢
L GG ¥ < Ce(0,00) fork=1,2,3,4-p
2. limsup, [[Sl2 <1 -1 < 1 for some 1) > 0.
3. v, is sub-gaussian distributed, i.e. ||v;||y, < K, < oc.

The same assumption also applies to the random vector 'Y .

Assumption 3.7. (Assumptions on scalar random variable)
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1. Var(r?) < py/p-
2. Var(r) < /p-

Assumption 3.8. (Assumptions on the density function of the oracle QDA rule) sup | . 5 foe(z) <
My Where fq ¢ be the density function of Q(z) when the parameter takes the value 6.

Assumption Bl assume sparsity on the differential graph D and discriminant 3 which is commonly
adopted in the study of high-dimensional data. As is shown in Theorem 2.1 and 2.2 in Cai &
Zhang (20211), without sparsity assumption, no data-driven method is able to mimic oracle QDA in
high-dimensional setting. Assumption to B4 are general in high-dimensional spatial-sign based
studies, such as Feng (P074) and Cu & Feng (P075). The assumptions guarantee the consistency of
the spatial sign median and sample spatial sign covariance. Assumption BZ1 imposes restrictions on
the tail probabilities of X and Y, ensuring that the tail probabilities of 27 Dz + 37 z in Q(z) do not
deviate significantly from those of a normal distribution. The last assumption bounded the density
function of Q(z) , and is consistent with the parameter space in Cai & Zhang (Z02T) .

Based on the assumptions, we are able to establish the convergence rate of the estimators D, 3 to the
real parameter D and 3. This theorem lays a foundation to the consistency of classification error.

Theorem 3.1. Consider assumption B, B2, B4, B3, and BB, and assume that ni =

ne,n = min{ni,no},s1 + s2 S Kl , where K, , = (\/7—&—\/10”). Let Ay, =
c1+/51 <\/> v/ logp> Ao = C2v/52 ([ \/ logp> where c1,cy being large enough con-

stant. Then with probability over 1 — O (

logp
1 log p
ID-Dlir S (45422 ). ™
1 lo
18- ﬂ|2<82< o §p> ®)

The theorem is proved in Section B3, The convergence rate in () and (B) mainly come from

two parts, the estimation error ||pS; — A;||~ and [tr(3;) — tr(3;)|. Lu & Feng (Z025) proved
the estimation error of the shape matrix, and the conclusion is mentioned in Lemma A7 , Lemma
A3. The estimation error of trace is proved by Lemma [A~4. Based on theorem Bl, we turn to the
consistency of misclassification rate which is defined by

R(G) =E[1{G(2) # L(2)}],
where G(+) : RP — {1, 2} be some classification rule, and L(z) € {1, 2} be the actual label of the
sample z. Let R(Gq), R(G ) denote the classification error of the oracle QDA in (B) with known
parameters and SSQDA, respectively.

Theorem 3.2. Under all the assumptions as Theorem B7ll, and assume that ny < ne,n =

log p
lognK , where K, ,, = ( +/ ) we have

1 1 logp
E|R(G=) — R(G < z

min{nl, ng}, S1 + 82 N

The convergence rate of the classification error in Theorem B2 comprises two components. The
first term primarily stems from trace estimation. According to the results in Lemma A=, the trace
estimator exhibits polynomial-type tail concentration. The second term mainly arises from estima-
tion error in the spatial-sign-based process. This term achieves a slower convergence rate than that
established in Theorem 4.2 in Carefall (20T1) , principally because elliptical distributions generally
possess heavier tails than their Gaussian counterparts. This represents an inherent trade-off when
extending QDA rule to elliptical symmetric distributions. The proof is in Section B33

Next, we will show that we can also obtain similar convergence rate as Caief-all (Z01T) for multi-
variate normal distribution.
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Theorem 3.3. Suppose X and'Y are all generated from multivariate normal distribution and the
other assumptions in Theorem B also hold. Then,

E|R(Gg) — R(GQ)} (51 + 52)?log?n (,/10519 + \/D . )

For Gaussian distribution, the convergence rate in Theorem B3 demonstrates markedly faster con-
vergence than Theorem B, primarily because trace estimation attains exponential tail concen-

tration under normality. The component \/% originates from the difference between the spatial

sign matrix pS and the shape matrix. When p/n — ¢ > 0 in high dimensions, (8) achieves an

O((s1+52)%-log*n- 1"%) convergence rate — nearly matching the optimal rate derived in Caiefal
(P01T). The brief proof is in Section B34,

4  SIMULATION

In this section, we compare the numerical performance of the SSQDA method with other methods
under various settings. The competitors include:

* SDAR: Sparse discriminant analysis with regularization proposed by Cai & Zhang (Z02T).

* SLDA: Linear discriminant for high-dimensional data classification using the direct esti-
mation of 3 in Cai & Liu (ZOL1).

* LDA: The mean is estimated by the joint sample mean, while the covariance is estimated
by weighted sample covariance matrix augmented with \/%Ip , SO as to guarantee the
invertibility. The estimators are then plugged in the conventional LDA rules.

* QDA: The mean is estimated by the sample mean, and the covariance is estimated by
sample covariance matrix augmented with \/@ I, . The estimators are then plugged in
the conventional QDA rules.

Additional experiments comparing with modern machine learning methods are conducted, and re-
sults are provided in the appendix. In the simulation studies, the sample size is fixed to n; = ny =
200 and dimension p varies in (100, 200,400) . The sparsity levels are set to be 1 = so = 10,
and 3 = (1,---,1,0,---,0) where the first s, entries are one. Given X9 and p; = (0,---,0)
, lo = X0 . The differential matrix D is a random sparse symmetric matrix, with its non-zero
elements generated from a uniform distribution.

The p dimensional predictors z are generated from the following elliptical distributions:

* Multivariate normal distribution: z ~ N, (g;, 3;).
* Multivariate ¢5 distribution with expectation p; and covariance X;.
* Multivariate mixture normal distribution: 0.2N,(u;, 9%;) + 0.8N,(1;, ;).

We use the following three models to generate €2; .
Model 1: AR(1) : (£21);; = pl"=7 with p = 0.5 .

Model 2: Banded model: €1 = (w; ;), where w;; = 2fori = 1,...,p, w; ;41 = 0.8 fori =
1,...,p—1Lwiiga=04fori=1,...,p -2, w; 43 =04fori=1,...,p — 3, w; j4+4 = 0.2 for
t=1,...,p—4,w;; =wj;fori,j =1,...,p,and w; ; = 0 otherwise.

Model 3: ErdosRényi random graph: €1 = (Q+ ') /2 + {max(—Anin(£2),0)}I, , where
(Q)i; = wij8i; , uij ~ Unif[0.5,1] J[—1,—0.5],8;; ~ Ber(1,0.05). The second term ensures
positive definiteness.

Each setting is replicated 100 times. The parameter ¢; in \; , = ¢;1/S; (\/ 105;7 + \/E> are chosen

by cross-validation. We employ the following criteria to measure the performance of the classifica-



Under review as a conference paper at ICLR 2026

tion:

Y 4 Y,
Error Rate = M,
n
TN TP
SpeCIﬁCIty = m, SenSItIVIty = m,

TP x TN — FP x EN
/(TP + FP)(TP + EN)(TN + FP)(TN + FN)’

where TP and TN represent for true positives (Y = 2) and true negatives (Y = 1), respectively, and
FP and FN stand for false positives and negatives.

MCC =

Table 1: Comparison of different methods under normal distribution under Model 1.

p Error rate Specificity Sensitivity Mcce

SDAR  0.092(0.016)  0.959(0.015)  0.857(0.028)  0.821(0.031)

SLDA  0.262(0.034)  0.739(0.042)  0.738(0.040)  0.478(0.067)

100 LDA  0.266(0.025)  0.689(0.046)  0.780(0.033)  0.472(0.049)

QDA  0.070(0.012) 0.964(0.014)  0.896(0.021)  0.862(0.024)
SSQDA 0.066(0.012)  0.915(0.019) 0.953(0.016) 0.869(0.024)

SDAR  0.226(0.028)  0.761(0.056)  0.787(0.034) 0.549(0.055)

SLDA  0.226(0.028)  0.761(0.056)  0.787(0.034) 0.549(0.055)
200 LDA  0.315(0.026)  0.664(0.039)  0.707(0.038)"  0.380(0.053)
QDA 0.287(0.023)  0.736(0.034)  0.690(0.041)  0.189(0.043)
SSQDA  0.228(0.031)  0.767(0.042)  0.777(0.045)  0.482(0.092)

SDAR  0.280(0.036) 0.719(0.044) 0.721(0.044) 0.441(0.071)

SLDA  0.280(0.036) 0.719(0.044) 0.721(0.044) 0.441(0.072)
400  LDA  0364(0.027)  0.632(0.036)  0.640(0.039)"  0.272(0.055)
QDA 0.426(0.025)  0.543(0.035)  0.605(0.035)  0.148(0.051)
SSQDA  0.281(0.034)  0.717(0.043)  0.721(0.043)  0.439(0.067)

Table 2: Comparison of different methods under ¢5 distribution under Model 1.

p Error rate Specificity Sensitivity Mcc

SDAR  0.165(0.021)  0.832(0.031)  0.838(0.031)  0.671(0.043)

SLDA  0.165(0.021)  0.832(0.031)  0.671(0.043)  0.524(0.069)

100 LDA  0210(0.022)  0.782(0.034)  0.798(0.033)  0.581(0.045)

QDA 0.349(0.022)  0.655(0.050)  0.647(0.050)  0.303(0.043)
SSQDA  0.160(0.019) 0.838(0.028) 0.843(0.030) 0.681(0.037)

SDAR  0217(0.043)  0.780(0.047)  0.786(0.052)  0.567(0.086)

SLDA  0.215(0.036)  0.782(0.043)  0.789(0.046)  0.571(0.072)

200 LDA  0.276(0.026)  0.699(0.036)  0.748(0.042)  0.449(0.052)

QDA 0.419(0.026)  0.589(0.048)  0.573(0.049)  0.162(0.052)
SSQDA  0.184(0.039) 0.816(0.075) 0.817(0.043) 0.634(0.074)

SDAR  0291(0.079)  0.720(0.077)  0.697(0.091)  0.418(0.158)
SLDA  0.262(0.033)  0.744(0.044)  0.733(0.043)  0.478(0.065)
400  LDA  0327(0.027)  0.622(0.045)  0.724(0.036)  0.348(0.053)
QDA 0446(0.024)  0.571(0.036)  0.537(0.039)  0.107(0.048)
SSQDA  0.212(0.032) 0.791(0.040) 0.785(0.042) 0.577(0.063)

Building upon the results presented in Tables [, it is evident that both SSQDA and SDAR perform
competitively under multivariate normality, consistently achieving lower misclassification rates and
robust predictive performance across different model configurations. This observation confirms the
efficiency of these methods when classical distributional assumptions hold. However, more com-
pelling insights emerge from the performance comparison under non-Gaussian settings, such as
multivariate ¢-distributions and mixed Gaussian models, as shown in Tables P8 and BIT. In these
more challenging scenarios characterized by heavier tails and increased heterogeneity, the proposed
SSQDA method significantly outperforms its counterparts, including SDAR, SLDA, and standard
QDA and LDA. This robust performance is attributed to the use of spatial-median-based estimators
and the spatial-sign covariance matrix, which offer resilience against deviations from normality and
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Table 3: Comparison of different methods under mixture normal distribution under Model 1.
P Error rate Specificity Sensitivity Mcc

SDAR  0.144(0.017)  0.845(0.026)  0.868(0.026)  0.714(0.035)

SLDA  0.165(0.038)  0.824(0.057)  0.847(0.037)  0.672(0.075)

100 LDA  0.199(0.027)  0.747(0.044)  0.854(0.033)  0.605(0.054)
QDA  0.111(0.016) 0.876(0.027) 0.902(0.020) 0.779(0.032)

SSQDA  0.137(0.044)"  0.837(0.071)"  0.889(0.094)"  0.732(0.079)

SDAR  0.178(0.031)  0.820(0.041)  0.824(0.039)  0.645(0.062)

SLDA  0.178(0.031)  0.820(0.041)  0.825(0.039)  0.645(0.062)

200 LDA  0.224(0.025)  0.728(0.041)  0.824(0.032)  0.556(0.049)

QDA 0.297(0.023)  0.684(0.039)  0.722(0.036)  0.407(0.045)
SSQDA 0.151(0.090) 0.823(0.191) 0.876(0.031) 0.702(0.169)

SDAR  0.222(0.035)  0.773(0.044)  0.784(0.041)  0.558(0.070)

SLDA  0.222(0.035)  0.773(0.044)  0.784(0.041)  0.558(0.070)

400  LDA  0.296(0.025)  0.609(0.046)  0.799(0.031)  0.416(0.048)

QDA 0.381(0.023)  0.586(0.036)  0.653(0.035)  0.240(0.047)
SSQDA 0.164(0.028) 0.835(0.036) 0.838(0.032) 0.673(0.056)

reduce sensitivity to outliers. Furthermore, while conventional QDA remains a strong competitor in
low-dimensional regimes (e.g., Table B, B), its efficacy deteriorates as the dimensionality increas-
esreflected in rising error rates and instability across all metrics. This performance decline can be
primarily attributed to the singularity or ill-conditioning of the sample covariance matrix in high-
dimensional settings, which the SSQDA method effectively mitigates through its robust estimation
framework.

Taken together, these findings highlight the versatility and adaptability of SSQDA. Not only does it
maintain competitive performance under ideal Gaussian conditions, but it also delivers substantial
gains in robustness and accuracy when faced with heavy-tailed and non-normal distributions. This
underscores the practical value of SSQDA for real-world high-dimensional classification problems
where Gaussian assumptions may not hold.

5 REAL DATA ANALYSIS

In this section, we evaluate the effectiveness of the proposed SSQDA classifier on an image clas-
sification task involving concrete surface inspection. The goal is to determine whether a given
image of concrete contains cracks. The dataset, sourced from concrete structures on the METU
campus, is publicly available at httos://www.kaggle.com/datasets/arnavr10880/
concrete-crack-images—for-classification. Each image has a resolution of 227 x
227 pixels and is labeled as either containing cracks (positive class) or not (negative class).

To standardize the input dimensions while preserving the aspect ratio, we first applied isotropic
scaling to all images using bilinear interpolation with a scaling factor of 0.1. This preprocessing
step reduces computational complexity without compromising structural information. Following
the resizing, all images were converted to grayscale using the standard luminance-preserving trans-
formation:

MGT = [l'ij]an“ xij =0.1140 - T'ij + 0.5870 - gij + 0.2989 - bija

where 75, gi;, b;; denote the red, green, and blue channel intensities at pixel position (i, ). The
resulting grayscale image was then flattened into a feature vector for input into the classifiers.

For the classification experiment, we randomly selected 200 images from each class (positive and
negative) to form the training dataset. The performance of SSQDA was compared against several
baseline methods, including SDAR, SLDA, LDA, and QDA, using 50 independent repetitions to
ensure statistical robustness.

The comparative results, reported in Table B, include the mean and standard deviation of four
evaluation metrics: classification error, specificity, sensitivity, and Matthews correlation coefficient
(MCC). Among the evaluated methods, SSQDA achieved the lowest average error rate (0.095) and
the highest MCC (0.814), indicating strong and balanced predictive performance. Notably, QDA


https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification
https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification
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failed completely in this high-dimensional setting, yielding an error rate of 0.5 and an MCC of 0,
likely due to overfitting or singular covariance estimates.

These results demonstrate that SSQDA not only provides improved overall classification accuracy
but also maintains a better balance between true positive and true negative rates, making it a strong
candidate for real-world applications in automated crack detection systems.

Table 4: Comparison of different methods for image classification.

Method Error Specifity Sensitivity Mcce
SDAR 0.105(0.025) 0.936(0.030) 0.853(0.046) 0.794(0.049)
SLDA 0.105(0.025) 0.936(0.030) 0.853(0.047) 0.794(0.049)
LDA 0.101(0.023) 0.944(0.027) 0.853(0.044) 0.802(0.045)
QDA 0.500(0.000) 0.000(0.000)  1.000(0.000)  0.000(0.000)

SSQDA  0.095(0.024) 0.946(0.026)  0.864(0.044)  0.814(0.047)

6 CONCLUSION

In this paper, we proposed a novel classification method, Spatial-Sign based Sparse Quadratic Dis-
criminant Analysis (SSQDA), tailored for high-dimensional settings where the number of features
greatly exceeds the number of observations. By leveraging spatial signs, our method achieves robust
estimation in the presence of heavy-tailed distributions and outliers, while simultaneously induc-
ing sparsity to enhance interpretability and prevent overfitting. Through comprehensive simulations
and a real-world image classification task, we demonstrated that SSQDA outperforms several ex-
isting linear and quadratic discriminant methods in terms of classification accuracy and robustness.
The empirical results confirm the advantage of incorporating spatial-sign information and sparse
modeling in high-dimensional discriminant analysis. Our method provides a promising framework
for robust and interpretable classification in modern applications, especially those involving high-
dimensional and noisy data. While SSQDA has demonstrated strong performance in supervised
high-dimensional classification tasks, extending its principles to unsupervised learning and cluster-
ing presents an exciting direction for future research (Caiefall, 20T9).
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A

Al

APPENDIX

ADDITIONAL STIMULATION

Here we state that simulation results of Model 2, 3 in the Section B.

We have conducted additional experiments under representative settings (feature dimension p =
200,400 and distributions (normal and t-distributions). The compared methods include Random
Forest, Neural Networks, Support Vector Machines (SVM), Logistic Regression, K-Nearest Neigh-

Table 5: Comparison of different methods under normal distribution under Model 2.

p Error rate Specificity Sensitivity Mce
SDAR  0.148(0.019)  0.721(0.036)  0.984(0.010)  0.730(0.034)
SLDA  0.333(0.031)  0.656(0.039)  0.679(0.045)  0.335(0.062)

100 LpA 0.337(0.025)  0.618(0.043)  0.708(0.041)  0.328(0.051)
QDA  0.097(0.016) 0.886(0.024)  0.920(0.023)  0.807(0.033)
SSQDA  0.147(0.019)  0.721(0.036)  0.985(0.009)  0.732(0.032)
SDAR  0.314(0.035) 0.676(0.053) 0.695(0.047) 0.372(0.069)
SLDA  0.314(0.035) 0.676(0.053) 0.695(0.047) 0.372(0.069)
200 LpA 0.367(0.027)  0.618(0.044)  0.648(0.047)  0.268(0.054)
QDA 0.328(0.024)  0.656(0.034 0.687(0.042)  0.344(0.048)
SSQDA  0.316(0.033)  0.675(0.053 0.694(0.046)  0.370(0.065)
SDAR  0.379(0.039) 0.622(0.054) 0.620(0.047) 0.243(0.079)
SLDA  0.379(0.039) 0.622(0.054) 0.620(0.047) 0.243(0.079)
400 LDA  0.417(0.027)  0.582(0.044 0.584(0.042)  0.166(0.054
QDA 0.431(0.025)  0.536(0.037 0.603(0.036)  0.139(0.050
SSQDA  0.383(0.038)  0.615(0.051 0.618(0.047)  0.234(0.077)
Table 6: Comparison of different methods under ¢5 distribution under Model 2.
p Error rate Specificity Sensitivity Mcc
SDAR  0.375(0.041 0.567(0.108)  0.683(0.072)  0.253(0.080)
SLDA  0.368(0.035 0.615(0.045)  0.649(0.053)  0.264(0.070)
100 LDA  0.387(0.028)  0.591(0.045)  0.635(0.043)  0.226(0.056)
QDA 0.426(0.023)  0.590(0.058)  0.558(0.063)  0.149(0.045)
SSQDA  0.344(0.033) 0.623(0.070) 0.690(0.055) 0.315(0.065)
SDAR  0.410(0.030)  0.570(0.048)  0.611(0.044)  0.181(0.060)
SLDA  0.410(0.030)  0.570(0.048)  0.611(0.044)  0.181(0.060)
200 LDA  0.425(0.027)  0.537(0.051)  0.612(0.035)  0.150(0.054)
QDA 0.466(0.026)  0.548(0.049)  0.521(0.045)  0.069(0.051)
SSQDA  0.382(0.031) 0.618(0.046) 0.618(0.045) 0.236(0.062)
SDAR  0.431(0.031)  0.567(0.080)  0.571(0.072)  0.139(0.061)
SLDA  0.430(0.030)  0.576(0.042)  0.564(0.047)  0.140(0.060)
400 LDA  0.455(0.024)  0.478(0.042)  0.613(0.042)  0.092(0.048)
QDA 0.480(0.025)  0.533(0.043)  0.507(0.039)  0.040(0.050)
SSQDA  0.399(0.031) 0.603(0.043) 0.599(0.045) 0.202(0.063)

bors (KNN).

Our results (see table [, I ) demonstrate that while SSQDA does not always outperform other
methods under the normal distribution setting, it consistently maintains superior performance under
heavy-tailed t-distributions. These findings highlight the robustness of SSQDA against heavy-tailed

noise and outliers, a property less emphasized in classical machine learning methods.
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Table 7: Comparison of different methods under mixture normal distribution under Model 2.

p Error rate Specificity Sensitivity Mcc

SDAR  0.243(0.049)  0.723(0.115)  0.791(0.058)  0.520(0.090)

SLDA  0.242(0.047)  0.728(0.102)  0.788(0.056)  0.520(0.088)

100 LDA  0.258(0.027)  0.690(0.048)  0.793(0.035)  0.487(0.052)
QDA 0.213(0.022)  0.679(0.041) 0.896(0.021)  0.589(0.043)
SSQDA  0.183(0.029) 0.813(0.054) 0.821(0.037) 0.635(0.055)
SDAR  0.264(0.038)  0.720(0.049)  0.752(0.048)  0.473(0.076)

SLDA  0.264(0.038)  0.720(0.049)  0.752(0.048)  0.473(0.076)

200 LDA  0.305(0.026)  0.625(0.045)  0.766(0.035)  0.396(0.051)
QDA 0.322(0.022)  0.592(0.040)  0.765(0.028)  0.363(0. 043)
SSQDA  0.194(0.026) 0.807(0.034) 0.805(0.037) 0.612(0.051)
SDAR  0.327(0.062)  0.627(0.166)  0.720(0.085)  0.350(0.119)

SLDA  0.315(0.042)  0.669(0.052)  0.702(0.053)  0.372(0.084)

400 LDA  0.369(0.026)  0.517(0.044)  0.745(0.040)  0.270(0.054)
QDA 0.415(0.026)  0.539(0.039)  0.631(0.038)  0.171(0.053)
SSQDA  0.234(0.028) 0.766(0.036) 0.766(0.041) 0.532(0.057)

Table 8: Comparison of different methods under normal distribution under Model 3.

P Error rate Specificity Sensitivity Mcc

SDAR  0.084(0.043)  0.835(0.087 0.997(0.004)  0.845(0.071

SLDA  0.202(0.051)  0.722(0.131 0.874(0.048)  0.610(0.085

100 LDA  0.202(0.028)  0.753(0.056 0.843(0.033)  0.600(0.054)
QDA 0.037(0.009) 0.957(0.015) 0.968(0.013) 0.925(0.019)
SSQDA  0.086(0.044)"  0.831(0.089)"  0.997(0.004)"  0.842(0.073)
SDAR  0.225(0.035)  0.752(0.073)  0.797(0.042)  0.553(0.066)

SLDA  0.225(0.035)  0.752(0.073)  0.797(0.043)  0.553(0.066)

200 LDA  0.275(0.028)  0.695(0.047)  0.755(0.040)  0.452(0.056)
QDA  0.208(0.020) 0.827(0.026)  0.757(0.032)  0.587(0.039)
SSQDA  0.228(0.040)"  0.749(0.079)"  0.795(0.043)  0.547(0.076)
SDAR  0.235(0.024) 0.755(0.037) 0.775(0.032) 0.531(0.049)
SLDA  0.235(0.024) 0.755(0.037) 0.775(0.032) 0.531(0.049)

400 LDA  0.289(0.022)  0.701(0.036)  0.722(0.035)  0.423(0.044)
QDA 0.335(0.024)  0.692(0.035)  0.639(0.037)  0.332(0.048)
SSQDA  0.236(0.026)  0.752(0.039)  0.777(0.033)  0.529(0.052)

A.2 EXTENSION TO MULTIGROUP CLASSIFICATION

We first extend the theory to unequal prior probabilities setting, where 71, o can be estimated by

ni

)
ni + no

n2

ny + no

The corresponding SSQDA rule can be written as

Q(2) = (z— ) " D(z — ju,) — 28 (= — o)

1
7o)
As in Caref all (ZOTT), the prior ratio converges fast:
P(Plog(%) - log(%) ’ > Mn_l/Q) <e M,

Therefore, the convergence rate in Theorem B remains unchanged.

This idea and theory can also be extended to the classification problem involving multiple popula-
tions. Assume there are K groups with distribution

EC,(py, Sg,r), k=1,...,K.
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Table 9: Comparison of different methods under ¢5 distribution under Model 3.

P Error rate Specificity Sensitivity Mcc

SDAR  0.197(0.024)  0.793(0.032 0.812(0.032)  0.606(0.047)

SLDA  0.197(0.024)  0.793(0.032 0.812(0.032)  0.606(0.047

100 LDA  0.237(0.026)  0.753(0.041 0.774(0.036)  0.527(0.052
QDA 0.226(0.025)  0.805(0.040)  0.744(0.044)  0.551(0.050)
SSQDA  0.188(0.020)  0.804(0.032)  0.820(0.028) 0.625(0.039)
SDAR  0.313(0.035)  0.686(0.070 0.689(0.050)  0.376(0.068)

SLDA  0.311(0.032)  0.692(0.040 0.687(0.044)  0.379(0.063)

200 LDA  0.369(0.029)  0.605(0.050)  0.657(0.048)  0.263(0.058)
QDA 0.340(0.025)  0.714(0.041)  0.607(0.043)  0.323(0.050)
SSQDA  0.294(0.029)  0.707(0.040)  0.705(0.042) 0.412(0.057)
SDAR  0.359(0.029)  0.646(0.071)  0.637(0.055)  0.284(0.054)

SLDA  0.358(0.027)  0.651(0.047)  0.633(0.043)  0.285(0.054)

400 LDA  0.396(0.027)  0.550(0.049)  0.659(0.039)  0.210(0.053)
QDA 0.433(0.025)  0.639(0.046)  0.495(0.044)  0.137(0.051)

SSQDA  0.337(0.029)

0.668(0.040)

0.658(0.043)

0.326(0.059)

Table 10: Comparison of different methods under mixture normal distribution under Model 3.

p Error rate Specificity Sensitivity Mcce
SDAR  0.167(0.071)  0.759(0.165)  0.908(0.034)  0.683(0.117)
SLDA  0.154(0.061)  0.790(0.140)  0.902(0.030)  0.702(0.105)
100 LDA  0.144(0.027)  0.817(0.050)  0.896(0.022)  0.715(0.052)
QDA  0.092(0.016) 0.882(0.026) 0.933(0.015) 0.817(0.032)
SSQDA  0.107(0.035)  0.875(0.076)  0.911(0.021)°  0.789(0.062)
SDAR  0.173(0.038)  0.802(0.082)  0.852(0.035)  0.658(0.067)
SLDA  0.173(0.038)  0.802(0.082)  0.852(0.035)  0.658(0.068)
200 LpA 0.194(0.023)  0.759(0.044)  0.853(0.027)  0.616(0.045)
QDA 0.176(0.018)  0.812(0.031)  0.837(0.026)  0.650(0.035)
SSQDA  0.146(0.052) 0.831(0.112) 0.877(0.028) 0.710(0.092)
SDAR  0.170(0.039)  0.820(0.085)  0.840(0.033)  0.661(0.073)
SLDA  0.167(0.023)  0.827(0.034)  0.838(0.030 0.666(0.045)
400 LpA 0.199(0.023)  0.759(0.038)  0.842(0.027)  0.603(0.045)
QDA 0.279(0.023)  0.696(0.039)  0.746(0.032)  0.443(0.045)
SSQDA  0.143(0. 040) 0.848(0.087) 0.866(0. 026) 0.714(0.077)
Table 11: Performance of modern methods under normal distribution
P Method Error Sensitivity Specificity MCC
Random Forest  0.000(0.002) 1.000(0.002) 1.000(0.002)  1.000(0.003)
Neural Net 0.438(0.052)  0.579(0.142)  0.545(0.142)  0.126(0.107)
200 SVM 0.334(0.049)  0.672(0.057)  0.661(0.074)  0.334(0.099)
Logistic 0.361(0.046)  0.740(0.047)  0.538(0.072)  0.284(0.093)
KNN 0.446(0.036)  0.846(0.079)  0.262(0.096)  0.138(0.087)
SSQDA 0.228(0.031)  0.767(0.042)  0.777(0.045)  0.482(0.092)
Random Forest 0.001(0.003) 1.000(0.002) 0.998(0.006) 0.997(0.006)
Neural Net 0.472(0.038)  0.517(0.160)  0.539(0.147)  0.058(0.081)
400 SVM 0.377(0.047)  0.621(0.077)  0.625(0.066)  0.247(0.094)
Logistic 0.385(0.041)  0.699(0.055)  0.532(0.067)  0.235(0.083)
KNN 0.465(0.032)  0.743(0.085)  0.327(0.097)  0.078(0.071)
SSQDA 0.281(0.034)  0.717(0.043)  0.721(0.043)  0.439(0.067)

We adopt the Bayesian classification criterion. A new observation z is assigned to class £ if and

only if
min  Qk(2),

k =
are ke{l,.. K}
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Table 12: Performance under ¢-distribution

P Method Error Sensitivity Specificity MCC
Random Forest ~ 0.352(0.050) 0.655(0.078) 0.641(0.075) 0.299(0.100)
Neural Net 0.446(0.051) 0.566(0.197) 0.541(0.191) 0.116(0.106)
200 SVM 0.339(0.050) 0.667(0.069) 0.655(0.073) 0.324(0.101)
Logistic 0.361(0.045) 0.760(0.051) 0.518(0.072) 0.287(0.091)
KNN 0.454(0.042) 0.510(0.249) 0.581(0.253) 0.107(0.087)
SSQDA 0.184(0.039) 0.816(0.075) 0.817(0.043) 0.634(0.074)
Random Forest ~ 0.346(0.039) 0.639(0.071) 0.669(0.059) 0.309(0.079)
Neural Net 0.442(0.062) 0.588(0.194) 0.529(0.194) 0.123(0.126)
400 SVM 0.302(0.051) 0.693(0.057) 0.703(0.077) 0.397(0.102)
Logistic 0.354(0.044) 0.764(0.055 0.528(0.060 0.301(0.092)
KNN 0.430(0.046) 0.528(0.207 0.611(0.199 0.149(0.094)
SSQDA 0.212(0.032) 0.791(0.040) 0.785(0.042) 0.577(0.063)
where
Qk(2) = 3(2 — ) 'Di(z — pr)
~ Bl (2~ ) — FloglDy S + Tl +log (), k=1,... K,
with

Dp=Qr—Q1, = “lﬂ%, Br = Qi (py, — pq).

When the parameters are unknown, under sparsity assumptions on Dy and 3, we estimate them
using samples X(lk)7 e Xg? ~ EC,(py, Xk, 7):

Dy = arg_min {||Vec(D>H1 : H%ilDik +15,D3 -5, + 3,

< /\1,n} ;

max

By = arg min {181+ 228 — iy + filloe < Ao

where

ik = tr(Ek) Sk,
1, is the sample spatial median of group k, and Ay 5, A2, are tuning parameters.

Therefore, the discriminating function is
Qk(z) = %(Z - llk)Tf)k(z — )
- By (= - ap)
- %log‘f)kfll +Ip‘ +log(%) C k=1,... K

Finally, the classification rule is

Gal(z) = arg i Qi(2).

The convergence rate for misclassification follows from the same techniques as in Theorem B2

A.3 PROOF OF THEOREMS

In this section, we prove Theorem B, Theorem B2 and Theorem B=3.

A.3.1 USEFUL LEMMAS

We begin by presenting several lemmas that establish the consistency of spatial median and sample
spatial sign covariance. Let X ~ EC,(p, Xo,7),E(r?) = p, Ag = > )20 Spatial sign convari-

ance matrix is denoted by S. Sample spatial sign convariance matrix and spatial median is denoted
byS and f respectively.

14
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Lemma A.1. Under Assumption B3, B4 and B3, ||S||na = O(p~1).
Lemma A.2. Under Assumption B3, and B3, when p is large enough, 3C., .00 > 0, 5.1,

C
||pS - AOHmax g %}f,]\/[.

Lemma A.3. Under Assumption B8, for any o« > 0, with probability over 1 — «
8\ (X

) >¢MpH%WVW®
2 (Z0) n ’
221 ( Eo \/ )+ log 2/a)

+ IS lmax

1S - wmgc(

| — ullm,c

y . . o 1
By Jenson’s inequality, we have (; = E ( = ) /g ‘X ) >\/x @) I\Eol\ Therefore,

we can further obtain

201 (%) | [log(p) +log(2/a)
il |

n

Proof. Lemmas BT, A7 and A are Lemmas 5, 6, 7 in Section 5 of Cu & Feng (20275). O

Lemma A4. If Var(r?) < p?,

Proof. Since

— g Xi—ptp - X)) (X —ptp - X)
(%) = - n(n—1)(n —2) ’

without loss of generality, we can assume g = O . In the meantime,

E((X:— X5)"(Xp - X)) =E (X" X0 - X7 X, - X7 X4+ X,;7X;)
=E(X,;7X;) = tr(Zp).

e~ —~—

It is straightforward to show that tr(Xg) is an unbiased estimator. Next we consider Var(tr(Xg)) .
For i #£ k # j,

E(X;"X))? =E (E(XiTXkaTXi|Xk))
—E (tr(XkaTEO))
:tr(202),

E(X;" X ;)2 =E (r*) E (u"Sou)”
= [Var(r?) + (B02)°| E (uT Sou)”

=p’E (uTEou) ? ,

15
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where w = (u1,ug, - ,uy) is uniformly distributed on SP~*. A well known result is that E(u}) <
E(Ugu?) = I% Let 20 = (Jij)pxp , then

2

E(UTE()U)Q =E Zaijuiuj
‘lj

=E E 0450 Im Ui Uj UL U,

i,5,l,m
= Z oiionlk (u?uf) + Z szE (ufuf) + Z afi]E (uf)
il i.j i

_ (tr(20))? + tr(X?)
= 2 .

Thus, E(X;T X ;)% = (tr(2))” + tr(Xo?). For other combinations of quadratic terms, the expec-
tation is 0. Therefore, by considering the possible combinations, we can obtain

—~ E (Zi#j#k(Xi - Xj)T(Xk - Xj) Zl;ﬁm;én(Xl - Xm)T(Xn - Xm))

Var(tr(Xy)) = 20 1D%(n _2)°
— (tr(30))?
n® n®
s s o 0 () )+ ] - )
<0 (711) (tr(Z0))>.

Lastly, by chebyshelve’s inequality:

r (0

tr(Zo) (tr(m 1

P —11>t] < <
(EE S ENER T

Lemma A.5. With probability over 1 — O (@), we have

5 TN
1Z0 — Zollmas < \f+ | 22 (p).
P n

Proof. By Lemma [A and Assumtion B4, we have

81 (o)
—— = T S max,g
ap(z0) TS

’E.M—‘

By Assumption B3, tr(Xp) < p. Lett = 4/ 10% in Lemma B, by Lemma B , and triangle
inequality, we obtain
= tr(3 E—\Z/ ~
”20 - EOHmax < ( O) (‘ ( ( 0) — 1) pS
D tr3g
< \/T L Jlos (p)7
D n

with probability over 1 — O ( L ) O

logp

+ ||pS - A()Hlnax)

max

16
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Lemma A.6. When (slog(ep/s) + log(1/a))/n — 0, with probability at least 1 — 3c, we have

‘|§— SH278 <C, ( sup 2||UTU(X _N)‘l?pz n |S||2) \/5(3+10g(p/3)) +10g(1/06)

veSP—1 n

e (@)*%(Hts),

S

Sfor some absolute constants Cy,Cq > 0and § € (0, 1).

Proof. This is Theorem 3.1 of Feng (2024). O

Remark A.1. As a special case within Theorem 4.2 in Han"& i (2018) , when i;g‘;; is upper

bounded by some positive constant, we have
1
sup 07 S(X)|F, < -,

v p

where S(-) is the self-normalized operator, with the fact that U(X) L S(X) when X follows
elliptical distribution with mean 0. Therefore, we have

~ 1 s(3+1o s)) + log(1/a np\ —z(1+9)
P n s
Lemma A.7. Under Assumption B4, we have
1
ISll2 S =
p

Proof. By Feng (20724)), we obtain the relationship between the eigenvalues of the spatial sign co-
variance S and X

( A (Z0)Y;° )
M(E)Y 12+ N(Z0)Y 2 )

X;(S)=E

where Y1,Y5,--- Y, b N(0,1) . Since \;(3g) are lower bounded by a positive constant

-1
M,

Y ;?
A (S) <M\ (20)E J
(9 MR ()

< YJ'Q
<E 5 5 -
Y+ 4Y,

. . . .. _ - S Y .2 1 p—1 .
As is mentioned in Proposition 2.1 of Han & Titf (201F), yotrgs ~ Beta(5, 75~) with mean
1

5, we reach the conclusion. O

The following are technical lemmas.

Lemma A.8. Suppose x,y € RP. Let h = x —y. Denote S = supp(y) and s = |S|. If
lzllx < |lyll1, then h € T'1(s;p), that is,

[hsellr < [[hs]l1-
Lemma A.9. For positive matrix X,Y,

log | X| <log|Y|+tr(Y 1(X - Y)).

Lemma A.10. (Von Neumann Lemma) Let E € RP*P with ||E|| < 1, where || - || is a consistent
matrix norm satisfying ||I,|| = 1, then I, — E is invertible and
_ 1
1L, —E) " < -
: 1-[E|

17
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Lemma A.11. For a symmetric matrix M = (m;;)pxp and a positive constant s,

[Mlz,s < [ M||max-

Proof. Letv = (v;);=1..., be avector with ||v||2 = 1, ||v]|o < s. Without loss of generality, assume
its non-zero elements are among vy, - - - Vi, . We have

P P ks ks
’UTM’U:E E VM4V = E E ViV

i=1 j=1 i=ky =k,
SHM”maXHUH% < 8[| M| max-

A.3.2 THE PROOF OF THEOREM Bl

Lemma A.12. With probability 1 — O (@), we have

Vece(D — D) € T'y(s1;p%).

Proof. By Lemma &R, It suffices to prove ||Vec(D)||; < ||Vec(D)||; which follows directly from

the fact that D is a feasible solution to problem (B). Denote 3 = tr(Ei)gi, V = %21 ® Yo +
%22 ®3X1, vy = vec(X1) —vec(Xs) and V= %21 @3+ %22 @3, U = Vec(il) —Vec(iz).
Observe that

VVece(D) = vs.

Thus,
[VVee(D) = v3|lo = VVee(D) = VVee(D) + vs — 03|

<[(V = V)Vee(D)||oo + s — 03l

<[(V = V)Vee(D)[loo + [Vee(E1) — Vee(E1) |l
+ [Vee(E2) — Vee(E2) oo

<V = V] [VeeD) |1 + [Vee(S1) — Vee(E1) oo
+ |[Vee(Ss) — Vee(22) | oo

<V = Vllmaxv/51Mo + [[Vee(E1) = Vee(S1)||oo
+ ||[Vee(X2) — Vec(flg)Hoo.

By Lemma B3 , we have ||Vec(Z;) — Vee(Zi)lloo = [1Zi — Zillmax < f log(p with

probability over 1 — O ( ) As for the first term

logp
~ 1 = ~
HV - VHmax S§”Zl ® 22 Z31 & Z:QHmax + = ||22 ® 21 22 ® z]1||max~

It suffices to consider

||2~:1 & 22 - 21 ® z]2||max < ||z~:1 ® (22 - 22)||max + ||(2~:1 - El) ® z~:2Hmax-

Since ~ ~ _ _
||21 ® (22 - E2)||max SHEIHmaX”ZQ - z:2||max

S(Hlemax + ||21 - 21||max)||5:2 - 2QHmaXa

IV =Vllnax S 122~ o lnax S \/%—I-\/ 108®) Therefore with Ay, = ¢1,/51 (\/E—I- \/ logn(p)>

, where ¢; is a large enough constant, we have | VVec(D) — s ||oo < A1, Which leads to Vec(D—
D) € T'1(s1;p%). O

18
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Through simple computations, we obtain a straightforward corollary derived from Lemma B2 :

[Vec(D — Vec(D))|ly < 2y/51]|Vec(D — Vec(D))]|2. (11)

Through an entirely analogous process, with A2 ,, = c2./52 <\/E + 1/ logn(p)> , the following in-

equality also holds with probability of 1 — O (@),

1B = Bl < 252118 — Bll2-

Proof. With |[V7L, = Q1 ® Qal, = [|Qu4]l, - |922]|, < M2, consider |D — D||p.

ID = D2 = vee(D) — vecD)|[3 < MApin(V)] vee(D) — vec(D)|2
<M?|(Vee(D) — Vece(D))T'V (Vee(D) — Vee(D))|

<|(Vec(~)fVec( )"V (Vee(D) — Vee(D))|

=|(Vec(D) — Vece(D ))T(VVe( ) —vs)|

=|(Vec(D) = Vee(D)) (V- )Vec() + (VVec(D)) — vg) + (v — vg))|
<|(Vee(D) — Vee(D))T(V — V)Vec(D)|

+|(Vec(D) — Vee(D))" (VVec(D)) — vs)|

+|(Vee(D) = Vee(D))" (vs — vs))|.

By triangle inequality,

ID = D% <[[(Vee(D) = Vee(D)[1[(V = V)Vee(D)]|
+][(Vee(D) = Vee(D)) |1 [|(VVec(D)) — ) 1o
+ [[(Vee(D) = Vee(D)) 1 [(# — vz))los
<[ (Vee(D) — Vee(D))|l2v/51)(V = V)Vee(D) o
+[(Vee(D) — Vee(D))|l2/51]|(VVee(D)) — o)l
+[[(Vee(D) = Vee(D))|l2v/51]| (0% — v5) loo-

The last inequality uses (IT). For the last two terms,

[(VVee(D)) - %)l < A S Vo7 (ﬁ . W) |
(5% —v2)) oo < [IVee(S1)—Vee(S) oo+ [Vee(Sa) — Vee(Sa) oo S ( F)

For the first term,

I(V = V)Vee(D) oo <[[(V = V)(Vee(D) — Vee(D)) oo + [(V — V)Vee(D)]|o
<[|(V = V)l ll(Vee(D) — VeeD)Ili + [V ~ V) maxr/57Mo

s@( o+ 1%5”) [Vee(D) ~ Vee(D))

1 log (p)
—— | M,
+ /51 (\/>+ \/
Therefore Hﬁ —DJ|r <5 (ﬁ—k \/logn(p)> with probability over 1 — O (Tép)'

19
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The proof of || 3 — 3||2 follows the same process. By Assumption B4, we have
18 =Bl <18 - B) =28 - B)l

<|B=B)(2:B-8)|+|B-B)T (5~ 2)8)|+|B-B)T(6-)

<v52)18 = Bll2(1Z28 = 8loc + |(Z2 — 2)B]lc + 16 — 8]|o0)

<5218 - Bll (Mo + 1(Z2 = T2)Blloe + 1(Z2 = T2)(B = B)llow + 116 — 8lloc )
By Lemma B3, [|§ — 6|0 < 107% Thus |3 — B2 < s2 <\/E+ \/ 10%@) , with probability of
1-0 (5)- O

A.3.3 THE PROOF OF THEOREM B2

Proof. Given 1y =71 = 3

R(GQ) R(Gg) = ( —/ Wlfl(z)dz—f—ﬂ'g—/é( )<07r2f2(z)dz> -

(7‘(’1 7T1f1(Z)dZ+7T2—/ 7T2f2(z>d2:>
Q(z)<0

:/ 7T1f1 d2+/ ﬂ'gfg(z) dz

Q(2)>0 Q(2)<0

/~ m f1(z)dz — /~ mafa(z)dz

Q(=)>0 Q(2)<0

:/ 7T1f1(Z)dZ+1—/ FQfQ(Z)dZ

Q(2)>0 Q(2)>0

/ 71'1f1 dZ*].+/ ’/TQfQ(Z)dZ

Q(z Q(z)>0

/ 7T1f1 — 7T2f2(z) dZ — /~ 7T1f1(z) — 7T2f2(z) dZ
Q(z)>0 Q(z)>0

L we first simplify the excess risk R(GQ) - R(Gog) .

/ r1fi(2) — mofa(z) dz — / T1fi(2) — Tafa(z) dz
Q(z)>0 Q(z)>0

T f1(2) — mafa(z) dz

Q(z)>0
+/ T (2) — mafalz) dz — (4 — 72).
Q(2)<0
Therefore,
R(Gg) _ / T f1(2) — 7o fa(2) dz
Q(z)>0, Q(z)<0
m1f1(z) )
= 7r z) | — +1) dz
/Q(z 1 )< 2 f2(2)
_ / mhi(2) (_eaog(fl(z)) log(f2(2))+log(£4)) +1) dz.
Q(2)>0,Q(2)<Q(2)—Q(2)
Let

log(f1(2)) —log(f2(2))
(e Ho)"E (2 - py))) 1 o 121
B g<9((z—uz)T22_l(z—uz))) 21 35|

:%QE(Z)

20
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Then,
R(GQ (GQ>

/ w1 f1(2) (—e 7 4 1) dz
Q(2)>0,Q(2)<Q(2)-Q(2)

Qp(z)

= SEan [ e*5)1{Q(2) > 0.Q(2) < Q2) ~ A=) (12)

Let M(z) = Q(z) — Q(z) . We next consider the tail probability of M (z) when z ~ f1 .We can
first rewrite the QDA rule in (I) as follows :

Q(z) =(z — )" D(z — py) — 28" (z — p) — log(|DT1 + L |))
=(z— )" D(z — py) = 28" (2 — py) + B" (py — py) — log(IDZ; + L|)).

Consider the const term first. With probability at least 1 — O (loép

),wehave
'IBT(“Q — ) — BT([LQ - ﬂl)’
< ’BT(Hz —Hy — o+ 111)‘ + H(B -8)" (12 — /'l’l)HQ

< ||B||1 gy = g — frg + oy || o + ||B — Bllallpg — w12
< ||ﬁ||1'||li2— _ﬁ2+ﬁ'/1||oc+||ﬁ_ﬂ||2”ﬂ2_H1||2

I
< VBl - s — o1 — i+ finlloe + 1 — Bllaltss — gl < 52 (f \/T>

Next, we consider log |D3; +1,|—log |DX; 41, Since (DX, 41,) "' = 2,35 = (2,-D)%, =
I, - DX,. By Lemma A9,

log DX + I,| — log |DX; + 1,

<tr((DE, +I,) (DX, - D))

=tu((-DX; 4+ 1,)(DX; — DX)))

= tr((—DX,)(DX; — D)) + (DX, — D)

< |DEy||p - |DE; — DXy ||p + tr(DE; — DX)

< D[ Z2)2 - [DE; — Dy r + tr(DZ — D)

< ||D|F||B2]lz - |[DE; — D¢ + [r(DE; — DX1)| + tr(DE; — DX),

where o
HDE1 —D21H
F
< HDE1 — ]321H + HD(Z}1 — il)H
F F
<D — Dl[p[[Z1]lz + [Dllpl|Z1 — E1ll2,s, -
Since

121 — B2, = sup (21— Z1)ul2

leflo<si,[lull2=1
= sup |u (31— 31)u,
lullo<si,|lull2=1

by triangle inequality, we can obtain

- tr(3) t@j) 5
1 —-X o < —11|pS
21— X125, < ) H (tr(zl) pS1

/—\_/

tr(Xq)
tr(X)

+ [pS1 — pS1ll2.s, + [PS1 — Atll2,s,
2,81

<

~

1S, 181 - + 1981 = Al

21
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With (M) and Lemma B2, ||pS; — s S Sllnﬂ, IpSll2,s: < |IpS|l2 < 1 with probability
over 1 — 3/p. Therefore, by Lemma A4, we obtain

P ( r(%) Hpsl‘ > \/@>
2,51 n
(%) log p
gp( 1) HpslH F <O> + P (lpS1ll2,5, > C)
1 } 1

S
logp  p ~logp’

According to Lemma BT, ||pS1—Aq|l2,s, < s1]|pS1—A4]
overl — O (¥>,

log p

[max < f Therefore, with probability

L~ 1 lo
IDZ, — D, |r < 51 <f+ \/g(”>> .
p n

For the second term |tr (]321 — f)f]l) Togp )°

N .. ~ ~ 1 lo
tr (DB1 — DE1)| <IT1 = e V51D < 51 (\[N \/g;fp)> .

Therefore , with probability over 1 — O (@),

, with probability at least 1 — O (#)

log DX + I, — log|DX; 4 1| — (DX, — DXy)

()

As for the other side, by Lemma BT,

log DX, + Ip| —log DX 4 1|
<tr(DX; +1,)" (DX, — D))
<tu([(DX; +L,)"! — (DX, + 1) (DZ; — D)) + o(DZ, +1,) (DX, — D))
<tur([(DE; +1,)"' = (DX + L) (D, — DY) + [DSs|r - [DE; — DIy ||r
+tr(DX; — DY)
<tr([(DZ, +1,)"! — (DZ, +L,) (DX, - DX))+
DX F - ||1521 — DX + |tr(DX; — DX))| — r(DE; — D)
<tr([(DZ; +I,)"' — (DX, +1,)"'|(DE, - D))

([ \/@>t (D%, DS,).

w([(DX; +1,)"! — (DX, +1,)" (DX, — D))
<[(D2 + L)' = (D, +1,) | r - [(DE; — DEy)| p.
Let A:= DX, +1I,,B:= DX, 4+ 1,, then

Consider

|A~ =B~ =|AT'(B - A)B7||r
<[[A7l2[I(B — A)B~|
<[[A7 2 - [[(B = A)llr - B2,

22
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where .
B~ []2 =[|T, = DXs2 < 1+ |[DXsalf2

<L+ |D[[p|[Zefl2 := M

From Lemma AT ) . )
[A™ 2 =T+ (A-B)B™)B] |2

=B~ I+ (A-B)B™) "'l
<[BH2fI(T— (B~ A)B™H) 2.
Let E:= (B — A)B~!, when n, p is large enough
B2 <||B — All2[B™' [l < B — Al[pM

0
<, (\[+ logp>
P n

With Lemma AT , when n is sufficient large ,

1
IX-E) 2 € 57— < M + 1.
L= [[E[l

Thus ||A~t||2 is bounded, and |[A~! — B7!||r < ||B — A||r . Therefore,
r([(DX; +1,)" ! = (D2, +1,) (DX, — D))
SI(DE) —D2y)|r

()

Consequently, we have that with probability 1 — O (loép),

|log DX + I,| — log |DE; +1,| — (DX, — D)

1 1
S1 (\/7-1- ng> .
P n

Next we consider the term involving z. That is (z — p;) " D(z — ) — (z — py)"D(2 — ;) —
(tr(DX; — DX)). Recall the definition of elliptical distribution, for z in class 1, we can assume
z = pq + rT'1u, where w is uniformly distributed on the sphere and r is a scalar random variable
with E(r?) = p and independent with u. u could be expressed as u = x/|| x|, where  ~ N(0,L,).
So z = py + r|z|~'T'1x and

(2= 1) "D(z = py) = (2= ) "Dz — 1)
=r?||z||?2"T," (D - D)1z
=[r?|lz|7* - E(r?|2||~*))z"T:" (D - D)1z + E(r*|lz|~*)2"T," (D - D)T'1 2.
Given [|z||* ~ x2 , we have E(r?||lz|~2) = p/(p — 2) and
Var(r? ||| ) =BriE(||lz| =) — [E(?) E(|=|~*)]?
___EB(0YH P
=24 (-2

By Chebyshev’s inequality
P (|r?|]| =% = E(r?[lz] )] > t)
_ Var(r? 2] )
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As the same in Cai & Zhang (2021),

p
2'T"(D - D)z — (T, (D - D)Ty) = Y Niaf — 1),

i=1

where \; are the eigenvalue of I‘lT(D — ]3)1"1. Since with probability at least 1 — O ( 1 )

logp )°
14

and with probability at least 1 — O (loép>,

1 1
= 22D ~ D), 2 p < [ Z1]2D - D||F<sl< " °§p>,

» = 1 lo
max [A] < [[8,"/*(D = D)B, ||z < [S4]lo]|D ~ Dz S 51 ( » §p> ‘

By Bernstein inequality for sub-exponential random variables, we have for some c; > 0,

p 2
IP(Z)\i(xzzl) Zt) <2exp { —c; min t 55 t
(i) (i)
C
e (13)
Thus, we can obtain
(z— )" D(z - py) — (2 = ;)" D(z — py) — (tr(DX; — DY)
=[r?|lz|~* = E(r?|2||~))z"T," (D - D)1z + E(?||lz|~*)2" T, (D - D)
—tr(DX; — DX)
=[] 7 = EC*|=] )] (wTFlT(D D)l — (T, (D - 15)1“1))
+ % (wTI‘lT(D — D)z — (T, 7(D - 15)1‘1))
+ <pf2 +72[le] 72 — B3|z 2) - 1) (T, (D - D)T,).
Then, we can consider
P (|(z = )" D(z = ) = (= 1) "Dz — ;) = (tr(DE; — DE1))|
e ( bgp))
<P (|ir2lll =2 - B2z )] («"T:7 (D - D)Ty — u(T, (D - D)Iy))|
M I N
3 P n
4P < P - ‘ 0, 7(D - D)z — (D, 7 (D — D)r1 > gsl ( logp ))
=
+P ( % + 72|72 = BE(r?||x|7?) - 1) (T, 7 (D — D))

4 5-)
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For the first part,
P (|2~

(5 y5)
SP(’;;;TI‘lT(D—f))I‘l—tr(I‘l (D -D)ry)| > (\f \/@))

+ P (‘r2||:1:||_2 - E(T2||$||_2)‘ > 1)

M? M (p — 2)Var(r?) + 2p? 2
<2 —eimin = 2 .
) exp{ Clmm{ 93 }} p—22(—1) ' logp

E(r?|z|~2)] (wTI‘lT(D D)y — w7 (D - D)rl)) ]

For the second part, when p > 3

) - M T /N
P <p2 ‘a:TI‘lT(D — D)z — (T, (D — D)r1 > = <\/; 4o BE
-
. - M 1 1
<P (‘wTI‘lT(D ~ D)z — (T, T(D - D)I‘l)‘ > s <\/;+ ng))

<9 . M2 M + C2
€ —C1 Inin _ .
e A 81° 9 log p

For the third part, since with a probability of 1 — O (loép) ,
Vec(D — D) H1

o (T2 = D)T, )| <15 e
<1l - 2v57 D - D]

/511
<s1 S1 ng'

P <| (525 +rlel™ = B6?el %) - 1) EA
(\(;2)@ )

Therefore,

i

M 1 1
3 p n

(T

<P
P
_ M 1 logp
P 2 2 2 2 )\z > \/7

+ (( Iz ) 3ox 2 G (5
1 P M sllogp ( 2 11—2 9 1—2 1 )
<-+P Ni| > —s1 + P |r°]|x — E(re||x > —
= (2: - P2l 2~ Bl )] > 2=
Co (p —2)Var(7”2 ) + 2p?

< +s
logp (p—2)%(p—4)
Thus, there exists constants ¢;,
P (|(z = )"z = ) = (2 = )" D(z ~ ;) ~ (tx(DE, — D))

)
D n

(p — 2)Var(r?) + 2p? L (p — 2)Var(r?) + 2p?
(r—2)2p—4) V-2 —4)

c3
log p

<ciexp{—-coM} +
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By Assumption B72,

P (|(z = u)"D(z = ) = (2 = )" D(z — ) ~ (tx(DE; ~ DE))

> M sllogp>
n

1 S1

+—.
logp = /P
As for the linear term involving z,

‘(Bﬁ)T(zul)

Sexp{—-aM}+

el (B~ 8) Tia

<|Irl=l "~ BGrlel ) (B~ 8) Tue

+ ‘E(r||w||_1) (3~ ,@)Tl"lzr, .

Since (B - @) Tz~ N <0, (B - 5)T o8 (B - ﬁ)) , and with probability of 1 — O (L)

logp
(B-8) 21 (5-8) <2l - B3 < 535, (14)
In addition,
P(’(B—ﬁ) RS (ﬁ N 1°§p> za)
J(6-9)" =i (5-0) g
< exp T

sa(yieye)  |2(a-8) =i (5-5)
Together with (I4),
P (‘(ﬁ—,@) I‘lsc‘ > Mso <\/Z—|—1/105p>> < exp —cM? + lo;p.

1 —1 T _ 1
Since —= is a convex function, by Jenson’s inequality, £ ([l 71) > el = v5- Asa result,

Var(r||z|| 1) =E (r?||z] %) — (B( IIwII )

2
=E (2] %) — (E(r)* (E(|] ™))
_p (B0
p—2 p

_(p—2)Var(r) +2p
pp-2

By Assumption B71 and Chebyshev’s inequality, we have

P (|rllalI= = E(rllz|~)| > t) <

(p — 2)Var(r) + 2p
t2p(p — 2)
1

< .
With E (r||lz|| =) < \/E (r?||z]|-2) = /-5 . there exists constant c3, so that
p

P (‘(Bg)T(zlﬁ) > Mso <\/Z+ UIOELP)) < exp{—caM?} + lo;p + \;ﬁ
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To complete our analysis, we focus again on the classification error rate. Recall (I2) , we have

Qp(z)

R(Gg) ~ R(G) =3Eeny, [(1 511 {Q(2) > 0,0(2) < Q=) - G(=)}]

SEznp, [1{Q(2) > 0,Q(2) < M(2)}]
=P (0<Q(z) < M(2))

<P (0 < Q(2) < M(s1 + 52)logn <\/Z+ \/@»

+P (M(Z) > M(s1 + 52)logn <\/Z+ W))

<p (0 < Q(2) < M(sy + s3)logn <\/g+ \/@)) + (i)cw
1

s1
logp N/

where C; are some positive constant. Last, from the assumption sup), s foe(x) < Ma,

1 lng 1 S1

) < - D

E|R(Gp) R(GQ)} S(s1 4 s2)logn (\/;+ \/7> T logp VP
1 1 1

5(51+32)10gn<\/>+ \/@) + .

p n logp

A.3.4 THE PROOF OF THEOREM B3

+ Co +Cs3

We first restate the convergence of the trace estimator in Gaussian setting.

Lemma A.13. For multivariate normal distribution,

d

Proof. Without loss of generality, assume g = O . Therefore,

(o)

r(So) !

> t> < 2exp {—cmin {npt2/9,npt/3}} .

o DX = X)) (X - —X)
(%) = : n(n—1)(n—2)
Y XX i X" Xy,
Y (n—1(n-2)

For the first term, consider

i=1

where \j are the eigenvalue of
normal distribution.

k
tr(zzf’o) and y;; are independent random variables from standard

By Assumption B4 and Assumption B3, we have,

V sz )‘%(EO) - 1
Vviu(So) T /mp
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M
n

M, <i

< :
~ ntr(Xg) ~ np

Thus by Bernstein inequality for subexponential random variables, we have for some positive con-

stant c,
n T
p[|2iz X Xi
ntr(Eo)

sup
ki

-1

> t) < 2exp {—cmin {nth,npt}} .

Let Z = Y7 X; . Observe that 3, X Xy =2"Z2-3" | X" X, , with Z ~ N,(0,n%).
z'z
(n—1)(n—2)tr(Xp) "

1 ztz ) 1 YT (nZo)Y _tr( nXo )
(n—1)(n—2) \ r(Xo) C(n-1)(n-2) tr(3o) tr(3o)

_Wl— (Z)\k >

where )\ be the eigenvalue of t:EEO) , and yy, are independent variable from N (0, 1). Similarly, we
have

‘We first consider the concentration of

P A2 1
(n—=1)2(n—2)2 "~ np i ~

k=1

Therefore, by Bernstein inequality, we can obtain

1 ztz
P ( (n—1)(n—2) <tr(20) - ”)

. n L X TX,
The estimation ofP( oD (=2 ~ (ns 1)(n Y0 (S0)

> t) < 2exp {—cmin {n2pt2,npt}} .

> t) follows the same process.

Combine the results above, we have

(o)
P ( tr(Xo) ! )
I IED ¢P 1 z"z T
=P ( ntr(o) ! (n—1)(n—2) (tr(Eo ZX X ) )

<2exp {—cmin {npt2/9,npt/3}} )

O
Lemma A.14. With probability over 1 — O(3),
lo
150 — Zollmar < \[ ED.
Proof. Lett = 4/ 105 P then
p[|fEo) | [logp < 1
tr(Xo) n p
Follow the same process in the proof of Lemma A7, we obtain
= lo 1
150 — Siolms £/ 222 + /7
n p
O
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The subsequent proof follows essentially the same procedure as in Section B33, and we present
only the key steps here. For the estimators D, 3,

~ logp 1
m—Dwsa<w§5+¢>,
n p

|mmbs@0ﬂfp+/j,
p

with a probability of 1 — O (%)

Next, we consider the terms in M (z). For the constant term, we have

- I 1
’ﬁT(Hz — ) — 5T(ﬁ2 - ﬁl)‘ S s2 (\/ in + p) )

with a probability over 1 — O (%) With respect to term log [D3; + 1,

- - . 1o 1
P <1ogD21 +1,| —log DSy 4+ L| — (DX — DX4)| < 51 <,/ ip + \/D)
1
>1-0 ()
p

Concerning quadratic term involving z, follow the same process in ([3), we have

P (|(z = )Pz = ) = (2= )" D(z — ) — ((DT, — DE))|

(-0
_p (’:pTI‘lT(D — D)z — (te(CT(D — 13)1“1)‘ > Ms; (, / loip + \/D)

<2exp {—cmin{M? M}} + %

-1

Regarding linear term involving z, as (E(r))? > (E(r~2) = p — 2, we can obtain
lo
(‘(5 8) (z—m)| > Ms» (w 8P 1 f))
| (E(r)
Sexp{—coM?} + = + —— — 20
{—c2M7} i 2 »

1
Sexp{—caM?} + ~.
p
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To reach the conclusion, observing that for Gaussian distribution Qg (z) = Q(z), we consider the
convergence of misclassification error.

R(Gg) — R(Gg)

= Eaur, [0 -5 1{Q2) > 0.002) < Q2) - G2}

=3By um (1 - ¢ 210 < Q(z) < M(2)}
xIL{M( ) < M(s1+ s2) 1ogn<\/@ \/Z }

3Bz (- € 210 < Q(2) < M(2)}

x 1 {M(z) < Mlogn(s1 + s2) (W—F \/2> }
+PZNNP(H1721) (M<z) > MlOgTL(Sl + SQ) (\/@.ﬂr \/Z)) .

Combine the results above, we can reach the conclusion that

E [R(G@) - R(GQ)] llogn $1+ 52) <\/@ \[)
=(s1 + $2)* log? n( logp \/2)

SR
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